AES 128/192/256 (ECB) AVALON[®]-MM SLAVE

Thomas Ruschival and opencores.org

ruschi@opencores.org

avs_aes_doc (v. 0.5) - 2010/03/07

Contents

1	Introduction	3
2	Interface	3
	2.1 Configuration Generics	3
	2.2 Signals	4
3	Memory Map	4
	3.1 Control Register	5
4	Protocol Sequence	6
	4.1 Interrupt Behaviour	6
5	Ressource Usage and Throughput	6
	5.1 Exemplary FPGA implementations	7
6	Compilation and Simulation	8
7	The Inner Core	9
8	License and Liability	11

1 Introduction

The Advanced Encryption Standard (AES) is a symmetric block cypher operating on fixed block sizes of 128 Bit and is specified for key sizes of 128, 192 and 256 Bit designed by Joan Daemen and Vincent Rijmen. The algorithm was standardized by National Institute of Standards and Technology (NIST). For more information on the algorithm see [1].

This component implements an AES encryption decryption datapath in Electronic Codebook (ECB)mode with either 128,192 or 256 Bit keys. The keylength is determined by generics at compile time. Also the decryption datapath can be disabled by generics if it is not needed for the application.

The component provides an Avalon[®] Memory Mapped (Avalon-MM) slave interface to connect to an Altera[®] Avalon[®] switch fabric. The Avalon[®] interface is implemented in a way that it can also be used to connect to a Whishbone master if the signals are correctly mapped, see [2]. For further information about the Whishbone bus refer to [3].

2 Interface

The AES core is accessed by the interface described in this section. An Avalon[®] interface was chosen for its simplicity and compatibility with wishbone. Furthermore Avalon[®] defines interrupt request signals for slaves which would be separate signals in a Wishbone implementation. The component can be used both in polling mode or can provide an interrupt for signalling. Unfortunately Avalon[®] is an Altera[®] proprietary technology. The actual AES core however is a selfcontained entity and can be embedded into other System on Chip (SoC) bus interfaces as well or used indepentently.

2.1 Configuration Generics

The AES core can be configured by generics shown in table 1, consequently they are provided by the Avalon[®] interface.

Generic name	type	Description	
KEYLENGTH	NATURAL	Size of initial userkey. Must be 128, 192 or 256 ¹ .	
DECRYPTION	BOOLEAN	Enables the instantiation of the decrypt datapath if	
		true.	

Table 1: Component generics

Note: KEYLENGTH of 192 fail synthesis with Xilinx ISE [®] because of division by 6 in key schedule that cannot be mapped to shift operations (keyexpansion.vhd).

¹All other values raise a compilation failure

2.2 Signals

The Avalon[®]MM Slave interface is described in [4], the component implements the signals shown in table 2.2. All signals are synchronous, sampled at the rising edge of the clock. The type for all signals is IEEE1164 std_logic or std_logic_vector. For signals wider that 1 Bit the range is Most Significant Bit (MSB) downto Least Significant Bit (LSB)⁻

This components has only output signals driven by registers no input signals are directly combinatorially connected to the output signals, thus combinational loops are avoided. All signals are active high. This component does not support burst transfers.

Signal name	Width	In/Out	Description	
clk	1	in	Avalon [®] bus clock, also used to drive the core.	
reset	1	in	Synchronous reset signal for Avalon [®] bus interface.	
			The core itself is designed without need for reset sig-	
			nals.	
writedata	32	in	Input data to write to location designated by address.	
			Bit 31 is most significant Bit.	
address	5	in	Word offset to the components base address. The	
			memory map of the component for the respective offest	
			is described in 3. Only full 32-Bit words can be ad-	
			dressed no byte addressing is implemented.	
write ¹	1	in	If asserted enable write of data at writedata to location	
			designated by address.	
read ¹	1	in	If asserted output data at location designated by	
			address tO readdata.	
readdata	32	out	Data output port for reading data at the location defined	
			by address. Bit 31 is most significant Bit.	
waitrequest	1	out	Asserted if writedata was not accepted, this is the case	
			if the keyexpansion is not yet complete and a new is	
			written to the KEY address range without previous de-	
			assertion of the KEY_VALID Bit	
irq	1	out	If Interrupt behaviour is enabled IRQ will be asserted	
			when the operation has terminated. For use of interrupt	
			see 4.1	

Table 2: Avalon®	Bus ir	nterface	signals
------------------	--------	----------	---------

3 Memory Map

The AES core Avalon[®] slave has an address space of 31 words accessable through the offset described by the signal address, see 2.2. This address space is devided into three main sections for the 4-word input data, the 4-word result of the operation and the user key. The actual lenght of the userkey can vary between 4, 6 and 8 words depending on the keysize. For control signals and status information of the component and a control word is provided. The memory mapping

¹read and write are mutually exclusive and must not be asserted simultanously.

is descibed in table 3.

Offset	Name	Function	
0-7	KEY	Initial user key that will be used for encryption and decryption. The most significant word of the user key shall be written to offset 3. This memory section is <i>write-only</i> to the Avalon [®] Interface.	
8-11	DATA	Input data, can be either interpreted as cyphertext for decryption or plain text for encryption. The most significant word shall be written to offset 7. This memory section is <i>write-only</i> to the Avalon [®] Interface.	
12-15	RESULT	Result of the operation. The most significant word of the result at offset 11. This memory section is <i>read-only</i> to the Avalon [®] Interface.	
16-30		reserved	
31	CTRL	Control and status word of the component can be read and written. Detailed description see 3.1	

Table 3: Memory map of the AES core Avalon[®] slave

3.1 Control Register

The AES Core offers the register CTRL to control the function of the core and poll its status. The control register can be accessed in read and write mode. When writing to the register reserved Bits shall be assigned a value of 0. Individual Bits have following functionality decribed in table 3.1.

In case of a Avalon[®] Bus reset this register is set to 0x00000000 thus invalidating all previously written keys and resetting the AES core.

Offset	Name	Description		
31-8		reserved		
7	KEY_VALID	If asserted key data in the KEY memory range is regarded valid and will be expanded to roundkeys. When deasserted all keys are invalidated and the current operation of the core is aborted. It must be asserted as long as the key shall be used for either encryption or decryption.		
6	IRQ_ENA	Enable use of the interrupt request signal. If asserted the component will set IRQ after completing an operation. If not set the component operates in polling mode only.		
5-2	—	reserved		
1	DEC ¹	If asserted memory content of the DATA range is regarded to be valid and will be <i>decrypted</i> . This Bit shall only be deasserted externally if a running AES operation is aborted by deasserting KEY_VALID. 1 It will be set 0 by the core to signal completion of the operation.		
0	ENC ¹	If asserted memory content of the DATA range is regarded to be valid and will be <i>encrypted</i> . This Bit shall only be deasserted externally if a running AES operation is aborted by deasserting KEY_VALID. It will be set 0 by the core to signal completion of the operation.		

Table 4: Bits in the control register

¹ENC and DEC are mutually exclusive and must not be asserted simultanously.

4 **Protocol Sequence**

The AES component appears as memory mapped peripheral. All writes are fundamental slave write transfers, see [4] and take one clock cycle of the Avalon[®] bus clock clk. It is not necessary to write all words of a input parameter successively or in one transfer. Bursts are not supported.

Before any AES operation can be started the initial userkey has to be written to KEY segment of the memory map. After the user key is transferred to the component the KEY_VALID Bit must be set to start the key expansion. This Bit can be set simultanously with DEC or ENC Bit of the control register. To invalidate the previous key and use another key the KEY_VALID must be deasserted for at least one Avalon[®] bus clock cycle During this cycle the new key can already be transferred.

Once a key is passed and marked valid data blocks can be transferred to the DATA segment of the memory map. The AES operation is started by asserting the ENC Bit for encryption or DEC Bit for decryption. While asserting ENC or DEC the KEY_VALID Bit must be kept asserted. The ENC or DEC Bit respectively is deasserted by the component after completing the requested

operation. The result of the operation can be read from the RESULT area of the memory and is not cleared. It will be overwritten by succeeding operations.

The underlying AES core uses the Finite State Machine (FSM) shown in 1 for processing of the data. The signals data_stable and key_stable are accessible over the control status word CTRL 3.1. key_ready is a signal driven by the keygenerator when all keys are expanded. The signal round_index is the counter for the rounds and the address to select a roundkey.

NO_ROUNDS is the total number of rounds the processing takes, a constant defined by the generic KEYLENGTH 2.1. The AES standard in[1] defines 10 rounds for 128 Bit key, 12 rounds for a 192 Bit key and 14 rounds for a 265 Bit key.

Thus depending on the keylength the processing of a datablock needs at maximum 15 clockcycles from data_stable=1 to completion, if the key is already expanded.

4.1 Interrupt Behaviour

By setting IRQ_ENA in the control register 3.1 the component is configured to issue interrupt requests. If IRQ_ENA is asserted the interrupt request IRQ 2.2 will be set when the computation has completed in addition to clearing the ENC or DEC Bit. The IRQ 2.2 signal will remain set until clearing IRQ_ENA or a read operation on the RESULT area of the components address range.

5 Ressource Usage and Throughput

The Avalon[®] interface communicates a 32-Bit DWORD per clock cycle. Therefore a key is transmitted in 4 to 8 cyles plus one cyle to activate keyexpansion with the control word 3.1. A payload datablock or the result consist always of 4 DWORDs, thus it takes 4 cyles to send data to the core, one cycle to activate the computation with the control register 3.1 and 4 cycles to retrieve the data.

The keyexpansion component computes one column of a roundkey each clock cylce. AES takes, depending on the keylength, 10, 12 or 14 roundkeys with each 4 columns, see [1]. The keyex-

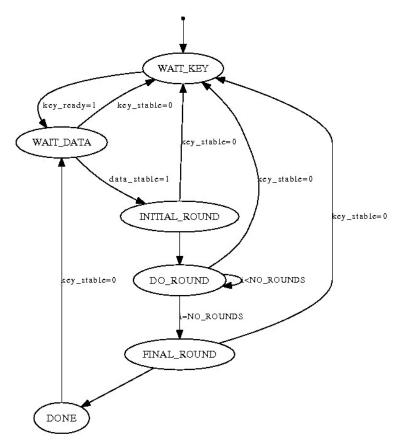


Figure 1: Finite State Machine of encryption and decryption process

pansion therefore takes 40, 48 or 56 cycles until the encryption or decryption can start. The roundkeys are stored until invalidated, see 4 thus this step is is only needed once after power-up until the key changes.

The AES-core computes one iteration (round) of the Rijndael-Algorithm each clock cycle, thus a 128 Bit datablock is encrypted or decrypted in 10, 12 or 14 cylces plus an initial round.

The maximum throughput $T_{max}[Bits]$ depends on the maximum operation frequency f_{max} and the keylength which influences the number of rounds $N_{rnd} \in \{10, 12, 14\}$.

$$T_{max} = \frac{(1 + N_{rnd}) \cdot 128Bit}{f_{max}} \tag{1}$$

Note: Equation 1 assumes that the roundkeys are already generated and does not include the constant of 4+1+4 Avalon[®] bus cylces for transmission of data, activation and result retrieval.

5.1 Exemplary FPGA implementations

The component has only be implemented and tested on an Altera[®] CycloneII EP2C35 FPGA. All other values in the table are only results of synthesis⁰ and are not verified on actual hardware.

⁰Synthesized with Altera[®] QuartusII[®] Web edition Version 9.1 or Xilinx[®] ISE 9.1 Webpack

The design is kept mostly vendor independent in generic VHDL. For Altera[®] chips the AES SubByte component is specially designed using M4K Blockrams as dual-port ROM. For non-Altera[®] FPGAs a second VHDL architecture exists also trying to make use of ROM functions of the target chips however the success varies on RTL compiler capabilities.

Configuration	Target FPGA ¹	LE / Slices	HW RAM	f _{max} [Mhz]
	Xilinx [®] Spartan3A	- / 1609	18 RAMB16BWE	91
256 Bit Key,	XC3S1400A-5FG484			
encrypt + decrypt	Xilinx [®] Virtex5	- / 297	18 18k-Blocks	224
	XC5VLX30-3FF324		4 36k-Blocks	
	Altera [®] Cylconell	1937 / -	39912 Bits in	65
	EP2C35F484C8		22 M4K-Blocks	
	Altera [®] StratixII	585 / -	39912 Bits in	103
	EP2S30F484C5		22 M4K-Blocks	
128 Bit Key,	Xilinx [®] Spartan3A	- / 1523	18 RAMB16BWE	91
encrypt + decrypt	XC3S1400A-5FG484			
	Altera [®] Cylconell	1776 / -	39912 Bits in	65
	EP2C35F484C8		22 M4K-Blocks	
	Xilinx [®] Spartan3A	- / 680	14 RAMB16BWE	159
256 Bit Key,	XC3S1400A-5FG484			
encrypt	Xilinx [®] Virtex5	- / 297	10 18k-Blocks	268
	XC5VLX30-3FF324		4 36k-Blocks	
	Altera [®] Cylconell	969 / -	22528 Bits in	97
	EP2C35F484C8		14 M4K	
	Altera [®] StratixII	524 / -	22528 Bits in	145
	EP2S30F484C5		14 M4K	
128 Bit Key,	Xilinx [®] Spartan3A	- / 594	14 RAMB16BWE	159
encrypt	XC3S1400A-5FG484			
	Altera [®] Cylconell	797 / -	22528 Bits in	95
	EP2C35F484C8		14 M4K	

Table 5: ressource usage on different targets and configuration

All of the above configurations in table 5.1 use hardware key expansion. Downloading of software generated roundkeys is not yet supported. The decryption and encryption datapaths share a common keyexpansion block, mulitplexing the address signals is one of the main reasons for regression of the maximum frequency f_{max} of the configuration compared to encryption only versions.

6 Compilation and Simulation

The main simulation library is "aes_ecb_lib". All files are expected to be compiled into this library as all files depend at least on the package aes_lib.aes_ecb_pkg.

¹This table is not meant to be a benchmark between FPGAs of different vendors, it is only a rough estimation for the user of the core. The FPGA families cannot be compared easily, see also [5] and [6]for further details.

A Makefile for Mentorgraphics[®] Modelsim[®] is given in ./sim/. The make target simaes will create the library, compile all files and run a testbench.

7 The Inner Core

The algorithmic core is devided into two seperate datapaths one for encryption and a second for decryption operation. The two datapaths are independent, however they share the keyexpansion component which provides decrypt and encrypt keys (which are the same only in opposite order). Each datapath is controlled by its own FSMIf configured by the generic DECRYPTION 2.1 the decryption datapath is included and some multiplexers are generated for the shared signals, e.g. result or roundkey_index.

For reference the encryption data path of aes_core.vhd is given in figure 2. The decryption datapath is left for the reader or any other author of this document.

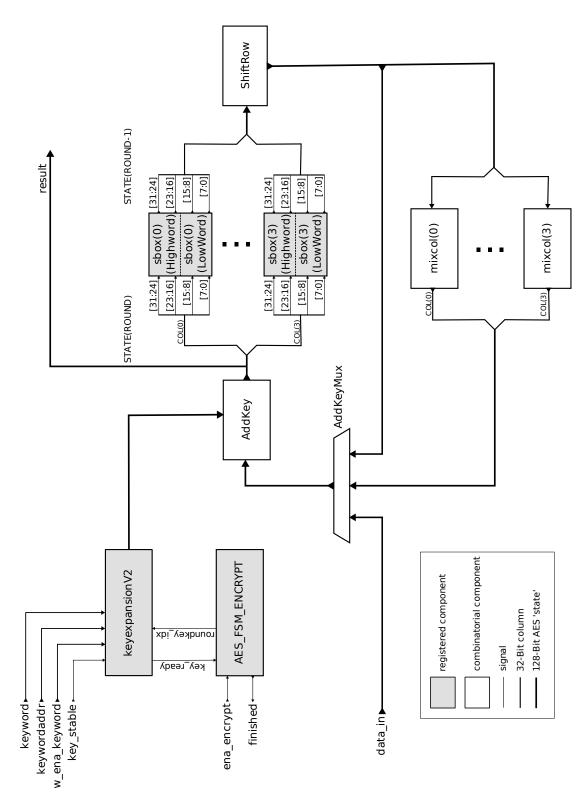


Figure 2: Encrypt datapath of the AES core as implemented in aes_core.vhd

8 License and Liability

The "AES 128/192/256 (ECB) Avalon[®]-MM Slave" component, all its subcomponents and documentation (like this document you are reading) are published under following license:

Copyright (c) 2009, Thomas Ruschival - All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:

- Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
- Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.
- Neither the name of the organization nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICU-LAR PURPOSE ARE DISCLAIMED.

IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SER-VICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABIL-ITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAM-AGE

Note: The term "SOFTWARE" in the above licence applies in this case not only to software as executable code but also to documentation, hardware description or compiled netlists for actual target hardware. As Chips generally don't just reproduce "the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution" the datasheet of the product must also contain it.

Altera, Cyclonell, StratixII and Avalon are registered trademarks of the Altera Corporation 101 Innovation Drive, San Jose CA USA

Xilinx, Spartan3A and Virtex5 are registered trademarks of Xilinx Inc. 2100 Logic Drive, San Jose CA USA

References

- [1] "Fips-197 announcing the advanced encryption standard (aes)," National Institute of Standards and Technology (NIST), 100 Bureau Drive, Stop 1070, Gaithersburg, MD, US, Nov. 2001. [Online]. Available: http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
- [2] "Wishbone computer bus," wikipedia.org. [Online]. Available: http://en.wikipedia.org/wiki/ Wishbone_computer_bus)#Comparisons
- [3] R. Herveille, "Wishbone soc architecture specification, revision b.3," Opencores Organization, Sept. 2002. [Online]. Available: http://www.opencores.org/downloads/ wbspec_b3.pdf
- [4] "Avalon interface specification," Altera Corporation, 101 Innovation Drive, San Jose, CA, US, 2005. [Online]. Available: http://www.altera.com/literature/manual/mnl_avalon_spec.pdf
- [5] A. Percey, "Advantages of the virtex-5 fpga 6-input lut architecture," Xilinx Inc., 2100 Logic Drive, San Jose CA USA, Dec. 2007. [Online]. Available: http://www.xilinx.com/support/documentation/white_papers/wp284.pdf
- [6] "Stratix iii fpgas vs. xilinx virtex-5 devices: Architecture and performance comparison," Altera Corporation, 101 Innovation Drive, San Jose CA USA, Oct. 2007. [Online]. Available: http://www.altera.com/literature/wp/wp-01007.pdf

Change History

Rev.	Chapter	Description	Date	Reviewer
0.1	all	initial document	2009/02/01	T. Ruschival
0.2	all	added interrupt	2009/03/25	T. Ruschival
0.3	all	added generics	2009/04/20	T. Ruschival
0.4	all	cleanup for opencores.org	2009/05/20	T. Ruschival
0.5	all	final release	2010/03/07	T. Ruschival