

Design of All Digital FM
Receiver Circuit

Nursani Rahmatullah
March 2005

Table of Contents

Table of Contents..i
Table of Figures ...ii
1. Introduction..1
2. Architecture Description..1

2.1 Phase Detector ...1
2.2 Loop Filter ...3
2.3 Numerical Controlled Oscillator..4
2.4 FIR Filter..6

3. Functional Explanation ..6
4. Critical Path Speed and Circuit Area ...9
5. Appealing Point and Originality ..11
6. HDL Codes ..11

6.1 Multiplier (Phase Detector)..11
6.2 Loop Filter ...13
6.3 Numerical Controlled Oscillator (NCO)..14
6.4 FIR Filter..18
6.5 Circuit (top level design) ...19
6.6 Test Bench ...20

7. Simulation Waveform..21
8. FPGA Implementation ...22
9. Closing ...25
Reference: ..25
Appendix:...26

 i

Table of Figures

Fig. 1 Block diagram of All Digital FM Receiver circuit..1
Fig. 2 Block diagram of multiplier as phase detector ..2
Fig. 3 Paper and pencil illustration of Booth’s algorithm..3
Fig. 4 Block diagram of first order loop filter ...4
Fig. 5 Block diagram of NCO..5
Fig. 6 Data values in one cycle of cosine ROM ..5
Fig. 7 Block diagram of FIR filter ...6
Fig. 8 Complete block diagram of All Digital FM Receiver system.............................7
Fig. 9 Block diagram of PLL system in analyzing transient response...........................8
Fig. 10 Unit step response for PLL system used in FM receiver system.......................9
Fig. 11 Simulation waveform of the circuit, subjected to square wave modulated input
signal ..22
Fig. 12 Simulation waveform of the circuit, subjected to triangular wave modulated
input signal...22
Fig. 13 Chip graphic for the design ...23
Fig. 14 Capturing output data via parallel cable in JTAG mode23
Fig. 15 Captured data and waveform of the output in ChipScope...............................24
Fig. 16 Actual demodulated data ...24

 ii

1. Introduction

The design of the All Digital FM Receiver circuit in this project uses Phase
Locked Loop (PLL) as the main core. The task of the PLL is to maintain coherence
between the input (modulated) signal frequency, iω and the respective output
frequency, oω via phase comparison. This self-correcting ability of the system also
allows the PLL to track the frequency changes of the input signal once it is locked.

Frequency modulated input signal is assumed as a series of numerical values
(digital signal) via 8-bit of analog to digital conversion (ADC) circuit. The FM
Receiver gets the 8 bit signal every clock cycle and outputs the demodulated signal.

The All Digital FM Receiver circuit is designed using VHDL, then simulated and
synthesized using ModelSim SE 6 simulator and Xilinx ISE 6.3i, respectively. FPGA
implementation also provided, here we use Virtex2 device. The real measurement is
done using ChipScope Pro 6.3i.

2. Architecture Description

The system of All Digital FM Receiver consists of a digital PLL cascaded with
digital low pass filter. The block diagram of system is shown in Fig. 1.

θ θo

ωi ± ωo
f

ω ± ω

Fig. 1 Block diagram of All Digital FM Receiver circuit

2.1 Phase Detector

Phase Detector (PD) detects phase error between input signal and output signal
from NCO. This operation employs a multiplier module. The input signal is frequency
modulated, so the input signal can be expressed as follows, ()iV n

PHASE
DETECTOR

Kd

LOOP FILTER
F(z)

NUMERICAL
CONTORL

OSCILATOR

A
LOW PASS
FILTER
F(z)

INPUT
SIGNAL
Vi(n)
ωi
θi

Vo(n)
ωo
θo Vd(n)

OUTPUT
SIGNAL i o

Vd(n) Ve(n)

Digital PLL

 1

() sin()i iV n n iω θ= + (1)

Feedback loop mechanism of the PLL will force NCO to generate sinusoidal signal

with the same frequency of , then ()oV n ()iV n

() cos()o iV n n oω θ= + (2)

Output of phase detector is product of these two signals, using familiar trigonometric
identity we obtain

[]

() sin() cos()

sin(2) sin()
2

d d i i i o

d
i i o i o

V n K n n
K n

ω θ ω θ

ω θ θ θ θ

= + +

= + + + −

n

 (3)

Kd is the gain of the phase detector. The first term in (3) corresponds to high
frequency component. The second term corresponds to the phase difference between

 and V . By removing the first term thru loop filtering, the phase difference
can be obtained.

()iV n ()o

 The block diagram of phase detector is a multiplier shown in Fig. 2.

Fig. 2 Block diagram of multiplier as phase detector

fmin
<8,0,t>

<8,0,t>

Summary of operation:

• input1 is fmin (modulated data), input2 is NCO’s output. Both input are 2’s
complement in <8,0,t> format, please see [8] for details.

• unit delay is used to synchronize operation,

• then inputs values are multiplied, where input1 as multiplicand and input2 as

multiplier,

• product will be 16 bit in <16,0,t> format, then we scale it by cropping the 8

most bits and feed it to the output in <8,0,t> format.

In the VHDL model, we use Booth’s Multiplication algorithm [2] instead of
simple signed arithmetic multiplier operation (denoted by ∗). Arithmetic multiplier
will consume large area, while Booth’s multiplication algorithm for 8-bit
multiplication only needs eight 8-bit adders which is much save in area consumption.

input1
D Q

<8,0,t>
output

<8,0,t>
unit delay input2

 2

 For this algorithm, as shown in Fig. 3, the individual partial products
determined from the multiplicand may be: added to, subtracted to, or may not change
the final product at all based on the following rules:

• the multiplicand is subtracted from the partial product upon encountering the
first 1 in a string of 1’s in the multiplier,

• the multiplicand is added to the partial product upon encountering the first 0

provided that there was no previous 1 in a string of 0’s in the multiplier,

• the partial product does not change when the bit is identical to the previous

multiplier bit.

2’s complement of multiplicand 10111 is 01001

9 8 7 6 5 bit weighting 4 3 2 1 0
 1 0 1 1 1 multiplicand (-9)
 1 0 0 1 1 multiplier (-13)

0 0 0 0 0 0 1 0 0 1 1

--
st multiplier bit 1 – subtract (add 2' complement)

0 0 0 0 0 0 0 0 0 2nd multiplier bit also 1 – no change so no add/subtract
1 1 1 1 0 1 1 1 3rd multiplier bit changes to 0 so add. Note sign extension
0 0 0 0 0 0 0 4th multiplier bit also 0 – no change so no add/subtract
0 0 1 0 0 1 5th multiplier bit changes to 1 so subtract (add 2’s compl)

0 0 0 1 1 1 0 1 0 1 product (+117)

Note the overflow of adding the partial product into 11th bit (bit weighting 10) of the
product is ignored as it represents the original sign bit of the multiplier.

Fig. 3 Paper and pencil illustration of Booth’s algorithm

first 1
first 0
second 1

2.2 Loop Filter

Loop filter will remove the high frequency component in (3). Fig. 4 shows the
block diagram of a first order loop filter used in the receiver system. In the VHDL
model of this block, we need to treat a sign extension from <8,0,t> to <12,4,t>
and a multiplication by constant of 15/16.

Summary of operation:

• input C is multiplier’s output in <8,0,t> format. Output is D1 <12,4,t>.
D1 will be multiplied by 15/16 and then the product is summed back to C

• dtemp <12,4,t> is internal signal which is the summing result of C and D1.

C must be changed to <12,4,t> before summation, hence,

 <8,0,t> <12,4,t>
C C(7 downto 0) C(7)&C(7)&C(7)&C(7)&C(7 downto 0)

 3

• dtemp will be assigned to D1. Then dtemp x 15/16 = dtemp x (1 – 1/16) =
dtemp – (dtemp x 1/16) = dtemp - E

• E =dtemp x 1/16, in reality 1/16 multiply can be implemented by just 4 bit

right shift operation. Then no multiplier is required.

dtemp <12,4,t> E <12,4,t> = dtemp x 1/16
dtemp(11 downto 0) dtemp(11)&dtemp(11)&dtemp(11)&dtemp(11)&dtemp(11

downto 4)

Atemp

Fig. 4 Block diagram of first order loop filter

First order loop filter as shown in Fig. 4 is a low pass filter with the transfer function

 () 1()
() 0.9375

Y zH z
X z z

⎛ ⎞≡ = ⎜ −⎝
⎟
⎠

 (4)

Which has a pole on the real axis at z = 0.9375. From stability property of discrete
time filter, we know that H(z) is stable since its pole is located within the unit circle
[1].

2.3 Numerical Controlled Oscillator

Numerical Controlled Oscillator (NCO) will take the corrective error
voltage, and then shift its output frequency from its free-running value to the
input signal frequency

()dV n

iω and thus keep the PLL in lock. The block diagram can be
seen in Fig. 5 as follows,

<12,4,t>
X Y

Z-1

15
16

×

D1C
<8,0,t> <12,4,t>

d i oθ θ θ≈ = −Atemp - E
<12,4,t>

 4

D2

Fig. 5 Block diagram of NCO

Here we assume the NCO free running frequency is 1 MHz and the system
clock frequency is 16 MHz; there are 16 sampling points in one cycle of 1 MHz free
running frequency. When input is zero, NCO has to generate output equal to free
running frequency. Since there are 16 sampling points in one cycle of free running
frequency, so the offset must be 1/16. The greater input will produce greater
frequency, and vice versa.

Fig. 6 Data values in one cycle of cosine ROM

The system is a simple integrator which accumulates the input value and maps
it into predefined cosine ROM. All 1024 values were given (file: cos.txt) to define one
cycle of cosine signal, but we actually don’t need to use all of these values. Since one
cycle can be divided to four quarter, we only need to define the first quarter with 257
values. The remains quarters are duplicated form the first quarter, where the opposite
sign is applied to second and third quarter. Illustration is shown in Fig 6.

Summary of operation:

• input D2 and offset are added, note that signed extension form <12,-6,t> to
<18,0,u>.

Z-1

<12,-6,t>

<8,0,t> <10,0,u>
COSINE
ROM

Offset=
1/16

<18,0,u>

1st quarter 2nd quarter 3rd quarter 4th quarter

257 values of cosROM

Assume i is output data accumulator (ROM’s address),
for 0 ≤ i ≤ 256 cosrom(i)
for 256 < i ≤ 512 -cosrom(512-i)
for 512 < i ≤ 768 -cosrom(i-512)
for 768 < i ≤ 1023 cosrom(1024-i)

 5

• the addition result then accumulated by modulo accumulator, then we take 10

most bits as ROM address.

• Address will be mapped to data values in ROM.

2.4 FIR Filter

The last stage of the receiver system is to perform signal shaping. Here we use
16 tap Finite Impulse Response (FIR) filter to perform digital low pass filter. This
filter is essentially average filter since its output is equal to the average value of its
input over the last n-tap samples, where n is number of tap used [4]. This
configuration needs 16 coefficients, but simplification is taken by assuming all of the
coefficients are the same, 1/16. In reality 1/16 multiply can be implemented by just 4
bit right shift operation. Then no multiplier is required.

Fig. 7 Block diagram of FIR filter

3. Functional Explanation

Digital PLL system is composed of three basic parts: (1) Phase Detector (PD), (2)
Loop filter, (3) Numerical-controlled oscillator (NCO). The complete block diagram
of the All Digital FM receiver circuit is shown in Fig. 8.

With no signal input applied to the system. The NCO control voltage is
equal to zero. The NCO operates at a set frequency, f

()dV n
o (or the equivalent radian

frequency, oω) which is known as the free running frequency. When an input signal is
applied to the system, the phase detector compares the phase and the frequency of the
input with the NCO frequency and generates an error voltage that is related to
the phase and the frequency difference between the two signals.

()eV n

X15

Z-1
X14

Z-1
X13

Z-1
X12 X1 X0

Z-1
••••

D1
<12,4,t>

<16,8,t> 1
16

×
dmout

<12,4,t>

 6

Fig. 8 Complete block diagram of All Digital FM Receiver system

This error voltage is then filtered, amplified by factor of A = 1/1024, and
applied to the control terminal of the NCO. In this manner, the control voltage
forces the NCO frequency to vary in a direction that reduces the frequency difference
between

()dV n

oω and the input signal. If the input frequency iω is sufficiently close to oω ,
the feedback nature of the PLL causes the NCO to synchronize or lock with the
incoming signal. Once in lock, the NCO frequency is identical to the input signal
except for a finite phase difference.

This net phase difference of eθ where

e i oθ θ θ= − (5)

is necessary to generate the corrective error voltage V to shift the NCO frequency
from its free-running value to the input signal frequency

()d n

iω and thus keep the PLL in
lock. This self-correcting ability of the system also allows the PLL to track the

fmin
<8,0,t>

D Q

<8,0,t>

<8,0,t>unit delay 15
16

×

<12,4,t>

<12,4,t>

()eV n
<8,0,t>

COSINE
ROM

<12,-6,t>

<10,0,u>

1/16
<18,0,u>

1
1024

×

<18,0,u>

<8,-10,u>

••••

1
16

× <16,8,t>

<12,4,t>

dmout
<12,4,t>

D Q

D Q

D Q D Q D Q D Q

()dV n

 7

frequency changes of the input signal once it is locked, hence it can be act as FM
demodulator in receiver system.

Another means of describing the operation of the PLL is to observe that the
phase detector is in actuality a multiplier circuit that mixes the input signal with the
NCO signal. This mix produces the sum and difference frequencies ()i oω ω± shown
in (3). When the loop is in lock, the NCO duplicates the input frequency so that the
difference frequency component ()i oω ω− is zero; hence, the output of the phase
comparator contains only a DC component. The loop filter removes the sum
frequency component ()i oω ω+ but passes the DC component which is then
amplified and fed back to the NCO.

The single most important point to realize when designing with the PLL is that
it is a feedback system and, hence, is characterized mathematically by the same
equations that apply to other, more conventional feedback control systems [5].
Mathematical model of the all digital PLL system can be derived to analyze the
transient and steady state response. The block diagram of the all digital PLL system in
z domain (discrete time) and its transformation in s domain (continuous time) is
shown in Fig. 9.

Fig. 9 Block diagram of PLL system in analyzing transient response

Since a physical control system involves energy storage, the output of the
system, when subjected to an input, cannot follow the input immediately but exhibits
a transient response before a steady state can be reached [3].

The transfer function of the system is

2

2

()
() 1.9375 0.06161 0.00089

Y s s s
X s s s

− +
=

+ +
 (6)

1
0.9375z −

 +

X(z) Y(z)

-

1 1
1 1024

z
z
+

×
−

1
1.9375 0.0625

s
s
− +
+

 +
-

1 1
1024s

×

Using Bilinear Transformation:

X(s) Y(s)

 8

Hence, the PLL system is a second order system. In the test for stability we subjected
the system with test signal representing a unit step of frequency at constant phase, this
test signal correspond with actual input signal which is a FM modulated signal [5].
 Using MATLAB, we can plot unit step response curve for the system as
shown in Fig. 10. We see that the system is stable with overshoots at the transient
state.

0 100 200 300 400 500 600
-2

0

2

4

6

8

10

12
Unit-Step Response of H(s)=(-s2+s)/(1.9375s2+0.06161s+0.00098)

Time (sec)

Am
pl

itu
de

Fig. 10 Unit step response for PLL system used in FM receiver system

4. Critical Path Speed and Circuit Area

Design is synthesized with Xilinx Synthesize Tool (XST), here we use Virtex2
technology with xc2v2000ff896 device and -6 of speed grade.

• Unit delay

The unit speed from synthesizing of 50 input XOR gate (see Appendix
for details) give us the result 6.967 ns total delay and 5 levels, then unit delay
is 6.967/5 = 1.393 ns.

• Unit area

The unit area from synthesizing of 50 input XOR gate (see Appendix

for details) give us the result 102 total area gate count and utilize 17 cells,
then unit area is 102/17 = 6.

Here is the synthesis result of critical path speed,

 9

Timing Summary:

Speed Grade: -6

 Minimum period: 8.781ns (Maximum Frequency: 113.889MHz)
 Minimum input arrival time before clock: 1.329ns
 Maximum output required time after clock: 4.575ns
 Maximum combinational path delay: No path found

Timing Detail:

All values displayed in nanoseconds (ns)

Timing constraint: Default period analysis for Clock 'clk'
Delay: 8.781ns (Levels of Logic = 12)
 Source: I2_dtemp1_4 (FF)
 Destination: I2_dout_2 (FF)
 Source Clock: clk rising
 Destination Clock: clk rising

 Data Path: I2_dtemp1_4 to I2_dout_2
 Gate Net
 Cell:in->out fanout Delay Delay Logical Name (Net Name)
 -- ------------
 FDC:C->Q 12 0.449 0.688 I2_dtemp1_4 (I2_dtemp1_4)
 LUT2_D:I0->LO 1 0.347 0.100 I2_Ker240621 (N65860)
 LUT4:I3->O 5 0.347 0.569 I2_Ker249151 (I2_N24917)
 LUT4:I3->O 2 0.347 0.518 I2_Ker2252582 (CHOICE4276)
 LUT3:I0->O 1 0.347 0.000 I2_Ker2252593_G (N65481)
 MUXF5:I1->O 1 0.345 0.383 I2_Ker2252593 (CHOICE4278)
 LUT4:I0->O 1 0.347 0.382 I2_Ker22525105 (CHOICE4279)
 LUT4_L:I3->LO 1 0.347 0.100 I2_Ker22525154 (CHOICE4291)
 LUT2:I1->O 2 0.347 0.519 I2_Ker22525164 (I2_N22527)
 LUT4_L:I3->LO 1 0.347 0.100 I2_Ker22312138 (CHOICE4400)
 LUT4:I2->O 2 0.347 0.518 I2_Ker22312162 (I2_N22314)
 LUT4:I3->O 1 0.347 0.000 I2__n0008<2>323_G (N65471)
 MUXF5:I1->O 1 0.345 0.000 I2__n0008<2>323
(I2__n0008<2>)
 FDC:D 0.293 I2_dout_2
 --
 Total 8.781ns (4.902ns logic, 3.878ns route)
 (55.8% logic, 44.2% route)

We conclude that the normalized combinational path delay is 8.781/1.393 = 6.304
unit delay

While the synthesized result for circuit area is,

Design Summary

Number of errors: 0
Number of warnings: 8
Logic Utilization:
 Number of Slice Flip Flops: 446 out of 21,504 2%
 Number of 4 input LUTs: 1,226 out of 21,504 5%
Logic Distribution:
 Number of occupied Slices: 834 out of 10,752 7%
 Number of Slices containing only related logic: 834 out of 834 100%
 Number of Slices containing unrelated logic: 0 out of 834 0%
Total Number 4 input LUTs: 1,248 out of 21,504 5%
 Number used as logic: 1,226
 Number used as a route-thru: 22
 Number of bonded IOBs: 22 out of 624 3%
 IOB Flip Flops: 20
 Number of GCLKs: 1 out of 16 6%

Total equivalent gate count for design: 13,835

 10

We conclude that the normalized circuit area is 13,835/6 = 2,306 gates

5. Appealing Point and Originality

The architecture used in this design has been explained in [7]. This architecture is
good. We did something different by optimizing phase detector component to achieve
smaller circuit area, and we also modify NCO component.

We optimized the multiplication operation used in the phase detector component.
We used Booth’s algorithm to replace arithmetic multiplier with some adders. This
modification reduces the number of gate for this component from 689 gates decrease
to 453 gates.

For NCO component, we only need 257x8-bit ROM rather than 1024x8-bit ROM
since one cycle of cosine wave can be divided into four quarter as explained before.
Although this modification uses smaller size of ROM, we can’t avoid using more
registers and several comparators, but it’s interesting to work with.

We attempted to find another digital PLL architecture like one which was
proposed in [8]. We realize that it is also good and easy to build, but it needs high
frequency of clock to drive the counters. Finally we try to implement our design into
FPGA, and then we need to do real measurement. The result gives us the correct
demodulated output wave as expected.

6. HDL Codes

HDL codes for each component, top level design, and the test bench can be
observed as follows,

6.1 Multiplier (Phase Detector)

LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE IEEE.numeric_std.ALL;

ENTITY multiplier IS
port (CLK : in std_logic;
 RESET : in std_logic;
 input1 : in std_logic_vector(7 downto 0);
 input2 : in signed(7 downto 0);
 output : out signed(7 downto 0)
);
END multiplier ;

ARCHITECTURE behavior OF multiplier IS

signal out_temp : signed(15 downto 0);
signal input1_buf : signed(15 downto 0);
signal part0,part1,part2,part3,part4,
 part5,part6,part7 : signed(15 downto 0);

begin
process(CLK, RESET)
begin
 if (RESET='1') then
 out_temp <= (others => '0');

-- Declarations

-- input1 as multiplicand <8,0,t>
-- input2 as multiplier <8,0,t>
-- product <8,0,t>

-- output buffer
-- multiplicand buffer
-- 8 partials product

 11

 output <= (others => '0');
 input1_buf <= (others => '0');
 part0 <= (others => '0');
 part1 <= (others => '0');
 part2 <= (others => '0');
 part3 <= (others => '0');
 part4 <= (others => '0');
 part5 <= (others => '0');
 part6 <= (others => '0');
 part7 <= (others => '0');
 elsif rising_edge(CLK) then
 input1_buf <= input1(7)&input1(7)&input1(7)&
 input1(7)&input1(7)&input1(7)&
 input1(7)&input1(7)&
 signed(input1);
 if (input2(0)='1') then
 part0 <= -(input1_buf);
 else
 part0 <= (others => '0');
 end if;

 if (input2(1)='1') then
 if (input2(0)='1') then
 part1 <= (others => '0');
 else
 part1 <= -(input1_buf);
 end if;
 else
 if (input2(0)='1') then
 part1 <= input1_buf;
 else
 part1 <= (others => '0');
 end if;
 end if;

 if (input2(2)='1') then
 if (input2(1)='1') then
 part2 <= (others => '0');
 else
 part2 <= -(input1_buf);
 end if;
 else
 if (input2(1)='1') then
 part2 <= input1_buf;
 else
 part2 <= (others => '0');
 end if;
 end if;

 if (input2(3)='1') then
 if (input2(2)='1') then
 part3 <= (others => '0');
 else
 part3 <= -(input1_buf);
 end if;
 else
 if (input2(2)='1') then
 part3 <= input1_buf;
 else
 part3 <= (others => '0');
 end if;
 end if;

 if (input2(4)='1') then
 if (input2(3)='1') then
 part4 <= (others => '0');
 else
 part4 <= -(input1_buf);
 end if;
 else
 if (input2(3)='1') then
 part4 <= input1_buf;
 else
 part4 <= (others => '0');
 end if;
 end if;

-- input buffering with sign
extension
-- start Booth’s algorithm
-- check first bit of multiplier
-- subtract (add 2’s complement)

-- no change

-- check second bit of multiplier
-- check previous bit
-- no change

-- subtract (add 2’s complement)

-- add

 12

 if (input2(5)='1') then
 if (input2(4)='1') then
 part5 <= (others => '0');
 else
 part5 <= -(input1_buf);
 end if;
 else
 if (input2(4)='1') then
 part5 <= input1_buf;
 else
 part5 <= (others => '0');
 end if;
 end if;

 if (input2(6)='1') then
 if (input2(5)='1') then
 part6 <= (others => '0');
 else
 part6 <= -(input1_buf);
 end if;
 else
 if (input2(5)='1') then
 part6 <= input1_buf;
 else
 part6 <= (others => '0');
 end if;
 end if;

 if (input2(7)='1') then
 if (input2(6)='1') then
 part7 <= (others => '0');
 else
 part7 <= -(input1_buf);
 end if;
 else
 if (input2(6)='1') then
 part7 <= input1_buf;
 else
 part7 <= (others => '0');
 end if;
 end if;
 out_temp <= part0+(part1(14 downto 0)&'0')+
 (part2(13 downto 0)&"00")+
 (part3(12 downto 0)&"000")+
 (part4(11 downto 0)&"0000")+
 (part5(10 downto 0)&"00000")+
 (part6(9 downto 0)&"000000")+
 (part7(8 downto 0)&"0000000");
 output <= out_temp(15 downto 8);
 end if;
end process;
END behavior;

-- summing partials product

-- crop 8 most bits as final
product

6.2 Loop Filter

LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE IEEE.numeric_std.ALL;

ENTITY loop_filter IS
port (CLK : in std_logic;
 RESET : in std_logic;
 C : in signed(7 downto 0);
 D1 : out signed(11 downto 0);
 D2 : out signed(11 downto 0)
);
END loop_filter ;

-- Declarations

-- input <8,0,t> from multiplier
-- output <12,4,t> to FIR
-- output <12,-6,t> to NCO

 13

ARCHITECTURE behavior OF loop_filter IS

signal E : signed(11 downto 0);
signal dtemp : signed(11 downto 0);

begin
process(CLK, RESET)
begin
 if (RESET='1') then
 D1 <= (others => '0');
 D2 <= (others => '0');
 E <= (others => '0');
 dtemp <= (others => '0');
 elsif rising_edge(CLK) then
 dtemp <= (C(7)&C(7)&C(7)&C&'0') + dtemp - E;
 E <= dtemp(11)&dtemp(11)&dtemp(11)&dtemp(11)&
 dtemp(11 downto 4);
 D1 <= dtemp;
 D2 <= dtemp(11 downto 4)&”0000”;
 end if;
end process;
END behavior;

-- (Atemp x 1/16)
-- output buffer

-- 15/16 = (1 – 1/16),
-- hence, Atemp x 15/16 = Atemp–
(Atemp x 1/16) = Atemp – E

-- here we scaled input to get
better result
-- 1/16 multiply is 4 bit right
shift operation
-- 1/1024 multiply is 10 bit right
shift operation
-- D2 = D1 x 1/1024
-- note that to get D2, D1 must be
changed to 18 bit then do the 10
bit shift right operation and then
change it to <12,-6,t> format.

6.3 Numerical Controlled Oscillator (NCO)

LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE IEEE.numeric_std.ALL;

ENTITY nco IS
port(clk : in std_logic;
 reset : in std_logic;
 din : in signed(11 downto 0);
 dout : out signed(7 downto 0)
);
END nco ;

ARCHITECTURE behavior OF nco IS
type vectype is array (0 to 256) of
 signed(7 downto 0);
constant cosrom : vectype := (
0 => "01111111",
1 => "01111111",
2 => "01111111",
3 => "01111111",
4 => "01111111",
5 => "01111111",
6 => "01111111",
7 => "01111111",
8 => "01111111",
9 => "01111111",
10 => "01111111",
11 => "01111111",
12 => "01111111",
13 => "01111111",
14 => "01111111",
15 => "01111111",
16 => "01111111",
17 => "01111111",
18 => "01111111",
19 => "01111111",
20 => "01111111",
21 => "01111111",
22 => "01111111",
23 => "01111111",
24 => "01111111",

-- Declarations

-- input <12,-6,t> from loop
filter
-- output data from cosine ROM
<8,0,t>

-- using first quarter data (257)
values of file: cos.txt
-- cosine ROM

 14

25 => "01111110",
26 => "01111110",
27 => "01111110",
28 => "01111110",
29 => "01111110",
30 => "01111110",
31 => "01111110",
32 => "01111110",
33 => "01111101",
34 => "01111101",
35 => "01111101",
36 => "01111101",
37 => "01111101",
38 => "01111101",
39 => "01111100",
40 => "01111100",
41 => "01111100",
42 => "01111100",
43 => "01111100",
44 => "01111011",
45 => "01111011",
46 => "01111011",
47 => "01111011",
48 => "01111010",
49 => "01111010",
50 => "01111010",
51 => "01111010",
52 => "01111010",
53 => "01111001",
54 => "01111001",
55 => "01111001",
56 => "01111001",
57 => "01111000",
58 => "01111000",
59 => "01111000",
60 => "01110111",
61 => "01110111",
62 => "01110111",
63 => "01110111",
64 => "01110110",
65 => "01110110",
66 => "01110110",
67 => "01110101",
68 => "01110101",
69 => "01110101",
70 => "01110100",
71 => "01110100",
72 => "01110100",
73 => "01110011",
74 => "01110011",
75 => "01110011",
76 => "01110010",
77 => "01110010",
78 => "01110010",
79 => "01110001",
80 => "01110001",
81 => "01110001",
82 => "01110000",
83 => "01110000",
84 => "01101111",
85 => "01101111",
86 => "01101111",
87 => "01101110",
88 => "01101110",
89 => "01101101",
90 => "01101101",
91 => "01101101",
92 => "01101100",
93 => "01101100",
94 => "01101011",
95 => "01101011",
96 => "01101010",
97 => "01101010",
98 => "01101010",
99 => "01101001",
100 => "01101001",

 15

101 => "01101000",
102 => "01101000",
103 => "01100111",
104 => "01100111",
105 => "01100110",
106 => "01100110",
107 => "01100101",
108 => "01100101",
109 => "01100100",
110 => "01100100",
111 => "01100011",
112 => "01100011",
113 => "01100010",
114 => "01100010",
115 => "01100001",
116 => "01100001",
117 => "01100000",
118 => "01100000",
119 => "01011111",
120 => "01011111",
121 => "01011110",
122 => "01011110",
123 => "01011101",
124 => "01011101",
125 => "01011100",
126 => "01011100",
127 => "01011011",
128 => "01011011",
129 => "01011010",
130 => "01011001",
131 => "01011001",
132 => "01011000",
133 => "01011000",
134 => "01010111",
135 => "01010111",
136 => "01010110",
137 => "01010101",
138 => "01010101",
139 => "01010100",
140 => "01010100",
141 => "01010011",
142 => "01010010",
143 => "01010010",
144 => "01010001",
145 => "01010001",
146 => "01010000",
147 => "01001111",
148 => "01001111",
149 => "01001110",
150 => "01001110",
151 => "01001101",
152 => "01001100",
153 => "01001100",
154 => "01001011",
155 => "01001010",
156 => "01001010",
157 => "01001001",
158 => "01001000",
159 => "01001000",
160 => "01000111",
161 => "01000111",
162 => "01000110",
163 => "01000101",
164 => "01000101",
165 => "01000100",
166 => "01000011",
167 => "01000011",
168 => "01000010",
169 => "01000001",
170 => "01000001",
171 => "01000000",
172 => "00111111",
173 => "00111110",
174 => "00111110",
175 => "00111101",
176 => "00111100",

 16

177 => "00111100",
178 => "00111011",
179 => "00111010",
180 => "00111010",
181 => "00111001",
182 => "00111000",
183 => "00111000",
184 => "00110111",
185 => "00110110",
186 => "00110101",
187 => "00110101",
188 => "00110100",
189 => "00110011",
190 => "00110011",
191 => "00110010",
192 => "00110001",
193 => "00110000",
194 => "00110000",
195 => "00101111",
196 => "00101110",
197 => "00101101",
198 => "00101101",
199 => "00101100",
200 => "00101011",
201 => "00101010",
202 => "00101010",
203 => "00101001",
204 => "00101000",
205 => "00100111",
206 => "00100111",
207 => "00100110",
208 => "00100101",
209 => "00100100",
210 => "00100100",
211 => "00100011",
212 => "00100010",
213 => "00100001",
214 => "00100001",
215 => "00100000",
216 => "00011111",
217 => "00011110",
218 => "00011110",
219 => "00011101",
220 => "00011100",
221 => "00011011",
222 => "00011011",
223 => "00011010",
224 => "00011001",
225 => "00011000",
226 => "00011000",
227 => "00010111",
228 => "00010110",
229 => "00010101",
230 => "00010100",
231 => "00010100",
232 => "00010011",
233 => "00010010",
234 => "00010001",
235 => "00010001",
236 => "00010000",
237 => "00001111",
238 => "00001110",
239 => "00001101",
240 => "00001101",
241 => "00001100",
242 => "00001011",
243 => "00001010",
244 => "00001010",
245 => "00001001",
246 => "00001000",
247 => "00000111",
248 => "00000110",
249 => "00000110",
250 => "00000101",
251 => "00000100",
252 => "00000011",

 17

253 => "00000010",
254 => "00000010",
255 => "00000001",
256 => "00000000");
signal dtemp : unsigned(17 downto 0);
signal dtemp1 : integer;
signal din_buf : signed(17 downto 0);
constant offset : unsigned(17 downto 0) :=
"000100000000000000";
begin
process(CLK, RESET)
begin
 if (RESET='1') then
 dout <= (others => '0');
 din_buf <= (others => '0');
 dtemp <= (others => '0');
 dtemp1 <= 0;
 elsif rising_edge(CLK) then
 din_buf <= din(11)& din(11)& din(11)& din(11)&
din(11)& din(11)&din;
 dtemp <= dtemp + unsigned(din_buf) + offset;
 dtemp1 <= to_integer(dtemp(17 downto 8));
 if (dtemp1 >= 0) and (dtemp1 < 257) then
 dout <= cosrom(dtemp1);
 elsif (dtemp1 >= 257) and (dtemp1 < 513) then
 dout <= -cosrom(512-dtemp1);
 elsif (dtemp1 >= 513) and (dtemp1 < 769) then
 dout <= -cosrom(dtemp1-512);
 else
 dout <= cosrom(1024-dtemp1);
 end if;
 end if;
end process;
END behavior;

-- modulo accumulator buffer

-- offset = 1/16 <18,0,u>

-- sign extension
-- accumulator
-- mapping input to data values

Assume i is output data
accumulator,
for 0 ≤ i ≤ 256 cosrom(i)
for 256 < i ≤ 512 -cosrom(512-i)
for 512 < i ≤ 768 -cosrom(i-512)
for 768 < i ≤ 1023 cosrom(1024-
i)

6.4 FIR Filter

LIBRARY ieee;
USE IEEE.std_logic_1164.all;
USE IEEE.numeric_std.ALL;

entity FIR is
port(clock : in std_logic;
 reset : in std_logic;
 data_in : in signed(11 downto 0);
 data_out : out std_logic_vector(11 downto 0)
);
end FIR;

architecture behavior of FIR is
signal d0,d1,d2,d3,d4,d5,d6,d7,d8,d9,d10,
 d11,d12,d13,d14,d15 : signed(15 downto 0);
signal sum : signed(15 downto 0);
begin
process(clock,reset)
begin
 if (reset = '1') then
 d0 <= (others => '0');
 d1 <= (others => '0');
 d2 <= (others => '0');
 d3 <= (others => '0');
 d4 <= (others => '0');
 d5 <= (others => '0');
 d6 <= (others => '0');
 d7 <= (others => '0');
 d8 <= (others => '0');
 d9 <= (others => '0');
 d10 <= (others => '0');
 d11 <= (others => '0');

-- declaration

-- input 12 bit
-- ouput 12 bit

-- 16 tap FIR
-- buffer

 18

 d12 <= (others => '0');
 d13 <= (others => '0');
 d14 <= (others => '0');
 d15 <= (others => '0');
 sum <= (others => '0');
 data_out <= (others => '0');
 ELSIF rising_edge(clock) THEN
 d0 <= data_in(11)&data_in(11)&
 data_in(11)&data_in(11)&data_in;
 d1 <= d0;
 d2 <= d1;
 d3 <= d2;
 d4 <= d3;
 d5 <= d4;
 d6 <= d5;
 d7 <= d6;
 d8 <= d7;
 d9 <= d8;
 d10 <= d9;
 d11 <= d10;
 d12 <= d11;
 d13 <= d12;
 d14 <= d13;
 d15 <= d14;
 sum <= (d0+d1+d2+d3+d4+d5+d6+d7+d8+d9+
 d10+d11+d12+d13+d14+d15) srl 4;
 data_out <= std_logic_vector(sum(11 downto 0));
 end if;
end process;
end behavior;

-- 1/16 multiply is 4 bit right
shift operation

6.5 Circuit (top level design)

LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE IEEE.numeric_std.ALL;

ENTITY circuit IS
PORT(clk : IN std_logic;
 reset : IN std_logic;
 fmin : IN std_logic_vector(7 downto 0);
 dmout : OUT std_logic_vector (11 DOWNTO 0)
);
END circuit ;

ARCHITECTURE behavior OF circuit IS

 SIGNAL d1 : signed(11 DOWNTO 0);
 SIGNAL d2 : signed(11 DOWNTO 0);
 SIGNAL dout : signed(7 DOWNTO 0);
 SIGNAL output : signed(7 DOWNTO 0);

 COMPONENT multiplier
PORT (clk : IN std_logic ;
 reset : IN std_logic ;
 input1 : IN std_logic_vector (7 DOWNTO 0);
 input2 : IN signed (7 DOWNTO 0);
 output : OUT signed (7 DOWNTO 0)
);
END COMPONENT;
COMPONENT fir
PORT (clock : IN std_logic ;
 reset : IN std_logic ;
 data_in : IN signed (11 DOWNTO 0);
 data_out : OUT std_logic_vector (11 DOWNTO 0)
);
END COMPONENT;
COMPONENT loop_filter
PORT (clk : IN std_logic ;

-- declaration

-- modulated data input
-- demodulated data output

-- Architecture declarations
-- Internal signal declarations

-- Component Declarations

 19

 reset : IN std_logic ;
 c : IN signed (7 DOWNTO 0);
 d1 : OUT signed (11 DOWNTO 0);
 d2 : OUT signed (11 DOWNTO 0)
);
END COMPONENT;
COMPONENT nco
PORT (clk : IN std_logic ;
 reset : IN std_logic ;
 din : IN signed (11 DOWNTO 0);
 dout : OUT signed (7 DOWNTO 0)
);
END COMPONENT;

BEGIN
 I1 : multiplier
 PORT MAP (
 clk => clk,
 reset => reset,
 input1 => fmin,
 input2 => dout,
 output => output
);
 I4 : fir
 PORT MAP (
 clock => clk,
 reset => reset,
 data_in => d1,
 data_out => dmout
);
 I3 : loop_filter
 PORT MAP (
 clk => clk,
 reset => reset,
 c => output,
 d1 => d1,
 d2 => d2
);
 I2 : nco
 PORT MAP (
 clk => clk,
 reset => reset,
 din => d2,
 dout => dout
);
 END behavior;

-- Instance port mappings.

6.6 Test Bench

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;
USE IEEE.numeric_std.ALL;
USE std.textio.ALL;

ENTITY circuit_tb IS
END circuit_tb;

ARCHITECTURE behavior OF circuit_tb IS

file vectors: text open read_mode is "fm.txt";

COMPONENT circuit
PORT(clk : IN std_logic;
 reset : IN std_logic;
 fmin : IN std_logic_vector(7 downto 0);
 dmout : OUT std_logic_vector(11 downto 0)
);
END COMPONENT;

-- input read from given file:
“fm.txt” for square modulated
signal and “fmtri.txt” for
triangular modulated signal

-- Component Declarations

 20

SIGNAL clk : std_logic := '0' ;
SIGNAL reset : std_logic := '1';
SIGNAL fmin : std_logic_vector(7 downto 0);
SIGNAL dmout : std_logic_vector(11 downto 0);
constant clkperiod : time := 62.5 ns;

BEGIN
 uut: circuit PORT MAP(
 clk => clk,
 reset => reset,
 fmin => fmin,
 dmout => dmout
);

 RESET_GEN: process
 begin
 LOOP1: for N in 0 to 3 loop
 wait until falling_edge(CLK);
 end loop LOOP1;
 RESET <= '0' ;
 end process RESET_GEN;

clk <= not clk after clkperiod / 2;

process
variable vectorline : line;
variable fmin_var : bit_vector(7 downto 0);
begin
while not endfile(vectors) loop
if (reset = '1') then
fmin <= (others => '0');
else
readline(vectors, vectorline);
read(vectorline, fmin_var);
fmin <= to_stdlogicvector(fmin_var);
end if;
wait for clkperiod;
end loop;
end process;

END;

-- Internal signal declarations

-- system clock frequency = 16 MHz

-- Instance port mappings.

-- reset signal generator

-- clock signal generator

-- read file vector operation.

7. Simulation Waveform

Fig. 11 shows the simulation waveform for all digital FM receiver circuit
subjected to square wave modulated data, while Fig. 12 shows the simulation
waveform for All Digital FM Receiver circuit subjected to triangular wave modulated
data. The first row shows the FM modulated waveform according to the sending data.
The second row is NCO output and the third row is phase detector (multiplier) output.
The fourth row and the fifth row are the accumulator output and the demodulated
output, respectively. At the initial simulation phase, the demodulated output
overshoots since the phase synchronization is in convergence phase and then system
is stable.

From Fig. 11 and Fig. 12, designed FM receiver circuit successfully demodulates
input signal back to the original signal.

 21

Fig. 11 Simulation waveform of the circuit, subjected to square wave modulated input signal

Fig. 12 Simulation waveform of the circuit, subjected to triangular wave modulated input signal

8. FPGA Implementation

We implement the all digital FM receiver circuit designed into FPGA. Here we
are using Virtex2 device from Xilinx with XC2V2000 technology and ff896 package.
The chip graphic is shown in Fig.13

 22

Fig. 13 Chip graphic for the design

ChipScope Pro 6.3i provides an integrated logic analyzer used to capture data
in the designed circuit. After design is downloaded to FPGA board, ChipScope Pro
will trigger input data and capture the output data via parallel cable in JTAG
Boundary Scan mode as shown in Fig. 14. Captured data is in the listing form of 12-
bit binary number as shown in Fig. 15. We can adjust how many samples needed to be
captured; here we captured 1024 samples output data, then we plot it by ModelSim to
obtain the actual demodulated signal view as shown in Fig.16

Fig. 14 Capturing output data via parallel cable in JTAG mode

DC power
cable

JTAG mode
Configuration cable Virtex2

FPGA

 23

Fig. 15 Captured data and waveform of the output in ChipScope

(a)

(b)
Fig. 16 Actual demodulated data

 24

9. Closing

VHDL and FPGA are always attracting us in our VLSI System Design class. We
are enthusiast in joining this program. This subject of study is new for us as
beginners, now we can learn basic principle of digital FM receiver and get the
opportunity to make our design, we enjoy it. We've found this a great subject to work
in because we've gained knowledge about the state of the VLSI Design, its different
sectors and the links that exist within it and between other global electronics study.

誰にもまちがいはある、だからエンピツにも消しゴムがついている。

Reference:

[1] “Modeling PLL,” in Integrated Circuits Application Note AN178 Philips

Semiconductors, 1988.
[2] Douglas J. Smith, “HDL Chip Design,” Doone Publication, 1996
[3] John G. Proakis, Dimitri G. Manolakis, “Digital Signal Processing,” Prentice

Hall, 1996.
[4] Katsuhiko Ogata, “Modern Control Engineering,” Prentice Hall, 2002.
[5] Naresh K. Sinha, “Linear Systems,” John Wiley and Sons. Inc, 1991.
[6] P.E. Allen, “All Digital Phase Locked Loop," in Lecture Note CMOS Phase

Locked Loops, 2003.
[7] Roland E. Best, “Phase Locked Loop, Theory, Design, and Applications,”

McGraw – Hill, 2003.
[8] Website : http://bw-www.ie.u-ryukyu.ac.jp/~wada/design05/spec_e.html

 25

http://bw-www.ie.u-ryukyu.ac.jp/~wada/design05/spec_e.html

Appendix:

Synthesis result of 50 input XOR gate for computing unit delay

Timing Detail:

All values displayed in nanoseconds (ns)

Timing constraint: Default path analysis
Delay: 6.967ns (Levels of Logic = 5)
 Source: A<10> (PAD)
 Destination: Y (PAD)

 Data Path: A<10> to Y
 Gate Net
 Cell:in->out fanout Delay Delay Logical Name (Net Name)
 -- ------------
 IBUF:I->O 1 0.653 0.383 A_10_IBUF (A_10_IBUF)
 LUT4:I0->O 1 0.347 0.383 Mxor_Y_inst_lut4_01 (Mxor_Y__net0)
 LUT4:I0->O 1 0.347 0.383 Mxor_Y_inst_lut4_121 (Mxor_Y__net14)
 LUT4:I0->O 1 0.347 0.383 Mxor_Y_inst_lut4_151 (Y_OBUF)
 OBUF:I->O 3.743 Y_OBUF (Y)
 --
 Total 6.967ns (5.437ns logic, 1.530ns route)
 (78.0% logic, 22.0% route)

Synthesis result of 50 input XOR gate for computing unit area

Design Summary

Number of errors: 0
Number of warnings: 0
Logic Utilization:
 Number of 4 input LUTs: 17 out of 21,504 1%
Logic Distribution:
 Number of occupied Slices: 13 out of 10,752 1%
 Number of Slices containing only related logic: 13 out of 13 100%
 Number of Slices containing unrelated logic: 0 out of 13 0%
 *See NOTES below for an explanation of the effects of unrelated logic
Total Number 4 input LUTs: 17 out of 21,504 1%

 Number of bonded IOBs: 51 out of 624 8%

Total equivalent gate count for design: 102
Additional JTAG gate count for IOBs: 2,448
Peak Memory Usage: 100 MB

 26

	Table of Contents
	Table of Figures
	Introduction
	Architecture Description
	Phase Detector
	Loop Filter
	Numerical Controlled Oscillator
	FIR Filter

	Functional Explanation
	Critical Path Speed and Circuit Area
	Appealing Point and Originality
	HDL Codes
	Multiplier (Phase Detector)
	Loop Filter
	Numerical Controlled Oscillator (NCO)
	FIR Filter
	Circuit (top level design)
	Test Bench

	Simulation Waveform
	FPGA Implementation
	Closing
	Reference:
	Appendix:

