
Copyright © 2009 OutputLogic.com

LFSR Counter Generator

By Evgeni Stavinov, OutputLogic.com

Description

LFSR Counter Generator is a command-line application that generates Verilog or VHDL code for an LFSR counter of

any value up to 63 bit wide. The code is written in C and is cross-platform compatible

Parameters

language: verilog or vhdl

count : counter value in hex or decimal format, e.g. 1234, 0x1234.

 Can be up to 63-bit long, e,g, 0x7fffffffffffffff, although it’d take a very long time to generate such a counter.

Output Examples

[1] C:\OutputLogic\lfsr-counter-generator> lfsr-counter-generator

 usage:

 lfsr-counter-generator language count

 parameters:

 language: verilog or vhdl

 count : counter value in hex or decimal format, e.g. 1234, 0x1234

[2] C:\OutputLogic> lfsr-counter-generator verilog 0x1234

count = 0x1234 num_bits=13

generating...

//---

// Copyright (C) 2009 OutputLogic.com

// This source file may be used and distributed without restriction

// provided that this copyright statement is not removed from the file

// and that any derivative work contains the original copyright notice

// and the associated disclaimer. --

// THIS SOURCE FILE IS PROVIDED "AS IS" AND WITHOUT ANY EXPRESS

// OR IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED

// WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR A PARTICULAR PURPOSE.

//---

module lfsr_counter(

 input clk,

 input reset,

 input ce,

 output reg lfsr_done);

Copyright © 2009 OutputLogic.com

reg [12:0] lfsr;

wire d0,lfsr_equal;

xnor(d0,lfsr[12],lfsr[3],lfsr[2],lfsr[0]);

assign lfsr_equal = (lfsr == 13'h220);

always @(posedge clk,posedge reset) begin

 if(reset) begin

 lfsr <= 0;

 lfsr_done <= 0;

 end

 else begin

 if(ce)

 lfsr <= lfsr_equal ? 13'h0 : {lfsr[11:0],d0};

 lfsr_done <= lfsr_equal;

 end

end

endmodule

Background

 Most of the EE or CS graduates know or at least have heard about different types of hardware counters: binary,

prescaled, linear feedback shift register (LFSR), and others.

 The majority of logic designers use the first two types, because they’re simple to implement in Verilog or VHDL.

However, for some applications LFSR counters offer a significant advantage in terms of logic utilization and maximum

frequency.

 There is an online LFSR Counter Generator tool is running on the OutputLogic.com server. The time it takes to

generate the code depends exponentially on the counter size. It takes several seconds to generate a small 24-bit counter.

 A stand-alone application can generate much larger LFSR counters orders of magnitude faster than the online tool.

The application limits LFSR counter size to 63 bit, but it should cover any practical usage. There is no fundamental

problem to extend that. The LFSR counter can be as large as 168 bit, this is the limitation of the LFSR polynomial

table in [1].

Here is an example of how the LFSR Counter Generator works:

(1) Specify counter value, e.g. 200. It is 8 bits, so the application selects 8-bit LFSR with polynomial coefficients

taken from the table in [1].

 (2) Reset LFSR to 0, run a loop that shifts the LFSR 200 times. Then latch its value (LFSR_COUNT_VAL).

 (3) Use that 8-bit LFSR and LFSR_COUNT_VAL to generate a Verilog or VHDL code. When the LFSR hits

LFSR_COUNT_VAL, it counted 200.

 This approach is working because the polynomial selected in (1) has a maximum-length property. That is it generates

a sequence of unique values from 0 to 2
n
-1.

http://outputlogic.com/?page_id=275
http://outputlogic.com/

Copyright © 2009 OutputLogic.com

 Following is a table that illustrates size differences between a 32-bit LFSR counter and a regular counter synthesized

for Xilinx V5 chip.

Module Slices Regs LUTs

Regular counter 17 32 44

LFSR counter 10 32 7

About the Author

 Evgeni Stavinov is the creator and main developer of OutputLogic.com. Evgeni has more than 10 years of diverse

design experience in the areas of FPGA logic design, embedded software and communication protocols. He holds

MSEE from University of Southern California and BSEE from Technion – Israel Institute of Technology. For more

information contact evgeni@outputlogic.com

About OutputLogic.com

OutputLogic.com is a web portal that offers online tools for FPGA and ASIC designers.

References

[1] Peter Alfke, Efficient Shift Registers, LFSR Counters, and Long Pseudo-Random Sequence Generators,

Xilinx application note Xapp052

[2] Maria George and Peter Alfke, Linear Feedback Shift Registers in Virtex Devices, Xilinx application

note Xapp210

[3] Xilinx Linear Feedback Shift Register (LFSR) Logic Core

http://outputlogic.com/
mailto:evgeni@outputlogic.com?subject=Inquiry
http://www.xilinx.com/support/documentation/application_notes/xapp052.pdf
http://www.xilinx.com/support/documentation/application_notes/xapp210.pdf
http://www.xilinx.com/support/documentation/application_notes/xapp210.pdf
http://www.xilinx.com/support/documentation/application_notes/xapp210.pdf
http://www.xilinx.com/products/ipcenter/LFSR.htm

Copyright © 2009 OutputLogic.com

The MIT License

Copyright © 2009 OutputLogic.com

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated

documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights

to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to

whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the

Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,

INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A

PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR

COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN

AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH

THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

