
openHMC

a Configurable Open-Source

Hybrid Memory Cube Controller

Computer Architecture Group, University of Heidelberg

in partnership with Micron Foundation

openHMC documentation Rev 1.4
c©2014 Computer Architecture Group

Contents

1 About openHMC 3

1.1 What is openHMC? . 3

1.2 About The Hybrid Memory Cube . 3

1.3 The openHMC Controller . 4

1.4 Features . 4

2 Module Description 6

2.1 Top Module (openhmc_top.v) . 6

2.2 Asynchronous RX and TX FIFOs (openhmc_async_fifo.v) 6

2.3 TX Link (tx_link.v) . 6

2.4 RX Link (rx_link.v) . 11

2.5 Register File (openhmc_8x_rf.v and openhmc_16x_rf.v) 13

2.6 Header Files . 13

3 Interface Description 14

3.1 System Interface . 14

3.2 HMC Interface . 15

3.3 AXI-4 Stream Protocol Interface . 15

3.4 Transceiver Interface . 18

3.5 Register File Interface . 20

4 Configuration and Usage 23

4.1 Clocking and Reset . 23

4.2 Power-Up and Initialization . 23

4.3 Sleep Mode . 24

4.4 Link Retraining . 25

4.5 Link Retry . 25

4.6 Retry Pointer Loop Time . 27

4.7 openHMC Configuration . 29

4.8 HMC Configuration . 29

5 Implementation 31

5.1 Design with the Core . 31

5.2 Implementation Results . 31

openHMC documentation Rev. 1.4 p.1

5.3 Optimization Techniques . 32

6 openHMC Test Environment 34

6.1 Preparation . 34

6.2 Run a Test . 34

6.3 Test Environment . 35

6.4 Test Procedure . 36

6.5 The Tests . 37

6.6 Error Injection / Link Retry . 38

6.7 F.A.Q. 38

A Acronyms i

B Register File Contents ii

C Directory Structure v

D Revision History vii

E List of Figures ix

F List of Tables x

References xi

openHMC documentation Rev. 1.4 p.2

1 » About openHMC

1.1 What is openHMC?

openHMC is an open-source project developed by the Computer Architecture Group (CAG)

at the University of Heidelberg in Germany. It is a configurable, vendor-agnostic, AXI-4

compliant Hybrid Memory Cube (HMC) controller that can be parameterized to different

data-widths, external lane-width requirements, and clock speeds depending on speed and

area requirements. It further includes a test environment to evaluate the capabilities of the

openHMC controller. The main objective of this project is to lower the barrier for others to

experiment with the HMC, without the risks of using commercial solutions.

openHMC is licensed under the terms and conditions of version 3 of the Lesser General

Purpose License[1].

Contact: openhmc@ziti.uni-heidelberg.de

1.2 About The Hybrid Memory Cube

The HMC is memory that is built of stacked DRAM, organized in independent sections, so

called vaults. Figure 1.1 shows an abstract view of the structure of an HMC. It integrates

all DRAM-related management circuits and therefore off-loads the user from any DRAM

timings. A single HMC features up to 4 serial links; each running with up to 16 lanes and 15

Partition

Partition

Partition

Logic

Vault

Partition

Figure 1.1: HMC: Abstract View

openHMC documentation Rev. 1.4 p.3

mailto:openhmc@ziti.uni-heidelberg.de

Gb/s per lane. Transactions are packetized instead of using dedicated data and address

strobes. More information on the HMC and its specification are available at the official Hybrid

Memory Cube Consortium (HMCC) website www.hybridmemorycube.org.

1.3 The openHMC Controller

The openHMC controller is presented as a high-level block diagram in Figure 1.2. The

asynchronous input and output FIFOs allow the user to access the controller from a different

clock domain. On the transceiver side, a registered output holds the data reordered on a

lane-by-lane basis; allowing seamless integration with any transceiver types. A register-file

provides access to control and monitor the operation of the controller.

A
X

I-
4

Tra
n

sce
ive

r

Register File

Async FIFO

Async FIFO TX

RX

openHMC Controller

Figure 1.2: openHMC Host Controller Block Diagram

1.4 Features

The openHMC memory controller implements the following features as described in the

HMC specification Rev 1.1 [2]:

• Full link-training, sleep mode and link retraining

• 16Byte up to 128Byte read and write (posted and non-posted) transactions

• Posted and non-posted bit-write and atomic requests

• Mode read and write

• Error response

• Full packet flow control

• Packet integrity checks (sequence number, packet length, CRC)

• Full link retry

openHMC documentation Rev. 1.4 p.4

1.4.1 Supported Configurations

Currently the following configurations are supported (8 or 16 lanes):

• 2 FLITs per Word / 256-bit datapath

• 4 FLITs per Word / 512-bit datapath

• 6 FLITs per Word / 768-bit datapath

• 8 FLITs per Word / 1024-bit datapath

Other configurations may require specific CRC implementations and/or initialization schemes.

For a more detailed overview of commonly used configurations see Chapter 4.

openHMC documentation Rev. 1.4 p.5

2 » Module Description

This chapter describes the Verilog modules of the openHMC package. The directory structure

is attached in Appendix C. Note that the openHMC testbench is introduced separately in

Chapter 6.

2.1 Top Module (openhmc_top.v)

The openHMC top module instantiates and connects all logical sub-modules and does not

contain any logic itself. It provides the AXI-4 , Transceiver and Register File interfaces.

Figure 2.1 shows a more detailed view of the opeHMC controller top level including the

two clock domains and main interface signals. For a full interface specification refer to

Chapter 3. The host controller is often also referred to as ’Requester’ and the data flow from

host to HMC is called downstream traffic, or transmit direction (TX). The requester issues

request packets and receives responses. On the other hand, the HMC is the ’Responder’

and any traffic flowing in host direction is called upstream traffic, or receive direction (RX).

The responder receives and processes requests, and returns responses if desired by the

request type. In the following, all sub-modules are described in the order they are logically

passed by a request/response transaction.

2.2 Asynchronous RX and TX FIFOs

(openhmc_async_fifo.v)

The asynchronous FIFOs connect the user logic in the clk_user clock domain to the

openHMC controller in the clk_hmc clock domain. Both FIFOs appear as an AXI-4 Stream

Protocol Interface to the user. The full interface specification can be found in Chapter 3.

2.3 TX Link (tx_link.v)

The TX Link has two main interfaces, that is the input FIFO interface to receive HMC packets

and the output register stage which provides scrambled and lane-by-lane re-ordered data

FLITs to connect the transceivers. The user must generate HMC packets within the user

logic, including the 64bit header. Also, the user is responsible for operational closure using

TAGs, if desired. Note that an unsupported command or a dln/lng mismatch may produce

openHMC documentation Rev. 1.4 p.6

openhmc_top

Transceivers

Register File

Async Output FIFO

TX

RX

Async Input FIFO

- TDATA
- TVALID

-TUSER
-TREADY

- address
- data

-r/w enable
clk_user clk_hmc

- data
- valid
-tuser

DWIDTH

DWIDTH

A
X

I-4
 Sla

ve
A

X
I-4

 M
a

ste
r

Input
Buffer

Retry
Buffer

Clock, Reset
System

PRST_N, RXPS,
TXPS, FERR_N

HMC

Bit Slip, Lane Polarity

Figure 2.1: Detailed view of the openHMC Controller Top Module

undefined behavior in the current implementation. The 64bit tail must be set all to zero since

it will be filled in the TX Link. Internally, the openHMC controller uses register stages to

encapsulate logically-independent units, and to avoid critical paths due to excessive use of

combinational logic. The main control function is implemented as the following Finite State

Machine (FSM):

NULL1

Reset

TS1 NULL2 IDLE TX

HMC_RTRY

LNK_RTRYSLEEP
WAIT
_FOR
_HMC

Figure 2.2: TX FSM

States and transitions are listed in Table 2.1 and Table 2.2. The next states are listed in the

order of their priority. By default, the current state is maintained. For a better understanding

of the initialization steps necessary after power-up refer to Section 4.2.

When in TX state, FLITs are processed as implied by the blue path in Figure 2.3. Register

File (RF) signals and such that are driven by the RX link are represented by green colored,

control signals by gray colored arrows. The operation of the TX link can be summarized as

followes: First, data FLITs are collected at the FIFO interface. A token handler keeps track

of the remaining tokens in the HMC input buffer. With each FLIT transmitted, the token count

openHMC documentation Rev. 1.4 p.7

Table 2.1: TX FSM State Table

State Description
NULL1 Transmit NULL FLITs (Reset State)
TS1 Transmit the lane dependent TS1 sequence
NULL2 Transmit NULL FLITs
IDLE Send TRET packet if there are tokens to be returned
TX Transmit packets
HMC_RTRY Send start retry packets
LNK_RTRY Send clear retry packets and perform link retry
SLEEP Set LxRXPS = low to request HMC sleep mode
WAIT_FOR_HMC Wait until corresponding LxTXPS pin is high to exit sleep mode

Table 2.2: TX FSM Transition Table

State Next State & Trigger
NULL1 TS1: RX received NULL FLITs
TS1 NULL2: RX descramblers aligned
NULL2 IDLE: link_is_up

IDLE

HMC_RTRY: force_hmc_retry
LNK_RTRY: tx_link_retry_request
SLEEP: rf_hmc_sleep
TX: retry_buffer !full and tokens are available

TX
HMC_RTRY: force_hmc_retry
LNK_RTRY: tx_link_retry_request
IDLE: no more data to transmit

HMC_RTRY LNK_RTRY: tx_link_retry_request
TX: retry_buffer !full and tokens are available IDLE: no more data to transmit

LNK_RTRY HMC_RTRY: force_hmc_retry
TX: retry_buffer !full and tokens are available IDLE: no more data to transmit

SLEEP WAIT_FOR_HMC: as rf_hmc_sleep_requested is de-asserted
WAIT_FOR_HMC NULL1: as hmc_LxTXPS transitions to high

openHMC documentation Rev. 1.4 p.8

Token
Handler

Add
RTC

Add
Seq +
FRP

Retry Buffer

Add
RRP

Input Stage

FSM
Select Data

Source
S
C
R
A
M
B
L
E
R

CRC

tx_link

R
U
N
-
L
E
N
G
T
H

1

5

2

3

4

1
Error Abort
Link Retry
Init Status

2
Returned
Tokens

3 RRP 4 HMC FRP 5 RTC

Scra
m

b
led

 d
a

ta o
u

t

Figure 2.3: TX Link Diagram

 64 to lane 7

 64 to lane 6

 64 to lane 5

 64 to lane 4

 64 to lane 3

 64 to lane 2

 64 to lane 0

 64 to lane 1Scrambler 1

Scrambler 0

Scrambler 6

Scrambler 7

Scrambler 4

Scrambler 5

Scrambler 2

Scrambler 3

5
1

2
 B

it
 D

at
a

-W
o

rd

...

Bit 0
Bit 1
Bit 2
Bit 3
Bit 4
Bit 5
Bit 6
Bit 7
Bit 8

Bit 511

5
1

2
b

it

p
h

y
_d

a
ta

_
tx

_
lin

k2
p

h
y

Figure 2.4: Data-Reordering: 4FLIT/512bit example

is decremented. When the token count is sufficient and no other interrupt occurs, the Return

Token Count (RTC) is added to return tokens to the HMC, which indicates the number of

FLITs that passed the RX input buffer. Afterwards, the Sequence Number (SEQ) and the

Forward Retry Pointer (FRP), which is also the retry buffer read pointer, are added. At this

point, all FLITs are also written to the retry buffer. If there is a link retry request (signaled

by tx_link_retry_request) data is retransmitted out of the retry buffer instead of the regular

datapath. Eventually the Return Retry Pointer (RRP) which is the last received HMC FRP is

added, the CRC generated, and data is scrambled and reordered on a lane-by-lane basis

depending on the configuration (NUM_LANES and DWIDTH). Figure 2.4 shows an example

for a 512-bit / 8-lane configuration where each transceiver connects to 64bit of the parallel

output stage.

2.3.1 TX Retry Buffer (openhmc_ram.v)

The retry buffer holds a copy of each FLIT transmitted for possible retransmission. NULL

FLITs and flow packets, except TRET, are not subject to flow control and retransmission,

and are therefore not saved in the retry buffer. The retry buffer actually consists of FPW

openHMC documentation Rev. 1.4 p.9

Table 2.3: RAM Configurations

Datawidth in FPW Depth per RAM [bits / entries]
2 7 / 128
4 6 / 64
6 5 / 32
8 5 / 32

times 128-bit RAMs so that each FLIT can be addressed independently. One address, which

is also the FRP is generated for each packet header. Since the required and accumulated

RAM space is defined by the pointer size (FRP = RRP = 8 bit = 256 FLITs), the depth per

RAM in this implementation is defined as 256 entries divided by FLITs per Word (FPW).

Table 2.3 summarizes the RAM properties for different data-width configurations. Note that

a 6-FLIT configuration results in reduced RAM capacity since 6 is not a power of 2 and

therefore the next higher of LOG_FPW must be chosen, leaving some addresses unused.

The least significant bits address the target RAM while the remaining bits refer to a specific

FLIT within that RAM. The entire value is called FRP, and at the same time is the RAM write

pointer. As a result of this addressing scheme, FRPs are not generated consecutively but

still incremental, as packets may consist of more than one FLIT. The read pointer of the RAM

moves with each RRPs received at the RX Link, following the write pointer and therefore

excluding potential FLITs from retransmission. The link retry mechanism is described in

Section 4.5.

2.3.2 Scrambler (tx_scrambler.v)

Scramblers use a Linear Feedback Shift Register (LFSR) to ensure Clock-Data Recovery

(CDR) over high-speed serial links and replace encodings such as 8b/10b. One scrambler

per lane is initialized and its LFSR preloaded with a lane-specific seed.

2.3.3 Lane Run Length Limiter (tx_run_length_limiter.v)

The HMC specification defines a maximum of 85 bits per lane without a logical transition to

ensure CDR. When a lane reaches this limitation, a transition must be forced to so that the

receiver’s Phase-Locked Loops (PLLs) stay locked. The granularity of the run length limiter

is adjustable and can be set depending on die area and speed requirements (generally:

lower granularity = more logic and area utilization). Also consider technological conditions

when determining the best value, e.g. which Loop-Up Tables (LUTs) are used.

openHMC documentation Rev. 1.4 p.10

/128

/128

/128

/128

/32 /128

/32

/32

/32

/128

/128

/128

/32

/32

/32

/32

Assign
Target
CRC to
Tails

crc_128_init

crc_128_init

Assign
Chunks

Input FLIT 3 crc_128_init

Input FLIT 2 crc_128_init

Input FLIT 1

Input FLIT 0

Data Pipeline

crc_accu

crc_accu

crc_accu

ADD CRC
(TX)

Check
CRC (RX)

O
U
T
P
U
T

I
N
P
U
T

crc_accu

Hdr/Tail/
Lng

Figure 2.5: Scalable CRC Architecture: FPW=4 Example

2.3.4 CRC (tx_crc_combine.v)

The CRC architecture was specifically chosen to scale with different data-widths. As can be

seen in Figure 2.5 it consists of one 128-bit CRC per FLIT (crc_128_init). While the CRCs

are calculated a specific logic assigns the targeted CRC to the tail of the corresponding

packet. After the CRCs are calculated all 32-bit remainder that belong to the same packet

are shifted to a dedicated accumulation CRC stage (crc_accu), where the remainders form

the actual CRC within a single cycle. Finally, the output CRCs are added to the tail of the

packets.

2.3.5 General Notes on TX Link

The TX link only returns one flow packet per cycle, which is sufficient and an easy way to

save some logic. However, (re-)initialization for instance will take some additional cycles

to transmit all available tokens since only 31 tokens may be returned within a single Token

Return (TRET) packet.

2.4 RX Link (rx_link.v)

The RX Link receives responses issued by the HMC. It then performs data integrity checks,

unpacks all valid and required information out of header and tail and forwards the information

to the TX Link. Only valid FLITs that passed all checks will enter the input buffer and can be

collected at the AXI-4 slave interface. Figure 2.6 shows a block diagram of the RX Link where

the data flow is indicated by orange, signals to the TX Link and to the RF by green, and

control signals by gray colored arrows. Note that the regular datapath is only selected after

openHMC documentation Rev. 1.4 p.11

link initialization is done. For this purpose the initialization FSM controls a Multiplexer (MUX)

to distribute input data.

rx_link Scra
m

b
led

 d
a

ta in

- Error Abort
- Link Retry

DLN/
LNG

Check

SEQ
Check

Invalid
Stage

Retry
Stage

Extract
FRP/RRP/

RTC

Input
Buffer

CRC

Init
FSM

D
E
S
C
R
A
M
B
L
E
R

Init Status
1

1

- FRP
- RRP
- RTC

4
3
5

2
- Processed Tokens

Figure 2.6: RX Link Diagram

2.4.1 CRC (rx_crc_compare.v)

The rx_crc_compare module is very similar to the tx_crc_combine instantiated in the TX Link.

The biggest difference is that the CRCs are not added to the tail of a packet at the end of

the data pipeline, but compared. The corresponding poisoned or error flag for the tail of the

faulty packet is set if a mismatch occurs. Additionally, the data pipeline of this module holds

information bits for valid/header/tail FLITs as this information will be used in the RX link.

2.4.2 Descrambler (rx_descrambler.v)

The rx_descrambler module is instantiated once per lane and is self-seeding, which means

that it automatically determines the correct value for the internal LFSR. As the seed for

a descrambler is determined, the descrambler is locked. Additionally each descrambler

expects a dedicated, so called ’bit_slip’ single input which is used compensate lane to lane

skew. When bit_slip is set, input data on the specific lane is delayed by one bit during

initialization. This procedure is applied until all descramblers are fully aligned / synchronous

to each other.

2.4.3 Input Buffer (openhmc_sync_fifo.v)

The input buffer holds 2**LOG_MAX_RTC entries, where each entry is as wide as the datap-

ath (DWIDTH). This results in more resource utilization, but allows a series of 2**LOG_MAX_RTC

cycles, carrying one valid FLIT each to be shifted-in without a need for additional buffer

distribution and utilization logic. Each valid FLIT at the buffer output returns 1 token to the

TX link on a shift_out event. These tokens will be returned as RTC to the HMC. Note that

the openHMC implementation does not forward poisoned packets to the input buffer.

openHMC documentation Rev. 1.4 p.12

2.5 Register File (openhmc_8x_rf.v and

openhmc_16x_rf.v)

The Register File features three main types of registers: Control, Status, and Counter. Control

registers directly affect the memory controller or HMC operation. Status registers can be

used to monitor the status of the memory controller, especially during initialization. Counters

allow performance measurement. For a full list of available registers, see Appendix B.

Note that there are several ’reserved’ fields which are not listed in the table of registers.

These reserved fields provide some space to add additional information, and also align

the fields within a register. These unused fields will be tied to constant 0 during synthesis.

There are two different RFs that provide the same registers, but a few different signal widths

depending on the HMC link configuration (half-width/full-width). The correct RF is instantiated

automatically according to the NUM_LANES parameter.

2.6 Header Files

The following header files are present:

hmc_field_functions.h

hmc_field_functions contains useful functions that return fields such as the packet

length or the CRC out of HMC headers or tails.

openHMC documentation Rev. 1.4 p.13

3 » Interface Description

This chapter contains an interface description for the top module openhmc_top.v. Due to the

fact that the controller is configured using parameters many signal-widths depend on the

configuration. The openhmc_top module contains a set of parameters that can be used to

override the default configuration. All available parameters are listed in Table 3.1.

Table 3.1: Configuration Parameters

Parameter Description Default
LOG_FPW Log of the desired data-width in FLITs 2
FPW Desired data-width in FLITs (1FLIT = 128bit). Valid:

2/4/6/8
4

DWIDTH FPW*128, width of the databus in bits 512
LOG_NUM_LANES Log of the link width in lanes. Valid: 3/4 3
NUM_LANES Link width in lanes (8 or 16) 8
NUM_DATA_BYTES FPW*16, defines the AXI-4 TUSER bus width in

bytes
64

HMC_RF_WWIDTH Register file rf_write_data bus size in bits 64
HMC_RF_RWIDTH Register file rf_read_data bus size in bits 64
HMC_RF_AWIDTH Register file rf_address bus size in bits 4
LOG_MAX_RTC Log of the max RX input buffer space in FLITs 8
HMC_RX_AC_COUPLED Set to 0 if Controller TX is DC coupled to HMC RX 1
CTRL_LANE_POLARITY Set to 0 if lane polarity should be controlled by the

transceivers or is not applicable
1

CTRL_LANE_REVERSAL Set to 0 if lane reversal should be controlled by the
transceivers or is not applicable

1

BITSLIP_SHIFT_RIGHT Define how the parallel data is shifted by bit slip.
Refer to the transceivers user guide

1

DBG_RX_TOKEN_MON Enable/Disable monitoring of Tokens in the rx_link
input buffer (1=enabled)

1

3.1 System Interface

The controller top module (openhmc_top) expects a clock and a reset per clock domain,

where each reset must be synchronous to the corresponding clock. Most likely, clk_hmc

and the parallel transceiver clock domain will be sourced by the same driver. The user clock

clk_user may be any equal to or higher the frequency of clk_hmc. Therefore both clocks can

openHMC documentation Rev. 1.4 p.14

openhmc_top
clk_hmc

System Interface

res_n_hmc

res_n_user

clk_user

Figure 3.1: System Interface Diagram

origin from the same source. Figure 3.1 shows the system interface. Note that both resets

are active low.

3.2 HMC Interface

The HMC provides the four signals presented in Figure 3.2. Note that the HMC reset

P_RST_N and the both power-reduction pins LxRXPS and LxTXPS are active low. The

active low fatal error indicator FERR_N is not connected it this revision of the memory

controller and is considered ’don’t care’.

openhmc_top
hmc_LxTXPS

HMC Interface Pins

FERR_N

hmc_LxRXPS

P_RST_N

Figure 3.2: HMC Interface Pins Diagram

3.3 AXI-4 Stream Protocol Interface

The openHMC controller provides AXI-4 stream protocol interfaces for TX and RX. Both

comply with the ARM AMBA AXI-4 Interface Protocol Specification v1.0 [3]. However, not

all signals are used. Figure 3.3 provides an interface diagram of the master and slave

interfaces used in this implementation. The use and the corresponding size of these signals

is described below.

openHMC documentation Rev. 1.4 p.15

TX FIFO

A
X

I-
4

 S
la

ve
 I

F

TREADY

TVALID

TDATA[FPW*128]

TUSER[NUM_DATA_BYTES]

TX

RX FIFO

A
X

I-
4

 M
as

te
r

IF

TREADY

TVALID

TDATA[FPW*128]

TUSER[NUM_DATA_BYTES]

RX

Figure 3.3: AXI-4 Interface Diagram

Note

The openHMC controller expects complete HMC packets at the TX

interface, and outputs such at the RX interface. HMC request packets

must be generated within the user logic, except the HMC packet tail

which must be set to zero.

TREADY 1 bit

• TX: Memory controller is ready to sample TDATA and TUSER

• RX: Valid data on TDATA and TUSER

TVALID 1 bit

• TX: TDATA and TUSER are sampled on TX when TVALID=1 and TREADY=1.

TVALID may be held high even when TREADY=0.

• RX: TDATA and TUSER are valid when TVALID=1. TREADY may be held high even

when TVALID=0. TDATA and TUSER will not change when TREADY=0.

TDATA FPW*128 bit

The TDATA bus expects complete HMC request packets, starting with the 64bit header

followed by data FLITs. Note that a single AXI cycle can carry (parts of) multiple

packets on both interfaces, TX and RX. The user is responsible to populate all request

header fields (see Figure 3.4 or refer to the HMC documentation, chapter ’Request

Commands’). Note that the TAG field is optional, but required for operational request/re-

sponse closure. The tail must be set to all zeroes. Figure 3.5 shows an example

transaction of multiple different packet types. Packets may start at any 128-bit/ FLIT

border. ’Bubbles’ between packets are allowed as long as the corresponding valid

bit(s) is/are kept low. All FLITs of a packet must be transmitted throughout consecutive

FLITs. Also when a packet spreads over multiple 512-bit cycles, TVALID must be held

high until the entire packet (including its tail) was transmitted. On RX, the memory

controller outputs complete HMC response packets. Data is valid when TVALID=1 and

openHMC documentation Rev. 1.4 p.16

the output will not change while TREADY=0. Contrary to TX, the user has full control

on the assertion of TREADY. When a response header appears, the packet does not

need to be sampled consecutively throughout its tail.

CRC RTC

Request Tail
SEQ FRP RRP

Request Header
CUB ADRS TAG CMDLNGDLN

CRC RTC ERRSTAT

Response Tail
SEQ FRP RRP

Response Header
TAG CMDLNGDLN

07111524

B
it

 6
3

32 27 19 16 8 0

1820

5
57

07111524 5

32 27 16 8 0

Figure 3.4: HMC Header and Tail

TUSER NUM_DATA_BYTES bit

The user is responsible to set the following information on the TX TUSER bus respec-

tively the controller provides this information at the RX TUSER bus. Note that only a

part of the TUSER bus is populated. That is 3*FPW bits on TX and 4*FPW on RX.

valid at TUSER index [FPW-1:0]: Valid FLIT indicator (including header and tail), one

bit per FLIT

hdr at TUSER index [(2*FPW)-1:FPW]: Header indicator, one bit per FLIT

tail at TUSER index [(3*FPW)-1:2*FPW]: Tail indicator, one bit per FLIT

err_rsp [only on RX] at TUSER index [(4*FPW)-1:3*FPW]: Indicates an error response

packet at the corresponding FLIT position. One bit per FLIT. Error response packets

are single FLIT packets and have all flags (valid/hdr/tail/err_rsp) set

Every FLIT on the TDATA bus corresponds to one bit in the valid, hdr, and tail fields on

TUSER. FLIT 0 at TDATA[127:0] is defined by valid[0] (TUSER[0]), hdr[0](TUSER[FPW]),

and tail[0](TUSER[2*FPW]).

Data3
Hdr3

Tail3
Data3

Data4
Hdr4

Tail4
Data4

Tail1
Hdr1

Data2
Hdr2

Data2

Tail2
Data2

Data0

Data0

Data0

Data0
Hdr0

Tail0
Data0

Cycle

0 1 2

FLIT3
TDATA[511:384]

FLIT0
TDATA[127:0]

Paket0: 64 Byte Write

Paket1: Read

Paket2: 32 Byte Write

Paket3: 16 Byte Write

Paket4: 16 Byte Write

FLIT1
TDATA[255:128]

FLIT2
TDATA[383:256]

3

Figure 3.5: Example transactions on the AXI TX TDATA bus for FPW=4

openHMC documentation Rev. 1.4 p.17

4'b0001

4'b0000

4'b1111

0x01F

Cycle

0 1 2

Tail
TUSER[11:8]

TUSER[11:0]

Valid
TUSER[3:0]

Hdr
TUSER[7:4]

3

4'b1100

4'b0101

4'b1101

0x5CD

4'b0010

4'b0000

4'b0011

0x203

4'b1010

4'b0101

4'b1111

0xA5F

Figure 3.6: TUSER Example for FPW=4

Example:

TDATA holds a header on FLIT position 0 (TDATA[127:0]). Set hdr[0] respectively

TUSER[FPW] to 1. Since a header is a valid FLIT, set valid[0] / TUSER[0] to 1. This

scheme applies to all FLITs on the TDATA bus. Figure 3.6 illustrates how to set the

TUSER signal according to the content of the TDATA bus in Figure 3.5.

Important

For proper operation of the interface, all FLITs of a packet on TX

must be shifted in continuously without any ’bubble’ FLITs or cycles

in between. There is no constraint on ’bubbles’/NULL FLITs/NULL

cycles between packets. However, TVALID on TX must NOT be set

when there is no corresponding valid FLIT on TDATA / no valid bit

set on TUSER. Additionally the frequency of the user clock clk_user

driving the AXI-4 interface must be equal to or higher than clk_hmc.

Due to the nature of the asynchronous FIFO that is used, empty

and full signals may be delayed and might cause misbehavior in the

tx_link.

3.4 Transceiver Interface

The TX Link provides a DWIDTH wide register output phy_data_tx_link2phy with scrambled

and lane-by-lane ordered data, driven by clk_hmc. Hence the bits [(1*LANE_WIDTH)-

1:(0*LANE_WIDTH)] contain data for lane 0, [(2*LANE_WIDTH)-1:(1*LANE_WIDTH)] data

for lane 1 and so on. An additional input phy_ready should be connected to transceivers

openHMC documentation Rev. 1.4 p.18

’reset_done’ (or similar) to allow monitoring of the transceiver status. The RX Link’s data

input register phy_data_rx_phy2link expects input data by the receivers using the same

ordering as explained for the TX Link. Lane reversal is detected and applied in the RX Link

and does not affect ordering. Additionally the RX Link outputs bit_slip wires, one per lane,

used to compensate lane-to-lane skew on the parallel input data during initialization. Connect

these to the corresponding transceiver. If lane_polarity is performed within the transceivers,

the phy_lane_polarity output must be used. ’CTRL_LANE_POLARITY’ must be set to 1

in this case. For CTRL_LANE_POLARITY=0 phy_lane_polarity is tied to 0. All signals

are summarized in Table 3.2. Listing 3.1 shows how to connect the transceiver lanes in a

DWIDTH=512bit and NUM_LANES=8 configuration, with a lane-width of 512bit/8lanes=64

bits per lane.

Table 3.2: Transceiver Interface Signals

Signal Width Description
phy_data_tx_link2phy DWIDTH Lane by lane ordered output
phy_data_rx_phy2link DWIDTH Lane by lane ordered input
phy_ready 1 Signalize that the transceivers are ready
phy_bit_slip NUM_

LANES
Bit_slip is used to compensate lane to lane skew.
Bit_slip is controlled by the rx_link for each lane
individually

phy_lane_polarity HMC_
NUM_
LANES

Connect transceiver polarity inputs if polar-
ity is controlled within the transceivers and
’CTRL_LANE_POLARITY’ is set to 1.

Listing 3.1: Transceiver Connectivity Example for FPW=4 and NUM_LANES=8

wire [DWIDTH−1:0] tx_data ;

wire [DWIDTH−1:0] rx_data ;

wire [NUM_LANES−1:0] r x _ b i t _ s l i p ;

wire [NUM_LANES−1:0] r x _ l a n e _ p o l a r i t y ;

openhmc_top # (. . . parameter l i s t . . .) openhmc_I (
...

. phy_data_tx_ l ink2phy (tx_data) ,

. phy_data_rx_phy2l ink (rx_data) ,

. p h y _ b i t _ s l i p (r x _ b i t _ s l i p) ,

. phy_ lane_po la r i t y (r x _ l a n e _ p o l a r i t y) ,
...

) ;

openHMC documentation Rev. 1.4 p.19

t r ansce i ve r_ top # (. . .) t r a n s c e i v e r _ I (
...

. lane0_tx_data (tx_data [6 3 : 0]) ,

. lane1_tx_data (tx_data [1 2 7 : 6 4]) ,
...

. lane0_rx_data (rx_data [6 3 : 0]) ,

. lane1_rx_data (rx_data [1 2 7 : 6 4]) ,
...

. l a n e 0 _ b i t _ s l i p (r x _ b i t _ s l i p [0]) ,

. l a n e 1 _ b i t _ s l i p (r x _ b i t _ s l i p [1]) ,
... ,

. l a n e 0 _ p o l a r i t y _ i n (r x _ l a n e _ p o l a r i t y [0]) ,

. l a n e 1 _ p o l a r i t y _ i n r x _ l a n e _ p o l a r i t y [1])
...

) ;

3.5 Register File Interface

A Register File module allows to control and monitor the operation of the memory controller.

The interface signals are shown in Figure 3.7 and described in Table 3.3. First the target

address must be applied. For a write, write_data must hold the 64-bit value to be written.

Data is sampled when write_enable is asserted. For a read the read_enable signal must

be asserted instead. Each operation is confirmed by the access_complete signal set for

one cycle. In case that an invalid address was applied, invalid_address will remain as long

as read_en or write_en are active. The user must not assert write_en and read_en both at

the same time. The RF resides in the clk_hmc clock domain and uses the active low res_n

hmc reset signal. Figure 3.8 provides an example for a register write followed by a read to

Register File Interface
rf_read_data

openhmc_top

rf_invalid_address

rf_access_complete

rf_address

rf_write_data

rf_write_en

rf_read_en

Figure 3.7: Register File Interface Diagram

openHMC documentation Rev. 1.4 p.20

Table 3.3: Register File Interface Signals

Signal Width Description
rf_write_data HMC_RF_WWIDTH Value to be written
rf_read_data HMC_RF_RWIDTH Requested Value. Valid when ac-

cess_complete is asserted
rf_address HMC_RF_AWIDTH Address to be read or written to.
rf_read_en 1 Read the address provided
rf_write_en 1 Write the value of write_data to the address

provided
rf_invalid_address 1 Address out of the valid range
rf_access_complete 1 Indicates a successful operation

Table 3.4: Register File Address Map

Register Address Description
status_general 0x0 General HMC Controller Status
status_init 0x1 Debug register for initialization
control 0x2 Control register
sent_p 0x3 Number of posted requests issued
sent_np 0x4 Number of non-posted requests issued
sent_r 0x5 Number of read requests issued
poisoned_packets 0x6 Number of poisoned packets received
rcvd_rsp 0x7 Number of responses received
counter_reset 0x8 Reset all counter
tx_link_retries 0x9 Number of Link retries performed on TX
errors_on_rx 0xA Number of errors seen on RX
run_length_bit_flip 0xB Number of bit flips performed due to run length

limitation
error_abort_not_cleared 0xC Number of error_abort_mode not cleared

address 0x10. Refer to Table 3.4 for the address mapping. For a full listing of all fields within

the RF see Appendix B.

openHMC documentation Rev. 1.4 p.21

rf_write_en

rf_write_data 0x0123...

rf_read_en

rf_read_data 0x0123...

rf_invalid_address

rf_address 0x2 0x2

rf_access_complete

Figure 3.8: Register File Access: Write and read register 0x2

openHMC documentation Rev. 1.4 p.22

4 » Configuration and Usage

The following chapter provides information on how to properly configure and use the

openHMC controller.

4.1 Clocking and Reset

Always keep both reset signals, res_n_user and res_n_hmc synchronous to their correspond-

ing clock. Although the ‘ifdef ASYNC_RES macro is implemented for all clock-triggered

always blocks, asynchronous reset should not be used where the target registers do not

provide a dedicated asynchronous reset path. This is the case for FPGAs.

4.2 Power-Up and Initialization

As soon clk_hmc is stable and the low-active res_n_hmc has been de-asserted, initialization

can begin. The p_rst_n bit in the control register is used to drive the active low HMC reset

signal P_RST_N. The general HMC initialization process is shown in Figure 4.1. In this

example I2C is used to load the internal HMC registers during the register load period (JTAG

may be used instead, refer to the HMC documentation [2]). Note that HMC register load is

not performed by the openHMC controller. As soon as the configuration is done and the ’init

continue bit’ in the HMC internal registers is set, the user must also set the hmc_init_cont_set

bit in the control register to allow the descramblers to lock. Any delay in doing so may also

delay the initialization process. No other user activity is required until the link_is_up flag in

Power Supply

P_RST_N

HMC CLK

I2C Register Config

Downstream (TX to HMC) NULL TS1 NULL TRET

Upstream (HMC to RX) PRBS NULL TS1 NULL TRET

tRESP 1

tINIT

tRST

tRESP 2

Figure 4.1: TX-Link: Initialization Timing

openHMC documentation Rev. 1.4 p.23

the RF is set. The AXI-4 user interface may remain in reset during the initialization process.

Figure 4.2 provides the essential steps for the controller power up. Optionally the user can

set the values provided in Table 4.1 prior the de-assertion of res_n_hmc which directly affect

the initialization process.

Apply clk_hmc. Hold hmc_res_n low

Set hmc_res_n = 1

-HMC Register Load Period-

Set hmc_init_cont_set when Register Load has finished

openHMC controller performs initialization automatically

1.

2.

3.

4.

5.

Figure 4.2: openHMC Controller Power Up Steps

Table 4.1: Configuration Parameters

Register Valid values Description
RX_tokens_av 0 ≤ 1023 Set the available token space in the RX input

buffer. Note: LOG_MAX_RTC must be adjusted
so that 2**LOG_MAX_RTC is greater or equal to
RX_tokens_av

bit_slip_time 0 ≤ 255 Cycles between two bit-slips (Refer to the target
transceiver user guide)

scrambler_disable 0/1 Disable scrambler and descrambler (can be useful for
testing/debugging)

AXI4 Interface

The AXI4 user interface is considered ’don’t care’ as long as

res_n_user is held low. No action is this interface is required for

power up and initialization. However, it may be activated at any time.

4.3 Sleep Mode

Sleep mode can be safely entered when all in-flight transactions are completed and tx_link

is in IDLE state. For instance, the performance counter in the RF can be used to track the

status of outstanding requests. To request sleep mode, the corresponding set_hmc_sleep

openHMC documentation Rev. 1.4 p.24

field in the RF control register must be set. The HMC will acknowledge sleep mode by setting

the hmc_LxTXPS pin low. To exit sleep mode, de-assert set_hmc_sleep. The sleep_mode

field within the RF status_general register may be used to monitor the entire process. Upon

completion, the link is re-initialized as shown in Figure 4.1, except the need to exchange

initial TRETs as memory contents within the HMC are maintained during sleep mode.

4.4 Link Retraining

When detecting an unacceptable rate of link error monitored by the link_retries counter, sleep

mode should be entered and exited to retrain the link. All steps described in Section 4.3

apply.

4.5 Link Retry

As soon as a link error occurs, the respective receiver of the faulty packet enters the ’Error

Abort Mode’. There are two types of link retries that are described in the following. For a

better understanding, Figure 4.3 illustrates the flow of pointer between the memory controller

and the HMC. Note that both endpoints, memory controller and HMC, generate and check

FRP’s and RRP’s the same way.

Memory Controller HMC

Move Read Pointer

Transmit Pkt 1, located at RAM
address FRP1

Process

If acknowledged, FRP1 travels back
as RRP1

RRP1

FRP1

RRP1

FRP1

Acknowledge

Figure 4.3: Pointer Flow

TX Link Retry

In case of an error on the TX path from requester to responder, the HMC will request a link

retry. Subsequent received packets arriving at the HMC are dropped, and no header/tail

values are extracted. The HMC then issues a programmable series of start_retry packets to

the RX link to force a link retry. Start_retry packets have the ’StartRetryFlag’ set (FRP[0]=1).

When the irtry_received_threshold at the Receive (RX)-Link is reached, the Transmit (TX)

link starts to transmit a series of clear_error packets that have the ’ClearErrorFlag’ set

(FRP[1]=1). Afterwards, the TX link uses the last received RRP as the RAM read address

openHMC documentation Rev. 1.4 p.25

and re-transmits any valid FLITs in the retry buffer until the read address equals the write

address, meaning that all pending packets where re-transmitted. Upon completion the RAM

read address returns to the last received RRP. Re-transmitted packets may therefore be

re-transmitted again if another error occurs. Figure 4.4 shows the TX link retry mechanism.

HMC
Mem
Ctrl

send start_retry

1. send clear_error
2. Process Retry

TX

TX

Notify TX

Error Detected
Enter Error Abort Mode

Notify TX

RX

RX

Figure 4.4: TX Link Retry

HMC Retry

In case of an error on the RX path from responder to requester, the RX link will request a

link retry. The TX link will than send start_retry packets whereupon the responder will start

to re-transmit all packets that were not acknowledged by the RRP yet. Meanwhile, the RX

link remains in the so called error_abort_mode where all subsequently incoming packets are

dropped. The TX link monitors this state and sends another series of start_retry packets if

the error_abort_mode was not cleared after 250cycles. Figure 4.5 shows the TX link retry

mechanism.

HMC
Mem
Ctrl HMC

send start_retry

1. send clear_error
2. Process Retry

TX

TX

Notify TX

Error Detected
Enter Error Abort Mode

Notify TX

RX

RX

Figure 4.5: HMC Retry

openHMC documentation Rev. 1.4 p.26

Link Retry

For correct link retry operation, equal to or more irtry packets (both

types) must be issued than the respective receiver expects. This

requirement applies to both, requester and responder. The cor-

responding irtry_to_send value must be equal to or higher than

irtry_received_threshold in the register file (default). The internal

registers in the HMC must be set accordingly.

4.6 Retry Pointer Loop Time

According to the HMCC specification[2], the retry pointer loop time should not exceed certain

limitations. These limitations vary depending on the selected link speed (10Gbit/s, 12Gbit/s,

or 15Gbit/s). Factors such as the HMC delay, host delay, serialization, and de-serilazation

contribute to the total retry pointer loop time. In case the host exceeds the maximum

allowable delay, the HMC retry buffer may run full and therefore throttle packet streaming

which leads to NULL FLITs between transaction packets. Table 4.2 lists both, internal HMC

delay and host allowable delay in nanoseconds. It is based on the assumption that the retry

buffer full period is approximately as twice as big when running a link at half-width (8 lane).

However, this is not mentioned in the HMCC specification. Note that all calculations in this

section were performed with the run length limiter deactived (HMC_RX_AC_COUPLED=0)

and no lane polarity control (CTRL_LANE_POLARITY=0).

4.6.1 TX Link Retry Pointer Delay

Table 4.3 shows the worst case delay for the RRP (the former HMC FRP) to be embedded,

starting at the point where the RRP becomes available at the tx_link input until the RRP

appears in the scrambled output data stage. The best case delay for RRP embedding occurs

when the RRP becomes available right in a cycle where a tail is processed in the ’Add

Table 4.2: Retry Pointer Loop Time

Lane Speed
[Gb/s]

Lanes Retry Buffer Full
Period [ns]

HMC Delay[ns] Max Host Delay[ns]

10 8 307.2 26.5 280.7
12.5 8 327.6 25.9 301.7
15 8 272.8 22.3 250.5
10 16 153.6 26.5 127.1
12.5 16 163.8 25.9 138
15 16 136.4 22.3 114.2

openHMC documentation Rev. 1.4 p.27

Table 4.3: TX Link Worst Case RRP Embed Delay

DWIDTH [FLITs] 2 FLIT (256Bit) 4 FLIT (512Bit) 6 FLIT (768Bit) 8 FLIT (1024Bit)

Stage Cycles Acc Cycles Acc Cycles Acc Cycles Acc
Add RRP 5 5 3 3 3 3 2 2
CRC 4 9 4 7 4 7 4 6
Scrambler 1 10 1 8 1 8 1 7

Max Delay[cycles]* 10 8 8 7

*Max Delay increases by 1 cycle if the Run Length Limiter is used (HMC_RX_AC_COUPLED=1)

Table 4.4: RX Link RRP Process/Extract Delay

DWIDTH [FLITs] 2 FLIT (256Bit) 4 FLIT (512Bit) 6 FLIT (768Bit) 8 FLIT (1024Bit)

Stage Cycles Acc Cycles Acc Cycles Acc Cycles Acc
Descrambler 1 1 1 1 1 1 1 1
to CRC 1 2 1 2 1 2 1 2
CRC 4 6 4 6 4 6 4 6
DLN/LNG 1 7 1 7 1 7 1 7
Retry 1 8 1 8 1 8 1 8
Seq 1 9 1 9 1 9 1 9
Invalidation Stage 5 14 3 12 3 12 2 11
Extraction 1 15 1 13 1 13 1 12

Total Delay[cycles]* 15 13 13 12

*Delay increases by 1 cycle if CRTL_LANE_POLARITY=1

RRP’ stage. In the worst case, a new packet has just begun at the top-most FLIT position.

Embedding will therefore be delayed by the number of cycles it takes to forward a packet

until its tail is seen at this stage. Hence, the maximum delay is measured with a 128-Byte

request in 2-FLIT (256Bit) configuration where the RRP becomes available and FLIT(0) is

NULL, FLIT(1) the header of the packet. As can be seen in Table 4.3, the worst case delay

reduces with wider data-paths.

4.6.2 RX Link Retry Pointer Delay

Table 4.4 shows the delay for the HMC FRP to be extracted and passed to the TX Link,

starting at the point where the HMC FRP becomes available at the scrambled_data_in input

until it was extracted and becomes available for the TX Link to be embedded. The delay

for HMC FRP extraction decreases as the datapath becomes wider, since the depth of the

’Invalidation Stage’ decreases.

openHMC documentation Rev. 1.4 p.28

Table 4.5: Combined Retry Pointer Delay

DWIDTH [FLITs] 2 FLIT (256Bit) 4 FLIT (512Bit) 6 FLIT (768Bit) 8 FLIT (1024Bit)

TX 10 8 8 7
RX 15 13 13 12

Total Delay[cycles] 25 21 21 19

4.6.3 Combined Retry Pointer Loop Time

Table 4.5 summarizes the results of openHMC TX and RX pointer delays (Table 4.3 and

Table 4.4).

4.7 openHMC Configuration

According the configuration of the data-width (DWIDTH), half-width or full-width (NUM_LANES)

and their respective lane speed, Table 4.6 lists selected configurations that can be applied.

Table 4.7 lists all valid parameter sets. The resulting core clocking frequency clk_hmc is

calculated with:

clk_hmc[MHz] = NUM_LANES ∗ LANE_SPEED[Gbit/s]
DWIDTH ∗ 106

Table 4.6 furthermore summarizes the results for the retry pointer loop time through the

openHMC controller. Refer to Table 4.2 for the maximum allowed host delay It can be seen

that not all configurations stay within the host allowable delay. Note that additional delay will

be introduced through serialization and de-serialization.

Input Buffer Token Count

By default the input buffer token count of the rx_link input buffer is set to 100’d. It can be

changed using the rx_token_count register in the Register File control register, if desired.

According to the maximum packet length of 9 FLITs, it must be set to 9 or more. The top

level parameter LOG_MAX_RTC must be set accordingly, i.e. the actual token count must

be equal to or less than 2LOG_MAX_RT C .

4.8 HMC Configuration

Maximum Packet Size

The user must not send any packets bigger than ’maximum block size’ in the HMC Address

Configuration Register is set to.

openHMC documentation Rev. 1.4 p.29

Table 4.6: Example Configurations

DWIDTH
[bit]

NUM
_LANES

lane
speed
[Gbits]

clk_hmc
[MHz]

Period
[ns]

Worst Case
Delay
[cycles]

Worst Case
Delay[ns]

256 8 10 312.5 3.2 25 80
256 8 12.5 390.625 2.56 25 64
512 8 10 156.25 6.4 21 134.4
512 8 12.5 195.3125 5.12 21 107.52
512 8 15 234.375 4.27 21 89.6
512 16 10 312.5 3.2 21 67.2
512 16 12.5 390.625 2.56 21 53.76
768 8 15 156.25 6.4 21 134.4
768 16 10 208.33 4.8 21 100.8
768 16 12.5 260.417 3.84 21 80.64
768 16 15 312.5 3.2 21 67.2
1024 16 10 156.25 6.4 19 121.6
1024 16 12.5 195.3125 5.12 19 97.28
1024 16 15 234.375 4.27 19 81.06

Table 4.7: Valid parameter sets

Desired DWIDTH [bit] LOG_FPW FPW
256 1 2
512 2 4
768 3 6
1024 3 8

HMC Token Count

To avoid misbehavior for any of the listed configurations, set the token count within the HMC

token register to at least 25’d

openHMC documentation Rev. 1.4 p.30

5 » Implementation

This section gives advice on key elements to consider in order to successfully implement

the openHMC controller. It further presents example configurations that were already

implemented and verified in an FPGA.

5.1 Design with the Core

As always, a good design practice is inevitable in order to successfully implement a design

and close timing. Implementing the openHMC controller in a 2-FLIT/10Gbit configuration is

not extremely challenging. However, when it comes to 1024bit datapaths and lane-speeds

of 15Gbit/s, logical paths may fail for several reasons:

High fanout nets Candidates for very high fanout nets are global clocks or resets for

example. Use clock or reset buffer or limit the loads by replicating heavy-loaded nets.

Alternatively, reset conditions may be removed where applicable. This is especially the

case for pipelined datapaths and registers that should hold logical zeroes at power-up.

Refer to Section 5.3 for more information.

Non- or false constrainted clock-domain crossings Clock domain transitions, such as in

asynchronous FIFOs, must be explicitly defined as asynchronous paths. This prevents

the implementation tool from investigating the timing on these paths.

Routing congestion and overlapping nets Components with a high logic density such as

the crc modules may be difficult to route, especially in a 1024bit/FPW=8 configuration.

Solutions may be location constraints, additional pipelining, or the use of special

implementation strategies.

5.2 Implementation Results

The openHMC controller was verified in simulation using multiple verification environments,

including the Micron HMC Bus Functional Model (BFM). Additionally, it was successfully

implemented and tested with the configurations listed in Table 5.1. The Xilinx Vivado

Design Suite 2014.3.1 was used as implementation tool. All runs were performed with the

configuration parameters set as listed in Table 5.2.

openHMC documentation Rev. 1.4 p.31

Table 5.1: FPGA-Verified Configurations

ID FPW NUM
_LANES

LANE
_SPEED
[Gbit]

clk_hmc
[MHz]

Target

1 4 8 10 156.25 Xilinx Virtex Ultrascale XCVU095
2 4 8 12.5 195.3125 Xilinx Virtex Ultrascale XCVU095
3 2 8 10 312.5 Xilinx Virtex Ultrascale XCVU095
4 2 8 12.5 390.625 Xilinx Virtex Ultrascale XCVU095

Table 5.2: Top-Level Implementation Parameters

Parameter Value
LOG_MAX_RTC 8
HMC_RX_AC_COUPLED 1
CTRL_LANE_POLARITY 1
CTRL_LANE_REVERSAL 0
DBG_RX_TOKEN_MON 0

In addition to the FPGA-verified configurations, the openHMC controller was successfully

implemented in various other configurations such as full-width @ 12.5Gbps.

5.2.1 Resource Utilization

Table 5.3 gives an overview over the approximate resource utilization for each implementation

run listed in Table 5.1, matched by the ID. Note that the presented values are approximate

and may slightly vary for different implementation strategies.

5.3 Optimization Techniques

The following design advice can be used to reduce resource utilization.

Table 5.3: Resource Utilization

ID LUTs combined Registers BRAM B36/B18
1,2 16170 15692 30
3,4 8200 9334 8

openHMC documentation Rev. 1.4 p.32

Disable Run Length Limiter

If Controller TX to HMC RX is DC coupled, set the parameter HMC_RX_AC_COUPLED

in the top file to 0 in order to allow the synthesis tool to remove the run length limiter. DC

coupled links are not subject to run length limitation.

Disable Lane Polarity/Lane Reversal control

Both, lane polarity and lane reversal can either be applied in the controller or the transceivers.

While disabling lane reversal in the controller only saves resources, disabling lane polar-

ity also reduces the latency through rx_link. The corresponding parameters to set are

’CTRL_LANE_POLARITY’ and ’CTRL_LANE_REVERSAL. Refer to Chapter 3.

Disable rx_link Input Buffer Token Monitoring

For debugging purposes, the remaining rx_link input buffer space (in Tokens) is counted

in the tx_link. To save resources, monitoring can be disabled by setting the parameter

DBG_RX_TOKEN_MON = 0 in the top file (refer to Table 3.1) .

Use of FPGA specific characteristics

Several optimizations may be applied depending on the target device. Some examples are:

Remove reset values If the target device is an FPGA that defaults register values to a logic

zero at the end of configuration, some reset values may be removed. There is no

need to initialize these registers. Further constant propagation stages such as parts

of the datapath in tx_link or rx_link may be connected without any need for a reset

condition, hence reducing the fanout of the reset net, and decreasing routing effort

and complexity. However, the need for a reset signal should be verified in functional

simulation.

Use target specific components FPGA design tools such as the Xilinx Vivado Design

Suite provide the possibility to generate optimized components such as FIFOs and

RAMs tailored for the target device.

openHMC documentation Rev. 1.4 p.33

6 » openHMC Test Environment

The Universal Verification Methodology (UVM) based test environment can be used to

demonstrate and verify the functionality of the openHMC controller. It is designed following

the IEEE Standard for SystemVerilog[4] and tested for the Cadence Incisive tool chain

(NC Sim) version 14.10 and newer. Other simulators might be supported in the future.

The Micron BFM of the HMC is required and can be obtained under NDA. Please contact

openhmc@ziti.uni-heidelberg.de for more information.

6.1 Preparation

A few steps must be performed until the test environment is ready to use. Please follow the

following instructions carefully and review the steps when experiencing problems. Refer to

Appendix C for an overview of the directory/file structure.

1. Export the OPENHMC_PATH and OPENHMC_SIM environment variables. Example:

export $OPENHMC_PATH=home/user/openhmc

export $OPENHMC_SIM=home/user/openhmc/sim

Alternatively source the script ’export.sh’.

2. Extract the BFM package

3. Copy the contents of the package to ’$OPENHMC_SIM/bfm/’. The content of this

folder should now contain the folders ’src’, ’doc’, and so on.

4. Open ’hmc_bfm.f’ and change the all paths from src/ to $OPENHMC_SIM/bfm/src.

6.2 Run a Test

Navigate to $OPENHMC_PATH/sim/tb/run and execute run.sh by typing ’./run.sh’ for example.

Table 6.1 lists all available arguments. A test in an 2FLIT and 16lanes configuration with high

UVM verbosity may be started with:

./run.sh -f 2 -l 16 -v UVM_HIGH

However, it is also possible to run the script without any arguments. In this case the design

is automatically defaulted to an FPW=4 (512bit), NUM_LANES=8 configuration. Besides the

runscript the folder also contains a cleanup script ’clean_up.sh’ which can be run to remove

build files from previous simulation runs.

openHMC documentation Rev. 1.4 p.34

Table 6.1: Runscript Arguments

Argument Requires Value Description
-c Clean up old build files
-d X Define a different target (advanced)
-f X FPW. Set the datapath width
-g Start Simvision
-l X NUM_LANES. Set the number of lanes
-o Enable Coverage
-s X Start the test with a different seed
-t X Specify a test (see Section 6.5)
-v X Verbosity of the debug output. Available values are

UVM_NONE, UVM_LOW (default), UVM_MEDIUM, and
UVM_HIGH

-? Print usage help

6.3 Test Environment

HMC Testbench HMC Module UVC

Scoreboard

AXI4_HMC

MON_RSP

AXI4_HMC

MON_REQ

BFM_HMC

MON_RSP

BFM_HMC

MON_REQ

openHMC

controller

MonitorAXI4_UVC

Config

Master Driver

Master Agent

Config: PASSIVE

Master Sequencer

Slave Agent

Slave Driver

Config: ACTIVE

VIF

MonitorAXI4_UVC

Config

Master Driver

Master Agent

Config: ACTIVE

Master Sequencer

Slave Driver

Slave Agent

Config: PASSIVE

VIF

BFM

BFM_MON
RSP

BFM_MON
REQ

BFM Packet

BFM Packet

AXI4
Cycle

AXI4
Cycle

Response

AXI4 Link

Request

AXI4 Link

Response

HMC Link

Request

HMC Link

CAG_RGM

Figure 6.1: HMC Testbench

The UVM based test environment is presented in Figure 6.1. It consists of the following

components:

AXI4 UVC Used to verify the AXI4 interface. Depending on the purpose the AXI4 UVC

creates a master agent that generates packets and drives AXI4 cycles into the Device

openHMC documentation Rev. 1.4 p.35

Start Test

Init Sequences

AXI4 Sequences

hmc_check_seq

Test finished

Link came up

All requests transmitted

All checks passed

(Configure openHMC)

(The actual test)

(Check packet & token counts)

1.

2.

3.

Figure 6.2: Test Procedure

under Test (DUT) respectively a slave agent that receives packets.

Module UVC The module UVC contains the Scoreboard, which contains 2 sets of input-

analysis channels. One set is used to check packets on the AXI4 interface. The second

set collects and checks packets at the openHMC HMC interface. Each set contains a

request-, and a response analysis input. Packet types are defined in the base type

package (hmc_packet.sv). The scoreboard checks all data packets, TAGs included.

BFM The Micron BFM

CAG_RGM UVC Simulates the Register File access

All these components are instantiated within the HMC testbench (hmc_tb.sv)

6.3.1 Randomization

Features such as lane reversal, lane polarity, lane delay, and HMC and openHMC token

counts are randomized and can be user-constrained in ’hmc_link_config.sv’.

6.4 Test Procedure

All tests are processed in three phases as shown in Figure 6.2. After the test started, BFM

and the openHMC controller are configured during the bfm_init_seq and hmc_init_seq ,

respectively. After the link came up (signalized by the link_up bit in the register file ’status

register’), the actual test is started. Depending on the test, one or more hmc_pkt_sequences

are executed. These sequences will execute one or multiple hmc_2_axi4_sequence

with additional constrains. Finally, after the actual test has finished, a check sequence

openHMC documentation Rev. 1.4 p.36

(hmc_check_sequence) is executed. This sequence ensures that all responses to non-

posted requests were collected and that all tokens were successfully returned. The test will

abort and report a fatal error in case the hmc_check_seq is not completed successfully after

approximately 200us.

6.5 The Tests

The following tests are available:

simple_test (default)

This test sends a small amount (<= 250) of unconstrained packets.

small_pkt_test

Constrain packets to be small (max length = 2 Flits).

big_pkt_test

Constrain packets to be large (min length = 6 Flits).

posted_pkt_test

Constrain packets to be posted. This test randomly selects one of the test sequences

described above. Repeat max 40times.

non_posted_pkt_test

Constrain packets to be non posted. This test randomly selects one of the test

sequences described above. Repeat max 40times.

atomic_pkt_test

Constrain packets to be atomic. Repeat max 40times.

init_test

Runs initialization including TRET exchange. No data packets will be sent.

sleep_mode

Send a packet sequence, enter sleep, exit sleep, (repeat). Use of sleep mode is

experimental. Warnings that might be thrown by the BFM (violation of timing tOP) can

be safely ignored.

high_delay_pkt_test

Constrain the delay between packets to be above 90 FLITs.

zero_delay_pkt_test

Constrain the delay between packets to be zero.

openHMC documentation Rev. 1.4 p.37

small_pkt_hdelay_test

This test combines the constrains of small_pkt_test and hdelay_pkt_test.

small_pkt_zdelay_test

This test combines the constrains of small_pkt_test and zdelay_pkt_test.

big_pkt_hdelay_test

This test combines the constrains of big_pkt_test and hdelay_pkt_test. The Packet

size is constraint to be above 6 Flits with high packet delay.

big_pkt_zdelay_test

This test combines the constrains of big_pkt_test and zdelay_pkt_test. The Packet

size is constraint to be above 6 Flits with zero packet delay.

6.6 Error Injection / Link Retry

Automatic, randomized error injection on both directions of the link can be configured in

hmc_link_config.sv. At the time of writing, the latest revision of the BFM is 28965. For this

revision, error injection in response packets can be used without any limitations (cfg_rsp_* in

hmc_link_config.sv). CAG does not recommend error injection in request packets due to

issues with the BFM. However, request packet error injection may be used when sequence

number poisoning is left out (cfg_req_seq=0 in hmc_link_config.sv !).

6.7 F.A.Q.

Which simulators are supported ?

The openHMC testbench is tailored for the Cadence Incisive tool chain (NC Sim)

version 14.10 and newer. Support for other simulators might be provided in the future.

Does the test support link retry ?

Yes - link retry is supported. The latest BFM (at the time of writing: revision 28965) is

recommended.

The test aborts / Warnings / Errors

Send an email to openhmc@ziti.uni-heidelberg.de and briefly describe the issue.

Please attach the log file ’irun.log’.

openHMC documentation Rev. 1.4 p.38

A » Acronyms

BFM Bus Functional Model

CAG Computer Architecture Group

CDR Clock-Data Recovery

DUT Device under Test

FPW FLITs per Word

FRP Forward Retry Pointer

FSM Finite State Machine

HMC Hybrid Memory Cube

HMCC Hybrid Memory Cube Consortium

LFSR Linear Feedback Shift Register

LUT Loop-Up Table

MUX Multiplexer

PLL Phase-Locked Loop

RF Register File

RRP Return Retry Pointer

RTC Return Token Count

RX Receive

SEQ Sequence Number

TRET Token Return

TX Transmit

UVM Universal Verification Methodology

openHMC documentation Rev. 1.4 i

B » Register File Contents

Note that some field-widths depend on the parameter NUM_LANES. All bits that are not

listed are reserved and tied to logical 0.

Legend

HW Hardware access rights (through port list)

SW Software access rights (through RF interface)

wo write-only

ro read-only

rw read-write

Table B.1: Status General

Field Bit Width

[Bits]

Description & Encoding Res HW SW

link_up 0 1 Link is ready for operation 0 wo ro

link_training 1 1 Link training in progress 0 wo ro

sleep_mode 2 1 HMC is in Sleep Mode 0 wo ro

lanes

_reversed

3 1 0: Normal Operation

1: Lanes reversed (lane 15/8 with 0, ...)
0 wo ro

phy_ready 8 1 SerDes reset is done 0 wo ro

hmc_tokens

_remaining

25:16 10 Number of Tokens remaining in the HMC

input buffer

0 wo ro

rx_tokens

_remaining

41:32 10 Number of Tokens remaining in

the rx_link input buffer (if param

DBG_RX_TOKEN_MON = 1)

0 wo ro

lane _polarity

_reversed

55:48(8x)

63:48(16x)

NUM
LANES

0: Normal Operation

1: Data is logically inverted lane-by-lane
0 wo ro

openHMC documentation Rev. 1.4 ii

Table B.2: Status Init

Field Bit Width
[Bits]

Description & Encoding Res HW SW

lane
_descramblers
_locked

7:0(8x)
15:0(16x)

NUM
LANES

Lane by lane descrambler locked 0 wo ro

descrambler
_part
_aligned

23:16(8x)
31:16(16x)

NUM
LANES

Lane by lane descrambler partially
aligned

0 wo ro

descrambler
_aligned

40:32(8x)
47:32(16x)

NUM
LANES

Lane by lane descrambler fully aligned 0 wo ro

all_descramblers
_aligned

48 1 All descramblers are aligned 0 wo ro

tx_init_status 50:49 2 Init Status of the TX Block
2’b00: No init in progress
2’b01: NULL1
2’b10: TS1
2’b11: NULL2

0 wo ro

hmc_init_ts1 51 1 HMC sends TS1 packets 0 wo ro

Table B.3: Other Counter (Each Entry equals one Register)

Field # Bits Description & Encoding Reset HW SW
tx_link_retries 32 Incremental 1-bit counter: Number of Link re-

tries performed on TX
0 wo ro

errors_on_rx 32 Incremental 1-bit counter: Number of success-
ful HMC retries performed

0 wo ro

run_length
_bit_flip

32 Incremental 1-bit counter: How many bit_flips
were performed by the run length limiter

0 wo ro

error_abort
_not_cleared

32 Incremental 1-bit counter: Indicates the num-
ber of link retry attemps that timed out

0 wo ro

counter_reset 1 Reset counter in the ’Other Counter’ category.
This bit is automatically cleared

0 wo ro

Table B.4: Performance Counter (Each Entry equals one Register)

Field # Bits Description & Encoding Reset HW SW
poisoned_packets 64 Number of poisoned packets received 0 wo ro
sent_np 64 Number of non posted requests issued (includ-

ing all types)
0 wo ro

sent_p 64 Number of Posted Data Write requests issued 0 wo ro
sent_r 64 Number of Read Data requests issued 0 wo ro
rcvd_rsp 64 Number of responses received 0 wo ro

openHMC documentation Rev. 1.4 iii

Table B.5: Control

Field Bit Width
[Bits]

Description & Encoding Res HW SW

p_rst_n 0 1 Active low HMC reset 0 ro rw
hmc_init_cont_set 1 1 Allow descramblers to lock 0 ro rw
set_hmc_sleep 2 1 Request HMC sleep mode. Sleep

mode can be monitored by the
’sleep_mode’ field in the Status Gen-
eral Register

0 ro rw

scrambler
_disable

3 1 Disable Scrambler and Descrambler
for testing purposes

0 ro rw

run_length
_enable

4 1 Disable the run length limiter in the
TX scrambler logic

1 ro rw

first
_cube_ID

7:5 3 Set the Cube ID of the first HMC con-
nected. Used in irtry packets

0 ro rw

debug
_dont_send_tret

8 1 Prohibit controller from sending any
TRET packets

0 ro rw

debug
_halt_on
_error_abort

9 1 HALT tx_link after rx_link entered er-
ror abort

0 ro rw

debug
_halt_on
_tx_retry

10 1 HALT tx_link after performing a retry 0 ro rw

rx_token
_count

25:16 10 Set the input buffer space in the RX
block

0x64 ro rw

irtry_received
_threshold

36:32 5 Set the number of irtry packets to be
received until an action is performed

0x10 ro rw

irtry_to
_send

44:40 5 Set the number of irtry to be sent 0x16 ro rw

bit_slip
_time

53:48 6 Set the time (in clk_hmc cycles) be-
tween to bit_slip impulses. Used for
receiver alignment during initializa-
tion. Value is based on transceiver
requirements

0x28 ro rw

openHMC documentation Rev. 1.4 iv

C » Directory Structure

openhmc
export.sh
rtl

building_blocks
counter

counter48.v
fifos

async
openhmc_async_fifo.v

sync
openhmc_sync_fifo_reg_stage.v
openhmc_sync_fifo.v
openhmc_sync_fifos.f

rams
openhmc_ram.v

hmc_controller
crc

crc_128_init.v
crc_accu.v

register_file
openhmc_16x_rf.v
openhmc_8x_rf.v

rx
rx_crc_compare.v
rx_descrambler.v
rx_lane_logic.v
rx_link.v

tx
tx_crc_combine.v
tx_link.v
tx_run_length_limiter.v
tx_scrambler.v

openhmc_top.f
openhmc_top.v

include
hmc_field_functions.h

openHMC documentation Rev. 1.4 v

sim
UVC

axi4_stream
sv

. . .
cag_rgm

sv
. . .

hmc_base_types
sv

. . .
hmc_module

sv
. . .

bfm
. PUT MICRON BFM HERE

tb
bfm

build
. . .

src
rgm
serdes

behavioral
targets

dut_openhmc_behavioral_bfm.sv . Top DUT
hmc_link_config.sv. .Test configuration

testlib
simple_test

. . .

. . .
. . .

run
run.sh .RUN THIS FILE FOR SIMULATION
clean_up.sh . Cleanup old simulation files
run_files

. . .
doc

openhmc_doc_rev1_4

openHMC documentation Rev. 1.4 vi

D » Revision History

1.4 The following changes have been made

Controller

• Improved CRC modules for relaxed timing and siginificant resource savings

• Added additional parameters to allow greater control. Refer to Chapter 3 for

more information

• TX_Link: Fixed retry buffer overflow condition

• RX_Link: Several fixes to issues that caused link retry to fail

• RX_Link: Poisoned packets do not enter the input buffer. Tokens are returned

beforehand

• RX_Link: Renamend some nets in rx_link and added dedicated initialization

datapath to relax timing

• RX_Link: Fixed initialization issue associated with 2FLIT/full-width config where

descrambler won’t align

• RX_Link AXI IF: Added error response packet indicator on TUSER bus

• rx_crc_compare: Added check for reserved ’0’ fields within flow packets

• Added debug register ’error_abort_not_cleared’ to monitor failed link retries

after the retry timeout period

• Added debug registers ’debug_halt_on_error_abort’ and ’debug_halt_on_tx_retry’

to freeze tx_link after either event occured

Testbench

• Major update (see Chapter 6)

Documentation (Section Number)

2.4.3 Added a note that poisoned packets do not enter the input buffer

3.3 Added a note that empty cycles are not allowed on TX when TVALID=1

3.3 Added error response indicator for RX AXI interface

4 Added retry pointer loop time section

5 Added new example implementations

openHMC documentation Rev. 1.4 vii

6 Major update

B Added new fields to control registers. Corrected wrong reset values

openHMC documentation Rev. 1.4 viii

E » List of Figures

1.1 HMC: Abstract View . 3

1.2 openHMC Host Controller Block Diagram . 4

2.1 Detailed view of the openHMC Controller Top Module 7

2.2 TX FSM . 7

2.3 TX Link Diagram . 9

2.4 Data-Reordering: 4FLIT/512bit example . 9

2.5 Scalable CRC Architecture: FPW=4 Example 11

2.6 RX Link Diagram . 12

3.1 System Interface Diagram . 15

3.2 HMC Interface Pins Diagram . 15

3.3 AXI-4 Interface Diagram . 16

3.4 HMC Header and Tail . 17

3.5 Example transactions on the AXI TX TDATA bus for FPW=4 17

3.6 TUSER Example for FPW=4 . 18

3.7 Register File Interface Diagram . 20

3.8 Register File Access: Write and read register 0x2 22

4.1 TX-Link: Initialization Timing . 23

4.2 openHMC Controller Power Up Steps . 24

4.3 Pointer Flow . 25

4.4 TX Link Retry . 26

4.5 HMC Retry . 26

6.1 HMC Testbench . 35

6.2 Test Procedure . 36

openHMC documentation Rev. 1.4 ix

F » List of Tables

2.1 TX FSM State Table . 8

2.2 TX FSM Transition Table . 8

2.3 RAM Configurations . 10

3.1 Configuration Parameters . 14

3.2 Transceiver Interface Signals . 19

3.3 Register File Interface Signals . 21

3.4 Register File Address Map . 21

4.1 Configuration Parameters . 24

4.2 Retry Pointer Loop Time . 27

4.3 TX Link Worst Case RRP Embed Delay . 28

4.4 RX Link RRP Process/Extract Delay . 28

4.5 Combined Retry Pointer Delay . 29

4.6 Example Configurations . 30

4.7 Valid parameter sets . 30

5.1 FPGA-Verified Configurations . 32

5.2 Top-Level Implementation Parameters . 32

5.3 Resource Utilization . 32

6.1 Runscript Arguments . 35

B.1 Status General . ii

B.2 Status Init . iii

B.3 Other Counter (Each Entry equals one Register) iii

B.4 Performance Counter (Each Entry equals one Register) iii

B.5 Control . iv

openHMC documentation Rev. 1.4 x

References

[1] Free Software Foundation, Inc. GNU Lesser General Public License.

http://www.gnu.org/licenses/lgpl.html. [last accessed 12-Sep-2014].

[2] Hybrid Memory Cube Consortium. Hybrid Memory Cube Specification 1.1.

http://www.hybridmemorycube.org/. [last accessed 12-Dec-2014].

[3] ARM Limited. AMBA AXI4-Stream Protocol Specification v1.0.

http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ihi0051a/index.html.

[last accessed 16-Aug-2014].

[4] IEEE Computer Society and the IEEE Standards Association Corporate Advisory Group.

IEEE Std 1800-2012, IEEE Standard for SystemVerilog-Unified Hardware Design, Speci-

fication, and Verification Language. Technical report, Feb. 21, 2013.

openHMC documentation Rev. 1.4 xi

	Contents
	1 About openHMC
	1.1 What is openHMC?
	1.2 About The Hybrid Memory Cube
	1.3 The openHMC Controller
	1.4 Features

	2 Module Description
	2.1 Top Module (openhmc_top.v)
	2.2 Asynchronous RX and TX FIFOs (openhmc_async_fifo.v)
	2.3 TX Link (tx_link.v)
	2.4 RX Link (rx_link.v)
	2.5 Register File (openhmc_8x_rf.v and openhmc_16x_rf.v)
	2.6 Header Files

	3 Interface Description
	3.1 System Interface
	3.2 HMC Interface
	3.3 AXI-4 Stream Protocol Interface
	3.4 Transceiver Interface
	3.5 Register File Interface

	4 Configuration and Usage
	4.1 Clocking and Reset
	4.2 Power-Up and Initialization
	4.3 Sleep Mode
	4.4 Link Retraining
	4.5 Link Retry
	4.6 Retry Pointer Loop Time
	4.7 openHMC Configuration
	4.8 HMC Configuration

	5 Implementation
	5.1 Design with the Core
	5.2 Implementation Results
	5.3 Optimization Techniques

	6 openHMC Test Environment
	6.1 Preparation
	6.2 Run a Test
	6.3 Test Environment
	6.4 Test Procedure
	6.5 The Tests
	6.6 Error Injection / Link Retry
	6.7 F.A.Q.

	A Acronyms
	B Register File Contents
	C Directory Structure
	D Revision History
	E List of Figures
	F List of Tables
	References

