

CALIFORNIA STATE UNIVERSITY, NORTHRIDGE

Design synthesizable USB 3.0 using Verilog HDL and simulate design using Cadence

A graduate project submitted in partial fulfillment of the requirements
for the degree of Masters of Science

in Electrical Engineering.

By

Shashank Mehta

May 2012

ii

The graduate project of Shashank Mehta is approved:

__ ____________
Dr. Ramin Roosta Date

___ ____________
Dr. Ali Amini Date

___ ____________
Dr. Ronald Mehler, Chair Date

CALIFORNIA STATE UNIVERSITY, NORTHRIDGE

iii

ACKNOWLEDGEMENT

I would like to thank my professor Dr. Ronald Mehler for being my advisor and guide. I

am grateful to him for his continuous support and invaluable inputs he has been providing

me through the development of the project. This work would not have been possible

without his support and encouragement. I would also like to thank him for showing me

some examples that related to the topic of my project.

Besides, I would like to thank the Department of Electrical and Computer Engineering

for providing me with a good environment and facilities to complete this project. It gave

me an opportunity to participate and learn about Hardware designing. In addition, I

would like to thank my professor that he provided me huge and valuable information as

the guidance of my project.

iv

Table of Contents

Chapter 1 1

1.1 Architectural Overview 1

1.2 USB 3.0 System Description 1

1.3 Superspeed Architecture 2

1.4 Physical Layer 3

1.5 Link Layer 4

1.6 Protocol Layer 5

1.7 Robustness and Error handling 5

1.8 Power Management 6

1.9 Devices 7

1.10 Peripheral Devices 7

1.11 Hubs 7

1.12 Hosts 8

1.13 Data Flow Models 8

Chapter 2 10

2.1 Superspeed Data Flow Model 10

2.2 Superspeed Communication Flow 10

2.3 Superspeed Protocol 11

2.4 Superspeed Packets 12

2.5 Superspeed Transfer 13

2.6 In Transfer 14

2.7 OUT Transfer 15

2.8 Control Transfers 16

v

2.9 Bulk Transfers 17

2.10 Interrupt Transfers 17

2.11 Isochronous Transfers 18

2.12 Device Notification 18

2.13 Reliability 18

2.13.1 Physical Layer 18

2.13.2 Link Layer 18

2.13.3 Protocol Layer 18

2.14 Efficiency 18

Chapter 3 19

3.1 Physical Layer 19

3.2 PCI Express PHY Layer 20

3.3 USB Superspeed PHY Layer 21

3.4 PHY/MAC Interface 21

3.5 Transmitter Block Diagram 23

3.6 Receiver Block Diagram 24

3.7 PHY/MAC Interface Signals 25

3.8 Pipe Operation Behavior 27

3.8.1 Clocking 27

3.8.2 Reset 27

3.8.2 Power Management 27

3.8.4 Changing the Signal Rate 28

3.8.5 Clock Tolerance Compensation 29

3.8.6 Error Detection 29

3.8.7 Polarity Inversion 30

3.8.8 Setting Negative disparity 30

3.9 Link initialization and training 30

vi

3.10 Normative Clock Recovery Function 32

Chapter 4 33

4.1 Link Layer 33

4.2 Packets and Packet Framing 33

4.2.1 Header Packet Structure 33

4.2.2 Packet Header 34

4.2.3 Link Control Word 34

4.2.4 Data Packet Payload 35

4.3 Link Command 35

4.4 Link Error 35

4.5 Link Training and Status State Machine (LTSSM) 36

4.5.1 SS_Disable 37

4.5.2 SS_Inactive 38

4.5.3 Rx_Detect 38

4.5.4 Polling 39

4.5.5 Compliance Mode 39

4.5.6 U0 39

4.5.7 U1 40

4.5.8 U2 40

4.5.9 U3 40

4.5.10 Recovery 40

4.5.11 LoopBack 40

4.5.12 Hot_Reset 40

Chapter 5 42

5.1 Design and Simulation 42

5.2 Physical Layer 42

5.2.1 PHY.v 42

5.2.2 CLOCK_GEN.v 42

vii

5.2.3 DATA_RATE.v 42

5.2.4 ENCODER1.v 42

5.2.5 ClockDiv.v 42

5.2.6 PartoSer.v 43

5.2.7 DPLL2.v 43

5.2.8 SertoPar.v 43

5.2.9 ClockDiv.v 43

5.2.10 DFF.v 43

5.2.11 FIFO2.v 44

5.2.12 RX_STATUS.v 44

5.2.13 DECODE.v 44

5.3 Link Layer 44

5.3.1 LTSSM.v 44

5.4 Simulation 44

5.4.1 PHY Layer 44

5.4.2 Link Layer 46

Chapter 6 47

Conclusion 47

Reference 48

Appendix 49

viii

List of Figures

Figure 1.1 USB 3.0 Architecture Overview 1

Figure 1.2 Superspeed communication layer and Power management 3

Figure 2.1 Two back-to-back transactions USB 2.0 vs. SS 15

Figure 2.2 Two back-to-back transactions USB2.0 vs. SS 16

Figure 3.1 Partitioning PHY Layer for USB Superspeed 20

Figure 3.2 PHY/MAC Interface 22

Figure 3.3 Transmitter Block Diagram 23

Figure 3.4 Receiver Block Diagram 24

Figure 3.5 Clock recovery and Data recovery circuit 32

Figure 4.1 Header packet framing 34

Figure 4.2 Packet Header 34

Figure 4.3 Link control word 34

Figure 4.4 Data packet payload with CRC-32. 35

Figure 4.5 State diagram of the LTSSM 37

ix

List of Tables

Table 3.1 Transmit Data Interface Signal 25

Table 3.2 Command Interface Signals 25

Table 3.3 Status Interface Signal 26

Table 3.4 External Signals 26

Table 3.5 Training Sequence Values 31

x

ABSTRACT

Design synthesizable USB 3.0 using Verilog HDL and simulate design using Cadence

By

Shashank Mehta

Masters of Science in Electrical Engineering

In this project I design USB 3.0 using Verilog HDL and simulate the design in Cadence. My

design mainly includes two layers of USB 3.0, Physical Layer and Link Layer. Along with USB

2.0 functionality it includes Superspeed functionality .Physical Layer contains PCI Express and

PIPE interface. The design transferred data from transmitter to receiver serially. In the project I

manage to transfer data either on 2.5GT/s or on 5.0GT/s depends upon the mode and rate. The

design generates clock that runs on two different frequencies i.e. 125MHz and 250MHz that used

to transfer data on parallel interface. In Design I manage to capture the data that are coming

asynchronously and lock the receiver clock with incoming asynchronous serial data. The Link

Layer contains Link Transition and Status State Machine (LTSSM). This is used to manage the

link between two ports. It manages the Superspeed and Power of the link by putting the link into

appropriate stage according to its usage.

1

Chapter 1

1.1 Architectural Overview

[1] This chapter represents an overview of USB 3.0 architecture and key concepts. It is similar to

USB2.0 that it is cable bus supporting data exchange between a host computer and wide range of

accessible devices. All the attached devises used host scheduled protocol i.e. that is bus allowed

device to be attached, configured, used and detached while others are in operations.

USB 3.0 used dual bus architecture that allowed backward compatibility with USB 2.0. It

provides simultaneous operations of Superspeed and non Superspeed.

1.2 USB 3.0 System Description

[1] It has same component like USB2.0 like host, device and interconnect.

w

ww.usb.org

Figure 1.1 USB 3.0 Architecture Overview

2

USB 3.0 topology is the same as USB 2.0 i.e. tiered [5] star topology with single host at the tier 1

and hubs at lower tier to provide bus connectivity. USB 3.0 provides backward and forward

compatibility for connecting USB 3.0 or USB2.0 to USB 3.0 bus.

USB 3.0 connection model allows discovery and configuration of the devices at the highest

signaling speed supported by the devices, the highest signaling support between all the hubs and

devices.

USB 3.0 hubs are specific class of the devices who provide more connections points to the bus

then provided by the devices.

1.3 Superspeed Architecture

[1] Superspeed architecture consists of the following elements.

Superspeed Interconnect: is the manner on which devices are connected and communicate with

the host over the Superspeed bus. This includes topology, communication layer and how they

interacted to accomplish the data exchange.

Devices: are sources or sinc of information exchanges. They implemented the required device

end, Superspeed communication layers to accomplish data exchange between drive on the host

and logical functions of the devices.

Host: it holds the Superspeed data activity schedule and management of the Superspeed bus and

all the devices connected to it. Figure 1.2 illustrate reference diagram interconnect.

3

www.usb.org

Figure 1.2 Superspeed communication layer and Power management

Following sections provide architectural overview of each communication layers.

1.4 Physical Layer

[1] The physical layer defines the PHY portion of a port and physical connection between a

downstream facing port and upstream facing port of the device. Superspeed physical connection

is the comprised of two differential data pairs transmit and receive path. The nominal data rate

is 5Gbps.

Electrical aspects of each path are characterized as a transmitter, channel and receiver. These are

unidirectional differential link. Each differential link is AC- coupled with capacitors located on

the transmitter side. The channels include electrical characteristics of the cable and connectors.

4

The each differential link is initialized with receiver terminations. The Transmitter is responsible

for detecting Receiver at other end of the link. When receiver termination is present but no

signaling is occurring then it is consider to be an electrical idle state and in this state, low

frequency periodic signal is generated which is simple to generate and consume very little

power.

Each PHY has its own clock domain. The USB 3.0 cable does not include a reference clock so

bit level timing synchronization relies on the local receiver to align bit recovery clock to the

remote transmitter’s clock by phase-locking to the signal transitions in the received bit stream.

To ensure the proper transitions occur in the bit stream independent of the data content being

transmitted, the transmitter encode the data and special characters using 8b/10b code. Control

symbols are used to achieve byte alignment and are used for framing data and managing the

link.

1.5 Link Layer

[1] It is logical and physical connection of the two ports. The connected ports are called link

partners. A Port has logical portion and physical portion, link layer defines the logical portion.

Logical portion include,

• Initialization of physical layer and event management i.e. connect, removal and power

management

• State machines and buffering for managing information exchanges. It implements

protocol for flow control, reliable delivery of packet headers, and link power

management.

• Buffering for data and protocol layer information elements.

• Detect receive packets and error checks for received header packets.

• Provide an appropriate interface to the protocol layer for information exchanges.

 Physical portion include,

• Managing state of its PHY i.e. power management and events.

5

• Transmit and receive byte streams.

1.6 Protocol Layer

[1] It defines end to end communication rules between a host and device. It provides data

information exchange between host and device endpoint. This communication relationship is

called PIPE. Host determines when application data is transferred between host and device.

Device is able to asynchronously request service from the host.

Protocol communications are accomplished via the exchange of packets. These packets are

sequence of data with specific control sequence.

Packet headers are the building block of protocol layer. They are fixed in size packets with a type

and subtype. A small record within a packet header is utilized by the link layer to manage the

flow of the packet from port to port. Packet headers are delivered through the link layer reliably.

The remaining fields are utilized by the end –to –end protocol. Application data is transmitted

within the data packet payloads. They are encoded with the data packet headers.

1.7 Robustness and Error handling

[1] For the robustness there are several attributes,

• CRC protection for header and data packets.

• Link level header packets to ensure reliable delivery.

• Detection of attach and detach and system level configuration of resource.

• Data and control pipe constructs for ensuring independent interactions between

functions.

To provide protection against the bit error each packet includes CRC. The protocol includes

separate CRC for header and data packet payloads. Additionally link control word has its own

CRC. A failed CRC in the header and link control word consider being a serious error. In such

situation link level retry to recover from error. Link and physical layer work together to provide

reliable packet header transmission. Physical layer provide error rate and link layer provide error

checking. The only way to recover error in hardware is to retry the header packet.

6

1.8 Power Management

[1] Superspeed provides power management in bus architecture, link, device and function.

These areas are in coupled with each other based on allowable power state transitions. Link

power management occur asynchrounsly on every link in the connected hierarchy. It depends

upon host, device or combination of both. Link power state may be driven by host or

downstream port. The link power states are propagated upward by hubs. The decisions to

change link power state are made locally. Links that are not being used for communication can

be placed in low power state.

The host does not directly control visibility of individual link power state that means one or

more link in the path between host and device can be in reduced power state. There are in-band

protocol mechanisms that force these link to transition to the operation power state and notify

the host that a transition has occurred similarly, a device initiating a communication on the bus

with its upstream link in a reduced power state, will first transition its link into an operational

state which will cause all links between it and host to transition to the operation state.

The key points of link power management include

• Devices send asynchronous ready notification to the host.

• Packets are routed, allowing links that are not involved in communication to transition

into or to remain in low power state.

• Packets that encounter ports in low power state cause those ports to transition out of low

power state

Superspeed provides function power management in addition to device power management. For

multi functions devices each function can be placed in low power state. The device will

transition into the suspended state by the host via a port command. The devices will not

automatically transition into the suspended state when all the individual functions within it are

suspended.

7

1.9 Devices

[1] All Superspeed devices share their base architecture with USB 2.0. They are required to carry

information for identification and configuration. All devices support one or more pipe through

which the host may communicate with the device. All devices must support designated pipe at

endpoint zero to which device’s default control pipe is attached.

1.10 Peripheral Devices

[1] Must support both Superspeed and at least one other non Superspeed. USB 3.0 devices

within a single physical package can consist of a number of functional topologies including

single function, multiple functions on a single peripheral device and permanently attached

peripheral devices behind an integrated hub.

1.11 Hubs

[1] Hubs provide implementation specific number of downstream ports to which device can

attach. Hubs provide additional downstream ports so they provide user with a simple

connectivity expansion mechanism for the attachment of additional devices to the USB.

The Superspeed hubs manage the Superspeed portions of the downstream ports. Each physical

port has bus-specific control/status registers. A Superspeed hub consists of two logical

components: Superspeed hub controller and a Superspeed repeater/forwarder. The hub

repeater/forwarder is protocol- control router. It also has hardware support for reset and

suspend/resume signaling

Superspeed hubs actively participate in the protocol in several ways including:

• Router out-bound packets to explicit downstream ports

• Aggregates in-bound packets to the upstream port

• Propagates the timestamp packet to all downstream ports not in a low-power state.

• Detects when packets encounter a port that is in a low power state. The hub transitions

the targeted port out of the low power state and notifies the host and device that the

packet encountered a port in low power state.

8

1.12 Hosts

[1] Host interacts with devices through a host controller. To support the dual-bus architecture of

USB3.0, a host controller must include both Superspeed and USB2.0 elements, which can

simultaneously manage control, status and information exchange between the host and devices

over each bus.

The host has implementation specific downstream port that includes

• Manage control flow between the host and USB devices

• Manage data flow between the host and USB devices

• Collect status and activity statistics

• Provided power to attached USB devices

USB system software inherits its architectural requirement from USB 2.0 including

• Device enumeration and configuration

• Scheduling of periodic and asynchronous data transfer

• Device and function power management

• Device and bus management information

1.13 Data Flow Models

[1] Data and control exchanges between the host and devices are via sets of either unidirectional

or bi-directional pipes.

• Data transfers occur between host software and particular endpoint on a device. The

endpoint is associated with particular function on the device. These associations are

called pipes.

• Most pipes come into existence when device is configured by system software.

However, one message pipes the default control pipe always exist once a device has been

powered and is in the default state tom provide access to device configurations, status

and control information.

• The pipes support one on or more transfer types

9

• Bulk transfer has extension for Superspeed called stream which is in-band protocol-

level support for multiplexing multiple independent logical data stream through a

standard bulk pipe.

10

Chapter 2

2.1 Superspeed Data Flow Model
[1] Superspeed is very similar to USB2.0 in that it provides communication service between a

USB host and attached USB devices. This chapter describes the differences of how data and

control information is communicated between a Superspeed host and its attached Superspeed

devices. Following concepts explain Superspeed data flow.

• Communication flow models: flows between the host and devices through the

Superspeed bus

• Superspeed protocol overview: gives a high level overview of the Superspeed protocol.

• Generalized Transfer Description: provides an overview of how data transfers work in

Superspeed and subsequent sections defines the operating constraints for each transfer

type.

• Device Notifications: a feature which allows a device to asynchrounsly notifies its host of

events or status on the devices.

• Reliability and Efficiency: summarized the information and mechanisms available in

Superspeed to ensure reliability and increase efficiency.

2.2 Superspeed Communication Flow
[1] It support endpoints, pipes and transfer types. The endpoints characteristic are reported in the

endpoint descriptor and the Superspeed endpoint descriptor.

[1] All Superspeed devices must implement at least the default control pipe. The Superspeed

pipe is an association between an endpoint on a device and software on the host. The pipe

represents the ability to move the data between the software on the host via the memory buffer

and endpoint on the device. The main difference is when non-isochronous endpoint in

Superspeed is busy it returns a not ready (NRDY) response and send an end point ready

(ERDY) notification when it ready to accept data.

11

[5] USB 2.0 broadcasts packets to all enabled downstream ports. Every device is required to

decode address triple to each packet to determine if it needs to respond. Superspeed unicast the

packets, downstream packets are sent over the directed path between the host and targeted

devices while upstream packets are sent over the directed path between the device and host.

Superspeed packets contain routing information that the hubs use to determine which

downstream port the packet needs to traverse to reach the device. Only Isochronous timestamp

packet is multicast to all active ports.

USB 2.0 style polling has been replaced with asynchronous notification. The Superspeed

transaction is initiated by the host making the request followed by a response from the device. If

the device can grant the response it either accepts or sends data. If the end point is halted, the

device shall respond with a STALL handshake. If it cannot honor the request it will respond with

Not Ready (NRDY) to tell the host that it is not ready to accept or send data. When the device

can honor the request, it will send an Endpoint Ready (ERDY) to the host.

To move to unicasting and the limited multicasting of packets together with asynchronous

notifications allows link that are not actively passing the packets to be put into reduced power

states.

2.3 Superspeed Protocol
[1] It has dual simplex physical layer that support Superspeed along with USB2.0 protocol.

However there are some differences with USB 2.0 protocol.

USB 3.0 uses same three part transection like [5] USB 2.0 but for OUT token is incorporated in

the data packet and for Ins token is replaced by handshake.

• USB 2.0 does not support bursting

• USB 2.0 is half-duplex broadcast while Superspeed is dual-simplex unicast bus which

allow concurrent In and OUT transection.

• USB2.0 uses polling model while Superspeed uses asynchronous notification.

• USB 2.0 does not have streaming capability while Super Speed has streaming capabilities

for bulk transfer.

12

• USB 2.0 has no mechanism for isochronous capable devices to enter in low power USB

bus state between service intervals. Superspeed allows these devices to go in low power

state between the service intervals.

• USB 2.0 has no mechanism to inform host how much latency the device can handle if the

system enters the low power state. USB 3.0 provides this mechanism using Latency

Tolerance Messaging.

• USB 2.0 power management, including Link Power Management is always initiated by

the host. USB 3.0 supports Link level management that may be initiated from either end

of the link.

• USB 2.0 handles transection error detection and recovery and flow control at the end to

end level for each transaction. Superspeed splits these functions between the end-to end

and link levels.

2.4 Superspeed Packets

[1] Superspeed packets start with a 16-byte header. Some packets consist of header only. All the

packets start with the information used to decide how to handle the packet. The header is

protected by 16 bit CRC-16 and ends with 2-byte link control word. Depending upon the type all

the headers contain the routing information and address triple. The route string is used to direct

the packets sent by the host on the directed path through the topology. Hub always forwards

packets from downstream ports to upstream ports. There are four types of packets: Link

Management Packets, Transaction Packets, Data Packets and Isochronous Timestamp Packets.

• A Link Management Packet (LMP) travels between directly connected ports and is

primarily used to manage that link.

• A Transaction Packet (TP) traverses all the links in the path directly connecting the host

and a device. It is used to control the flow of the data packets, configure devices and

hubs. It does not have a data payload.

• A Data Packet (DP) traverses all the links in the path directly connecting the host and

device. It consist two parts: Data Packet Header (DPH) which is similar to TP and a Data

13

Packet Payload (DPP) which consist of data block plus a 32-bit CRC used to ensure data

integrity.

• An Isochronous Timestamp Packet (ITP) is multicast packet sent by the host to all the

active links.

2.5 Superspeed Transfer

Non isochronous data packet sent to receiver is acknowledged by the handshake. However, due

to separate path for transmit and receive, the transmitter does not have to wait for an explicit

handshake for each data packet transferred before sending the next packet.

[1] USB 2.0 uses serial communication which means host starts and complete one bus

transection and then start other transection. Superspeed improves by using independent transmit

and receive paths. Superspeed USB transection protocol is essentially a split transection protocol

that allows more than one OUT bus transection as well as at most one IN bus transection to be

active on the bus at the same time. The order device respond is based on endpoint. The order

device respond to ACK or DPs is implementation specific.

[5] The USB 2.0 protocol completes an entire IN or OUT transection before continuing to the

next bus transection. All the transmission from the host broadcast on the USB 2.0 bus. In

Superspeed protocol does not broadcast any packets. The host starts all transactions by sending

handshakes or data and devices respond with either data or handshakes. If the device does not

have data it will respond with the packets that say it does not have any data to respond. When the

device is ready to accept or send data it will send a signal to host that it is ready to resume or

start transection. In addition to this Superspeed is also provides mechanism to put the link into

low power stage when it is not in used to save power. Devices report the maximum packet size

for each endpoint in its endpoint descriptor. The size indicates data payload length only and

does not include any of the overhead for link and protocol level. Bandwidth allocation is similar

to USB 2.0. Device report the maximum packet size for each endpoint in its endpoint descriptor.

[1] Data Bursting enhances the efficiency by eliminating the wait time for acknowledgment on a

per data packet basis. Endpoint on the Superspeed device indicates the number of pockets that it

14

can send or receive before it has to wait for a handshake. Maximum data burst size is an

individual endpoint capability.

[1] The host may change the burst size on per transition basis up to configured burst size. When

the endpoint is an OUT, the host can easily control the burst size. When the endpoint is an IN

host can limit the burst size on a per-transition basis via a filed in the acknowledgement packet

sent to the device.

2.6 In Transfer

[1] The host initiates a transfer by sending acknowledgment packet to the device. This packet

contains the addressing information required to route the packet to the intended endpoint. The

host tells the device the number of packets it can send and the sequence number of the first data

packet expected from the device. In response the endpoint will transmits data packet with the

appropriate sequence number back to the host. Host can send up to the number of data to the

device without waiting for the acknowledgment packet.

[10] Consider the example IN transection in figure 2.1. The left side indicates the sequence of

packets required to perform two back-to-back token/data/handshake transection, requiring 6

packets be exchange as follows.

1. Host broadcasts an IN token Packet (1) to initiate the transection

2. Device returns the requested DATA packet (2)

3. Host acknowledge receipt of data with ACK handshake packet (3)

4. Step 1-3 are repeated

The example on the right indicates the packet sequence needed to perform two back-to-back SS

IN transections, which requires only 5 packets be exchanged.

1. SS USB uses an ACK header (packet 1) to initiate an IN transaction.

2. The SS device returns Data (packet2)

3. The second ACK header (3) both acknowledge receipt of the data and request a second

transaction

4. The second data packet (4) is delivered by the device.

15

5. The final ACK header (5) acknowledges receipt of the data, but does not request

additional data.

http://www.mindshare.com/files/resources/MindShare_Intro_to_USB_3.0.pdf

Figure 2.1 Two back-to-back transactions USB 2.0 vs. SS

2.7 OUT Transfer

[10] Difference between USB 2.0 and SS OUT transaction are shown in figure 2.2. The example

on the left depicts two back-to-back OUT transactions that require 6 packets:

1. Host broadcast an OUT Token packet (1) to initiate the transaction

2. Host sends DATA packet (2) to the device.

3. Device acknowledges receipt of data with an ACK handshake packet (3).

4. Step 1-3 are repeated

The right side of figure 2.2 indicates the packet sequence required to perform two back-to back

SS OUT transactions, but requires only 4 packet be exchanged.

1. SS USB uses a data header (packet 1) to initiate an OUT transaction and to deliver data to

the device.

16

2. Device acknowledges receipt of data via an ACK packet (2).

3. The Second data packet (3) initiates the second transaction and delivers data to the

device.

4. Device acknowledges receipt of data via ACK packet (4), completing the sequence.

http://www.mindshare.com/files/resources/MindShare_Intro_to_USB_3.0.pdf

Figure 2.2 Two back-to-back transactions USB2.0 vs. SS

2.8 Control Transfers

[1] Each device is required to implement the default control pipe as a message pipe. The pipe is

intended for device initialization and management. The pipe is used to access device descriptors

and to make requests of the device to manipulate its behavior.

Control endpoint have a fixed maximum control transfer data payload size of 512 bytes and have

maximum burst size of 1. There is no way to indicate the desired bandwidth for control pipe. A

17

host balances the bus access requirements of all control pipes and pending transaction on those

pipes to provide a best effort delivery between the client software and functions on the device.

Superspeed requires that bus bandwidth be reserved to be available for use by the control

transfers as follows:

• The transactions of a control transfer may be scheduled according to endpoints.

• Retries of control transfers are not give priority over other best effort transactions.

• If there are control and bulk transfers pending for multiple endpoints, control transfers for

different endpoints are selected for service is based on host controller implementation.

• When control endpoint delivers a flow control event, the host will remove the endpoint

from scheduled endpoints. The host will resume the transfer to the endpoint upon receipt

of a ready notification from the devices.

2.9 Bulk Transfers

[1] The bulk transfer type is used to support devices that want to communicate relatively large

amounts of data at highly variable times where the transfer can use any available Superspeed

bandwidth. It provides access to the Superspeed bus on a bandwidth available basis. It

guarantees delivery of data but no guarantee of bandwidth or latency. An endpoint for bulk

transfer shall set the maximum data packet payload size in its endpoint descriptor to 1024 bytes.

Bulk transactions occur on the Superspeed bus only on a bandwidth available basis.

2.10 Interrupt Transfers

[1] The Superspeed interrupt transfer types are intend to support devices that require a high

reliability method to communicate small amount of data with a bounded service interval. It

guaranteed maximum service interval and retry of transfer attempt in the next service interval in

case of failure. The maximum data packet payload size that it can accept from or transmit on the

Superspeed bus is 1024 byte. An endpoint for an interrupt pipe specifies its desired service

interval bound via its endpoint descriptor.

18

2.11 Isochronous Transfers

[1] Superspeed isochronous transfer type is intended to support stream that want to perform error

tolerant, periodic transfers within a bounded service interval. It guaranteed bandwidth for

transaction attempts on the Superspeed bus with bounded latency and rate through the pipe as

long as data is provided to the pipe. Isochronous transaction are attempted each service interval

for an isochronous endpoint. Superspeed isochronous pipe is a stream pipe and is always

unidirectional. The endpoint description identifies whether a given isochronous pipe’s

communication flows, two isochronous pipes must be used, one in each direction. Maximum size

for isochronous endpoints is 1024 bytes.

2.12 Device Notification

[1] Device notifications are standard method for a device to communicate asynchronous device

and bus level event information to the host. This does not map to the pipe model defines for the

standard transfer types.

2.13 Reliability

There are several layers of protection used to provide reliable operation.

2.13.1 Physical Layer

Physical layer provides bit error rates less than 1bit in 1012 bits.

2.13.2 Link Layer

The Superspeed link layer has mechanism that provide bit error rate less than 1bit in 10^20 bits

for header packets. It uses numbers of techniques including packet framing ordered sets. Link

level flow control and retries to ensure reliable end-to-end delivery for header packets.

2.13.3 Protocol Layer

The Superspeed protocol layer depends on 32bit CRC to the data payload and timeout coupled

with retries to ensure reliability of data.

2.14 Efficiency

[1] Superspeed efficiency depends upon 8b/10b encoding scheme [4], packet structure and

framing, link level flow control, and protocol overhead.

19

Chapter 3

3.1 Physical Layer
Physical layer defines the signaling technology for Superspeed bus. This chapter will define

Superspeed physical layer.

[1] The PHY interface for the PCI Express and USB Superspeed architecture is intend to enable

the development of functionally equivalent PCI Express and USB Superspeed PHY’s the

specification defines the set of PHY function that must be incorporated in a PIPE compliant PHY

and it defines a standard interface between PHY and MAC & Link Layer. [6] This spec provides

some information about how MAC could use PIPE interface for various LTSSM states and Link

states. One of the intents of pipe specification is to accelerate PCI Express endpoint and USB

Superspeed device development.

20

Transection Layer

State Machines for Link

training, Flow control and

status,

scrambling/Descrambling

 PHY/MAC Interface

8b/10b encoding/decoding,

elastic buffer

 Analog Buffer

 RX TX

Figure 3.1 Partitioning PHY Layer for USB Superspeed

3.2 PCI Express PHY Layer

[6] It handles low level PCI Express protocol and signaling. The primary focus is to shift the

clock domain of the data from the PCI Express rate to one that is compatible with general logic

in the ASIC.

It includes following features

• Standard PHY interface enables multiple IP Sources.

MAC

Physical Coding Sub layer

(PCS)

Physical Media Attachment
Layer

21

• Supports 2.5GT/s only or 2.5GT/s and 5.0GT/s serial data transmission rate.

• Utilize 8bits, 16bits or 32bits parallel interface to transmit and receive

• Allow integration of high speed components into single functional block as seen by the

endpoint device manager.

• Data and clock recovery from serial stream on the PCI Express bus.

• Holding registers to transmit and receive data.

• Support direct disparity control for transmitting compliance patterns.

• 8b/10b encode/decode and error indication.

3.3 USB Superspeed PHY Layer

[6] Superspeed PHY Layer handles the low level USB Superspeed protocol and signaling. It

includes following features,

• Standard PHY interface enables multiple IP Sources.

• Supports 5.0GT/s serial data transmission rate.

• Utilize 8bits, 16bits or 32bits parallel interface to transmit and receive

• Allow integration of high speed components into single functional block as seen by the

endpoint device manager.

• Data and clock recovery from serial stream on the PCI Express bus.

• Holding registers to transmit and receive data.

• Support direct disparity control for transmitting compliance patterns.

• 8b/10b encode/decode and error indication.

3.4 PHY/MAC Interface

[6] Figure 3.2 shows the data and logical command/status signals between the PHY and the

MAC layer. Full support of PCI Express mode requires 12 control and 6 status signals. Full

Support of Superspeed requires 16control signals and 7 status signals.

22

 TXDATA (32 or 16 or 8)

TXDATAK TXDATAK (4 or 2 or 1) TX

Command 12 or 16

 RX

RXDATA 32 or 16 or 8

 RXDATAK 4 or 2 or 1

 Status 6 or 7

 PCLK

Figure 3.2 PHY/MAC Interface

[6] This specification allows different PHY/MAC interface configuration to support various

signaling rates. For pipe PCI Express mode can choose 16bit data paths with PCLK running at

125MHz, or 8bit data path with PCLK running at 250MHz. In the design PCLK is running at

250MHz for 8bit data. Pipe implementation that support 5.0GT/s signaling and 2.5GT/s

signaling in PCI Express mode, and therefore are able to switch between 2.GT/s and 5.0GT/s

signaling rates PCLK should be 250MHz for 8bit and 16bit data. Other way is to fixed the data

rate i.e. 8bit data and changing the PCLK frequency. For 2.5GT/s PCLK frequency set for

250MHz and for 5.0GT/s PCLK frequency should be set to 500MHz.

MAC Layer PHY Layer

23

3.5 Transmitter Block Diagram

 PCLK

 BITCLK

8B

TxDataK BITCLK/10

 10B

BITCLK

(2.5G or 5.0G)

 DP DN

Figure 3.3 Transmitter Block Diagram

Optional 32 or 16 or 8

8b/10b Encoding

Parallel to Serial Convertor

Loopback data

24

3.6 Receiver Block Diagram

DP/DN

 Recovered CLK

 RX_VALID

 Recovered clock

 Full RX_STATUS

 Empty

125MHz/250MHz Decode Error

 Disparity Error

 PCLK

Figure 3.4 Receiver Block Diagram

DPLL

Data Recovery Circuit

Serial to Parallel Convertor K28.5
Detection

Elastic Buffer
Receiver
Status

8b/10b Decode

Optional 8 or 16 or 32

Loop Back Data

25

3.7 PHY/MAC Interface Signals

Following are the Interface signals for PHY/MAC.

Table 3.1 Transmit Data Interface Signal
Name Width Direction Description

DP/DN 1 Output PCI and Superspeed

Differential outputs

TX_DATA 8 Input Parallel PCIExpress or

Superspeed data input

bus.

TX_DATAK 1 Input Data control for symbol

or transmit data

RX_DATA 8 Output Parallel PCI Express

output bus

RX_DATAK 1 Output Data control bit for

received symbol

Table 3.2 Command Interface Signals
Name Width Direction Description

PHY_MODE 2 Input 0 For PCI Express

1 For USB SS

2 Reserved

3 Reserved

TX_ELECIDLE 1 Input

RX_POLARITY 1 Input 0 PHY does no polarity inversion

1 PHY does polarity inversion

PHY_RST 1 Input Reset the Transmitter and Receiver

POWER_DOWN 2 Input For PCI Express

00 P0s,NormalOperation

01 P0, Low recovery time latency, Power saving

26

state

10 P1, Long recovery time latency, low power state

11 P2, Lowest Power state

For USB Superspeed

00 P0,NormalOperation

01 P1, Low recovery time latency, Power saving

state

10 P2, Long recovery time latency, low power state

11 P3, Lowest Power state

PHY_RATE 1 Input Control the link signaling rate

0 use 2.5GT/s signaling rate

1 use 5.0GT/s signaling rate

Table 3.3 Status Interface Signal
Name Width Direction Description

RX_VALID 1 Output Indicates symbol lock and valid data on

RX_DATA and RX_DATAK

PHY_STATUS 1 Output Use to communicate completion of several

PHY function.

RX_STATUS 3 Output 000 Received data OK

100 Both 8B/10B decode error and Receiver

Disparity error

110 Elastic Buffer underflow

101 Elastic Buffer overflow

Table 3.4 External Signals
Name Width Direction Description

PHY_CLK 1 Input This is used to generate BIT_CLK and PCLK

27

PCLK 1 Output All data movement across parallel interface are

control by PCLK

3.8 Pipe Operation Behavior

3.8.1 Clocking

[6] There are two clock signals, the first PHY_CLK is the reference signal that PHY uses to

generate internal bit rate clock for transmitting and receiving data. The specification for this

signal is implementation dependent for the design the frequency for the bit rate clock is 2.5GHz.

The specification may vary for different operating modes of the PHY. The second clock PCLK is

an output from the PHY and is the parallel interface clock used to synchronize data transfer

across the parallel interface. This clock runs at 125MHz or 250MHz depends upon the

PHY_MODE and PHY_RATE.

3.8.2 Reset

[6] When reset is asserted the MAC must hold the PHY reset until PHY_CLK to the PHY are

stable. For this reason AASD is used in the circuit to hold the reset. The PHY signals that PCLK

is in the specific power state by the desertion of PHY_STATUS.

3.8.2 Power Management

[6] Power management for PCI Express and USB Superspeed mode is almost identical. There

are 4 power states in each mode for the PCIExpress mode these stages are P0, P0s, P1 and P2.

When directed from P0 to lower power state, PHY can immediately take whatever powers saving

measures are appropriate.

In states P0, P0s, and P1 the PHY is required to keep the PCLK operational. For all state

transitions between these states, the PHY indicates successful transition into the designated

power state by assertion of PHY_STATUS signal. [6]

28

Mapping of PHY power states to states in the Link Training and Status State Machine (LTSSM)

found in the base specification are included below

P0 state: all internal clocks in the PHY are operational. P0 is the only state where the PHY

transmit and receives PCI Express signaling.

P0s state: PCLK output must stay operational. The MAC may move PHY to this state only when

the transmit channel is idle. While the PHY is in eitherP0 and P0s power states, if the receiver is

detecting electrical idle, the receiver portion of the PHY can take appropriate power saving

measures.

P1 state: Selected internal clocks in the PHY can be turned off. PCLK output must stay

operational. The MAC will move the PHY to this state only when both transmit and receive

channel idle.

P2 state: Selected internal clock in the PHY can be turned off. The parallel interface is in an

asynchronous mode and PCLK output is turned off. In the design PCLK is given a BIT_CLK

frequency when it is in P2 state.

Power management for the USB Superspeed mode is same as the PCIExpress mode accept P0,

P0s, P1 and P2 are replaced by P0, P1, P2, and P3. In the design there are declare as parameter.

There values are 00, 01, 10, and 11 respectively.

3.8.4 Changing the Signal Rate

[6] Signaling rate of the link can be changed only when the PHY is in the P0 or P1 power state

and TX_ELECIDLE is asserted. When MAC changes the PHY_RATE signal, the PHY performs

the rate change and signals its completion with signal cycle assertion of PHY_STATUS. The

MAC must not perform any operational sequences, power state transitions, deassert

TX_ELECIDLE or further signaling rate changes until PHY has indicated that the signaling rate

change has completed.

There are two ways,

1. Fixed data path implementations

2. Fixed PCLK implementation

29

In the design 1st approach is been used when MAC assert the TX_ELECIDLE and changing the

PHY_RATE signal while POWER_DOWN is in P0 or P1 or P2 stage, PCLK will change its

frequency.

 MAC indicates change in PCLK frequency with assertion of PHY_STATUS signal.

3.8.5 Clock Tolerance Compensation

[6] The PHY receiver has an elastic buffer used to compensate for differences in frequencies

between bit rates at the two ends of the link. The elastic buffer must be capable of holding

enough symbols to handle worst case differences in frequency. Two models are defined for the

elastic buffer operation in the PHY. The PHY may support one or both of these models. The

Nominal empty buffer model is only supported in the USB Superspeed mode.

Whenever the elastic buffer is in nominal half full buffer or in nominal empty buffer which are

indicated by the Rx_rd_status and Rx_wr_status in the design MAC will assert SKP symbol in

the PCI Express mode or SKP order SET in USB Superspeed mode or remove SKP symbol or

SKP order set. In the design nominal half full buffer will represented by values 2 and nominal

empty buffer is represented by value 3.

3.8.6 Error Detection

[6] The PHY is responsible for detecting receive errors. These errors are signal by the MAC

layer using the receiver status signal i.e. RX_STATUS signal. Because of the higher level error

detection mechanism like CRC built into the data link layer there is no need to specifically

identify symbol with errors. When receiver error occurs, the appropriate error code is asserted.

There are 4 error conditions that can be encoded on the RX_STATUS signals. The error should

be signaled with the priority shown below

30

1. 8b/10b decode error

2. Elastic buffer overflow

3. Elastic buffer underflow

4. Disparity Errors

For a detected 8b/10b decode error, the PHY should place an EDB symbol for PCIe or SUB

symbol for USB Superspeed in the data stream in place of bad byte. For the disparity error

negation XOR is used in the design to find out encoded data which are not DC balanced. For the

elastic buffer errors an underflow should be signaled during the clock cycle or clock cycles when

elastic buffer is empty and overflow should be signaled during clock cycle or clock cycles when

elastic buffer is full.

3.8.7 Polarity Inversion

PHY must invert received data when RX_INVERSION is asserted. Inversion can happen in

many places in the received data or somewhere in the serial path.

3.8.8 Setting Negative disparity

[4] The 8b/10b encoder is designed in such a way that it will generate dc balanced code with

positive disparity in one clock cycle and dc balanced code with negative disparity in the next

clock cycle. This features in only used in PCI Express mode.

 [10] As show in the figure for 8’h02 encoder will generate 10’b0010101101 in one clock cycle

and 10’b1101010010 in the third clock cycle.

3.9 Link initialization and training

[1] Training sequences are used for initializing bit alignment, symbol alignment and optimizing

the equalization. Training sequence order sets are never scrambled but always 8b/10b encoded.

Bit lock refers to the ability of the clock/data recovery circuit to extract the phase and frequency

31

information from the incoming data stream. Once CDR is properly recovering data bits the next

step is to locate and end of 10bit symbol for this purpose the special K-code COMMA is selected

from the 8b/10b codes. The bit pattern of the COMMA code is unique, so that it is never found

in other data patterns.

Training sequences are composed of ordered sets used for initializing bit alignment, symbol

alignment and receiver equalization. The following rules are applied,

• It shall be 8b/10b encoded.

• It shall not be interrupted by the SKP order sets. SKP order set shall be inserted either

before or after the training sequences.

• No SKP ordered sets are to be transmitted during the entire TSEQ time.

Table 3.5 Training Sequence Values
Symbol Number Name Value

0 K28.5 COM (BC)

1 D31.7 FF

2 D23.0 17

3 D0.6 C0

4 D20.0 14

5 D18.5 B2

6 D7.7 E7

7 D2.0 02

8 D2.4 82

9 D18.3 72

10 D14.3 6E

11 D8.1 28

12 D6.5 A6

13 D30.5 BE

14 D13.3 6D

15 D31.5 BF

16-31 D10.2 4A

32

3.10 Normative Clock Recovery Function

[1] In order to recover the clock or to generate the clock which locks its phase with incoming

serial data DPLL is used design. [16] DPLL is the functional circuit that generates the signals

that are phase locked with the external input signals in design which is incoming serial data.

Then the serial data is used to synchronize with the output signal as shown in the figure.

DP

 Sync_Data

5.0GHz

Figure 3.5 Clock recovery and Data recovery circuit

DPLL

DFF

33

Chapter 4

4.1 Link Layer
[1] This layer is responsible of maintaining the link connectivity so that successful data transfer

between two ends of the link is ensured. The link flow is defined based on packets and link

commands. Packets are prepared in the link layer, they carry data and different information

between host and a device. Link commands are used to communicate between two link partners.

Packet frame order sets and link command ordered set are also constructed to tolerant one

symbol error. The link layer also facilitates link training, testing/debugging and link power

management. This is accomplished by Link training Status State Machine (LTSSM).

Multiple byte fields in packet or a link command are moved over the bus in order where least

significant byte (LSB) first and most significant byte (MSB) last. Each byte is encoded in 8b/10b

encoding.

4.2 Packets and Packet Framing

[1] Superspeed uses packets to transfer information. These packets are formatted in Link

Management Packets (LMP), Transaction Packets (TP), Isochronous Timestamp Packets (ITP),

and Data Packets (DP).

4.2.1 Header Packet Structure

[1] All header packets are 20 symbols long, there are formatted in figure 4.1. it consist of three

parts a header packet framing, a packet header and link control word. Header packet framing

start with HPSTART order set. It is 4 symbols starting with K-symbol. It is defined as three

consecutive symbol of SHP followed by a K-symbol of EPF. Header packet is always starts with

HPSTART order set.

34

1 1 CRC CRC 1 2 3 4 5 6 7 8 9 10 11 12 EPF SHP SHP SHP

Figure 4.1 Header packet framing

4.2.2 Packet Header

[1]Packet header consists of 14 bytes as shown in figure 4.2. It includes 12 bytes of header

information and 2 bytes of CRC-16 which is used to protect the data integrity of the 12 byte

header information.

CRC CRC 1 2 3 4 5 6 7 8 9 10 11 12

Figure 4.2 Packet Header
• The polynomial for CRC-16 shall be 100Bh.

• The initial value shall be FFFFh.

4.2.3 Link Control Word

[1]Link control word consists of 2 bytes as shown in figure 4.3. It is used for both link level and

end-to-end flow control. It contains 3bit header sequence number, 3 bit reserved, 3bit hub depth

index, a delayed bit (DL), a deferred bit (DF) and 5 bit CRC-5.

byte 1 Byte 2

CR

C-5

CR

C-5

CR

C-5

CR

C-5

CR

C-5

Del

ay

Del

ay

DEP

TH

DEP

TH

DEP

TH

R

ES

R

ES

R

ES

HS

N

HS

N

HS

N

Figure 4.3 Link control word
• CRC-5 polynomial shall be 00101b.

• Initial value shall be 11111b.

• It is calculated for the remaining 11 bits of the link control word.

35

4.2.4 Data Packet Payload

[1]It consists of Data packet header (DPH) and Data packet payload (DPP). DPP framing consist

of 8 K-Symbol a 4 symbol DPP starting frame order set and 4 symbol DPP ending frame order

set. As shown in the figure 4.4 it start with DPPSATRT order set which is DPP starting frame

order set, consist of three consecutive K-symbol of SDP followed by a single K-symbol of EPF.

EPF END END END CRC CRC CRC CRC 0 to 1024

Data bytes

EPF SDP SDP SDP

Figure 4.4 Data packet payload with CRC-32.
• CRC-32 polynomial shall be 04C11DB7h.

• Initial values shall be FFFF FFFFh.

• CRC-32 shall be calculated for each bytes of the DPP.

4.3 Link Command

[1] Link commands are used for link level data integrity, flow control and link power

management. They are fixed length of eight symbols and contain repeated symbols to increase

the error tolerance. They are defined for four usage cases. First, link commands are used to

ensure the successful transfer of a packet. Second, link command is used for link flow control.

Third, link commands are used for link power management. Fourth, link command is special link

command defined an upstream port to signal it presence in U0. Successful header packet

transaction between the two link partners requires proper header packet acknowledgment.

4.4 Link Error

[1] Data transfer between two ends of the link is in the form of packet. A set of link command is

defined to ensure successful packet flow across link. When symbol error occurs on the link, the

integrity of a packet or a link command can be compromised. There are various types of errors

at link layer. Header packet errors occur due to missing of header packet, invalid header packet

due to CRC error, and mismatch of RX Header sequence number. Missing of the header packet

shall result in a port transitioning to recovery. Training sequence error happens due to symbol

36

corruption during the TS1 and TS2 order sets in Polling. Configuration, Recovery. Active and

Recovery. Configuration subsets are expected until the requirement are met to transition to the

next state. Other 8b/10b error in data encoding error also created when unexpected link

commands or header packet is received.

4.5 Link Training and Status State Machine (LTSSM)

[1] LTSSM is the state machine defined for link connectivity and link power management. It

consists of 12 different link states that can be characterized based on their functionalities.

First four operational link states are U0, U1, U2 and U3. In the design there are declare as

parameter. U0 (4’h4) is the state where Superspeed link is enable. Packet transfers are in

progress or in idle state. U1(4’h5) is low power link state where no packet transfer is carried out

and Superspeed link connectivity can be disable to save power. U2 (4’h6) is also low power state

but allow more power saving opportunities. U3 (4’h7) is the link suspended state where

aggressive power saving is carried out.

Second there are four link states, Rx_Detect, Polling, Recovery and Hot_Reset that are

introduced for link initialization and training. Rx_Detect (4’h2) represent initial power on link

state where port is attempting to determine the present of link partner, link training process is

started. Polling (4’h3) is state defined that two link partners have their Superspeed transmitter

and receiver trained, synchronized and ready to transfer data packet. Recovery (4’h9) is the state

for retraining the link when two link partner exit from low power state, or when link partners

have detected that the link is not operating in U0 state. Hot_Reset (4’h8) is state defined to allow

downstream port to reset upstream port.

Third consist of two state LoopBack (4’hA) and Compliance_mode (4’hB) are introduced for bit

error test and transmitter compliance test.

SS_Inactive (4’h1) is the link error state where a link is in non-operable state and software

intervention is needed. SS_Disable (4’h0) is a link state where Superspeed connectivity is

disabled and the link is operated under USB 2.0 mode.

37

There are also various timers defined and implemented for LTSSM in order to ensure the

successful operation but for design purpose they are not taken under consideration.

www.usb.org

Figure 4.5 State diagram of the LTSSM

4.5.1 SS_Disable

SS_Disable (4’h0) is the state with port’s low impedance receiver termination removed and

Superspeed connectivity is disabled. In this state VBUS may be present and port shall be

disabled from transmitting and receiving LFPS and Superspeed signals.

38

 Downstream port shall be Rx_Detect by enabling VBUS.

4.5.2 SS_Inactive

SS_Inactive (4’h1) is the state where link is failed Superspeed operation. Downstream port and

upstream port can only exit from this state when directed i.e. upon Warm_RST. VBUS shall be

present

There are 2 sub state of SS_Inactive.

1. SS_Inactive_Disconnect

2. SS_Inactive_Quiet

But for simplicity they are not consider in the design.

4.5.3 Rx_Detect

Rx_Detect (4’h2) is the power on state for both downstream and upstream port. It is enabled for

downstream port upon receiving of Warm_RST. The purpose of Rx_Detect is to synchronized

operation between two ports. This state consist of three subset,

1. Rx_Detect_Reset

2. Rx_Detect_Active

3. Rx_Detect_Quiet

They are not consider in the design. A port will perform the far- end receiver termination

periodically during Rx_Detect.

39

4.5.4 Polling

Polling (4’h3) is the state for link training. In Polling state LFPS handshake shall take place

between two ports. Bit_Lock, Symbol_lock and Rx_Equilization are achieved. There are 5

subsets but are not consider for the design purpose.

4.5.5 Compliance Mode

This mode (4’hB) is used to test the transmitter for compliance to voltage and timing

specifications. Port will move out from this state upon receiving of Warm_RST.

4.5.6 U0

This (4’h4) is the normal operation state where packets can be transmitted and receive. Port can

move from U0 to lower power state when it receives command LG0_U1, LG0_U2 and LG0_U3.

40

4.5.7 U1

When port is in the U0 state and receives LG0_U1 command from software it will move to state

U1 (4’h5).in this state more power is saved. Port will move from U1 to appropriate state upon

directed.

4.5.8 U2

Port will move from U1 to U2(4’h6) state upon timeout. In this state more power is saved

compare to U1.

4.5.9 U3

Port will move from U2 to U3 (4’h7) state upon receiving timeout. In this state extreme power

saving measurements are carried out.

4.5.10 Recovery

This state (4’h9) is used to retain the link or to perform Hot_Reset or to switch to LoopBack

mode. In order to retain link and to minimize the recovery latency, the two link partners do not

train the receiver equalization. Port will move from Recovery state to other state upon directed.

4.5.11 LoopBack

This state (4’hA) is used for test and fault isolation. LoopBack includes a bit error rate test state

machine. Port will move from LoopBack to other state upon directed.

4.5.12 Hot_Reset

Only downstream port can initiate Hot_Reset (4’h8). It will reset the whole operation. Port can

move to other state when it receive appropriate signal.

41

42

Chapter 5

5.1 Design and Simulation
There are two design build in this project

1. Physical Layer

2. Link Layer (LTSSM)

5.2 Physical Layer

5.2.1 PHY.v

This is top module for USB 3.0 Physical layer. It mainly consist two parts Transmitter and

Receiver.

There are different sub modules within the top module.

5.2.2 CLOCK_GEN.v

This module is used to generate clock with the different clock frequency i.e. 125MHz, 250MHz

and 2.5GHz.

5.2.3 DATA_RATE.v

 The main purpose for this module is to generate PCLK depends upon Power state, Rate and

PHY mode. A combinational logic is used with nonblocking assignment used so that PCLK will

change its value if any of the port from the sensitivity list will change its value.

5.2.4 ENCODER1.v

This module is used to convert the 8b input data into 10b of dc balanced code. This module is

designed based on reference []. Instead of deciding +ve or –ve disparity by assigning an

additional port. This design will generate +ve and –ve disparity code on the consecutive clock

cycle. The proper encoded output is available after one clock cycle.

5.2.5 ClockDiv.v

This module is used to divide the BIT_RATE clock by 10. This clock is used to hold the 10bit

encoded data until each bit is serially transmitted using parallel to Serial conversion.

43

5.2.6 PartoSer.v

This module is used to convert the 10bit encoded parallel data into 1bit serial data. There are

different approaches has been taken into consideration one is to use extra 1bit input to load the

data. But as encoder will generate proper DC balanced code after delay of 1 clock cycle car has

to be taken while giving this input. More the encoder build in design is generating proper outputs

after delay of few clock cycles, hence it is difficult to determine when to give load. The other

approach is to assign integer and use for loop but as the data is not changing for the whole clock

cycle it only sent the last bit. The approach used in the design has two always block one running

at BIT_CLK and other at BIT_CLK/10. So the internal temp_reg will get the data at

BIT_CLK/10 clock and do the shifting in BIT_CLK. So in the simulation after one clock cycle

delay of BIT_CLK/10 the shifting of the encoded data starts.

5.2.7 DPLL2.v

The main purpose of this module is to synchronize the incoming serial data with receiver’s local

frequency by generating a clock with help of incoming asynchronous data. This module is

designed from the reference [11]. This module will compare the output signal with input signal

and based on whether the output signal is lagging or leading with input signal based on

comparing the edge, it will add or remove clock cycle.

5.2.8 SertoPar.v

This module is used to generate 10bit data from the incoming serial data.

5.2.9 ClockDiv.v

Again this module is used to capture 10bit data. As the receiver accepting single bit data

continuously and serial to parallel convertor will continuously generate the 10bit data there are

chances that Receiver might receive different data other than transmitted data but in order to save

memory and to capture the proper data especially K28.5 this module is used so that output will

get input on every 10 clock cycle of BIT_CLK and receiver get proper data.

5.2.10 DFF.v

This module stored the data for 1 clock cycle.

44

5.2.11 FIFO2.v

FIFO built in ECE527 is used for data bursting. It served as elastic buffer. The additional feature

is added to determine the real and write level so that SKP symbol can be added or removed from

the incoming package.

5.2.12 RX_STATUS.v

This module will generate proper Rx_status based on the incoming 10bit data or elastic buffer

status.

Priority is been given to 8b/10b error by using if statement. Disparity error is find out by

negation XOR of 10bit data. If it is DC balanced it will result 1 else it will result 0.

5.2.13 DECODE.v

This is used to convert the 10bit dc balanced data into 8bit data.

5.3 Link Layer

5.3.1 LTSSM.v

This module is basically consists of state machine designed from figure 4.5.

5.4 Simulation

5.4.1 PHY Layer

Change in PCLK frequency

Transmitting Training Sequence Data

45

Receiving Training Sequence Data

Whole Simulation

Rx_Status and Rx_Valid

TX_DATA

46

RX_DATA

5.4.2 Link Layer

LTSSM simulation

47

Chapter 6

Conclusion
Through this project I understand the concept of USB 3.0 and Serial data communication. In this

project I am able to transfer data on 2.5GHz clock. I understand the Superspeed features of USB

3.0. Due to data bursting capability USB 3.0 provide far more speed than USB 2.0 as device does

not have to wait for the hub’s acknowledgment. I also understand 8b/10b encoder and decoder

and how they provide a dc balanced data. Along with Superspeed USB 3.0 also provide power

management and data integrity through LTSSM and CRC.

48

Reference

1. Universal Serial Bus 3.0 Specification Revision 1.0

2. www.usb.org

3. Data manual Texas Instruments Literature number: SLLSE16E

4. A DC balanced, partitioned –block, 8B/10B transmission code by A.X. Widmer and

P.A. Franaszek

5. Universal Serial Bus 2.0 Specification Revision 1.0

6. PHY interface for the PCI Express and USB 3.0 Architecture

7. Verilog HDL by Sameer Palnitkar

8. www.asic-world.com

9. http://www.mindshare.com/files/resources/MindShare_Intro_to_USB_3.0.pdf

10. Lattice Semiconductor Corporation 8b/10b Encoder/Decoder

11. An All-Digital Phase Locked Loop for high speed clock generation by Ching-Che

Chung and Chen-Yi Lee

49

Appendix

PHY.v

/** *******************
*** *******************

*** File Name:PHY.v Created By:Shashank Mehta

*** *******************
*** *******************

*** USB3.0 Physical Layer consist of two main block transmitter and
receiver. It uses 8b/10b Encoder and Decoder for da ta integrity

*** it uses DPLL and data recovery on receiver side to synchronized
data to the local clock. It uses the FIFO for data bursting on

*** the receiver side.

*** *******************
*** *******************
************************************/

`timescale 1ns/100ps

module
PHY(RX_DATA,RX_DATAK,RX_STATUS,RX_VALID,PHY_PCLK,PHY_STATUS,PHY_CLK,PH
Y_POWERDOWN,TX_ELECIDLE,PHY_MODE,PHY_RATE,PHY_RST,TX_DATA,TX_DATAK,RX_
RINC,RX_WINC,PHY_CLR,RX_POLARITY);
output [7:0]RX_DATA;
output RX_DATAK;
output [2:0]RX_STATUS;
output RX_VALID;
output PHY_PCLK,PHY_STATUS;
input [7:0]TX_DATA;
input TX_DATAK;
input[1:0]PHY_POWERDOWN;
input [1:0]PHY_MODE;
input PHY_CLK,PHY_RST,TX_ELECIDLE,PHY_CLR,RX_POLARI TY;
input PHY_RATE,RX_RINC,RX_WINC;
wire [7:0]RX_DATA;
wire RX_DATAK;
wire [2:0]RX_STATUS;

50

wire RX_VALID;
wire PHY_PCLK,PHY_STATUS;
wire TX_125,TX_250,BIT_CLK,DIV_CLK,DIV_CLK2;
wire [9:0]temp_out;
wire DP;
wire rec_clk;
wire sync_data;
wire [9:0]parallel_data;
wire [1:0]Rx_wr_status,Rx_rd_status;
wire [9:0]temp_rdata,temp_data_buf,encode_data,TEMP _ENC,w_data;
wire status_full,status_empty,fifowfull,fiforempty;

AASD PHY_AASD(.rst_out(RST),.rst(PHY_RST),.clk(PHY _CLK));
//Transmitter

//Clock generator used to generate 125MHz, 250MHz a nd 2.5GHz clock
CLOCK_GEN
PHY_CLOCK_GEN(.pclk_125(TX_125),.pclk_250(TX_250),. bit_rate_clk(BIT_CL
K),.clk(PHY_CLK),.rst(RST));

//This module will used to determine PCLK frequency based on PHY mode
and Rate
DATA_RATE
PHY_DATA_RATE(.PCLK(PHY_PCLK),.DATA_STATUS(PHY_STATUS),.DATA_CLK_125(T
X_125),.DATA_CLK_250(TX_250),.DATA_BIT_CLK(BIT_CLK) ,.DATA_RST(RST),.DA
TA_POWER(PHY_POWERDOWN),.TXELECIDLE(TX_ELECIDLE),.DATA_MODE(PHY_MODE),
.DATA_RATE(PHY_RATE));

//8b/10b encoder used to generate 10b of DC balance d encoded data from
8b data and control data
ENCODER PHY_ENC(.ENC_OUT(temp_out),.ENC_CLK(DIV_CL K),
.ENC_RST(RST),.KI(TX_DATAK), .ENC_IN(TX_DATA));
assign TEMP_ENC=temp_out;
CLOCK_DIV PHY_CLK_DIV(.BITCLK_10(DIV_CLK),.CLK(BIT_ CLK),.RST(RST));

//convert the 10b parallel data generate from 8b/10 b into serial data
PartoSerial
PHY_PARSER(.SerialOut(DP),.Serialclk(DIV_CLK),.Seri alBit(BIT_CLK),.Ser
ialRST(RST),.Parin(TEMP_ENC));

//Receiver

// Clock and Data Recovery
DPLL_2
PHY_dpll(.DPLL_OUT(rec_clk),.REF_IN(DP),.SYS_CLK(PH Y_CLK),.DPLL_RESET(
RST));

// Serial to Parallel conversion
SertoPar
PHY_sertopar(.Parout(parallel_data),.clk(rec_clk),. rst(RST),.Serialin(
DP));

51

// to capture 10bit data
CLOCK_DIV PHY_CLK_DIV2(.BITCLK_10(DIV_CLK2),.CLK(re c_clk),.RST(RST));

//to perform rx polarity inversion
DFF
PHY_dff(.out(w_data),.clk(DIV_CLK2),.rst(RST),.in(p arallel_data),.inv(
RX_POLARITY));

// For data bursitng
FIFO
PHY_FIFO(.RDATA(temp_rdata),.RD_LEVEL(Rx_rd_status) ,.WR_LEVEL(Rx_wr_st
atus),.FULL(fifowfull),.EMPTY(fiforempty),.WCLK(DIV _CLK2),.RCLK(TX_125
),.RST(RST),.WDATA(w_data),.CLEAR(PHY_CLR),.WE(RX_W INC),.RE(RX_RINC));

assign temp_data_buf=temp_rdata;
assign status_full=fifowfull;
assign status_empty=fiforempty;
// to generate appropriate RxStatus
RX_STATUS
PHY_rx_status(.RxStatus(RX_STATUS),.RxValid(RX_VALI D),.clk(TX_125),.rs
t(RST),.BUFF_full(status_full),.BUFF_empty(status_e mpty),.DataBuffer(t
emp_data_buf));

// to decode 10b data into 8bit data
assign encode_data=temp_data_buf;
DECODE
rx_decode(.DECODE_OUT(RX_DATA),.KO(RX_DATAK),.DEC_C LK(TX_125),.DEC_RST
(RST),.DATA_IN(encode_data));

endmodule

AASD.v

/** *******************

 ***filename: AASD.v Created by:Sh ashank Mehta

*** *******************
**

52

*** *******************
***/
`timescale 1ns/100ps

module AASD(rst_out,rst,clk);//module name
output rst_out;//output port
input rst,clk;//input port

reg rst_out;//internal signal
reg temp;
 //the netlist
always@(posedge clk or negedge rst)
begin
 if(!rst)
 rst_out <=1'b0;
 else
 begin
 temp <=rst;
 rst_out <= temp;
 end
end
endmodule

CLOCK_GEN.v

/** *******************

*** File: CLOCK_GEN.v C reated By:Shashank
Mehta ***

*** *******************

*** this modual will generate PCLK with freqency 12 5MHz and 250MHz and
generate ***
*** BIT_CLK with 2.5GHz of frequency from 5.0GHz S ys_CLK.

*** *******************
***************/

`timescale 1ns/100ps

module CLOCK_GEN(pclk_125,pclk_250,bit_rate_clk,clk ,rst);//module name
output pclk_125,pclk_250,bit_rate_clk;//Output port
input clk,rst; // Input Port
reg pclk_125,pclk_250,bit_rate_clk;
reg [2:0]count_250;

53

reg bist_2,bit_4,bit_6,bit_8;

// to generate BIT_CLK with 2.5GHz
always@(posedge clk or negedge rst)
begin
 if(!rst)
 bit_rate_clk<=1'b0;
 else
 bit_rate_clk<=~bit_rate_clk;
end

always@(posedge bit_rate_clk or negedge rst)
begin
 if(!rst)
 count_250<=0;
 else if(count_250==3'b100)
 count_250<=0;
 else
 count_250<=count_250+1;
end
// to generate PCLK with 250MHz
always@(posedge bit_rate_clk or negedge rst)
begin
 if(!rst)
 pclk_250<=1'b0;
 else if (count_250==3'b100)
 pclk_250<=~pclk_250;
 else
 pclk_250<=pclk_250;
end

// to generate PCLK with 125MHz
always@(posedge pclk_250 or negedge rst)
begin
 if(!rst)
 pclk_125<=1'b0;
 else
 pclk_125<=~pclk_125;
end
endmodule

54

CLOCK_DIV.v

/** *******************

*** File: CLOCK_DIV.v C reated By:Shashank
Mehta ***

*** *******************

*** This module wii generate clk for Parrallel to S erial conversion,
As 10bit ***
*** data are generated from 8b/10b encoder

*** *******************
***************/
`timescale 1ns/100ps

module CLOCK_DIV(BITCLK_10,CLK,RST);//module name
output BITCLK_10; //Output Port
input CLK,RST; //Input Port
reg BITCLK,BITCLK_10;
reg [2:0]temp_reg;

// will invert the BITCLK_10 when temp_reg==3'b100
always@(posedge CLK or negedge RST)
begin
 if(!RST)
 begin
 BITCLK_10<=1'b0;
 temp_reg<=3'b0;
 end
 else
 begin
 //temp_reg<=temp_reg+1;
 if(temp_reg==3'b100)
 begin
 BITCLK_10<=~BITCLK_10;
 temp_reg<=3'b0;
 end
 else
 temp_reg<=temp_reg+1;
 end
end
endmodule

55

DATA_RATE.v

/** *******************

*** File: DATA_RATE.v Cre ated By:Shashank
Mehta ***

*** *******************

*** This module will generate PCLK depends upon DAT A_RATE and
DATA_POWER ***

*** *******************
***************/

`timescale 1ns/100ps

module
DATA_RATE(PCLK,DATA_STATUS,DATA_CLK_125,DATA_CLK_250,DATA_BIT_CLK,DATA
_RST,DATA_POWER,TXELECIDLE,DATA_MODE,DATA_RATE);//module name
output PCLK;
//Output port
output DATA_STATUS;
//Output port
input DATA_CLK_125,DATA_CLK_250,DATA_BIT_CLK;
//Input port
input DATA_RST;
//Input port
input [1:0]DATA_POWER;
//Input port
inpu t TXELECIDLE;
//Input port
input [1:0]DATA_MODE;
//Input port
input DATA_RATE;
//Input port

reg PCLK;
reg DATA_STATUS;

always@(DATA_BIT_CLK or DATA_MODE or TXELECIDLE or DATA_POWER or
DATA_RST or DATA_CLK_125 or DATA_CLK_250)
begin
 if(!DATA_RST)
 begin

56

 PCLK=0;
 DATA_STATUS=0;
 end
 else if((DATA_POWER==2'b00) && (TXELECIDLE==1'b1) &&
(DATA_MODE==2'b00))//PCI Express mode
 begin
 if(!DATA_RATE)//2.5GT/s
 begin
 PCLK=DATA_CLK_125;
 DATA_STATUS=1'b1;
 end
 else if(DATA_RATE)//5.0GT/s
 begin
 PCLK=DATA_CLK_250;
 DATA_STATUS=1'b1;
 end
 end
 else if((DATA_POWER==2'b11) && (TXELECIDLE==1'b0)) //P3 state
where extream power saving measures is carried out
 begin
 PCLK=1'b0;
 DATA_STATUS=1'b1;
 end
 else // USB SuperSpeed
 begin
 PCLK=DATA_BIT_CLK;
 DATA_STATUS=1'b0;
 end
end
endmodule

ENCODER_1.v

/** *******************

*** File: ENCODER_1.v C reated By:Shashank
Mehta ***

*** *******************

*** This module will generate 10bit of DC balance c ode from 8bit of
data. This ***
*** module from the paper presented by A.X Widmer a nd P.A.Franaszek.
The purpose ***
*** is to generate DC balanced code with +ve and - ve disparity

*** *******************
***************/

57

`timescale 1ns/100ps

module ENCODER(ENC_OUT,ENC_CLK, ENC_RST,KI, ENC_IN) ;//module name

output [9:0]ENC_OUT; //Output port
input ENC_CLK,ENC_RST,KI; //Input Port with
control signal
input [7:0]ENC_IN; // 8bit input port

reg [9:0]ENC_OUT;
// Internal wires adn regs
wire ai,bi,ci,di,ei;
reg fi,gi,hi,k;
wire aeqb,ceqd,L22,L13,L31,L40,L04;
wire PDL6,PDL4,NDL6;
wire PD1S6,ND1S6,PD0S6,ND0S6;
wire PD1S4,ND1S4,PD0S4,ND0S4;
wire FNEG;
reg S;
reg LPDL6,LPDL4;
wire COMPLS4,COMPLS6;
wire SINT,NFO,NGO,NHO,NJO;
wire NAO,NBO,NCO,NDO,NEO,NIO;

//5b input function
assign ai= ENC_IN[0];
assign bi= ENC_IN[1];
assign ci= ENC_IN[2];
assign di= ENC_IN[3];
assign ei= ENC_IN[4];

//3b input function
always@(posedge ENC_CLK or negedge ENC_RST)
begin
 if(!ENC_RST)
 begin
 fi<= 0;
 gi<= 0;
 hi<= 0;
 k<=0;
end
else
 begin
 fi<= ENC_IN[5];
 gi<= ENC_IN[6];
 hi<= ENC_IN[7];
 k<=KI;
end
end
 assign aeqb= (ai & bi)|(!ai & !bi);
 assign ceqd= (ci & di)|(!ci & !di);

58

 assign L22 = (ai & bi & !ci & !di)|(ci & di & !ai &
!bi)|(!aeqb & !ceqd);// 2 1's and 2 0's
 assign L13 = (!aeqb & !ci & !di)|(!ceqd & !ai & ! bi);//1
1's and 3 0's
 assign L31 = (!aeqb & ci & di)|(!ceqd & ai & bi); // 3 1's
and 1 0's
 assign L40 = (ai & bi & ci & di); // all 1's
 assign L04 = (!ai & !bi & !ci & !di); //all 0's

//Disparity Control
 assign PD1S6= (!L22 & !L31 & !ei)|(L13 & di & ei) ;
 assign ND1S6= (L31 & !di & !ei)|(ei & !L22 & !L13)|k;
 assign PD0S6= (!L22 & !L13 & ei)|k;
 assign ND0S6= PD1S6;

assign FNEG= fi ^ gi;
// creating S function
always@(posedge ENC_CLK or negedge ENC_RST)
begin
 if(!ENC_RST)
 S<=0;
 else
 S<=(PDL6 & L31 & di & !ei)|(NDL6 & L13 & ei & !di) ;
end

 assign ND1S4 = (fi & gi);
 assign ND0S4 = (!fi & !gi);
 assign PD1S4 = (!fi & !gi) | (FNEG & k);
 assign PD0S4 = (fi & gi & hi);
 assign NDL6=!PDL6;

 assign PDL6=(PD0S6 & !COMPLS6)|(COMPLS6 & ND0S6)|(!ND0S6 & !PD0S6
& LPDL4);
 assign NDL6=!PDL6;
 assign PDL4=(LPDL6 & !PD0S4 & ! ND0S4)|(ND0S4 &
COMPLS4)|(!COMPLS4 & PD0S4);

//Disparity determine complementing S4
always@(posedge ENC_CLK or negedge ENC_RST)
begin
 if(!ENC_RST)
 LPDL6<= 0;
 else
 LPDL6<=PDL6;
end
//Disparity determine complementing S6
always@(posedge ENC_CLK or negedge ENC_RST)
begin
 if(!ENC_RST)
 LPDL4<=0;

59

 else
 LPDL4<=~PDL4;
end

assign COMPLS4= (PD1S4 & !LPDL6) ^ (ND1S4 & LPDL6);
assign COMPLS6= (ND1S6 & LPDL4) ^ (PD1S6 & !LPDL4);

//5b/6b encoder
// Logic for non-complemented Outputs
assign NAO= ai;
assign NBO= L04|(bi & !L40);
assign NCO= ci | L04 | (L13 & di & ei);
assign NDO= di & !L40;
assign NEO= (ei & !(ei & di & L13))|(L13 & !ei);
assign NIO= (L22 & !ei)|(ei & L04)|(ei & L40)|(k & L22)|(ei & !di &
L13);

always@(posedge ENC_CLK or negedge ENC_RST)
begin
 if(!ENC_RST)
 ENC_OUT[5:0]<=6'b0;
 else
 begin
 ENC_OUT[0]<= COMPLS6 ^ NAO;
 ENC_OUT[1]<= COMPLS6 ^ NBO;
 ENC_OUT[2]<= COMPLS6 ^ NCO;
 ENC_OUT[3]<= COMPLS6 ^ NDO;
 ENC_OUT[4]<= COMPLS6 ^ NEO;
 ENC_OUT[5]<= COMPLS6 ^ NIO;
 end
end

//3B/4B encoder
// Logic for non-complimented output

assign SINT= (S & fi & gi & hi)|(k & fi & gi & hi);
assign NFO= (fi & !SINT);
assign NGO= gi | (!fi & !gi & !hi);
assign NHO= hi;
assign NJO= SINT|(FNEG & !hi);

always@(posedge ENC_CLK or negedge ENC_RST)
begin
 if(!ENC_RST)
 ENC_OUT[9:6]<=3'b0;
 else
 begin
 ENC_OUT[6]<= COMPLS4 ^ NFO;
 ENC_OUT[7]<= COMPLS4 ^ NGO;

60

 ENC_OUT[8]<= COMPLS4 ^ NHO;
 ENC_OUT[9]<= COMPLS4 ^ NJO;
 end
end
endmodule

PartoSer.v

/** *******************

*** File: PartoSerial.v C reated By:Shashank
Mehta ***

*** *******************

*** This module is used to do Parallel to Serial co nversion by
accepting 10bit ***
*** parallel data on BIT_CLK/10 and do the serial C onversion on
BIT_CLK ***

*** *******************
***************/
`timescale 1ns/100ps

module
PartoSerial(SerialOut,Serialclk,SerialBit,SerialRST ,Parin);//module
name
output SerialOut;
//Output port
input Serialclk,SerialRST,SerialBit; //
Input port
input [9:0]Parin;
wire SerialOut;
reg [9:0]temp_reg;

// will accept encoded data on BIT_CLK/10
always@(posedge Serialclk or negedge SerialRST)
begin
 if(!SerialRST)
 temp_reg<=0;
 else
 temp_reg<=Parin;
end

// will perform Parallel to Serial conversion on BI T_CLK
always@(posedge SerialBit or negedge SerialRST)
begin
 if(!SerialRST)
 temp_reg<=0;

61

 else
 temp_reg<={1'b0,temp_reg[9:1]};
end

assign SerialOut=temp_reg[0];

DPLL2.v

/** *******************

*** File: DPLL2.v Created By: Shashank Mehta

*** *******************

*** This module is used to generate the local clock for the receiver
and lock the ***
*** phase of the clock with incoming Serial data.

*** *******************
***************/

`timescale 1ns/100ps

module DPLL_2(DPLL_OUT,REF_IN,SYS_CLK,DPLL_RESET);/ /module name
parameter filterlength=8;
parameter filterreset=4;
parameter filtermax=filterreset;
parameter filtermin=256-filterreset;
parameter dividerlength=7;
parameter dividermaxvalue=48;

output DPLL_OUT; / /Output Port
input REF_IN,SYS_CLK,DPLL_RESET; / /Input port

reg DPLL_OUT;
reg lead,lag;
reg [1:0]signal_edgedetect;
wire signal_edge;
reg [filterlength-1:0]filtercount;
reg positive,negative;
reg [dividerlength-1:0]dividercount;

//Detecting the rising edge
always@(posedge SYS_CLK or negedge DPLL_RESET)
begin
 if(DPLL_RESET)
 signal_edgedetect<=0;

62

 else
 signal_edgedetect<={signal_edgedetect[0],REF_IN};
end

// This signal checked at the rising edge of the ma in clk
//it is simple detector of input signal rising edge
//when it detect level of output must be checked
assign signal_edge=(signal_edgedetect==2'b01);

// "lead signal will be generated in case of output ==1 during input
rising edge
always@(posedge SYS_CLK or negedge DPLL_RESET)
begin
 if(!DPLL_RESET)
 {lead,lag}<=2'b00;
 else if((signal_edge==1'b1) && (DPLL_OUT==1'b0))
 lead<=1'b1;
 else if((signal_edge==1'b0) && (DPLL_OUT==1'b1))
 lag<=1'b1;
 else
 {lead,lag}<=2'b00;
end

always@(posedge SYS_CLK or negedge DPLL_RESET)
begin
 if(!DPLL_RESET)
 filtercount<=0;
 else if((filtercount==filtermax) || (filtercount== filtermin))
 filtercount<=0;
 else if(lead)
 filtercount<=filtercount+1;
 else if(lag)
 filtercount<=filtercount-1;
 else
 filtercount<=filtercount;
end

always@(posedge SYS_CLK or negedge DPLL_RESET)
begin
 if(DPLL_RESET)
 {positive,negative}<=2'b00;
 else if(filtercount==filtermax)
 positive<=1'b1;
 else if(filtercount==filtermin)
 negative<=1'b1;
 else
 {positive,negative}<=2'b00;
end

always@(posedge SYS_CLK or negedge DPLL_RESET)
begin
 if(!DPLL_RESET)

63

 dividercount<=0;
 else if(dividercount==dividermaxvalue-1)
 dividercount<=0;
 else if(positive)
 dividercount<=dividercount;
 else if(negative)
 dividercount<=dividercount+1;
 else
 dividercount<=dividercount;
end

always@(posedge SYS_CLK or negedge DPLL_RESET)
begin
 if(!DPLL_RESET)
 DPLL_OUT<=1'b0;
 else if(dividercount==0)
 DPLL_OUT<=~DPLL_OUT;//Additional divider by 2-for producing 50%
duty factor of the output signal
 else
 DPLL_OUT<=DPLL_OUT;
end

endmodule

FIFO1.v

/** *******************

*** File: FIFO1.v Created By:Shashank Mehta

*** *******************

*** This module is used for data bursting. It is th e same FIFO which
is build up ***
*** in ECE527 LAB4 with an extra features which wil l indicates read
and write ***
*** level so that SKP symbol can be add or removed.

*** *******************
***************/

`timescale 1ns/100ps

module
FIFO(RDATA,RD_LEVEL,WR_LEVEL,FULL,EMPTY,WCLK,RCLK,RST,WDATA,CLEAR,WE,R
E);//Module Name
parameter width=10;
parameter addr=16;

64

output [width-1:0]RDATA;
//Output Port
output [1:0]RD_LEVEL,WR_LEVEL;
//read andwrite level
output FULL,EMPTY;
//Output Port
input WCLK,RCLK,RST,CLEAR,WE,RE;
//Input port
input [width-1:0]WDATA;
//Input Port

wire [width-1:0]RDATA;
wire [1:0]RD_LEVEL,WR_LEVEL;
wire FULL,EMPTY;
wire [addr+1:0]raddr,waddr;
wire read_rst,write_rst,read_clr,write_clr;

POINTER
FIFO_POINTER(.rd_status(RD_LEVEL),.wr_status(WR_LEV EL),.rp_bin(raddr),
.wp_bin(waddr),.full(full),.empty(EMPTY),.wclk(WCLK),.wrst(write_rst),
.rclk(RCLK),.rrst(read_rst),.wr_clr(write_clr),.rd_ clr(read_clr),.winc
(WE),.rinc(RE));

RESET
FIFO_RESET(.rd_rst(read_rst),.wr_rst(write_rst),.wr _clr(write_clr),.rd
_clr(read_clr),.wclk(WCLK),.rclk(RCLK),.reset(RST), .clr(CLEAR));

FIFOMEM
FIFO_MEM(.rdata(RDATA),.wdata(WDATA),.waddr(waddr), .raddr(raddr),.wclk
en(WE),.wfull(full),.wclk(WCLK));

assign FULL=full;

endmodule

SertoPar.v

/** *******************

*** File: SertoPar.v Crea ted By:Shashank
Mehta ***

*** *******************

*** This module converts single bit serial data int o 10bit parallel
data ***

65

*** *******************
***************/

`timescale 1ns/100ps

module SertoPar(Parout,clk,rst,Serialin);//module n ame
output [9:0]Parout; //Output p ort
input clk,rst; //Input po rt
input Serialin; //Input po rt
reg [9:0]Parout;

always@(posedge clk or negedge rst)
begin
 if(!rst)
 Parout<=0;
 else
 Parout<= {Serialin,Parout[9:1]};
end

endmodule

RX_STATUS.v

/** *******************

*** File: Rx_STATUS.v Cre ated By:Shashank
Mehta ***

*** *******************

*** This module is used to generate appropriate RxS tatus according to
received ***
*** parallel data

*** *******************
***************/

`timescale 1ns/100ps

module
RX_STATUS(RxStatus,RxValid,clk,rst,BUFF_full,BUFF_e mpty,DataBuffer);//
Module name

66

output [2:0]RxStatus;
//Output port
output RxValid;
//Output port
input clk,rst,BUFF_full,BUFF_empty;
//Input Port
input [9:0]DataBuffer;
//Input Port
reg Valid,Disp_error,SKP_add,SKP_remove;
reg [2:0]RxStatus;
wire RxValid;

//to detect K28.5
always@(posedge clk or negedge rst)
begin
 if(!rst)
 Valid<=1'b0;
 else if(DataBuffer==10'b1010111100)
 Valid<=1'b1;
 else
 Valid<=1'b0;
end

assign RxValid=Valid;

//to check the disparity
always@(posedge clk or negedge rst)
begin
 if(!rst)
 Disp_error<=1'b0;
 else if(^DataBuffer==1'b1)
 Disp_error<=1'b0;
 else
 Disp_error<=1'b1;
end

// to generate valid RxStatus
always@(posedge clk or negedge rst)
begin
 if(!rst)
 RxStatus<=3'b000;
 else if(Valid)
 RxStatus<=3'b011;
 else if(Disp_error)
 RxStatus<=3'b100;
 else if(BUFF_full)
 RxStatus<=3'b101;
 else if(BUFF_empty)
 RxStatus<=3'b110;
 else
 RxStatus<=3'b000;
end

67

endmodule

DECODE.v

/** *******************

*** File: DECODE.v Create d By:Shashank Mehta

*** *******************

*** This module will conver 10bit dc balanced data into 8bit data

*** *******************
***************/

`timescale 1ns/100ps

module DECODE(DECODE_OUT,KO,DEC_CLK,DEC_RST,DATA_IN);//module name
output [7:0]DECODE_OUT; //Output port
output KO; //Output port
input DEC_CLK,DEC_RST; //Input port
input [9:0]DATA_IN; //Input port

reg [7:0]DECODE_OUT;
reg KO;

wire aneb,cned,eei,p13,p22,p31;
wire ika,ikb,ikc;
wire xa,xb,xc,xd,xe,xf,xg,xh;
wire or121,or122,or123,or124,or125,or126,or127;
wire or131,or132,or133,or134;
reg ior134;
wire ai,bi,ci,di,ei,fi,gi,hi,ii,ji;

assign ai=DATA_IN[0];
assign bi=DATA_IN[1];
assign ci=DATA_IN[2];
assign di=DATA_IN[3];
assign ei=DATA_IN[4];
assign ii=DATA_IN[5];
assign fi=DATA_IN[6];
assign gi=DATA_IN[7];

68

assign hi=DATA_IN[8];
assign ji=DATA_IN[9];

//6b Input function
assign p13=(aneb & (!ci & !di)) | (cned & (!ai & !b i));
assign p31=(aneb & ci & di) | (cned & ai & bi);
assign p22=(ai & bi & (!ci & !di)) | (ci & di & (!a i & !bi)) | (aneb &
cned);
assign aneb= ai ^ bi;
assign cned= ci ^ di;
assign eei= ei ^! ii;

// K Decoder
assign ika=(ci & di & ei & ii) | (!ci & !di & !ei & !ii);
assign ikb=p13 & (!ei & ii & gi & hi & ji);
assign ikc=p31 & (ei & !ii & !gi & !hi & !ji);

//Determine K output
always@(posedge DEC_CLK or negedge DEC_RST)
begin
 if(!DEC_RST)
 begin
 KO<=1'b0;
 ior134=1'b0;
 end
 else
 begin
 KO<= ika | ikb | ikc;
 ior134<= (!(hi & ji)) & (!(!hi & !ji)) & (!ci & !d i & !ei & !ii);
 end
end

//5b Decoder
//logic to determine compliementing A,B,C,D,E,I inp uts

assign or121=(p22 & (!ai & !ci & eei)) | (p13 & !ei);
assign or123=(p31 & ii) | (p22 & bi & ci & eei) | (p13 & di & ei &
ii);
assign or122=(ai & bi & ei & ii) | (!ci & !di & !ei & !ii) | (p31 &
ii);
assign or124=(p22 & ai & ci & eei) | (p13 & !ei);
assign or125=(p13 & !ei) | (!ci & !di & !ei & !ii) | (!ai & !bi & !ei
& !ii);
assign or126=(p22 & !ai & !ci & eei) | (p13 & !ii);
assign or127=(p13 & di & ei & ii) | (p22 & !bi & !c i & eei);

assign xa= or127 | or121 | or122;
assign xb= or122 | or123 | or124;

69

assign xc= or121 | or123 | or125;
assign xd= or122 | or124 | or127;
assign xe= or125 | or126 | or127;

//Generate and latch LS 5 decoded bits
always@(posedge DEC_CLK or negedge DEC_RST)
begin
 if(!DEC_RST)
 begin
 DECODE_OUT[0]<=1'b0;
 DECODE_OUT[1]<=1'b0;
 DECODE_OUT[2]<=1'b0;
 DECODE_OUT[3]<=1'b0;
 DECODE_OUT[4]<=1'b0;
 end
 else
 begin
 DECODE_OUT[0]<=xa ^ ai;
 DECODE_OUT[1]<=xb ^ bi;
 DECODE_OUT[2]<=xc ^ ci;
 DECODE_OUT[3]<=xd ^ di;
 DECODE_OUT[4]<=xe ^ ei;
 end
end

//3b Decoder
assign or131= (gi & hi & ji) | (fi & hi & ji) | ior 134;
assign or132= (fi & gi & ji) | (!fi & !gi & !hi) | (!fi & !gi & hi &
ji);
assign or133=(!fi & !hi & !ji) | (ior134) | (!gi & !hi & !ji);
assign or134= (!gi & !hi & !ji) | (fi & hi &ji) | (ior134);
//assign ior134= (!(hi & ji)) & (!(!hi & !ji)) & (! ci & !di & !ei &
!ii);

assign xf= or131 | or132;
assign xg= or132 | or133;
assign xh= or132 | or134;

//Generate and latch MS 3 decoded bits
always@(negedge DEC_CLK or negedge DEC_RST)
begin
 if(!DEC_RST)
 begin
 DECODE_OUT[5]<=1'b0;
 DECODE_OUT[6]<=1'b0;
 DECODE_OUT[7]<=1'b0;
 end
 else
 begin

70

 DECODE_OUT[5]<=xf ^ fi;
 DECODE_OUT[6]<=xg ^ gi;
 DECODE_OUT[7]<=xh ^ hi;
 end
end
endmodule

tb_PHY.v

`timescale 1ns/100ps

module tb_PHY();
wire [7:0]RX_DATA;
wire RX_DATAK;
wire [2:0]RX_STATUS;
wire RX_VALID;
wire PHY_PCLK,PHY_STATUS;
reg [7:0]TX_DATA;
reg TX_DATAK;
reg [1:0]PHY_POWERDOWN;
reg [1:0]PHY_MODE;
reg PHY_CLK,PHY_RST,TX_ELECIDLE,PHY_CLR;
reg PHY_RATE,RX_POLARITY;
reg RX_RINC,RX_WINC;

PHY
uut(RX_DATA,RX_DATAK,RX_STATUS,RX_VALID,PHY_PCLK,PH Y_STATUS,PHY_CLK,PH
Y_POWERDOWN,TX_ELECIDLE,PHY_MODE,PHY_RATE,PHY_RST,TX_DATA,TX_DATAK,RX_
RINC,RX_WINC,PHY_CLR,RX_POLARITY);

initial begin
$monitorb ("%d TX_DATA=%h TX_DATAK=%h RX_STATUS=%b RX_VALID=%b
RX_DATA=%h
RX_DATAK=%h",$time,TX_DATA,TX_DATAK,RX_STATUS,RX_VA LID,RX_DATA,RX_DATA
K);
end
initial begin
 PHY_CLK<=1'b0;
 forever #0.1 PHY_CLK<=~PHY_CLK;
end

initial begin
TX_DATA<=8'h00; TX_DATAK<=1'b0; TX_DATAK<=1'b0; RX_ WINC<=1'b0;
RX_RINC<=1'b0; PHY_CLR<=1'b0; RX_POLARITY<=1'b0;
//RESET TX
PHY_RST<=1'b0;
#4 PHY_RST<=1'b1;

71

//Changing PCLK frequency
#4 PHY_POWERDOWN<=2'b00; PHY_MODE<=2'b00; TX_ELECID LE<=1'b1;
PHY_RATE<=1'b0;
#20 PHY_RATE<=1'b1;
#20 PHY_POWERDOWN<=2'b11;
#20 PHY_POWERDOWN<=2'b00; TX_ELECIDLE<=1'b0;
// Encode data
#4 TX_DATA<=8'hBC; TX_DATAK<=1'b1; RX_WINC<=1'b1; R X_RINC<=1'b0;
#10 TX_DATA<=8'hFF; TX_DATAK<=1'b0;
#8 TX_DATA<=8'h17; TX_DATAK<=1'b0;
#18 TX_DATA<=8'hC0; TX_DATAK<=1'b0;
#8 TX_DATA<=8'h14; TX_DATAK<=1'b0;
#8 TX_DATA<=8'hB2; TX_DATAK<=1'b0;
#8 TX_DATA<=8'hE7; TX_DATAK<=1'b0;
#8 TX_DATA<=8'h02; TX_DATAK<=1'b0;
#18 TX_DATA<=8'h82; TX_DATAK<=1'b0;
#8 TX_DATA<=8'h72; TX_DATAK<=1'b0;
#8 TX_DATA<=8'h6E; TX_DATAK<=1'b0;

#8 TX_DATA<=8'h28; TX_DATAK<=1'b0;
#8 TX_DATA<=8'hA6; TX_DATAK<=1'b0;
#8 TX_DATA<=8'hBE; TX_DATAK<=1'b0;
#8 TX_DATA<=8'h6D; TX_DATAK<=1'b0;
#8 TX_DATA<=8'hBF; TX_DATAK<=1'b0;
#8 TX_DATA<=8'h4A; TX_DATAK<=1'b0;
#8 TX_DATA<=8'h4A; TX_DATAK<=1'b0;
#8 TX_DATA<=8'h4A; TX_DATAK<=1'b0;
#8 TX_DATA<=8'h4A; TX_DATAK<=1'b0;
#8 TX_DATA<=8'h4A; TX_DATAK<=1'b0;
#8 TX_DATA<=8'h4A; TX_DATAK<=1'b0;
#8 TX_DATA<=8'h4A; TX_DATAK<=1'b0;
#8 TX_DATA<=8'h4A; TX_DATAK<=1'b0;
#8 TX_DATA<=8'h4A; TX_DATAK<=1'b0;
#8 TX_DATA<=8'h4A; TX_DATAK<=1'b0;
#8 TX_DATA<=8'h4A; TX_DATAK<=1'b0; RX_POLARITY<=1'b 0;
#8 TX_DATA<=8'h4A; TX_DATAK<=1'b0;
#8 TX_DATA<=8'h4A; TX_DATAK<=1'b0; RX_POLARITY<=1'b 0;
#8 TX_DATA<=8'h4A; TX_DATAK<=1'b0;
#8 TX_DATA<=8'h4A; TX_DATAK<=1'b0;

#4 TX_DATA<=8'hBC; TX_DATAK<=1'b1;
#10 TX_DATA<=8'hFF; TX_DATAK<=1'b0;
#8 TX_DATA<=8'h17; TX_DATAK<=1'b0;
#8 TX_DATA<=8'hC0; TX_DATAK<=1'b0;
#8 TX_DATA<=8'h14; TX_DATAK<=1'b0;
#8 TX_DATA<=8'hB2; TX_DATAK<=1'b0;
#8 TX_DATA<=8'hE7; TX_DATAK<=1'b0;
#8 TX_DATA<=8'h02; TX_DATAK<=1'b0;
#8 TX_DATA<=8'h82; TX_DATAK<=1'b0;
#8 TX_DATA<=8'h72; TX_DATAK<=1'b0;
#8 TX_DATA<=8'h6E; TX_DATAK<=1'b0;

72

#8 TX_DATA<=8'h28; TX_DATAK<=1'b0;
#8 TX_DATA<=8'hA6; TX_DATAK<=1'b0;
#8 TX_DATA<=8'hBE; TX_DATAK<=1'b0;
#8 TX_DATA<=8'h6D; TX_DATAK<=1'b0;
#8 TX_DATA<=8'hBF; TX_DATAK<=1'b0;
#8 TX_DATA<=8'h4A; TX_DATAK<=1'b0;
#8 TX_DATA<=8'h4A; TX_DATAK<=1'b0;
#8 TX_DATA<=8'h4A; TX_DATAK<=1'b0;
#8 TX_DATA<=8'h4A; TX_DATAK<=1'b0;
#8 TX_DATA<=8'h4A; TX_DATAK<=1'b0;
#8 TX_DATA<=8'h4A; TX_DATAK<=1'b0;
#8 TX_DATA<=8'h4A; TX_DATAK<=1'b0;
#8 TX_DATA<=8'h4A; TX_DATAK<=1'b0;
#8 TX_DATA<=8'h4A; TX_DATAK<=1'b0;
#8 TX_DATA<=8'h4A; TX_DATAK<=1'b0;
#8 TX_DATA<=8'h4A; TX_DATAK<=1'b0;
#8 TX_DATA<=8'h4A; TX_DATAK<=1'b0;
#8 TX_DATA<=8'h4A; TX_DATAK<=1'b0;
#8 TX_DATA<=8'h4A; TX_DATAK<=1'b0;
#8 TX_DATA<=8'h4A; TX_DATAK<=1'b0;

#4 TX_DATA<=8'hBC; TX_DATAK<=1'b1;
#10 TX_DATA<=8'hFF; TX_DATAK<=1'b0;
#8 TX_DATA<=8'h17; TX_DATAK<=1'b0;
#8 TX_DATA<=8'hC0; TX_DATAK<=1'b0;
#8 TX_DATA<=8'h14; TX_DATAK<=1'b0;
#8 TX_DATA<=8'hB2; TX_DATAK<=1'b0;
#8 TX_DATA<=8'hE7; TX_DATAK<=1'b0;
#8 TX_DATA<=8'h02; TX_DATAK<=1'b0;
#8 TX_DATA<=8'h82; TX_DATAK<=1'b0;
#8 TX_DATA<=8'h72; TX_DATAK<=1'b0;
#8 TX_DATA<=8'h6E; TX_DATAK<=1'b0;

#8 TX_DATA<=8'h28; TX_DATAK<=1'b0;
#8 TX_DATA<=8'hA6; TX_DATAK<=1'b0;
#8 TX_DATA<=8'hBE; TX_DATAK<=1'b0;
#8 TX_DATA<=8'h6D; TX_DATAK<=1'b0;
#8 TX_DATA<=8'hBF; TX_DATAK<=1'b0;
#8 TX_DATA<=8'h4A; TX_DATAK<=1'b0;
#8 TX_DATA<=8'h4A; TX_DATAK<=1'b0;
#8 TX_DATA<=8'h4A; TX_DATAK<=1'b0;
#8 TX_DATA<=8'h4A; TX_DATAK<=1'b0;
#8 TX_DATA<=8'h4A; TX_DATAK<=1'b0;
#8 TX_DATA<=8'h4A; TX_DATAK<=1'b0;
#8 TX_DATA<=8'h4A; TX_DATAK<=1'b0;
#8 TX_DATA<=8'h4A; TX_DATAK<=1'b0;
#8 TX_DATA<=8'h4A; TX_DATAK<=1'b0;
#8 TX_DATA<=8'h4A; TX_DATAK<=1'b0;
#8 TX_DATA<=8'h4A; TX_DATAK<=1'b0;
#8 TX_DATA<=8'h4A; TX_DATAK<=1'b0;
#8 TX_DATA<=8'h4A; TX_DATAK<=1'b0;

73

#8 TX_DATA<=8'h4A; TX_DATAK<=1'b0;
#8 TX_DATA<=8'h4A; TX_DATAK<=1'b0;

#4 TX_DATA<=8'hBC; TX_DATAK<=1'b1;
#10 TX_DATA<=8'hFF; TX_DATAK<=1'b0;
#8 TX_DATA<=8'h17; TX_DATAK<=1'b0;
#8 TX_DATA<=8'hC0; TX_DATAK<=1'b0;
#8 TX_DATA<=8'h14; TX_DATAK<=1'b0;
#8 TX_DATA<=8'hB2; TX_DATAK<=1'b0;
#8 TX_DATA<=8'hE7; TX_DATAK<=1'b0;
#8 TX_DATA<=8'h02; TX_DATAK<=1'b0;
#8 TX_DATA<=8'h82; TX_DATAK<=1'b0;
#8 TX_DATA<=8'h72; TX_DATAK<=1'b0;
#8 TX_DATA<=8'h6E; TX_DATAK<=1'b0;

#8 TX_DATA<=8'h28; TX_DATAK<=1'b0;
#8 TX_DATA<=8'hA6; TX_DATAK<=1'b0;
#8 TX_DATA<=8'hBE; TX_DATAK<=1'b0;
#8 TX_DATA<=8'h6D; TX_DATAK<=1'b0;
#8 TX_DATA<=8'hBF; TX_DATAK<=1'b0;
#8 TX_DATA<=8'h4A; TX_DATAK<=1'b0;
#8 TX_DATA<=8'h4A; TX_DATAK<=1'b0;
#8 TX_DATA<=8'h4A; TX_DATAK<=1'b0;
#8 TX_DATA<=8'h4A; TX_DATAK<=1'b0;
#8 TX_DATA<=8'h4A; TX_DATAK<=1'b0;
#8 TX_DATA<=8'h4A; TX_DATAK<=1'b0;
#8 TX_DATA<=8'h4A; TX_DATAK<=1'b0;
#8 TX_DATA<=8'h4A; TX_DATAK<=1'b0;
#8 TX_DATA<=8'h4A; TX_DATAK<=1'b0;
#8 TX_DATA<=8'h4A; TX_DATAK<=1'b0;
#8 TX_DATA<=8'h4A; TX_DATAK<=1'b0;
#8 TX_DATA<=8'h4A; TX_DATAK<=1'b0;
#8 TX_DATA<=8'h4A; TX_DATAK<=1'b0;
#8 TX_DATA<=8'h4A; TX_DATAK<=1'b0;
#8 TX_DATA<=8'h4A; TX_DATAK<=1'b0;

#4 TX_DATA<=8'hBC; TX_DATAK<=1'b1;
#10 TX_DATA<=8'hFF; TX_DATAK<=1'b0;
#8 TX_DATA<=8'h17; TX_DATAK<=1'b0;
#8 TX_DATA<=8'hC0; TX_DATAK<=1'b0;
#8 TX_DATA<=8'h14; TX_DATAK<=1'b0;
#8 TX_DATA<=8'hB2; TX_DATAK<=1'b0;
#8 TX_DATA<=8'hE7; TX_DATAK<=1'b0;
#8 TX_DATA<=8'h02; TX_DATAK<=1'b0;
#8 TX_DATA<=8'h82; TX_DATAK<=1'b0;
#8 TX_DATA<=8'h72; TX_DATAK<=1'b0;
#8 TX_DATA<=8'h6E; TX_DATAK<=1'b0;

#8 TX_DATA<=8'h28; TX_DATAK<=1'b0;
#8 TX_DATA<=8'hA6; TX_DATAK<=1'b0;
#8 TX_DATA<=8'hBE; TX_DATAK<=1'b0;
#8 TX_DATA<=8'h6D; TX_DATAK<=1'b0;

74

#8 TX_DATA<=8'hBF; TX_DATAK<=1'b0;
#8 TX_DATA<=8'h4A; TX_DATAK<=1'b0;
#8 TX_DATA<=8'h4A; TX_DATAK<=1'b0;
#8 TX_DATA<=8'h4A; TX_DATAK<=1'b0;
#8 TX_DATA<=8'h4A; TX_DATAK<=1'b0;
#8 TX_DATA<=8'h4A; TX_DATAK<=1'b0;
#8 TX_DATA<=8'h4A; TX_DATAK<=1'b0;
#8 TX_DATA<=8'h4A; TX_DATAK<=1'b0;
#8 TX_DATA<=8'h4A; TX_DATAK<=1'b0;
#8 TX_DATA<=8'h4A; TX_DATAK<=1'b0;
#8 TX_DATA<=8'h4A; TX_DATAK<=1'b0;
#8 TX_DATA<=8'h4A; TX_DATAK<=1'b0;
#8 TX_DATA<=8'h4A; TX_DATAK<=1'b0;
#8 TX_DATA<=8'h4A; TX_DATAK<=1'b0;
#8 TX_DATA<=8'h4A; TX_DATAK<=1'b0;
#8 TX_DATA<=8'h4A; TX_DATAK<=1'b0;

// giving random data
#8 TX_DATA<=8'h02; TX_DATAK<=1'b0;
#8 TX_DATA<=8'h03; TX_DATAK<=1'b0;
#8 TX_DATA<=8'h04; TX_DATAK<=1'b0;
#8 TX_DATA<=8'h05; TX_DATAK<=1'b0;
#8 TX_DATA<=8'h06; TX_DATAK<=1'b0;
#8 TX_DATA<=8'h07; TX_DATAK<=1'b0;
#8 TX_DATA<=8'h08; TX_DATAK<=1'b0;
#8 TX_DATA<=8'h09; TX_DATAK<=1'b0;
#8 TX_DATA<=8'h10; TX_DATAK<=1'b0;
#8 TX_DATA<=8'h11; TX_DATAK<=1'b0;
#8 TX_DATA<=8'h12; TX_DATAK<=1'b0;
#8 TX_DATA<=8'h04; TX_DATAK<=1'b0;
#8 TX_DATA<=8'h05; TX_DATAK<=1'b0;
#8 TX_DATA<=8'h06; TX_DATAK<=1'b0;
#8 TX_DATA<=8'h07; TX_DATAK<=1'b0;
#8 TX_DATA<=8'h08; TX_DATAK<=1'b0;
#8 TX_DATA<=8'h09; TX_DATAK<=1'b0;
#8 TX_DATA<=8'h10; TX_DATAK<=1'b0;
#8 TX_DATA<=8'h11; TX_DATAK<=1'b0;
#8 TX_DATA<=8'h12; TX_DATAK<=1'b0;
#8 TX_DATA<=8'h04; TX_DATAK<=1'b0;
#8 TX_DATA<=8'h05; TX_DATAK<=1'b0;
#8 TX_DATA<=8'h06; TX_DATAK<=1'b0;
#8 TX_DATA<=8'h07; TX_DATAK<=1'b0;
#8 TX_DATA<=8'h08; TX_DATAK<=1'b0;
#8 TX_DATA<=8'h09; TX_DATAK<=1'b0;
#8 TX_DATA<=8'h10; TX_DATAK<=1'b0;
#8 TX_DATA<=8'h11; TX_DATAK<=1'b0;
#8 TX_DATA<=8'h12; TX_DATAK<=1'b0;

#1200 RX_RINC<=1'b1; RX_WINC<=1'b1;
#1200 RX_POLARITY<=1'b1;
#1200 RX_POLARITY<=1'b0;
#12000 $stop;

75

20 $finish;
end
endmodule

LTSSM.v

/** *******************
*** *******************
**
*** File Name:LTSSM.v Created By:Shashank
Mehta

*** Date:04/03/12
*** *******************
*** *******************
**
*** LTSSM is the Link Transition and Status State M achine which
Transition the link into appropriate power stage. T his is used by
SuperSpeed link
*** to transker the link into low power stage when it is not in used.

*** *******************
*** *******************
**/

`timescale 1ns/100ps

module LTSSM(Link_State,SuperSpeed,LFPS,
Bit_Lock,Symbol_Lock,Rx_Equalization,CLK,RST,Loop_B ack,Idle,Low_Impeda
nce,Rx_Termination,LGO_U1,LGO_U2,LGO_U3,LFPS_Handsh ake,Time_Out,VBUS,W
arm_RST,Error);
parameter SS_Disable=4'b0000;
parameter SS_Inactive=4'b0001;
parameter Rx_Detect=4'b0010;
parameter Polling=4'b0011;
parameter U0=4'b0100;
parameter U1=4'b0101;
parameter U2=4'b0110;
parameter U3=4'b0111;
parameter Hot_Reset=4'b1000;
parameter Recovery=4'b1001;
parameter LoopBack=4'b1010;
parameter Compliance_mode=4'b1011;
output [3:0]Link_State;
output SuperSpeed,LFPS,Bit_Lock,Symbol_Lock,Rx_Equa lization;
input
CLK,RST,Loop_Back,Idle,Low_Impedance,LGO_U1,LGO_U2, LGO_U3,LFPS_Handsha
ke,Time_Out,Rx_Termination,VBUS,Warm_RST,Error;
reg SuperSpeed,LFPS,Bit_Lock,Symbol_Lock,Rx_Equaliz ation;
reg [3:0]state,next_state;

76

wire [3:0]Link_State;

always@(posedge CLK or negedge RST)
begin
 if(!RST)
 begin
 state<=Hot_Reset;
 SuperSpeed<=1'b0;
 LFPS<=1'b0;
 Bit_Lock<=1'b0;
 Symbol_Lock<=1'b0;
 Rx_Equalization<=1'b0;
 end
 else
 state<=next_state;
end

always@(VBUS or RST or Rx_Termination or Idle or Lo op_Back or Recovery
or Polling or Idle or Low_Impedance or LGO_U1 or LG O_U2 or LGO_U3 or
LFPS_Handshake or Time_Out or Warm_RST or Error)
begin
 next_state=state;
 case(state)
 SS_Disable: begin
 LFPS=0;
 SuperSpeed=0;
 if(VBUS)
 next_state=Rx_Detect;
 end

 SS_Inactive: begin
 SuperSpeed=0;
 if(Warm_RST)
 next_state=Rx_Detect;
 end

 Rx_Detect:begin
 SuperSpeed=1'b1;
 LFPS=1'b0;
 if(!Warm_RST || Rx_Termination)
 next_state= Polling;
 end

 Polling:begin
 SuperSpeed=1'b1;
 LFPS=1'b0;
 Bit_Lock=1'b1;
 Symbol_Lock=1'b1;
 Rx_Equalization=1'b1;
 if(Warm_RST)
 next_state=Rx_Detect;

77

 else if(!VBUS)
 next_state=SS_Disable;
 else if(Idle)
 next_state=U0;
 else if(Loop_Back)
 next_state=LoopBack;
 else if(Low_Impedance)
 next_state=Compliance_mode;
 end

 U0: begin
 SuperSpeed=1'b1;
 LFPS=1'b0;
 if(LGO_U1)
 next_state=U1;
 else if(LGO_U2)
 next_state=U2;
 else if(LGO_U3)
 next_state=U3;
 else if(Error)
 next_state=Recovery;
 else
 next_state=SS_Inactive;
 end

 U1: begin
 SuperSpeed=1'b1;
 LFPS=1'b1;
 if(LFPS_Handshake)
 next_state=Recovery;
 else if(Time_Out)
 next_state=U2;
 else if(!LFPS_Handshake)
 next_state=SS_Inactive;
 else if(Warm_RST)
 next_state=Rx_Detect;
 else if(!VBUS)
 next_state=Rx_Detect;
 end

 U2: begin
 SuperSpeed=1'b1;
 LFPS=1'b1;
 if(LFPS_Handshake)
 next_state=Recovery;
 else if(Time_Out)
 next_state=U3;
 else if(!LFPS_Handshake)
 next_state=SS_Inactive;
 else if(Warm_RST || !VBUS)
 next_state=Rx_Detect;
 else

78

 next_state=U2;
 end

 U3: begin
 SuperSpeed=1'b0;
 LFPS=1'b0;
 if(LFPS_Handshake)
 next_state=Recovery;
 else if(Time_Out)
 next_state=U3;
 else if(!LFPS_Handshake)
 next_state=U3;
 else if(Warm_RST)
 next_state=Rx_Detect;
 else if(!VBUS)
 next_state=SS_Disable;
 end

 Recovery: begin
 SuperSpeed=1'b0;
 LFPS=1'b0;
 if(!VBUS)
 next_state=SS_Disable;
 else if(Loop_Back)
 next_state=LoopBack;
 else if(Idle)
 next_state=U0;
 else if(!LFPS_Handshake)
 next_state=SS_Inactive;
 else if(Warm_RST)
 next_state=Rx_Detect;
 end

 LoopBack: begin
 SuperSpeed=1'b1;
 LFPS=1'b1;
 if(!LFPS_Handshake)
 next_state=SS_Inactive;
 else if(Warm_RST)
 next_state=Rx_Detect;
 end

 Hot_Reset: begin
 SuperSpeed=1'b0;
 LFPS=1'b0;
 if(!LFPS_Handshake)
 next_state=SS_Inactive;
 else if(Idle)
 next_state=U0;
 end

79

 Compliance_mode:begin
 SuperSpeed=1'b1;
 LFPS=1'b1;
 if(Warm_RST)
 next_state=Rx_Detect;
 end
 endcase
end
assign Link_State=state;
endmodule

tb_LTSSM.v

`timescale 1ns/100ps

module tb_LTSSM();
parameter SS_Disable=4'b0000;
parameter SS_Inactive=4'b0001;
parameter Rx_Detect=4'b0010;
parameter Polling=4'b0011;
parameter U0=4'b0100;
parameter U1=4'b0101;
parameter U2=4'b0110;
parameter U3=4'b0111;
parameter Hot_Reset=4'b1000;
parameter Recovery=4'b1001;
parameter LoopBack=4'b1010;
parameter Compliance_mode=4'b1011;
wire [3:0]Link_State;
wire SuperSpeed,LFPS,Bit_Lock,Symbol_Lock,Rx_Equali zation;
reg
CLK,RST,Loop_Back,Idle,Low_Impedance,LGO_U1,LGO_U2, LGO_U3,LFPS_Handsha
ke,Time_Out,Rx_Termination,VBUS,Warm_RST,Error;

LTSSM uut(Link_State,SuperSpeed,LFPS,
Bit_Lock,Symbol_Lock,Rx_Equalization,CLK,RST,Loop_B ack,Idle,Low_Impeda
nce,Rx_Termination,LGO_U1,LGO_U2,LGO_U3,LFPS_Handsh ake,Time_Out,VBUS,W
arm_RST,Error);

initial begin
$monitorb("%d Link_State=%d SuperSpedd=%b LFPS=%b B it_Lock=%b
Symbol_Lock=%b Rx_Equalization=%b CLK=%b RST=%b Loo p_Back=%b Idle=%b
Low_Impedance=%b Rx_Termination=%b LGO_U1=%b LGO_U2 =%b LGO_U3=%b
LFPS_Handshake=%b Time_Out=%b VBUS=%b Warm_RST=%b
Error=%b",$time,Link_State,SuperSpeed,LFPS,
Bit_Lock,Symbol_Lock,Rx_Equalization,CLK,RST,Loop_B ack,Idle,Low_Impeda
nce,Rx_Termination,LGO_U1,LGO_U2,LGO_U3,LFPS_Handsh ake,Time_Out,VBUS,W
arm_RST,Error);
end

80

initial begin
CLK<=1'b0;
forever #10 CLK<=~CLK;
end

initial begin
#5 RST<=1'b0;
#5 RST<=1'b1;//Hard Reset
#10 Loop_Back<=1'b0; Idle<=1'b0; Low_Impedance<=1'b 0; LGO_U1<=1'b0;
LGO_U2<=1'b0; LGO_U3<=1'b0; LFPS_Handshake<=1'b0; T ime_Out<=1'b0;
Rx_Termination<=1'b0; VBUS<=1'b0; Warm_RST<=1'b0; E rror<=1'b0;

#100 Loop_Back<=1'b0; Idle<=1'b0; Low_Impedance<=1' b0; LGO_U1<=1'b0;
LGO_U2<=1'b0; LGO_U3<=1'b0; LFPS_Handshake<=1'b0; T ime_Out<=1'b0;
Rx_Termination<=1'b0; VBUS<=1'b1; Warm_RST<=1'b0; E rror<=1'b0;//

#100 Loop_Back<=1'b0; Idle<=1'b0; Low_Impedance<=1' b0; LGO_U1<=1'b0;
LGO_U2<=1'b0; LGO_U3<=1'b0; LFPS_Handshake<=1'b0; T ime_Out<=1'b0;
Rx_Termination<=1'b0; VBUS<=1'b0; Warm_RST<=1'b1; E rror<=1'b0;//
Rx_Detect

#100 Loop_Back<=1'b0; Idle<=1'b0; Low_Impedance<=1' b0; LGO_U1<=1'b0;
LGO_U2<=1'b0; LGO_U3<=1'b0; LFPS_Handshake<=1'b0; T ime_Out<=1'b0;
Rx_Termination<=1'b1; VBUS<=1'b0; Warm_RST<=1'b0;
Error<=1'b0;//Polling

#100 Loop_Back<=1'b0; Idle<=1'b1; Low_Impedance<=1' b0; LGO_U1<=1'b0;
LGO_U2<=1'b0; LGO_U3<=1'b0; LFPS_Handshake<=1'b0; T ime_Out<=1'b0;
Rx_Termination<=1'b0; VBUS<=1'b1; Warm_RST<=1'b0; E rror<=1'b0;//U0

#100 Loop_Back<=1'b0; Idle<=1'b0; Low_Impedance<=1' b0; LGO_U1<=1'b0;
LGO_U2<=1'b0; LGO_U3<=1'b0; LFPS_Handshake<=1'b0; T ime_Out<=1'b0;
Rx_Termination<=1'b0; VBUS<=1'b0; Warm_RST<=1'b1;
Error<=1'b0;//SS_Inactive

#100 Loop_Back<=1'b0; Idle<=1'b0; Low_Impedance<=1' b1; LGO_U1<=1'b0;
LGO_U2<=1'b0; LGO_U3<=1'b0; LFPS_Handshake<=1'b0; T ime_Out<=1'b0;
Rx_Termination<=1'b0; VBUS<=1'b0; Warm_RST<=1'b1;
Error<=1'b0;//Rx_Detect

#100 Loop_Back<=1'b0; Idle<=1'b0; Low_Impedance<=1' b0; LGO_U1<=1'b0;
LGO_U2<=1'b0; LGO_U3<=1'b0; LFPS_Handshake<=1'b1; T ime_Out<=1'b0;
Rx_Termination<=1'b1; VBUS<=1'b0; Warm_RST<=1'b0;
Error<=1'b0;//Polling

#100 Loop_Back<=1'b1; Idle<=1'b0; Low_Impedance<=1' b0; LGO_U1<=1'b1;
LGO_U2<=1'b0; LGO_U3<=1'b0; LFPS_Handshake<=1'b0; T ime_Out<=1'b0;
Rx_Termination<=1'b0; VBUS<=1'b1; Warm_RST<=1'b0;
Error<=1'b0;//Loop_Back

81

#100 Loop_Back<=1'b0; Idle<=1'b0; Low_Impedance<=1' b0; LGO_U1<=1'b0;
LGO_U2<=1'b1; LGO_U3<=1'b0; LFPS_Handshake<=1'b0; T ime_Out<=1'b0;
Rx_Termination<=1'b0; VBUS<=1'b0; Warm_RST<=1'b1;
Error<=1'b0;//SS_Inactive

#100 Loop_Back<=1'b0; Idle<=1'b0; Low_Impedance<=1' b0; LGO_U1<=1'b0;
LGO_U2<=1'b0; LGO_U3<=1'b1; LFPS_Handshake<=1'b0; T ime_Out<=1'b0;
Rx_Termination<=1'b0; VBUS<=1'b0; Warm_RST<=1'b1;
Error<=1'b0;//Rx_Detect i.e 2

#100 Loop_Back<=1'b0; Idle<=1'b1; Low_Impedance<=1' b0; LGO_U1<=1'b0;
LGO_U2<=1'b0; LGO_U3<=1'b0; LFPS_Handshake<=1'b0; T ime_Out<=1'b0;
Rx_Termination<=1'b1; VBUS<=1'b0; Warm_RST<=1'b0;
Error<=1'b0;//Polling i.e 3

#100 Loop_Back<=1'b0; Idle<=1'b0; Low_Impedance<=1' b1; LGO_U1<=1'b0;
LGO_U2<=1'b0; LGO_U3<=1'b0; LFPS_Handshake<=1'b0; T ime_Out<=1'b0;
Rx_Termination<=1'b0; VBUS<=1'b1; Warm_RST<=1'b0;
Error<=1'b0;//Compliance i.e B

#100 Loop_Back<=1'b0; Idle<=1'b0; Low_Impedance<=1' b0; LGO_U1<=1'b0;
LGO_U2<=1'b0; LGO_U3<=1'b0; LFPS_Handshake<=1'b0; T ime_Out<=1'b0;
Rx_Termination<=1'b0; VBUS<=1'b0; Warm_RST<=1'b1;
Error<=1'b0;//Rx_Detect i.e 2

#100 Loop_Back<=1'b0; Idle<=1'b0; Low_Impedance<=1' b0; LGO_U1<=1'b0;
LGO_U2<=1'b0; LGO_U3<=1'b0; LFPS_Handshake<=1'b0; T ime_Out<=1'b0;
Rx_Termination<=1'b1; VBUS<=1'b0; Warm_RST<=1'b0;
Error<=1'b0;//Polling i.e 3

#100 Loop_Back<=1'b0; Idle<=1'b1; Low_Impedance<=1' b0; LGO_U1<=1'b0;
LGO_U2<=1'b0; LGO_U3<=1'b0; LFPS_Handshake<=1'b0; T ime_Out<=1'b0;
Rx_Termination<=1'b0; VBUS<=1'b1; Warm_RST<=1'b0; E rror<=1'b0;//U0 i.e
4

#100 Loop_Back<=1'b0; Idle<=1'b0; Low_Impedance<=1' b0; LGO_U1<=1'b1;
LGO_U2<=1'b0; LGO_U3<=1'b0; LFPS_Handshake<=1'b0; T ime_Out<=1'b0;
Rx_Termination<=1'b0; VBUS<=1'b1; Warm_RST<=1'b0; E rror<=1'b0;//U1 i.e
5

#100 Loop_Back<=1'b0; Idle<=1'b0; Low_Impedance<=1' b0; LGO_U1<=1'b0;
LGO_U2<=1'b0; LGO_U3<=1'b0; LFPS_Handshake<=1'b0; T ime_Out<=1'b1;
Rx_Termination<=1'b0; VBUS<=1'b1; Warm_RST<=1'b0; E rror<=1'b0;//U2 i.e
6

#100 Loop_Back<=1'b0; Idle<=1'b0; Low_Impedance<=1' b0; LGO_U1<=1'b0;
LGO_U2<=1'b0; LGO_U3<=1'b0; LFPS_Handshake<=1'b0; T ime_Out<=1'b1;
Rx_Termination<=1'b1; VBUS<=1'b1; Warm_RST<=1'b0; E rror<=1'b0;// U3
i.e 6

#100 Loop_Back<=1'b0; Idle<=1'b0; Low_Impedance<=1' b0; LGO_U1<=1'b0;
LGO_U2<=1'b0; LGO_U3<=1'b0; LFPS_Handshake<=1'b0; T ime_Out<=1'b1;

82

Rx_Termination<=1'b0; VBUS<=1'b1; Warm_RST<=1'b0; E rror<=1'b0;// U3
i.e 7

#100 Loop_Back<=1'b0; Idle<=1'b0; Low_Impedance<=1' b0; LGO_U1<=1'b0;
LGO_U2<=1'b0; LGO_U3<=1'b0; LFPS_Handshake<=1'b1; T ime_Out<=1'b1;
Rx_Termination<=1'b0; VBUS<=1'b1; Warm_RST<=1'b0; E rror<=1'b0;//
Recovery i.e 9

#100 Loop_Back<=1'b1; Idle<=1'b0; Low_Impedance<=1' b0; LGO_U1<=1'b0;
LGO_U2<=1'b0; LGO_U3<=1'b0; LFPS_Handshake<=1'b0; T ime_Out<=1'b1;
Rx_Termination<=1'b0; VBUS<=1'b1; Warm_RST<=1'b0; E rror<=1'b0;//
Loop_Back i.e 10

#100 Loop_Back<=1'b0; Idle<=1'b0; Low_Impedance<=1' b0; LGO_U1<=1'b0;
LGO_U2<=1'b0; LGO_U3<=1'b0; LFPS_Handshake<=1'b0; T ime_Out<=1'b1;
Rx_Termination<=1'b0; VBUS<=1'b0; Warm_RST<=1'b1; E rror<=1'b0;//
Rx_Detect i.e 2

#100 Loop_Back<=1'b0; Idle<=1'b0; Low_Impedance<=1' b0; LGO_U1<=1'b0;
LGO_U2<=1'b0; LGO_U3<=1'b0; LFPS_Handshake<=1'b0; T ime_Out<=1'b1;
Rx_Termination<=1'b1; VBUS<=1'b0; Warm_RST<=1'b0; E rror<=1'b0;//
Polling i.e 3

#100 Loop_Back<=1'b0; Idle<=1'b0; Low_Impedance<=1' b1; LGO_U1<=1'b0;
LGO_U2<=1'b0; LGO_U3<=1'b0; LFPS_Handshake<=1'b0; T ime_Out<=1'b1;
Rx_Termination<=1'b1; VBUS<=1'b0; Warm_RST<=1'b0; E rror<=1'b0;//
Compliance i.e 3

#100 Loop_Back<=1'b0; Idle<=1'b0; Low_Impedance<=1' b1; LGO_U1<=1'b0;
LGO_U2<=1'b0; LGO_U3<=1'b0; LFPS_Handshake<=1'b0; T ime_Out<=1'b1;
Rx_Termination<=1'b1; VBUS<=1'b0; Warm_RST<=1'b1; E rror<=1'b0;//
Compliance i.e 3

#100 Loop_Back<=1'b0; Idle<=1'b0; Low_Impedance<=1' b1; LGO_U1<=1'b0;
LGO_U2<=1'b0; LGO_U3<=1'b0; LFPS_Handshake<=1'b0; T ime_Out<=1'b1;
Rx_Termination<=1'b1; VBUS<=1'b0; Warm_RST<=1'b0; E rror<=1'b0;//
Compliance i.e 3

#100 Loop_Back<=1'b0; Idle<=1'b0; Low_Impedance<=1' b0; LGO_U1<=1'b0;
LGO_U2<=1'b0; LGO_U3<=1'b0; LFPS_Handshake<=1'b0; T ime_Out<=1'b0;
Rx_Termination<=1'b1; VBUS<=1'b0; Warm_RST<=1'b0; E rror<=1'b0;//
Compliance i.e 3

#100 Loop_Back<=1'b0; Idle<=1'b0; Low_Impedance<=1' b0; LGO_U1<=1'b0;
LGO_U2<=1'b0; LGO_U3<=1'b0; LFPS_Handshake<=1'b0; T ime_Out<=1'b0;
Rx_Termination<=1'b1; VBUS<=1'b1; Warm_RST<=1'b0; E rror<=1'b0;//
Compliance i.e 3
#2000 $stop;
#200 $finish;
end

endmodule

