

Sweet32 CPU Overview
By Valentin Angelovski (c) 2014

Release date: 20th-November-2014
Release version: 0.80

What is Sweet32?
Sweet32 is best described as a ‘no-frills’ 32bit minimal-RISC microprocessor core with a load/store
register architecture with a simple bus interface.

Originally started as a means towards learning VHDL, Sweet32 has evolved into a reasonably low-gate-
count CPU that can be used for learning or even real-world applications. Typical Sweet32 logic utilization,
on the Lattice MachXO2 FPGA (for example), is 842 LUT4 elements in a standard configuration and
area-optimized form. Sweet32 was written in VHDL and is released under LGPL 2.1

Sweet32 Architecture Summary
• 16x32-bit General Purpose CPU registers
• 27 Instructions, focussed mainly on 32bit and 16bit data processing
• 16x16-bit multiplier standard, with optional 32x32-bit multiplier support
• Conditional branch/compare opcodes, with no Status flags register
• Completely register-based CPU, with no hardware stack pointer
• Big-endian data handling
• single-cycle external IRQ channel
• 32bit internal data-path and 16bit Data external bus
• Basic Trace/debug interrupt support included
• Simple to implement and/or emulate!

Sweet32 CPU Block Diagram

32bit x 16

General Purpose

register file

ALU

Program

Counter

Fast IRQ

and trace

support

Peripheral

Bus

Interface

Unit

Reg X

Reg Y

Reg Z

D31-D0

32bit to

16bit bus

converter
D15-D0

A31-A0

CPU Reset

Logic

mem_write_o

IRQ0

clk1 (clock/3)

rst (reset)

mem_read_o

Bus_wait

RAM/ROM

System timer

ADC/PWM

To GPIO etc.

reset

clock

Interrupt

D15-D0

Instruction Decoder

CPU Core Registers Description

Sweet32 is composed of the following core registers:

R0-R15 General Purpose Registers (Direct Read/Write)
These registers are all directly accessible by the programmer for the purposes of logic and arithmetic
processes, as well as temporary variable/constant/pointer storage. It is the responsibility of the
programmer to initialize these registers upon power-up as they are not cleared upon reset and will
contain undefined values.

PC Program Counter (Direct Read/Indirect Write)
This register is used to store the address of the current program instruction being pointed to. Please note
that as Sweet32 instructions are mostly 16-bits wide, every program counter increment represents one
16-bit instruction or data word currently being accessed. Consequently, all Sweet32 programs must be
16-bit word-aligned. Upon Sweet32 reset, program execution begins from location zero (i.e. 0x00000000)

Program counter is directly readable only via the GETPC instruction and can be indirectly written to using
the LJMP instruction.

IRQ0VEC IRQ0 Interrupt vector address (Direct Write-only)
This register stores the absolute 32-bit address of the user IRQ0 handler routine. Upon the receipt of a
valid IRQ event (i.e. logic high or ‘1’), the program counter register is preserved and then the new value
stored in this register is loaded. This causes the Program counter to effectively jump straight to the
specified start address of the IRQ0 handler for processing.

IRQ0_RTN IRQ0 Interrupt return address (Not accessible)
This register is used internally by Sweet32 to store the return address of the IRQ interrupt cycle. When
the IRQ handler routine has ended with the RETI instruction, the program counter is then re-loaded with
the value previously saved in this register and main program execution continues as per normal.

TRACE_RTN Trace Interrupt return address (Direct Read-only)
This register is used by Sweet32 to store the return address of the Trace/Debug interrupt cycle. When the
trace/debug routine has ended with the RETT instruction, the program counter is then re-loaded with the
value previously saved in this register and (if the trace interrupt is no longer enabled) main program
execution then continues. This register is accessible to the programmer using the GETTR instruction.

CW CPU Control word (Direct Write-only)
This register controls the external event handling capabilities of the Sweet32 Microprocessor. By setting
the appropriate bit location to ‘1’ the specified function is enabled, while clearing the bit disables the
function. Upon reset, the control word register is completely set to zero (ie all external event handlers are
disabled).

Control Word (CW) Register usage:

Bit 31 = trace/debug
enable

Bits 30 to 1 = Reserved for future use
Bit 0 = Interrupt IRQ0

enable

XR **OPTIONAL** 32x32 Multiplier upper 32-bit result (Read-only)
When implemented (normally it is NOT present in the standard Swee32 CPU config.), this register holds
the upper 32bit result of an extended 64bit math operation (i.e. 32x32bit multiply). This register is
accessible only using the (also optional) ‘GETXM’ opcode and must be executed immediately after a
MUL opcode.

Sweet32 instruction encoding

Most Sweet32 opcodes are fixed 16-bit* organized in the following typical format:

Sweet32 Instruction 16-bit word format
Bits 15 downto 12 Bits 11 downto 08 Bits 7 downto 4 Bits 3 downto 0

Opcode select RegY_select RegZ_select RegX_select

* = Some opcodes, like LDD, LDW and MJMP will require an additional word or two to fully encode their
data (see next section). Note also that all instructions must be 16-bit word-aligned and all 32-bit data
must be represented in big-endian format

Instruction Set Summary:

Topmost-Nibble Sweet32 Instruction Instruction
Encoding: Instruction: operands: Cycles*:

 0000: AND Rz,Rx,Ry 1
 0001: ADD Rz,Rx,Ry 1
 0010: XOR Rz,Rx,Ry 1
 0011: TSTSNZ Rx,Ry 1
 “ BITSNZ Rx,#imm5 1
 0100: SUBSLT Rz,Ry,Rx 1
 0101: MUL /GETMX** Rz,Rx,Ry / Rz 1/2
 0110: SJMP #rel12 1
 0111: LDB Rz,#imm8 1
 1000: MJMP #rel28 2
 1001: GETPC Rz, #imm4 1
 1010: LDW/D Rz,#imm16 3/4
 " SETIV Rx 1
 " RETI 1
 " SETCW Rx 1
 " RETT 1
 " GETTR Rz 1
 1011: INCS Rz,Rx,#signed_imm4 1
 1100: SWAPB/W Rx 1
 " NOT Ry,Rx 1
 " LJMP abs32 Rx 1
 1101: LSR Rx 1
 " ASR Rx 1
 1110: MOVW/D [Ry],Rx 3/4
 1111: MOVW/D/SW Ry,[Rx] 4/5

Note: * = While Sweet32 is 1T capable, it is heavily dependent on Bus Interface Unit (BIU)
implementation for best performance. As supplied with, this project, the BIU is greatly simplified in that it
uses no pipelining or multi-phase clocks, but it does feed the Sweet32 CPU a divide-by-3 clock, thus
making it technically a 3T system. Future Sweet32 releases may also include a 1T BIU variant.

Note: **= GETMX opcode is designed to be used with the MUL opcode when the 32x32 multiplier
configuration is enabled in the Sweet32 VHDL module, please refer to the MUL opcode instruction
description for further details.

Sweet32 Instruction Set Description

"AND Rz, Rx, Ry" Boolean AND
Takes the logical AND of Rx, Ry and stores the result into Rz

 Encoding = 0000 + Ry_addr + Rz_addr + Rx_addr

"ADD Rz, Rx, Ry" Unsigned addition
Performs a 32bit unsigned binary addition of Rx, Ry and stores the result into Rz.

 Encoding = 0001 + Ry_addr + Rz_addr + Rx_addr

"XOR Rz, Rx, Ry" Boolean XOR
Takes the logical AND of Rx, Ry and stores the result into Rz

 Encoding = 0010 + Ry_addr + Rz_addr + Rx_addr

"TSTSNZ Ra, Rb" Boolean AND test and skip if NOT zero
Performs a logical AND of Rx, Ry and skips the next program location if the result was zero. Result is
NOT saved but is discarded.

 Encoding = 0011 + Rx_addr + 0000 + Ry_addr

"BITSNZ Ra, #imm5" Boolean single-bit AND test and skip if NOT zero
Performs a logical AND on a desired bit within Rx and skips the next program location if the result was
zero. Result is NOT saved but is discarded.

 Encoding = 0011 + Rx_addr + 100 + #imm5 (selects Rx register bit to test from 0 to 31)

"SUBSLT Rz, Ry, Rx" Unsigned subtraction and skip if Ry < Rx
Performs an unsigned subtraction ie. Ry – Rx and stores the result in Rz. If the result was less than zero
(i.e. negative) the next program location is skipped.

 Encoding = 0100 + Ry_addr + Rz_addr + Rx_addr

"MUL Rz, Rx, Ry" Unsigned 16x16bit Multiply (includes optional 32x32bit multiply information)
Performs an unsigned 16x16-bit multiply of Rx, Ry and stores the 32-bit result into Rz

 Encoding = 0101 + Ry_addr + Rz_addr + Rx_addr

Operation in the optional 32x32 unsigned multiply mode: In addition, there is an option within the
Sweet32 HDL source to enable the 32x32-bit extended unsigned multiply function, which produces a
64bit result that is stored in both Rz (lower 32bit) and XR (upper 32bit) registers respectively.

Warning: If performing a 32x32 multiply and the upper 32bit result is required, ‘GETMX’ opcode must be
executed immediately after the MUL instruction. This is because the result data from the execution of a
MUL op is only guaranteed to be valid for one cycle after the MUL execution.

"SJMP #rel12" Short relative jump
Performs an unconditional relative jump to the new location specified by PC = PC + #rel12

 Encoding = 0110 + #rel12

Sweet32 Instruction Set Description (continued)

"LJMP @Rx" Long Absolute and indirect Jump
Performs an unconditional absolute jump to the new location specified by PC = Rx

 Encoding = 1100 + 0011 + 0000 + Rx_addr

"MJMP #rel28" Medium relative Jump
Performs an unconditional relative jump to the new location specified by PC = PC + #rel28

 Encoding (1st-word) = 1000 + #rel28 (uppermost 12-bits)
 Encoding (2nd-word) = #rel28 (lower 16-bits)

"GETPC Rz, #imm4 " Get current program counter value and add offset
Fetches the current program counter (PC) value and adds an immediate 4-bit unsigned offset to it i.e: Rz
= current pc + #imm4

 Encoding: 1001 + 0000 + Rz_addr + #imm4

"INCS Rz,Rx,#signed_imm4" increment CPU reg by signed immediate 4-bit word
Performs addition of a signed 4-bit immediate value to Rx and stores the result in Rz

 Encoding = 1010 + Rx_addr + Rz_addr + #signed_rel4

"LDW Rz,#imm16" Load immediate 16-bit word (## Currently used as LDW Rz,#imm16)
Loads a 16-bit immediate data constant into the lower-half of CPU register Rz. Upper word portion of the
destination CPU register is cleared i.e. set to “0x0000”

 Encoding (1st-word) = 1011 + 0000 + Rz_addr + 0000
 Encoding (2nd-word) = #immediate 16-bit word

"LDD Rz,#imm32" Load immediate 32-bit word
Loads a 32-bit immediate data constant into CPU register Rz.

 Encoding (1st-word) = 1011 + 0001 + Rz_addr + 0000
 Encoding (2nd-word) = #immediate 32-bit word (upper 16-bits)
 Encoding (3rd-word) = #immediate 32-bit word (lower 16-bits)

"SETIV Rx" Set IRQ0 Interrupt Vector Address (32bit)
Takes the 32bit value stored in Rx and copies it to the IRQ0VEC register

 Encoding = 1011 + 0010 + 0000 + Rx_addr

"RETI" Return from IRQ0 Interrupt Routine
Loads the PC reg with the contents of the IRQ0RTN register
Note: IRQ must be enabled by setting bit 0 of the control word (CW) register

 Encoding = 1011 + 0011 + 0000 + 0000

"RETT" Return from Trace/Debug Routine
Loads the PC reg with the address of the next program instruction to trace/debug
Note: Trace/Debug must be enabled by setting bit 31 of the control word (CW) register

 Encoding = 1011 + 0101 + 0000 + 0000

Sweet32 Instruction Set Description (continued)

"GETMX Rz" Get upper 32bit result of Extended Math operation
Fetches the value stored in the Sweet32’s XR register and stores it in Rz. GETMX is normally used in
conjunction with the MUL opcode, when the 32x32bit extended multiply option is implemented.

 Encoding = 1011 + 0110 + Rz_addr + 0000

"GETTR Rz" Get Trace Return Address
When the trace/debug hardware support is enabled, GETTR allows a trace event handler to access the
address of the next main program instruction to be executed.

 Encoding = 1011 + 0111 + Rz_addr + 0000

"SETCW Rx" Set CPU control word register
Takes the 32bit value stored in Rx and copies it to the CW (Control Word) register

 Encoding = 1011 + 0100 + Rz_addr + 0000

"SWAPB Rz,Rx" Swap bytes in lower CPU reg word
Performs a data swap of the two bytes in the lower 16-bit portion of a specified CPU register

 Encoding = 1100 + 0000 + Rz_addr + Rx_addr

"SWAPW Rz,Rx" Swap words in CPU reg
Performs a data swap of the lower and upper words in a specified CPU register

 Encoding = 1100 + 0001 + Rz_addr + Rx_addr

"LSR Rz,Rx" Logical Shift Right
Performs a logical right shift on the data of a specified CPU register by 1 bit. Result is shifted one bit to
the right with the most significant bit is cleared to ‘0’. As there is no carry flag within Sweet32 the former
least significant bit is discarded. Use BITSNZ to test the least significant bit value.

 Encoding = 1101 + 0000 + Rz_addr + Rx_addr

"ASR Rz,Rx" Arithmetic Shift Right
Performs a logical right shift on the data of a specified CPU register by 1 bit. Result is shifted one bit to
the right with the most significant bit set to equal bit 30, thus preserving the sign of the shifted value. As
there is no carry flag within Sweet32 the former least significant bit is discarded. Use BITSNZ to test the
least significant bit value.

 Encoding = 1101 + 0001 + Rz_addr + Rx_addr

"NOT Rz,Rx" Compliment register
Performs an inversion operation on the 32bit value stored in Rx and passes the result on to Rz.

 Encoding = 1101 + 0010 + Rz_addr + Rx_addr

"MOVW [Ry],Rx" Move 16-bit data from CPU register to Memory
Performs an indirect 16-bit data move from CPU register Rx to the memory location referred by Ry

 Encoding = 1110 + Ry_addr + 0000 + Rx_addr

Sweet32 Instruction Set Description (continued)

"MOVD [Ry],Rx" Move 32-bit data from CPU register to Memory
Performs an indirect 32-bit data move from CPU register Rx to the memory location referred by Ry

 Encoding = 1110 + Ry_addr + 0001 + Rx_addr

"MOVW Ry,[Rx]" Move 16-bit data from Memory to CPU Register
Performs an indirect 16-bit data move to CPU register Ry, from the memory location referred by Rx

 Encoding = 1111 + 0000 + Ry_addr + Rx_addr

"MOVD Ry,[Rx]" Move 32-bit data from Memory to CPU Register
Performs an absolute 32-bit data move to CPU register Ry, from the memory location referred by Rx

 Encoding = 1111 + 0001 + Ry_addr + Rx_addr

"MOVSW Ry,[Rx]" Move 16-bit data and sign-extend to 32bits from Memory to CPU Register
Performs an indirect 16-bit data move to CPU register Ry, from the memory location referred by Rx. Most
significant bit is copied sixteen times in the uppermost word of the destination CPU register, thus sign
extending the word to 32bits.

 Encoding = 1111 + 0000 + Ry_addr + Rx_addr

Additional Instructions (assembler generated pseudo-ops):

The following additional (implied) instructions are available via the Sweet32 assembler (applies to
assembler versions 1.00 and up). These are:

"MOV Rz,Rx " Move 32-bit data from Rx to Rz
Derived from the INCS opcode. Takes the value of CPU register Rx and stores the result in Rz

 Encoding = 1010 + Rx_addr + Rz_addr + 0000

"NOP " No operation
Derived from the AND R0,R0,R0 opcode. Effectively does nothing for one CPU cycle

 Encoding = 0000 + 0000 + 0000 + 0000

IRQ External Interrupt Behaviour (typical interrupt sequence)

• IRQ0 is enabled by setting bit-0 of the CPU control word to '1'
• The IRQ0 signal line is level-triggered with a logic '1'
• When an IRQ0 trigger is detected, the current Program Counter (PC) value is saved to the

IRQ0RTN register. Then the PC is loaded with the interrupt vector address value as stored in the
IRQ0VEC register

• The code pointed to by IRQVEC is now executed.
• When the user IRQ INT handler routine has completed it’s task, the interrupt cycle must be

terminated by the issuing of a RETI opcode. This causes the PC register to be restored with the
address value previously saved in IRQ0RTN

• Normal program execution resumes.

Trace/Debug Interrupt Behaviour

• Trace/Debug interrupt, when enabled, branches off to a fixed address in Sweet32 RAM upon
execution of one main program instruction.

• Trace/debug is enabled by setting bit-31 of the CPU control word to logic '1'
• Trace interrupt has priority over the fast IRQ channel, allowing interrupt handler code to be

traceable as well.
• The address of the next opcode to be executed can be obtained using the GETTR instruction.
• After the execution of the next opcode, the program counter is loaded with the fixed trace handler

address of 0x00000002. Note the debug handler MUST be located here (if present) and cannot
be moved elsewhere in Sweet32’s program address space.

• When the user trace/debug handler routine has completed it’s task, the interrupt cycle must be
terminated by the issuing of a RETT opcode. This causes the PC register to be restored with the
address value previously saved in TRACE_RTN

• Normal program execution of the next opcode occurs, before another trace event is triggered.
• Trace events may be stopped at any time by clearing bit-31 of the Sweet32 Control Word (CW).

Sweet32 Control Signalling

Swwet32 CPU's Interface consists of the following bus control signals:
 data_i = 16 Data input lines
 data_o = 16 Data output lines
 addr_o = 32 Address output lines
 mem_write_o = Memory write output line (mem write access request = logic level ‘1’)
 mem_read_o = Memory read output line (mem read access request = logic level ‘1’)
 IRQ0 = Fast Interrupt Request input line (triggered = logic level ‘1’)
 bus_wait = bus wait input line (All CPU activity freezes = logic level ‘1’)
 clk1 = CPU clock input
 rst = System reset input line (Reset active = ’0’)

With the exception of system reset (rst), all signals are processed with the rising edge of the CPU clock
(clk1)

Sweet32 CPU Timing diagrams

Memory read waveform: CPU Instruction fetch/execute of opcode “LDD R3, #0x00000100” Because
LDD is a multi-word (3 x 16bit word) opcode, Sweet32 will fetch the opcode again to complete the
execution of the instruction (hence why LDD takes 4 CPU cycles instead of 3).

Memory write waveform: CPU Instruction fetch/execute of opcode MOVW @R1,R2
Because MOVW is a single-word opcode, Sweet32 does not fetch the opcode again at the completion of
the instruction cycle. Assume register R1 = 0x10000000, while R2 = 56781234

About the Bus Interface Unit (BIU)

Sweet32 is not intended to be used on it’s own (of course), but in conjunction with a Bus Interface Unit
(BIU) which allows the inclusion of external HDL peripherals. The BIU be in the form of a simple
peripheral address decoder with some timing glue logic to more complex ones that are compatible to a
common interface standard i.e wishbone. Only the former solution is implemented and discussed here.
Sweet32’s own BIU acts as a bridge to many standard peripheral devices, including those that require a
faster or slower clock rate than that of the CPU itself to function properly.

 The BIU provided for use with the Sweet32 CPU performs the following functions (Please refer to
“Sweet32_BIU.vhd” for more details):

• Clock divide-by-3 counter. This means a BIU clock of 100MHz will generate a CPU clock of
approximately 33.33MHz with a 33% duty cycle

• Provides a synchronized reset signal to the Sweet32 after the BIU itself has been reset
• A bus-transaction FSM for processing of memory reads/writes between the CPU and selected

peripherals. The FSM consists of the following three states repeated indefinitely after reset:

State 1: Set Sweet32 CPU clock to ‘0’. Latch data from an addressed peripheral for reading
or writing by Sweet32 etc.

State 2: Hold Sweet32 CPU clock low

State 3: Set Sweet32 CPU clock to ‘1’ and hold high for one state only

Typical application: Sweet32 minimum-system example

To help the user get started with Sweet32, there is a minimum-system or embedded microcontroller
setup included in the archive with this document. Following is a block diagram, showing all of the
connected peripherals and their associated VHDL modules (Note: Apart from the CPU and system timer,
all system peripherals are clocked at 100MHz by the BIU):

System Peripheral Address Map

Following table provides a detailed map of all system ports in the Sweet32 minimum system. Note: Assume
all control flags to be active when set to logic ‘1’ Also, “CPU D7-D0” indicates CPU Data bus lines 7 to 0 etc.

Peripheral Description Port
Description

Port
address Port read behaviour Port write behaviour

2K x 16bit ROM / RAM System memory
0x00000000

to
0x000007FF

Initialised with a Sweet32 serial boot loader ROM program. Can also be
used as System RAM and is writeable

Simple 8n2 UART
with user-variable baud rate.

Default baud rate upon reset is
115.2KBaud. Typical settings are:

115.2K 8n1
Higher baud rates also possible

DATA register 0x70000000

CPU D7-D0 <= RX data byte
CPU D8 <= TX buffer empty

CPU D9 <= Character received

TX buffer <= CPU D7-D0

Set 16bit baud
rate timer 0x70000001 undefined Timer reload value <= CPU D15-D0

Reset character
received flag

0x70000002 undefined RX receive flag <= ‘0’

Simple 16bit Timer
Counts upward until overflow.
Upon overflow, timer count is
reloaded with a user-settable

value and an overflow flag is set.
Overflow flag is wired to Sweet32

IRQ0. Timer operation can be
paused or stopped by setting the

Timer enable flag to ‘1’

Set 16bit timer
count 0x70000020 undefined Timer reload value <= CPU D15-D0

Control register 0x70000021 CPU D0 <= Timer overflow flag Timer overflow flag <= CPU D1
Timer enable <= CPU D0

User GPIO
(output port only) 4bit output port 0x70000030 undefined 4bit output <= CPU D3-D0

Analog-to-digital converter
Configured as free-running

converter. Uses sigma-delta
method and has 11bit resolution

Data input
register 0x70000040 CPU D10-D0 <= ADC sample no effect

Pulse width modulation output
Resolution is 11bits. Implemented

using a binary rate multiplier

Data output
register

0x70000040 undefined PWM output <= CPU D10-D0

BUS INTERFACE UNIT (BIU)

 clocked at 100MHz

Sweet32_BIU.vhd

Sweet32 CPU

Sweet32_v1_core.vhd

regfile_32x16.vhd

2K x 16bit ROM/RAM

(Containing serial boot loader)

Sweet32_SRAM.vhd

UART

simple_UART.vhd

11bit ADC

Simple_ADC.vhd

11bit PWM

simple_PWM.vhd

4bit

OUTPUT PORT

Sweet32_BIU.vhd

16bit TIMER

Sweet32_BIU.vhd

IRQ0

25MHz

clock

33.3MHz

clock

Running example programs on the Sweet32 minimum system

As mentioned over the previous page, the Sweet32 minimum system is capable of loading user programs
into ROM via the serial port (UART). In terms of toolchain support, there is an assembler tool called
“Sweet32asm.EXE” (including associated FreeBASIC sourcecode) that can be found in the
\firmware\asm folder of the Sweet32 project archive. Assembler files may be created or modified in a text
or source editor.

Note the assembler tool is somewhat limited and does not include macro support, though it does get the
job done. ☺ Work is currently underway to re-target an existing c compiler for Sweet32.

To use the assembler tool with the example assembly programs (or to create your own) for upload to the
Sweet32 system via serial, simply run the following from the windows command prompt:

 Sweet32asm myexample.asm myapp.swe

When the .swe extension is used for the output file, Sweet32asm produces a binary file with a 32bit
‘header’ (which is basically a raw program size value) appended to the start of the file.

To use the assembler tool with the example assembly programs (or to create your own) for inclusion into
your Sweet32 boot ROM, simply run the following from the windows command prompt:

 Sweet32asm myexample.asm myapp.vhd

Note when the .vhd extension is used for the output file, Sweet32asm produces a VHDL-compliant format
of the assembled binary output

To upload files to Sweet32 using the serial boot loader ROM program, you will need a serial terminal
program running on your host PC. In the following example, I will describe how to do this using a program
called TeraTerm (http://en.sourceforge.jp/projects/ttssh2/) .

1.) Make sure your FPGA-board is loaded with a valid Sweet32 project bit-file and that you have a USB-
based serial connection between it and your host PC

2.) Start TeraTerm

3.) In the top menu, goto “Setup” and then “Serial Port” and configure the port for 115200 Baud, 8-bits
data, no parity and one stop bit.

4.) In the top menu, goto “File” and then “New Connection..” and connect with Sweet32 via the
appropriate COM port.

5.) Reset your Sweet32 CPU, by pressing user button #2 on your FleaFPGA board or on any suitable
FPGA platform of your choice. You will be greeted with a loader boot message in the terminal window.

6.) In the top menu, goto “File” and then “Send file..”. Select the “hello.swe” program example to upload
to the FPGA and make sure the ‘binary’ option in the bottom left hand corner is selected! Click open
to continue, this causes TeraTerm to send the file to Sweet32

7.) As the data is received by Sweet32, ever two bytes received (less the file header) will be
acknowledged with a “.” character. Once the file transmission has ended, the loader will then print a
“Go!” message and then attempt to execute the newly-loaded program from location 0x100 in RAM.

8.) If the upload was successful, you should see the following on your Terminal screen. Note: The dots
indicate one byte of data sent and echoed back from the Sweet32 loader.

*** Sweet32 serial program loader ***
>..
Go!
Hello World! From Sweet32 DRAM test app!!! RRAAWWHHH :-D

Sweet32 Assembly coding examples

Following is a tiny collection of typical Sweet32 assembly examples. Further coding examples may be
found in the \firmware\asm folder of the Sweet32 project archive on either www.opencores.org or
www.fleasystems.com

1.) Subroutine call example #1: Call with return address stored in R15 (3 CPU cycles to execute):

main code:

GETPC R15, #2 ; Get current program counter (PC) value and add return offset
MJMP mysub ; Perform subroutine call
; <-- Code resumes execution here after Sub return

mysub:
 ; <-- User subroutine code goes here

LJMP R15 ; Perform subroutine return

2.) Subroutine call example #2: Using R15 as a stack pointer (7 CPU cycles to execute):

main code:

GETPC R14, #5 ; Get current program counter (PC) value and add return offset
MOVD @R15,R14 ; Save PC
INCS R15,R15,#+2 ; Increment virtual stack pointer
MJMP mysub ; Perform subroutine call
; <-- Code resumes execution here after Sub return

mysub:
 ; <-- User subroutine code goes here

INCS R15,R15,#-2 ; Decrement virtual stack pointer
MOVD R14,@R15 ; Get previously stored address
LJMP R14 ; Perform subroutine return

3.) Signed 16x16bit multiply routine (takes between 5 and 11 CPU cycles to execute):

;Assume: R0 = Signed 32bit Result,
; R1 = Signed 16bit ‘X’ value
; R2 = Signed 16bit ‘Y’ value

signed_multiply:

XOR R0,R1,R2
BITSNZ R0,#15 ; Test if X and Y are either both positive or both negative
SJMP signs_equal
BITSNZ R1,#15 ; Test if X is negative
SJMP makeY_pos ; X is positive, Y must be negative
NOT R1,R1 ; Make X positive if currently negative
INCS R1,R1,#1 ;

Do_multiply:
MUL R0,R1,R2 ;
INCS R0,R0,#-1 ; Make result negative
NOT R0,R0 ;
LJMP R15 ; Subroutine return

makeY_pos:

NOT R2,R2 ; Make Y positive
INCS R2,R2,#1 ;
SJMP Do_multiply ; Go perform our multiply

Signs_equal:
MUL R0,R1,R2 ; Result will be a positive number
LJMP R15

Sweet32 Assembly coding examples (Continued)

4.) Unsigned 16bit / 16bit software divide routine (takes approx. 134 CPU cycles max. to execute):

;*** Sweet32 unsigned 16/16 division routine ***
; Registers R0-R6 are used by this routine (R6 being a temporary register)
; R0 = Remainder reg, R1 = Quotient reg, R2 = Divisor reg, R3 = Dividend reg,
; R4 = # of bits to divide by + 1, R5 = quotient bitwise-OR mask value,
; R6 = Temp reg
; Total calculation time = 6 + 128 cycles = 134 cycles total (maximum)

Divide_U1616:
 LDD R5,#0x10000 ; Mask value for quotient bitwise OR-add

 LDB R4,#17 ; Number of bits to divide by + 1
 LDB R0,#0x0 ; Clear Quotient reg

; Actual division routine begins here:
 SWAPW R2,R2 ; Prepare Divisor (ie Divisor << 16)

Division_loop:
 SUBSLT R6,R2,R3 ; compare (subtract) shifted divisor with dividend
 SJMP doesnt_go ; shifted divisor > dividned

does_go:
 INCS R3,R6,#0
 ADD R0,R0,R5 ; Set the appropriate bit of the quotient
 LSR R2,R2 ; Shift the divisor down by 1
 LSR R5,R5 ; Shift the quotient bitmask down by 1
 INCS R4,R4,#-1 ; Decrement bit count
 TSTSNZ R4,R4 ; Have we reached the end of our divide routine?
 SJMP Division_done
 SJMP Division_loop

doesnt_go:
 LSR R2,R2 ; Shift the divisor down by 1
 LSR R5,R5 ; Shift the quotient bitmask down by 1
 INCS R4,R4,#-1 ; Decrement bit count
 TSTSNZ R4,R4 ; Have we reached the end of our divide routine?
 SJMP Division_done
 SJMP Division_loop

Division_done:
 INCS R1,R3,#0 ; Move to result reg

 LJMP R14 ; exit routine
; ************* End routine ****************

Sweet32 CPU Development history

Version 0.80 18/11/2014 Added LDB, ADD and SUBSLT opcodes.

Removed ADDSNC and OR opcodes.
Assigned new opcode encoding to LJMP
Removed NEG opcode, replaced with NOT
Serial loader, assembler and code examples all revised to
reflect the updated Sweet32 instruction set.

Version 0.71 17/11/2014 Included information on updated serial Boot-loader
 Unsigned software divide example included.

Version 0.70 13/11/2014 Added NEG, GETTR and (optional) GETMX opcodes
 32x32bit extended math now available as an option.

Version 0.60 4/11/2014 Added ASR, BITSNZ and MOVSW opcodes
 Modified LSRSC to become LSR opcode.

Version 0.40 21/10/2014 Added simple trace/debug support
 Reduced the BIU bus states from 4 down to 3

Version 0.30 17/09/2014 Added MOVD, modified MOVW ops

Version 0.21 10/09/2014 Added fast IRQ support

Version 0.10 1/09/2014 Initial pre-release

Legal Disclaimer

This document is provided as-is and with strictly no warranties implied. While every effort is made to
ensure the information presented is accurate I, Valentin Angelovski, make no such guarantee. I also
reserve the right to update this document without prior notice. This document is the copyright of
Valentin Angelovski. All trademarked product names listed herein belong to their respective
trademark owners.

