
Electronics
Technology

Development of an application for
Wupper a PCIe Gen3 DMA for Virtex 7

Oussama el Kharraz Alami

29-1-2016

Studentnumber: 500639457
Course: Bachelor’s Degree, Electrical Electronic and Communications Engineering

School: Amsterdam University of Applied Sciences
Supervisors:

Andrea Borga, Nikhef, Amsterdam, The Netherlands.
Frans Schreuder, Nikhef, Amsterdam, The Netherlands.

Wim Dolman, Amsterdam University of Applied Sciences, Amsterdam, The Netherlands.

WUPPER

Science Park 105 - 1098XG Amsterdam

Development of an application for
Wupper a PCIe Gen3 DMA for Virtex 7

Contents

1 Introduction 3
1.1 Wupper package . 3

2 Internship 4
2.1 Goal . 4
2.2 Topics . 4
2.3 Drivers and tools . 4
2.4 VHDL example application code . 4
2.5 Developing a GUI . 4

3 Wupper package 5
3.1 Wupper core . 5

3.1.1 Xilinx PCIe End Point . 6
3.1.2 Core control . 6
3.1.3 DMA read/write . 7

3.2 Example application HDL modules . 7
3.2.1 Functional blocks . 7

3.3 Device driver and Wupper tools . 10
3.3.1 Operating Wupper-dma-transfer 11
3.3.2 Operating Wupper-chaintest . 13

3.4 Wupper GUI . 14
3.4.1 Functional blocks and threaded programming 14
3.4.2 GUI operation . 15

4 Verification 16
4.1 Randomness of the data generator . 16
4.2 Verification flow . 16

5 Conclusion 18

Appendix A Benchmark: block size versus write speed 19

Appendix B Problem solving: solution on different stream congestion and
data corruption 20

Appendix C Application Base Address Region 21

References 22

2 Oussama el Kharraz Alami 1.0

Development of an application for
Wupper a PCIe Gen3 DMA for Virtex 7

1 Introduction

1.1 Wupper package

Approaching a development package bottom up, the Wupper core1, is a module of the
FELIX firmware and provides an interface for the Direct Memory Acces (DMA) in the Xilinx
Virtex-7 FPGA hosted on the VC-709. This FPGA has a PCIe Gen3 hard block integrated
in the silicon [1]. With the PCIe Gen3 standard it is possible to reach a theoretical line
rate of 8 GT/s; by using 8 lanes, it is therefore possible to reach a theoretical throughput
of 64 Gb/s. The main purpose of Wupper is to handle data transfers from a simple user
interface, i.e a FIFO, to and from the host PC memory. The other functionality supported by
Wupper is the access to control and monitor registers inside the FPGA, and the surrounding
electronics, via a simple register map. Figure 1 below shows a block diagram of the Wupper
package.

Figure 1: Wupper package overview

The Wupper core communicates to the host PC via the Wupper driver and is controlled
by a set of, so called, Wupper tools. The Wupper driver through an Application Program-
ming Interface (API) can also communicate to a Wupper Graphical User Interface (GUI).
Wupper had been published under the LGPL license on Opencores.org [6]. As the devel-
opers firmly believe in the dissemination of knowledge through Open Source. Hence users
can freely download, use and learn from the core and possibly provide feedback to further
improve Wupper. The outcome of the development is the so called Wupper package: a
suite of firmware and software components, which details will be given later in this report.
On missing feature of the Wupper core published on OpenCores was a simple yet complete
example application to study, test, and benchmark Wupper. To avoid confusion concerning
name, a list is created to specify a name and description for all the parts of the Wupper
project:

• Wupper core: firmware PCIe engine

• Wupper driver: software device driver

• Wupper tools: software tools to operate the core

• Wupper GUI: a simple control and monitor panel

• Wupper package: the sum of the above packed for distribution on Open Cores.

1A wupper is a person performing the act of bongelwuppen, the version from the
Dutch province of Groningen of the Frisian sport Fierljeppen (canal pole vaulting).
https://www.youtube.com/watch?v=Bre8DsQZqSs

1.0 Oussama el Kharraz Alami 3

https://www.youtube.com/watch?v=Bre8DsQZqSs

Development of an application for
Wupper a PCIe Gen3 DMA for Virtex 7

2 Internship

2.1 Goal

Given the background provided in the previous chapter, my contribution to this project is
to develop an example application that checks the health of the core in both directions.
The application also checks whether the data that is written into the PC memory is valid.
The development contains software (Wupper tools) and an HDL example application.. In
addition, a GUI will be developed for the application. Besides those main activities, the
device driver and tools developed for Wupper used in the FELIX application has to be
ported and tested for the Wupper version published on OpenCores. Appendix B shows the
global schedule of the activities I carried out during the development of the application.

2.2 Topics

As introduced in the previous paragraph, the aim of this internship is to develop a test
application for Wupper. Its purpose is to benchmark the robustness and performance of
the Wupper core. To reach this goal, at first the structure of the Wupper package needs
to be understood. This requires grasping how to transfer data using the Wupper core and
what is needed for controlling the FPGA using software. Each specific sub-task of the work
carried out for this development is detailed in the following sub-paragraphs.

2.3 Drivers and tools

The drivers and tools are the low level software parts which control the logic of the Wupper
core. A set of device drivers are used to: (i) initialize the FPGA PCIe card and control DMA
transfers, (ii) perform I/O operations on registers inside the FPGA, (iii) allocate memory
buffers in the host PC to be used as landing areas for data transfers. The Wupper-tools,
a collection of tools which is made in the programming languages C and C++, are used
to control the logic through the drivers.The Wupper-tools are intended to be a subset of
the tools developed for Wupper in the framework of the FELIX project, meaningful for the
OpenCores users. The key to implement the Wupper tools is to understand how the original
tools work and which parts can be reused.

2.4 VHDL example application code

The purpose of the VHDL example application is to show the essentials of the DMA transfer
function of Wupper. Prior to the development described in this report, there was only a
simple 32-bit counter used to test the data flow in only one direction, i.e. from the FPGA
to the PC. Understanding the Wupper core will lead to a renewed version which should
transfer 256 bit data with high speed, both in the up and down direction.

2.5 Developing a GUI

Prior to this development operating the FPGA card was done via a terminal. There is a
certain order to get it working which can be very complicated for the users. The solution
is to design a Graphical User Interface (GUI) which can be run on Linux systems.

4 Oussama el Kharraz Alami 1.0

Development of an application for
Wupper a PCIe Gen3 DMA for Virtex 7

3 Wupper package

In this section, the firmware, drivers, and tools of Wupper (see Figure 2) together with its
working principle are explained. For more detailed information about the internals and the
core please refer to the official Wupper documentation [3].

Figure 2: Wupper package overview

3.1 Wupper core

An Engine, like Wupper, moves data bidirectionally to a memory without CPU interven-
tion. This efficient method is used for handling large amounts of data, which is crucial
for throughput intensive applications. During a DMA tranfer, the DMA control core will
take control according to the information provided by a DMA descriptor, and by flagging
completion of operations in a per descriptor status register. By providing user data into the
FIFO’s, the core starts the DMA transfer over the PCIe lanes. Figure 3 shows a complete
diagram of the of the HDL modules of the Wupper package; including the HDL modules
for the Wupper core and the example application, together with the host PC memory.

DOWNFIFO

Buffer 1

Buffer 2

PC
memory

Wupper

Read fifo

Write fifo

Add
Read/Write

header

Strip
header

Read/Write
descriptors

IO /
external
registers

Read/Write
status

DMA_read_write

DMA_control

Synch
stage

Xilinx
PCIe
end
point

Enable

Data-generator

Application

multiplexer

Application

LFSR

Application
enable

UPFIFOMultiplier

Figure 3: Overview of the HDL modules in the Wupper package

1.0 Oussama el Kharraz Alami 5

Development of an application for
Wupper a PCIe Gen3 DMA for Virtex 7

3.1.1 Xilinx PCIe End Point

The Virtex-7 XC7VX690T-2FFG1761C on the VC-709 board has an integrated endpoint for
PCI Express Gen3 [1]. This black box handles the traffic over the PCI Express bus. Inside
the Wupper core a DMA read/write process, sends and receives AXI4 commands over the
AXI4-Stream bus. The black box translates this into differential electrical signals. Figure 4
shows a simplified model of the firmware stack. Configuration of the core is explained in
section 3.2 of the official documentation of Wupper [4].

Figure 4: Block diagram of the logic in the VC-709 FPGA

3.1.2 Core control

The DMA control (DMA control in Figure 3) process consists of a register map which can
be configured from a PC using the Wupper tools. The registermap is divided in three
regions: BAR0, BAR1 and BAR2. BAR stands for Base Address Region. Every BAR has 1
MB of address space.

BAR0 contains registers associated with DMA like the DMA descriptors. The descriptors
specify the addresses, transfer direction, size of the data and an enable line. Figure 3 shows
that the information is fed to the DMA read write core.

BAR1 is reserved for the interrupt mechanism and consists of 8 vectors.
BAR2 is used for the benchmark application and is dedicated to user applications. The

work done for this report defines and acts on registers in BAR2, as summarized in Appendix
C.

As previously shown in Figure 3, the example application core consists of multiple
function blocks which are attached to the register map. This makes it possible to control
the benchmark application from the PC. A complete overview of the register map can be
found in the official documentation of Wupper [3].

6 Oussama el Kharraz Alami 1.0

Development of an application for
Wupper a PCIe Gen3 DMA for Virtex 7

3.1.3 DMA read/write

The DMA read and write (DMA read write in Figure 3) module handles the transfer from
the FIFO’s according to the direction specified by the descriptors. If data shifts into the
down FIFO, a non-empty flag will be asserted to start the DMA write process, this direction
of the flow is defined as the ”down link”. This process reads the descriptors and creates
a header with the information. The header is added when the data shifts out of the down
FIFO. For the reversed situation, the data with a header is read from the PC memory. This
direction of the flow is then defined as ”up link”. The information in the header will be
parsed by the DMA control and the data fed to the up FIFO.

3.2 Example application HDL modules

The example application, the user application inside the FPGA, replaces the counter with
a pseudo-random data generator. Moreover the new feature in the application has the
possibility to process data from the PC memory. The example application can be operated
in two modes:

1. The random data generator directly sends data to the host via Wupper, this is referred
to as ”write only” or ”half loop” test.

2. The content of the random data generator is wrote back to the FPGA, multiplied
and sent to host again, this is referred as ”read and write” or ”full loop” test.

The example application is developed in VHDL, and the code is synthesized and imple-
mented in Xilinx Vivado 2014.4 [2]. The example application is now part of the Wupper
package on OpenCores.

3.2.1 Functional blocks

Figure 5 shows a detailed block diagram of the example application for Wupper. The
Wupper core contains a list of addresses, this list is the register map. The values of the
register map are implemented in the firmware as signals. The PC sees the signals as
addresses. Wupper tools write values to these addresses which control the FPGA logic (see
dashed lines in Figure 5).

1.0 Oussama el Kharraz Alami 7

Development of an application for
Wupper a PCIe Gen3 DMA for Virtex 7

Figure 5: Overview of the example application

As introduced in the previous paragraph, one type of test possible with the example
application is the ”half loop”: in such mode of operation, Wupper is fed by a random data
generator based on a 256 bits Linear Feedback Shift Register (LFSR). An LFSR, as shown
in Figure [7], consists of a number of shift registers which are fed back to the input. The
feedback is manipulated by an XOR operation which creates a pseudo-random pattern. The
ideal goal is to produce a sequence with a infinite length to prevent repetition. Repetition
occurs by two factors, the feedback points/taps and the start value. The maximal length
sequence can be approached by 2n − 1 [7]. Where the n is the number of shift registers.
The 256 bits LFSR is a four stage Galois LFSR with taps at the registers 256, 254,251 and
246. The approach is explained in paper [9] by R. W. Ward and T.C.A. Molteno of the
electronics group at the University of Otago. The software tools developed for the example
application initialize the seed value by writing it to the register map thereafter the 1-bit
LFSR LOAD SEED signal is set to 1. This resets the LFSR process with a seed value.

Figure 6: A 4 bit Linear Feedback Shift Register (LFSR)

8 Oussama el Kharraz Alami 1.0

Development of an application for
Wupper a PCIe Gen3 DMA for Virtex 7

For multiplication, the Xilinx multiplier IP block is used. The operations are based on
the DSP48E1 [8] for the Virtex-7 series. There are two parallel multipliers used with two
unsigned 64-bit inputs. To make the multiplier perform optimally at high clock rates, an
18 stage pipelining is used.

For monitoring the core temperature, a XADC IP block [10] is used. This is generated
by Vivado’s XADC wizard. The output signal of the block is connected to one register of
the register map.

The 1-bit signal APP MUX is attached to the select port of the application multi-
plexer. This enables the data flow to the down FIFO.

The signal APP ENABLE enables the output of the LFSR and the multiplier. The
2-bits signal has three states:

• ”00”: No data flow, application is on standby.

• ”01”: Makes the example application enable ’high’ causing data to flow only from
the LFSR.

• ”10”: Makes the example application enable ’high’ causing data to flow only from
the multiplier.

The FIFO’s are generated by Vivado’s FIFO generator and using integrated common clock
block RAMs. The clock is set to 250 MHz to reach the maximum theoretical throughput.
The up FIFO is deeper to function as a buffer. This is an extra precaution. The reason is
if the data is looped back in the application, both FIFO’s can be full at the same time. If
this occurs, the application stalls because of the loop back.

1.0 Oussama el Kharraz Alami 9

Development of an application for
Wupper a PCIe Gen3 DMA for Virtex 7

3.3 Device driver and Wupper tools

The Wupper tools communicate with the Wupper core through the Wupper device driver.
Buffers in the host PC memory are used for bidirectional data transfers, this is done by a
part of the driver called CMEM. This will reserve a chunk of contiguous memory in the
host. For the specific case of the example application, the allocated memory will be logically
subdivided in two buffers (buffer 1 and buffer 2 in Figure 3). One buffer is used to store
data coming from the FPGA (write buffer, buffer 1), the other to store the ones going
to the FPGA (read buffer, buffer 2). The idea behind the logical split of the memory in
buffers is that those buffers can be used to copy data from the write to read, and perform
checks. The driver is developed for Scientific Linux CERN 6 but has been tested and used
also under Ubuntu kernel version 3.13.0-44a. Building and loading/unloading the driver is
explained in section 6.1.2 en 6.1.3 of the official documentation of Wupper [5].

The Wupper tools are a collection of tools which can be used to debug and control the
Wupper core. These tools are command line programs and can only run if the device driver
is loaded. A detailed list and explanation of each tool is given in the next paragraphs. Along
with the collection of tools derived from the FELIX tool suite, the Wupper-dma-transfer
and Wupper-chaintest had been added as new features for the OpenCores’ benchmark. As
mentioned before, the purpose of those applications is to check the health of the Wupper
core.

The Wupper tools collection comes with a readme [11], this explains how to compile
and run the tools. Most of the tools have an -h option to provide helpful information.
The table below shows a list of the tools derived from the original flxtools suite and their
description.

Tool Description
Wupper-info Prints information of the device. For instance device ID,

PLL lock status of the internal clock and FW version.
Wupper-reset Resets parts of the example application core. These func-

tions are also implemented in the Wupper-dma-transfer
tool.

Wupper-config Shows the PCIe configuration registers and allows to set,
store and load configuration. An example is configuring
the LED’s on the VC-709 board by writing a hexadecimal
value to the register.

Wupper-irq-test Tool to test interrupt routines
Wupper-dma-test This tool transfers every second 1024 Byte of data and

dumps it to the screen.
Wupper-throughput The tool measures the throughput of the Wupper core.

The method of computing the throughput is wrong, this is
discussed in the section 3.4.2.

Wupper-dump-blocks This tools dumps a block of 1 KB. The iteration is set
standard on 100. This can be changed by adding a number
after the ”-n”.

For the Wupper package on OpenCores two extra tools had been newly developed to
target specific benchmark requirement for the generic example application: Wupper-dma-
transfer and Wupper-chaintest. In the next paragraphs a detailed description of such tools
and their operation is given.

10 Oussama el Kharraz Alami 1.0

Development of an application for
Wupper a PCIe Gen3 DMA for Virtex 7

3.3.1 Operating Wupper-dma-transfer

Wupper-dma-transfer sends data to the target PC via Wupper also known as half loop
test. This tool operates the benchmark application and has multiple options. A list of such
options is summarized in Listing 1.

Listing 1: Output of Wupper-dma-transfer -h

daqmustud@gimone:$./wupper-dma-transfer -h

Usage: wupper-dma-transfer [OPTIONS]

This application has a sequence:
1 -Start with dma reset(-d)
2 -Flush the FIFO’s(-f)
3 -Then reset the application (-r)

Options:
-l Load pre-programmed seed.
-q Load and generate an unique seed.
-g Generate data from PCIe to PC.
-b Generate data from PC to PCIe.
-s Show application register.
-r Reset the application.
-f Flush the FIFO’s.
-d Disable and reset the DMA controller.
-h Display help.

Before using the write function, make sure that the application is ready by resetting all
the values, as shown in Listing 2.

Listing 2: Reset Wupper before a DMA Write action

daqmustud@gimone:$./wupper-dma-transfer -d
Resetting the DMA controller...DONE!
daqmustud@gimone:$./wupper-dma-transfer -f
Flushing the FIFO’s...DONE!
daqmustud@gimone:$./wupper-dma-transfer -r
resetting application...DONE!

1.0 Oussama el Kharraz Alami 11

Development of an application for
Wupper a PCIe Gen3 DMA for Virtex 7

Before writing data into the PC, the data generator needs a seed to initialize the generator.
There are two options available: load a unique seed or load a pre-programmed seed. The
pre-programmed seed is always 256 bits, the unique seed value can be variable. The -s
option displays the status of the register including the seed value. For a unique seed,
replace the -l with -q, as shown in Listing 3.

Listing 3: Loading a pre-programmed seed in to the data generator.

daqmustud@gimone:$./wupper-dma-transfer -l
Writing seed to application register...DONE!
daqmustud@gimone:$./wupper-dma-transfer -s

Status application registers

LFSR_SEED_0A: DEADBEEFABCD0123
LFSR_SEED_0B: 87613472FEDCABCD
LFSR_SEED_1A: DEADFACEABCD0123
LFSR_SEED_1B: 12313472FEDCFFFF
APP_MUX: 0
LFSR_LOAD_SEED: 0

The -g option performs a DMA write to the PC memory. The data generator starts to
fill the down FIFO and from the PC side, a DMA read action is performed. The size of the
transfer is set to 1 MB by default, but the size is configurable. When the PC receives 1
MB of data, the transfer stops. It is possible that there is still some data left in the down
FIFO, resetting the FIFO’s can be done by the -f option, as shown in Listing 4.

Listing 4: Start generating data to the target.

daqmustud@gimone:$./wupper-dma-transfer -g
Starting DMA write
done DMA write
Buffer 1 addresses:
0: EED9733362A50D71
...
...
...

12 Oussama el Kharraz Alami 1.0

Development of an application for
Wupper a PCIe Gen3 DMA for Virtex 7

In a similar way a DMA read action from the FPGA can be performed by using the -b
option. The output of the up FIFO is fed to a multiplier. The output of the multiplier is
fed to the down FIFO with a destination to the PC memory as shown in Listing 5.

Listing 5: Performing a DMA read and DMA write

daqmustud@gimone:$./wupper-dma-transfer -b
Reading data from buffer 1...
DONE!
Buffer 2 addresses:
0: 24BBEC63B53F3BCC
...
...
...

3.3.2 Operating Wupper-chaintest

The Wupper-chaintest tool does in one shot a complete DMA Read and Write transfer.
It checks if the multiplied data is done correctly. This is done by multiplying the data in
buffer 2 and compare the output of the multiplier in buffer 1 (shown earlier in Figure 3).
The tool returns the number of errors out of 65536 loops as shown in Listing 6.

Listing 6: Output of Wupper-chaintest

daqmustud@gimone:$./wupper-chaintest
Reading data from buffer 1...
DONE!
Buffer 2 addresses:
0: 49A5A89745420D34
...
...
...
9: 5D37679AE79FA7C2
0 errors out of 65536

1.0 Oussama el Kharraz Alami 13

Development of an application for
Wupper a PCIe Gen3 DMA for Virtex 7

3.4 Wupper GUI

The concept of the Wupper GUI is based on the Wupper tools and has the same construction
(see Figure 7). The GUI is developed with Qt version 5.5 (C++ based) [12] and gives the
user a visual feedback of the Wupper’s status/health. The GUI can only run if the device
driver is loaded.

Figure 7: High and low level software overview block diagram.

3.4.1 Functional blocks and threaded programming

Multi-threading is used so functional blocks can run at the same time as the GUI. If multi-
threading is not used, the GUI interface gets stuck. A thread starts a new process next to
the main process. If another processor core is available, the thread will run on a separated
core. By communicating via slots to the main process, the data is secured. There are two
threads but only one of the threads can be used at the same time. The reason is that both
threads use the same DMA ID, this will cause an error. The threads communicate with
the Application Program Interface (API) to control and fetch the output of the logic. The
output data communicate safely via a signal to the slots. Figure 8 shows an overview of
the threaded programs in the Wupper GUI.

Figure 8: Threaded programs in the Wupper GUI

14 Oussama el Kharraz Alami 1.0

Development of an application for
Wupper a PCIe Gen3 DMA for Virtex 7

3.4.2 GUI operation

The GUI is separated in four regions (see Figure 9): status, control, measurement and an
info region. The status region fetches the information about various parts of the FPGA on
the VC-709 via the Wupper core, and about the core itself. When the user clicks on the
”get Wupper status” button, it shows the internal PLL lock status, Board ID, Card ID and
the firmware version.

The control region controls the logic inside Wupper through the API. The ”Reset Wup-
per” button resets the application logic by resetting the DMA, flushing the FIFO’s and reset
the application values.

In the DMA Write section, the user can perform a DMA Write measurement. The user
can configure the blocksize. The blocksize has effect on the speed, this is discussed in
Appendix A. The measurement output is shown in the measurement region. The method
of computing the throughput is different than the method of the Wupper-throughput tool.
The fault is the wrong order of operations by misplacing brackets. The wrong method is
A/B ∗ C = D instead of A/(B ∗ C) = D.

In a similar way, the user can perform a DMA Read test and the output is shown in the
plot in the measurement region. The info/console output region gives the user feedback of
the application and the GUI.

Figure 9: Screenshot of the example application GUI

1.0 Oussama el Kharraz Alami 15

Development of an application for
Wupper a PCIe Gen3 DMA for Virtex 7

4 Verification

In this section the verification of the example application HDL modules is being discussed.
During the development of the example application HDL modules, the functional blocks
are simulated separately. The HDL blocks are simulated with Mentor Graphics Questasim
using a scripting language called Tool Command Language (TCL) [15].

4.1 Randomness of the data generator

The heart of the example application HDL modules is the data generator. This provides
data to the Wupper core. The data generator is based on the Linear Feedback Shift Register
(LFSR). There are other techniques for generating (pseudo) random data such as the Linear
Congruential Generator and Multiple Recursive Generators. The problem of these methods
are the need of a lot of multiplication computing power [14]. This requires a lot of digital
logic / DSP slices.

It is important that the output data is random. To check this pattern Questasim is used
for simulation. The first signal in Figure 10 shows the output signal of the LFSR module
using the approach by R.W. Ward and T.C.A Molteno [9]. Questasim can plot the data in
the waveform viewer which gives a nice overview of the randomness.

Figure 10: Randomness of the data generator based on a 256-bits LFSR.

4.2 Verification flow

After an expected behaviour of the application HDL modules, the complete Wupper package
needs to be verified. The expected behaviour of the full Wupper pacakage is that the output
of the LFSR is first sent to a buffer in the PC memory. This buffer will later be transferred
back into the FPGA by means of a DMA read cycle and fed into the input of the multipliers.
Meanwhile, a second transfer is started simultaneously to transfer the multiplied data into
a second buffer of PC memory. Simulating the behaviour of transactions to PC memory
is possible but very complex. In this case it is efficient to test the behavior real-time with
Vivado’s Integrated Logic Analyzer (ILA) [16]. ILA allows monitoring signals in real-time.
The ILA core uses RAM blocks inside the FPGA as storage elements for the data in between
acquisitions and subsequent transfers to host via the JTAG interface. It is therefore obvious
that a combination of monitored signals and the depth of an acquisition will impact the
resource consumption in the FPGA when equipped with debug probes. It is therefore
crucial to carefully select the signals that one wants to monitor and the depth, i.e. number
of samples, one wants to get per acquisition.

16 Oussama el Kharraz Alami 1.0

Development of an application for
Wupper a PCIe Gen3 DMA for Virtex 7

When the probes are set properly and the triggers are armed, the next step in this
process is operating the logic. This is done on the host PC via the Wupper-tools (described
in Paragraph 3.3). The tools will activate the triggers and create an event. This event will
acquire signal status which can be used for verifying the behaviour. This approach tests at
the same time the HDL part and the low level software part. This approach and resources
used during the verification is displayed below in Figure 11.

Figure 11: View of the verification flow

The output of the LFSR is fed back to the input of the multipliers. To verify the
multiplication, the tool Wupper-chaintest is developed. The tool activates the flow from
the data generator to PC memory and back to the PC memory through the multipliers. As
described in Section 3.3.2, the tool reserves two buffers inside the target PC. The data that
is stored in buffer 2, are the inputs of the multipliers. This data is multiplied and verified
with the output of the data that is stored in buffer 1. This is compared by the tool and
returns an overview of errors that occur.

The high level software has the same purpose as the Wupper-tools. This makes it
easy to implement it in the Wupper GUI. As mentioned before, the tools are based on
programming languages C and C++ while Qt is based on C++. Which makes it possible
to port the tools into Qt.

1.0 Oussama el Kharraz Alami 17

Development of an application for
Wupper a PCIe Gen3 DMA for Virtex 7

5 Conclusion

The Wupper package is published on OpenCores and includes an example application,
Wupper GUI and two Wupper tools. The example application have two functionality, the
half-loop test and full loop test. The half loop test is a write only test. The random data
generator sends data to the host via the Wupper core. This test can be fired using the
Wupper-dma-transfer tool. The second functionality, the full loop test, reads data from
the PC memory through Wupper, data is multiplied and writes back via Wupper to the
PC memory. In combination with the Wupper-chaintest, the Wupper core can be tested
on corrupt data. A random data generator based on a Linear Feedback Shift Register
(LFSR) is used for data generation. This is used to test the Wupper core with every
combination of data. The Wupper tools are command line tools and are hard to handle
without the manual. Wupper GUI makes it possible to give a clear graphical view of the
performance of the Wupper core. The verification shows the expected behaviour of the
complete Wupper package. By controlling, monitoring and Read/Write transfers tests, the
example application benchmarks the essentials of the Wupper core. The source code of the
example application, Wupper tools and Wupper GUI are open source which makes the user
easier to develop an application for the Wupper core.

18 Oussama el Kharraz Alami 1.0

Development of an application for
Wupper a PCIe Gen3 DMA for Virtex 7

Appendix A Benchmark: block size versus write speed

The Wupper GUI makes it possible for the users to configure the block size value. This
appendix shows how much effect the block size have on the write speed.

During a DMA write action (FPGA→PC), a transfer request is transferred from the
host to the FPGA, therefore a write descriptor is setup. This descriptor contains information
such as memory addresses, direction and the size of the payload, i.e. the amount of data
to be transfered. The descriptor is then handled by Wupper, and the data transfer to host
initiated. The size of the payload is in this case also the block size. For example when
users choose to have a block size of 1 KB, the request gets completed after 1 KB of data
had been transferred to host. Subsequently a new header will be created and repeated until
the throughput measurement is stopped by the user. A plot of the block size versus write
speed is shown below in Figure 12. One can clearly observe from this plot that the block
size have effect on the write speed. This is somehow expected as there is an overhead due
to the request of those blocks, hence the more data get transfer per request, the better
the PCIe bandwidth is exploited. The bigger the block size is, the faster the write speed
gets. The throughput obviously saturates at a level close to the theoretical maximum speed
defined by an 8 lane PCIe Gen3 link (64 Gbps).

1 2 3 4 5 8 12 18 30 50 100 200 400 800 1600 3200 6400 12800 25600 51200 204800

0.13

0.20

0.30

0.40

0.50

0.60

0.80

1.00

2.00

3.00

4.00

5.00

5.94

packet size (kB)

S
pe

ed
 (

G
B

/s
)

Transfer speed vs packet size

Figure 12: upfifo and downfifo are full.

1.0 Oussama el Kharraz Alami 19

Development of an application for
Wupper a PCIe Gen3 DMA for Virtex 7

Appendix B Problem solving: solution on different stream
congestion and data corruption

This appendix shows the approach of the problem during verification of the example appli-
cation. During a write action (FPGA→PC), data flows into the PC memory. But when
a DMA read action (PC→FPGA) is performed, the Wupper tool got stuck. The result
of debugging the tool shows that the strange behaviour occurs during a DMA WAIT
function. This function waits on the assertion of the descriptor completion signal from the
Wupper core, this signal informs the host PC that the DMA action is completed. The
signal comes from the Wupper core, this allows to take a closer look at the HDL module.
The ILA core allows to fire an immediate trigger to capture the status of the signals. First
thing that attract attention is that both FIFO’s are full as shown below in Figure 13.

Figure 13: upfifo and downfifo are full.

In order to resolve this issue, three changes where required:

• Editing the DMA WAIT function: the function contains a timer which stops exe-
cuting itself after a certain period and returns an error message. This measure allows
the user clarity.

• Increasing the depth of the Up FIFO: by expanding the Up FIFO, the example appli-
cation have more capacity so more room for processing data.

• Adding application enable block in the example application: As described before in
paragraph 3.2.1, to prevent data congestion in the example application.

20 Oussama el Kharraz Alami 1.0

Development of an application for
Wupper a PCIe Gen3 DMA for Virtex 7

Appendix C Application Base Address Region

The registers in BAR2, which is shown below in Table 1, is dedicated to user application.

Address Name/Field Bits Type Description
Bar2

0x0000 REG BOARD ID 39:0 R Board ID
0x0010 REG STATUS LEDS 7:0 R/W Board GPIO Leds
0x0040 REG CARD TYPE 63:0 R Card type information

Monitor Registers
0x0300 REG PLL LOCK 19:0 R PLL lock status
0x1060 INT TEST 2 any T Fire a test MSIx interrupt

#2
0x1070 INT TEST 3 any T Fire a test MSIx interrupt

#3
Example application register

0x2000 REG LFSR SEED 0 63:0 R/W Seed value 127:0
0x2010 REG LFSR SEED 1 63:0 R/W Seed value 256:128
0x2020 REG APP MUX 1 R/W Select of the application

multiplexer
0x2030 REG LFSR LOAD SEED 1 R/W Initialize the seed value in to

the data generator
0x2040 REG APP ENABLE 2:0 R/W Enables the application
0x310 REG CORE TEMPERATURE 4:0 R XADC temperature core

Table 1: Register map BAR2

1.0 Oussama el Kharraz Alami 21

Development of an application for
Wupper a PCIe Gen3 DMA for Virtex 7

References

[1] PG023: The user guide for Xilinx PCI Express core
http://www.xilinx.com/support/documentation/ip_
documentation/pcie3_7x/v3_0/pg023_v7_pcie_gen3.pdf

[2] Xilinx Vivado Design Suite User Guide 2014.4
http://www.xilinx.com/support/documentation/sw_manuals/
xilinx2014_4/ug973-vivado-release-notes-install-license.
pdf

[3] Official Wupper documentation:
http://opencores.org/websvn,filedetails?repname=virtex7_
pcie_dma&path=%2Fvirtex7_pcie_dma%2Ftrunk%2Fdocumentation%
2Fpcie_dma_core.pdf

[4] Official Wupper documentation: Configuration of the core
http://opencores.org/websvn,filedetails?repname=virtex7_
pcie_dma&path=%2Fvirtex7_pcie_dma%2Ftrunk%2Fdocumentation%
2Fpcie_dma_core.pdf#subsection.3.2

[5] Official Wupper documentation: Loading the driver
http://opencores.org/websvn,filedetails?repname=virtex7_
pcie_dma&path=%2Fvirtex7_pcie_dma%2Ftrunk%2Fdocumentation%
2Fpcie_dma_core.pdf#subsection.6.1

[6] Official Wupper project (OpenCores version)
http://opencores.org/project,virtex7_pcie_dma

[7] Tutorial: Linear Feedback Shift Registers (LFSRs). An article abstracted from the book
Bebop to the Boolean Boogie (An Unconventional Guide to Electronics)
http://www.eetimes.com|/document.asp?doc_id=1274550

[8] Xilinx 7 Series DSP48E1 Slice: User guide
http://www.xilinx.com/support/documentation/user_guides/
ug479_7Series_DSP48E1.pdf

[9] Table of Linear Feedback Shift Registers by R. W. Ward and T.C.A. Molteno of the
electronics group at the University of Otago
http://www.physics.otago.ac.nz/reports/electronics/
ETR2009-1.pdf

[10] XADC Wizard v3.0 product guide
http://www.xilinx.com/support/documentation/ip_
documentation/xadc_wiz/v3_0/pg091-xadc-wiz.pdf

[11] Official software readme
http://opencores.org/websvn,filedetails?repname=virtex7_
pcie_dma&path=%2Fvirtex7_pcie_dma%2Ftrunk%2FhostSoftware%
2Fwupper_tools%2FREADME.txt

22 Oussama el Kharraz Alami 1.0

http://www.xilinx.com/support/documentation/ip_documentation/pcie3_7x/v3_0/pg023_v7_pcie_gen3.pdf
http://www.xilinx.com/support/documentation/ip_documentation/pcie3_7x/v3_0/pg023_v7_pcie_gen3.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2014_4/ug973-vivado-release-notes-install-license.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2014_4/ug973-vivado-release-notes-install-license.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2014_4/ug973-vivado-release-notes-install-license.pdf
http://opencores.org/websvn,filedetails?repname=virtex7_pcie_dma&path=%2Fvirtex7_pcie_dma%2Ftrunk%2Fdocumentation%2Fpcie_dma_core.pdf
http://opencores.org/websvn,filedetails?repname=virtex7_pcie_dma&path=%2Fvirtex7_pcie_dma%2Ftrunk%2Fdocumentation%2Fpcie_dma_core.pdf
http://opencores.org/websvn,filedetails?repname=virtex7_pcie_dma&path=%2Fvirtex7_pcie_dma%2Ftrunk%2Fdocumentation%2Fpcie_dma_core.pdf
http://opencores.org/websvn,filedetails?repname=virtex7_pcie_dma&path=%2Fvirtex7_pcie_dma%2Ftrunk%2Fdocumentation%2Fpcie_dma_core.pdf#subsection.3.2
http://opencores.org/websvn,filedetails?repname=virtex7_pcie_dma&path=%2Fvirtex7_pcie_dma%2Ftrunk%2Fdocumentation%2Fpcie_dma_core.pdf#subsection.3.2
http://opencores.org/websvn,filedetails?repname=virtex7_pcie_dma&path=%2Fvirtex7_pcie_dma%2Ftrunk%2Fdocumentation%2Fpcie_dma_core.pdf#subsection.3.2
http://opencores.org/websvn,filedetails?repname=virtex7_pcie_dma&path%2Fvirtex7_pcie_dma%2Ftrunk%2Fdocumentation%2Fpcie_dma_core.pdf#subsection.6.1
http://opencores.org/websvn,filedetails?repname=virtex7_pcie_dma&path%2Fvirtex7_pcie_dma%2Ftrunk%2Fdocumentation%2Fpcie_dma_core.pdf#subsection.6.1
http://opencores.org/websvn,filedetails?repname=virtex7_pcie_dma&path%2Fvirtex7_pcie_dma%2Ftrunk%2Fdocumentation%2Fpcie_dma_core.pdf#subsection.6.1
http://opencores.org/project,virtex7_pcie_dma
http://www.eetimes.com/document.asp?doc_id=1274550
http://www.xilinx.com/support/documentation/user_guides/ug479_7Series_DSP48E1.pdf
http://www.xilinx.com/support/documentation/user_guides/ug479_7Series_DSP48E1.pdf
http://www.physics.otago.ac.nz/reports/electronics/ETR2009-1.pdf
http://www.physics.otago.ac.nz/reports/electronics/ETR2009-1.pdf
http://www.xilinx.com/support/documentation/ip_documentation/xadc_wiz/v3_0/pg091-xadc-wiz.pdf
http://www.xilinx.com/support/documentation/ip_documentation/xadc_wiz/v3_0/pg091-xadc-wiz.pdf
http://opencores.org/websvn,filedetails?repname=virtex7_pcie_dma&path=%2Fvirtex7_pcie_dma%2Ftrunk%2FhostSoftware%2Fwupper_tools%2FREADME.txt
http://opencores.org/websvn,filedetails?repname=virtex7_pcie_dma&path=%2Fvirtex7_pcie_dma%2Ftrunk%2FhostSoftware%2Fwupper_tools%2FREADME.txt
http://opencores.org/websvn,filedetails?repname=virtex7_pcie_dma&path=%2Fvirtex7_pcie_dma%2Ftrunk%2FhostSoftware%2Fwupper_tools%2FREADME.txt

Development of an application for
Wupper a PCIe Gen3 DMA for Virtex 7

[12] Qt official Wiki page
http://wiki.qt.io/Main_Page

[13] Official QThread documentation
http://doc.qt.io/qt-5/qthread.html

[14] A note on random number generation
https://cran.r-project.org/web/packages/randtoolbox/
vignettes/fullpres.pdf

[15] Scripting language TCL
https://en.wikipedia.org/wiki/Tcl

[16] PG172: ILA core
http://www.xilinx.com/support/documentation/ip_
documentation/ila/v5_0/pg172-ila.pdf

1.0 Oussama el Kharraz Alami 23

http://wiki.qt.io/Main_Page
http://doc.qt.io/qt-5/qthread.html
https://cran.r-project.org/web/packages/randtoolbox/vignettes/fullpres.pdf
https://cran.r-project.org/web/packages/randtoolbox/vignettes/fullpres.pdf
https://en.wikipedia.org/wiki/Tcl
http://www.xilinx.com/support/documentation/ip_documentation/ila/v5_0/pg172-ila.pdf
http://www.xilinx.com/support/documentation/ip_documentation/ila/v5_0/pg172-ila.pdf

	Introduction
	Wupper package

	Internship
	Goal
	Topics
	Drivers and tools
	VHDL example application code
	Developing a GUI

	Wupper package
	Wupper core
	Xilinx PCIe End Point
	Core control
	DMA read/write

	Example application HDL modules
	Functional blocks

	Device driver and Wupper tools
	Operating Wupper-dma-transfer
	Operating Wupper-chaintest

	Wupper GUI
	Functional blocks and threaded programming
	GUI operation

	Verification
	Randomness of the data generator
	Verification flow

	Conclusion
	Appendix Benchmark: block size versus write speed
	Appendix Problem solving: solution on different stream congestion and data corruption
	Appendix Application Base Address Region
	References

