
 Amber Open Source Project

Amber 2 Core Specification

March 2015

Amber Amber 2 Core Specification March 2015

Table of Contents

1 Introduction .. 3
1.1 Amber 23 Features ... 4
1.2 Amber 25 Features ... 4

2 Amber 23 Pipeline Architecture ... 6
2.1 ALU ... 7
2.2 Pipeline Operation ... 8

3 Instruction Set ... 11
4 Instruction Set Encoding .. 14

4.1 Condition Encoding ... 14
4.2 Opcode Encoding .. 15
4.3 Shifter Operand Encoding ... 15
4.4 Register transfer offset encoding ... 16
4.5 Shift Encoding ... 17
4.6 Load & Store Multiple .. 17
4.7 Branch offset .. 18
4.8 Booth's Multiplication Algorithm .. 18

5 Interrupts .. 20
6 Registers .. 21
7 Cache .. 22
8 Amber Project .. 23

8.1 Amber Port List .. 23
8.2 Amber 23 Verilog Files ... 23

9 License .. 26

Released under the GNU Lesser General Public License (v2.1) terms 2 of 26

Amber Amber 2 Core Specification March 2015

1 Introduction

The Amber processor core is an ARM-compatible 32-bit RISC processor. The Amber

core is fully compatible with the ARM® v2a instruction set architecture (ISA) and is

therefore supported by the GNU toolset. This older version of the ARM instruction

set is supported because it is not covered by patents so can be implemented without a

license from ARM. The Amber project provides a complete embedded system

incorporating the Amber core and a number of peripherals, including UARTs, timers

and an Ethernet MAC.

There are two versions of the core provided in the Amber project. The Amber 23 has

a 3-stage pipeline, a unified instruction & data cache, a Wishbone interface, and is

capable of 0.8 DMIPS per MHz. The Amber 25 has a 5-stage pipeline, seperate data

and instruction caches, a Wishbone interface, and is capable of 1.0 DMIPS per Mhz.

Both cores implement exactly the same ISA and are 100% software compatible.

The Amber 23 core is a very small 32-bit core that provides good performance.

Register based instructions execute in a single cycle, except for instructions involving

multiplication. Load and store instructions require three cycles. The core's pipeline is

stalled either when a cache miss occurs, or when the core performs a wishbone

access.

The Amber 25 core is a little larger and provides 15% to 20% better performance that

the 23 core. Register based instructions execute in a single cycle, except for

instructions involving multiplication. Load and store instructions also execute in a

single cycle unless there is a register conflict with a following instruction. The core's

pipeline is stalled when a cache miss occurs in either cache, when an instruction

conflict is detected, or when the core performs a wishbone access.

Both cores has been verified by booting a 2.4 Linux kernel. Versions of the Linux

kernel from the 2.4 branch and earlier contain configurations for the supported ISA.

The 2.6 version of Linux does not explicitly support the ARM v2a ISA so requires

more modifications to run. Also note that the cores do not contain a memory

management unit (MMU) so they can only run the non-virtual memory variant of

Linux.

The cores were developed in Verilog 2001, and are optimized for FPGA synthesis.

For example there is no reset logic, all registers are reset as part of FPGA

initialization. The complete system has been tested extensively on the Xilinx SP605

Spartan-6 FPGA board. The full Amber system with the A23 core uses 32% of the

Spartan-6 XC6SLX45T-3 FPGA Look Up Tables (LUTs), with the core itself

occupying less than 20% of the device using the default configuration, and running at

40MHz. It has also been synthesized to a Virtex-6 device at 80MHz, but not yet

tested on a real Virtex-6 device. The maximum frequency is limited by the execution

stage of the pipline which includes a 32-bit barrel shifter, 32-bit ALU and address

incrementing logic.

For a description of the ISA, see "Archimedes Operating System - A Dabhand Guide,

Copyright Dabs Press 1991", or "Acorn RISC Machine Family Data Manual, VLSI

Released under the GNU Lesser General Public License (v2.1) terms 3 of 26

Amber Amber 2 Core Specification March 2015

Technology Inc., 1990".

1.1 Amber 23 Features
• 3-stage pipeline.

• 32-bit Wishbone system bus.

• Unified instruction and data cache, with write through and a read-miss

replacement policy. The cache can have 2, 3, 4 or 8 ways and each way is 4kB.

• Multiply and multiply-accumulate operations with 32-bit inputs and 32-bit

output in 34 clock cycles using the Booth algorithm. This is a small and slow

multiplier implementation.

• Little endian only, i.e. Byte 0 is stored in bits 7:0 and byte 3 in bits 31:24.

The following diagram shows the data flow through the 3-stage core.

Figure 1 - Amber 23 Core pipeline stages

1.2 Amber 25 Features
• 5-stage pipeline.

• 32-bit Wishbone system bus.

• Seperate instruction and data caches. Each cache can be either 2,3,4 or 8 ways

and each way is 4kB. Both caches use a read replacement policy and the data

Released under the GNU Lesser General Public License (v2.1) terms 4 of 26

Stage 1 – Fetch

Cache

Read Instruction / Data

Instruction Decode

D
ecode S

tate

Control Signals

R
egister Set

Instruction
Execute

Address Write Data

Stage 2 – Decode

Stage 3 - Execute

Read Data

Amber Amber 2 Core Specification March 2015

cache operates as write through. The instruction cache is read only.

• Multiply and multiply-accumulate operations with 32-bit inputs and 32-bit

output in 34 clock cycles using the Booth algorithm. This is a small and slow

multiplier implementation.

• Little endian only, i.e. Byte 0 is stored in bits 7:0 and byte 3 in bits 31:24.

The following diagram shows the data flow through the 5-stage core.

Figure 2 - Amber 25 Core pipeline stages

Released under the GNU Lesser General Public License (v2.1) terms 5 of 26

Stage 1 – Fetch

Instruction Cache

Read Instruction

Instruction Decode

D
eco

d
e S

tate

Control Signals

R
eg

ister S
et

Instruction
Execute

Instruction address

Stage 2 – Decode

Stage 3 - Execute

Data Cache

Data address Write Data
Stage 4 - Memory

Read Data
Stage 5 – Write Back

Amber Amber 2 Core Specification March 2015

2 Amber 23 Pipeline Architecture

The Amber 2 core has a 3-stage pipeline architecture. The best way to think of the

pipeline structure is of a circle. There is no start or end point. The output from each

stage is registered and fed into the next stage. The three stages are;

• Fetch – The cache tag and data RAMs receive an unregistered version of the

address output by the execution stage. The registered version of the address is

compared to the tag RAM outputs one cycle later to decide if the cache hits or

misses. If the cache misses, then the pipeline is stalled while the instruction is

fetched from either boot memory or main memory via the Wishbone bus. The

cache always does 4-word reads so a complete cache line gets filled. In the

case of a cache hit, the output from the cache data RAM goes to the decode

stage. This can either be an instruction or data word.

• Decode - The instruction is received from the fetch stage and registered. One

cycle later it is decoded and the datapath control signals prepared for the next

cycle. This stage contains a state machine that handles multi-cycle instructions

and interrupts.

• Execute – The control signals from the decode stage are registered and passed

into the execute stage, along with any read data from the fetch stage. The

operands are read from the register bank, shifted, combined in the ALU and the

result written back. The next address for the fetch stage is generated.

The following diagram shows the datapath through the three stages in detail. This

diagram closely corresponds to the Verilog implementation. Some details, like the

wishbone interface and coprocessor #15 have been left out so as not to overload the

diagram completely.

Released under the GNU Lesser General Public License (v2.1) terms 6 of 26

Amber Amber 2 Core Specification March 2015

Figure 3 - Detailed 3-Stage Pipeline Structure

2.1 ALU

The diagram below shows the structure of the Arithmetic Logic Unit (ALU). It

consists of a set of different logical functions, a 32-bit adder and a mux to select the

function.

Released under the GNU Lesser General Public License (v2.1) terms 7 of 26

Read Instruction / Data

Register BankPC

Rn Select Rm SelectRd/s Select

ALU

imm32 [31:0]

Barrel Shift Amount Select

imm_shift_amount [4:0]

barrel_shift_function [1:0]

Program Counter
 Select

Address
Select

write_data_wen adr_wen pc_wen reg_bank_wen[14:0] status_wen

Byte Enable

out [31:0]

a_in [31:0] b_in [31:0]

flags [3:0]

carry

barrel_shift_amount_sel [1:0]

rm_sel [3:0]rn_sel 3:0]

pc_sel [1:0]
address_sel [2:0]

Byte Enable
 Select

byte_enable_sel

4'hF

Status Bits
 Select

status_bits_sel [2:0]

IRQ FIRQ

write_data [31:0] write_enable address [31:0]byte_enable [3:0]

read_data [31:0]

irq firq

shifter_operand[31:0]

interrupt_vector

Interrupt Vector
Select

interrupt_vector_sel [2:0]

'0x00000010'
'0x00000014'

Pre-Fetch InstructionDecode State

rds_sel [3:0]

Write Enable

'0x00000018'

'0x0000001C'

Barrel Shift Data Select

barrel_shift_data_sel [1:0]

barrel_shift_out

Barrel Shift

pc_plus4

5'h0

in [31:0]shift_amount [4:0]

carry_outout [31:0]

+4

Saved Current Instruction

Instruction
Select

pc

Register Write
Select

reg_write_sel [2:0]

B
L: S

ave P
C

-4 to LR

address [1:0]
Instruction Decode Logic

And
State Machine

rn

rd

Write Data

Encode Single
Byte Enable

+4

Address

address_nxt [1:0]

alu_function [8:0]

Multiply

Write Data
 Select

4 { rds [7:0] }

copro_write_data [31:0]

Coprocessor Write Data

copro_write_data_wen

multiply_function [1:0]

out [31:0]

b_in [31:0]

Base Address

Base Address

base_adr_wen

barrel_shift_carry

a_in [31:0]

Status Bits

Register BankPC

alu_out

-4

(for ldm data aborts)

+4+4

DABT PABT

instruction [31:0]

rmrn rspc

copro_read_data

Data
Abort

Prefetch
Abort

ADEX

Address
Exception

Status Bits

{ address[1:0], 3'd0 }
(Used for ldrb Shifts)

address_nxt [31:0]

address_nxt [11:4]

Cache Data SRAM

Address WData

Cache Data SRAM

Address WData

Way Select

Word Select

Cache Tag SRAM

Address WData

Cache Tag SRAM

Address WData

write_data [31:0]

Miss Address

address [31:0]

Hit? Hit?Cache State Machine

write_enable

address [3:2]

address [31:12]

Cache State

F
E

T
C

H
D

E
C

O
D

E
E

X
E

C
U

T
E

'0x00000000'
'0x00000004'
'0x00000008'

'0x0000000C'

Execute Control Signals

copro_read_data[31:28]

flags [1:0]

rd

Amber Amber 2 Core Specification March 2015

Figure 4 - ALU Structure

The alu_function[6:0] bus in the core is a concatenation of the individual control

signals in the ALU. The following table describes these control signals.

Table 1 ALU Function Encoding

Field Function

swap_sel Swaps the a and b inputs

not_sel Selects the NOT version of b

cin_sel[1:0] Selects the carry in to the full added from { c_in, !c_in, 1, 0 }. Note that bs_c_in is the carry_in
from the barrel shifter.

cout_sel Selects the carry out from { full_adder_cout, barrel_shifter_cout }

out_sel[2:0] Selects the ALU output from { 0, b_zero_extend_8, b, and_out, or_out, xor_out,
full_adder_out }

2.2 Pipeline Operation

2.2.1 Load Example

The load instruction causes the pipeline to stall for two cycles. This section explains

why this is necessary. The following is a simple fragment of assembly code with a

single load instructon with register instructions before and after it.

0 mov r0, #0x100
4 add r1, r0, #8
8 ldr r4, [r1]
c add r4, r4, r0

Released under the GNU Lesser General Public License (v2.1) terms 8 of 26

Out Select

swap_sel

out [31:0]be [3:0]

a_in [31:0] b_in [31:0]

A
Select

B
Select

Not
Select

NOT

not_sel

Full
Adder

XORORAND

out_sel[2:0]

BE
Encode

z

Zero
detect

v

overflow

n

Cin
Select

cin_sel[1:0]

'0''1'

cpsr_carry barrel_shift_carry

Cout
Select

c

cout_sel

bit [31]

alu_function = { swap_sel, not_sel, cin_sel [1:0], cout_sel, out_sel [2:0] }

5 4 3 1 0

Zero
Extend 8

2

flags = { n, z, c, v }

Amber Amber 2 Core Specification March 2015

The table below shows which instruction is active in each stage of the processor core

for each clock tick. When the core comes out of reset the execute stage starts

generating fetch addresses. It starts at 0 and increments by 4 each tick. In tick 1 the

first instruction, at address 0, is fetched, This simple example assumes that all

accesses are already present in the cache so fetches only take 1 cycle. Otherwise read

accesses on the wishbone bus would add additional stalls and complicate this

example.

At tick 2 the first instruction, 0, is decoded and at tick 3 it is executed. This means

that the r0 register, which is the destination for instruction 0, does not output the new

value until tick 4, where it is used as an input to the second instruction.

At tick 5 the load instruction, instruction 8, stalls the decode stage. In the execute

stage it calculates the load address and this is used by the fetch stage in tick 6. Also in

tick 5 the instruction c is saved to the pre_fetch_instruction register. This is used once

the load instruction has finished and its use saves needing an additional stall cycle to

reread instruction c.

At tick 6 the value at address 0x108 is fetched and at tick 7 it is written into r4. The

new value of r4 is then available for instruction c in tick 8.

Table 2 Pipeline load example

Stage Tick 0 Tick 1 Tick 2 Tick 3 Tick 4 Tick 5 Tick 6 Tick 7 Tick 8

Fetch
address

access type
- 0

read
4

read
8

read
c

read
10

read,
ignored

108
read

10
read

14
read

Decode
instruction

pre_fetch_instruction
-
-

-
-

0
-

4
-

8
-

8
[c]

8
[c]

c 10

Execute
instruction

address_nxt
-
0

-
4

-
8

0
c

4
10

8
108

8
10

8
14

c
18

2.2.2 Store Example

The store instruction also causes the pipeline to stall for two cycles. This section

explains why this is necessary. The following is a simple fragment of assembly code

with a single store instructon with register instructions before and after it.

0 mov r0, #0x100
4 mov r1, #17
8 str r1, [r0]
c add r1, r0, #20

The table below shows which instruction is active in each stage of the processor core

for each clock tick. At tick 5 the store instruction, instruction 8, stalls the decode

stage. In the execute stage it calculates the store address and this is used by the fetch

stage in tick 6. Also in tick 5 the instruction c is saved to the pre_fetch_instruction

register. This is used once the store instruction has finished and its use saves needing

an additional stall cycle to reread instruction c. In tick 7 the instruction after the store

instruction is decoded and in tick 8 it is executed.

Released under the GNU Lesser General Public License (v2.1) terms 9 of 26

Amber Amber 2 Core Specification March 2015

Table 3 Pipeline store example

Stage Tick 0 Tick 1 Tick 2 Tick 3 Tick 4 Tick 5 Tick 6 Tick 7 Tick 8

Fetch
address

access type
- 0

read
4

read
8

read
c

read
10

read,
ignored

100
write

10
read

14
read

Decode
instruction

pre_fetch_instruction
-
-

-
-

0
-

4
-

8
-

8
[c]

8
[c]

c 10

Execute
instruction

address_nxt
-
0

-
4

-
8

0
c

4
10

8
100

8
10

8
14

c
18

Released under the GNU Lesser General Public License (v2.1) terms 10 of 26

Amber Amber 2 Core Specification March 2015

3 Instruction Set

The following table describes the instructions supported by the Amber 2x core.

Table 4 Amber 2 core Instruction Set

Name Type Syntax Description

adc REGOP adc{<cond>}{s} <Rd>, <Rn>,
<shifter_operand>

Add with carry adds two values and the Carry flag.

add REGOP add{<cond>}{s} <Rd>, <Rn>,
<shifter_operand>

Add adds two values.

and REGOP and{<cond>}{s} <Rd>, <Rn>,
<shifter_operand>

And performs a bitwise AND of two values.

b BRANCH b{<cond>} <target_address> Branch causes a branch to a target address.

bic REGOP bic{<cond>}{s} <Rd>, <Rn>,
<shifter_operand>

Bit clear performs a bitwise AND of one value with the
complement of a second value.

bl BRANCH bl{<cond>} <target_address> Branch and link cause a branch to a target address. The
resulting instruction stores a return address in the link
register (r14).

cdp COREGOP cdp{<cond>} <coproc>, <opcode_1>,
<CRd>, <CRn>, <CRm>, <opcode_2>

Coprocessor data processing tells a coprocessor to
perform an operation that is independent of Amber registers
and memory. This instruction is not currently implemented by
the Amber core because there is no coprocessor in the
system that requires it.

cmn REGOP cmn{<cond>}{p} <Rn>,
<shifter_operand>

Compare negative compares one value with the twos
complement of a second value, simply by adding the two
values together, and sets the status flags. If the p flag is set,
the pc and status bits are updated directly by the ALU output.

cmp REGOP cmp{<cond>}{p} <Rn>,
<shifter_operand>

Compare compares two values by subtracting <shifter
operand> from <Rn>, setting the status flags. If the p flag is
set, the pc and status bits are updated directly by the ALU
output.

eor REGOP eor{<cond>}{s} <Rd>, <Rn>,
<shifter_operand>

Exclusive OR performs a bitwise XOR of two values.

ldc CODTRANS lcd{<cond>} <coproc>, <CRd>,
<addressing_mode>

Load coprocessor loads memory data from a sequence of
consecutive memory addresses to a coprocessor. This
instruction is not currently implemented by the Amber core
because there is no coprocessor in the system that requires
it.

ldm MTRANS ldm{<cond>}<addressing_mode>
<Rn>{!}, <registers>

Load multiple loads a non-empty subset, or possibly all, of
the general-purpose registers from sequential memory
locations. It is useful for block loads, stack operations and
procedure exit sequences.

ldm{<cond>}<addressing_mode> <Rn>,
<registers_without_pc>^

This version loads User mode registers when the processor
is in a privileged mode. This is useful when performing
process swaps.

ldm{<cond>}<addressing_mode>
<Rn>{!}, <registers_and_pc>^

This version loads a subset, or possibly all, of the general-
purpose registers and the PC from sequential memory
locations. The status bits are also loaded. This is useful for
returning from an exception.

ldr TRANS ldr{<cond>} <Rd>, <addressing_mode> Load register loads a word from a memory address. If the
address is not word-aligned, then the word is rotated left so
that the byte addresses appears in bits [7:0] of Rd.

ldrb TRANS ldr{<cond>}b <Rd>,
<addressing_mode>

Load register byte loads a byte from memory and zero-
extends the byte to a 32-bit word.

mcr CORTRANS mcr{<cond>} <coproc>, <opcode_1>,
<Rd>, <CRn>, <CRm>{, <opcode_2>}

Move to coprocessor from register passes the value of
register <Rd> to a coprocessor.

mla MULT mla{<cond>}{s} <Rd>, <Rm>, <Rs>,
<Rn>

Multiply accumulate multiplies two signed or unsigned 32-
bit values, and adds a third 32-bit value. The least significant
32 bits of the result are written to the destination register.

mov REGOP mov{<cond>}{s} <Rd>,
<shifter_operand>

Move writes a value to the destination register. The value can
be either an immediate value or a value from a register, and

Released under the GNU Lesser General Public License (v2.1) terms 11 of 26

Amber Amber 2 Core Specification March 2015

Name Type Syntax Description

can be shifted before the write.

mrc CORTRANS mrc{<cond>} <coproc>, <opcode_1>,
<Rd>, <CRn>, <CRm>{, <opcode_2>}

Move to register from coprocessor causes a coprocessor
to transfer a value to an Amber register or to the condition
flags.

mul MULT mul{<cond>}{s} <Rd>, <Rm>, <Rs> Multiply multiplies two signed or unsigned 32-bit values. The
least significant 32 bits of the result are written to the
destination register.

mvn REGOP mvn{<cond>}{s} <Rd>,
<shifter_operand>

Move not generates the logical ones complement of a value.
The value can be either an immediate value or a value from a
register, and can be shifted before the MVN operation.

orr REGOP orr{<cond>}{s} <Rd>, <Rn>,
<shifter_operand>

Logical OR performs a bitwise OR of two values. The first
value comes from a register. The second value can be either
an immediate value or a value from a register, and can be
shifted before the OR operation.

rsb REGOP rsb{<cond>}{s} <Rd>, <Rn>,
<shifter_operand>

Reverse subtract subtracts a value from a second value.

rsc REGOP rsc{<cond>}{s} <Rd>, <Rn>,
<shifter_operand>

Reverse subtract with carry subtracts one value from
another, taking account of any borrow from a preceding less
significant subtraction. The normal order of the operands is
reversed, to allow subtraction from a shifted register value, or
from an immediate value.

sbc REGOP sbc{<cond>}{s} <Rd>, <Rn>,
<shifter_operand>

Subtract with carry subtracts the value of its second
operand and the value of NOT(Carry flag) from the value of
its first operand. The first operand comes from a register. The
second operand can be either an immediate value or a value
from a register, and can be shifted before the subtraction.

stc CODTRANS stc{<cond>} <coproc>, <CRd>,
<addressing_mode>

Store coprocessor stores data from a coprocessor to a
sequence of consecutive memory addresses. This instruction
is not currently implemented by the Amber core because
there is no coprocessor in the system that requires it.

stm MTRANS stm{<cond>}<addressing_mode>
<Rn>{!}, <registers>

Store multiple stores a non-empty subset (or possibly all) of
the general-purpose registers to sequential memory
locations. The '!' causes Rn to be updated. The registers are
stored in sequence, the lowest-numbered register to the
lowest memory address (start_address), through to the
highest-numbered register to the highest memory address
(end_address).

STM{<cond>}<addressing_mode> <Rn>,
<registers>^

This version stores a subset (or possibly all) of the User
mode general-purpose registers to sequential memory
locations. The registers are stored in sequence, the lowest-
numbered register to the lowest memory address
(start_address), through to the highest-numbered register to
the highest memory address (end_address).

str TRANS str{<cond>} <Rd>, <addressing_mode> Store register stores a word from a register to memory.

strb TRANS str{<cond>}b <Rd>,
<addressing_mode>

Store register byte stores a byte from the least significant
byte of a register to memory.

sub REGOP sub{<cond>}{s} <Rd>, <Rn>,
<shifter_operand>
i.e. Rd = Rn - shifter_operand

Subtract subtracts one value from a second value.

swi SWI swi{<cond>} <immed_24> Software interrupt causes a SWI exception. <immed_24> Is
a 24-bit immediate value that is put into bits[23:0] of the
instruction. This value is ignored by the Amber core, but can
be used by an operating system SWI exception handler to
determine what operating system service is being requested.

swp SWAP swp{<cond>} <Rd>, <Rm>, [<Rn>] Swap loads a word from the memory address given
by the value of register <Rn>. The value of register <Rm> is
then stored to the memory address given by the value of
<Rn>, and the original loaded value is written to register
<Rd>. If the same register is specified for <Rd> and <Rm>,
this instruction swaps the value of the register and the value
at the memory address.

swpb SWAP swp{<cond>}b <Rd>, <Rm>, [<Rn>] Swap Byte swaps a byte between registers and memory. It
loads a byte from the memory address given by the value of
register <Rn>. The value of the least significant byte of
register <Rm> is stored to the memory address given by

Released under the GNU Lesser General Public License (v2.1) terms 12 of 26

Amber Amber 2 Core Specification March 2015

Name Type Syntax Description

<Rn>, the original loaded value is zero-extended to a 32-bit
word, and the word is written to register <Rd>. Can be used
to implement semaphores.

teq REGOP teq{<cond>}{p} <Rn>,
<shifter_operand>

Test equivalence compares a register value with another
arithmetic value. The condition flags are updated, based on
the result of logically XORing the two values, so that
subsequent instructions can be conditionally executed.
If the p flag is set, the pc and status bits are updated directly
by the ALU output.

tst REGOP tst{<cond>}{p} <Rn>,
<shifter_operand>

Test compares a register value with another arithmetic value.
The condition flags are updated, based on the result of
logically ANDing the two values, so that subsequent
instructions can be conditionally executed. If the p flag is set,
the pc and status bits are updated directly by the ALU output.

Released under the GNU Lesser General Public License (v2.1) terms 13 of 26

Amber Amber 2 Core Specification March 2015

4 Instruction Set Encoding

Table 5 Overall instruction set encoding table.

Type 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Data Processing REGOP Cond 0 0 I Opcode S Rn Rd shifter_operand

Multiply MULT Cond 0 0 0 0 0 0 A S Rd Rn Rs 1 0 0 1 Rm

Single Data Swap SWAP Cond 0 0 0 1 0 B 0 0 Rn Rd 0 0 0 0 1 0 0 1 Rm

Single Data Transfer TRANS Cond 0 1 I P U B W L Rn Rd Offset

Block Data Transfer MTRANS Cond 1 0 0 P U S W L Rn Register List

Branch BRANCH Cond 1 0 1 L Offset

Coprocessor Data
Transfer

CODTRANS Cond 1 1 0 P U N W L Rn CRd CP# Offset

Coprocessor Data
Operation

COREGOP Cond 1 1 1 0 CP Opcode CRn CRd CP# CP 0 CRm

Coprocessor
Register Transfer

CORTRANS Cond 1 1 1 0 CP
Opcode

L CRn Rd CP# CP 1 CRm

Software Interrupt SWI Cond 1 1 1 1 Ignored by processor

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Where

I25 = Immediate form of shifter_operand

L24 = Link; Save PC to LR

U23 = 1; address = Rn + offset_12

 = 0; address = Rn - offset_12

B22 = Byte (0 = word)

A21 = Accumulate

L20 = Load (0 = store)

S20 = Update Condition flags

P24, W21 : Select different modes of operation

4.1 Condition Encoding

All instructions include a 4-bit condition execution code. The instruction is only

executed if the condition specified in the instruction agrees with the current value of

the status flags.

Table 6 Cond: Condition Encoding

Condition Mnemonic
extension

Meaning Condition flag state

4'h0 eq Equal Z set

4'h1 ne Not equal Z clear

4'h2 cs / hs Carry set / unsigned higher or same C set

4'h3 cc / lo Carry clear / unsigned lower C clear

Released under the GNU Lesser General Public License (v2.1) terms 14 of 26

Amber Amber 2 Core Specification March 2015

Condition Mnemonic
extension

Meaning Condition flag state

4'h4 mi Minus / negative N set

4'h5 pl Plus / positive or zero N clear

4'h6 vs Overflow V set

4'h7 vc No overflow V clear

4'h8 hi Unsigned higher C set and Z clear

4'h9 ls Unsigned lower or same C clear or Z set

4'h10 ge Signed greater than or equal N == V

4'h11 lt Signed less than N != V

4'h12 gt Signed greater than Z == 0,N == V

4'h13 le Signed less than or equal Z == 1 or N != V

4'h14 al Always (unconditional) -

4'h15 - Invalid condition -

4.2 Opcode Encoding

Table 7 REGOP: Opcode Encoding

Opcod
e

Mnemon
ic
extensio
n

Operation Action Flags affected

4'h0 and Logical AND Rd := Rn AND shifter_operand N, Z, C

4'h1 eor Logical XOR Rd := Rn XOR shifter_operand N, Z, C

4'h2 sub Subtract Rd := Rn - shifter_operand N, Z, C, V

4'h3 rsb Reverse subtract Rd := shifter_operand - Rn N, Z, C, V

4'h4 add Add Rd := Rn + shifter_operand N, Z, C, V

4'h5 adc Add with carry Rd := Rn + shifter_operand + Carry Flag N, Z, C, V

4'h6 sbc Subtract with carry Rd := Rn - shifter_operand - NOT(Carry Flag) N, Z, C, V

4'h7 rsc Reverse subtract
with carry

Rd := shifter_operand - Rn - NOT(Carry Flag) N, Z, C, V

4'h8 tst Test Update flags after Rn AND shifter_operand
S bit always set

N, Z, C

4'h9 teq Test equivalence Update flags after Rn EOR shifter_operand
S bit always set

N, Z, C

4'ha cmp Compare Update flags after Rn – shifter_operand
S bit always set

N, Z, C, V

4'hb cmn Compare negated Update flags after Rn + shifter_operand
S bit always set

N, Z, C, V

4'hc orr Logical (inclusive)
OR

Rd := Rn OR shifter_operand N, Z, C

4'hd mov Move Rd := shifter_operand (no first operand) N, Z, C

4'he bic Bit clear Rd := Rn AND NOT(shifter_operand) N, Z, C

4'hf mvn Move NOT Rd := NOT shifter_operand (no first operand) N, Z, C

4.3 Shifter Operand Encoding

This section describes the encoding of the shifter operand for register instructions.

Released under the GNU Lesser General Public License (v2.1) terms 15 of 26

Amber Amber 2 Core Specification March 2015

Table 8 REGOP: Shifter Operand Encoding

Format Syntax 25
'I'

11 10 9 8 7 6 5 4 3 2 1 0

32-bit immediate #<immediate> 1 encode_imm imm_8

Immediate shifts <Rm> 0 5'h0 2'h0 0 Rm

<Rm>, lsl #<shift_imm> 0 shift_imm Shift 0 Rm

<Rm>, lsr #<shift_imm>

<Rm>, asr #<shift_imm>

<Rm>, ror #<shift_imm>

<Rm>, rrx 0 5'h0 2'b11 0 Rm

Register Shifts <Rm>, lsl <Rs> 0 Rs 0 Shift 1 Rm

<Rm>, lsr <Rs>

<Rm>, asr <Rs>

<Rm>, ror <Rs>

4.3.1 Encode immediate value

Table 9 REGOP: Encode Immediate Value Encoding

Value 32-bit immediate value

4'h0 { 24'h0, imm_8[7:0] }

4'h1 { imm_8[1:0], 24'h0, imm_8[7:2] }

4'h2 { imm_8[3:0], 24'h0, imm_8[7:4] }

4'h3 { imm_8[5:0], 24'h0, imm_8[7:6] }

4'h4 { imm_8[7:0], 24'h0 }

4'h5 { 2'h0, imm_8[7:0], 22'h0 }

4'h6 { 4'h0, imm_8[7:0], 20'h0 }

4'h7 { 6'h0, imm_8[7:0], 18'h0 }

4'h8 { 8'h0, imm_8[7:0], 16'h0 }

4'h9 { 10'h0, imm_8[7:0], 14'h0 }

4'h10 { 12'h0, imm_8[7:0], 12'h0 }

4'h11 { 14'h0, imm_8[7:0], 10'h0 }

4'h12 { 16'h0, imm_8[7:0], 8'h0 }

4'h13 { 18'h0, imm_8[7:0], 6'h0 }

4'h14 { 20'h0, imm_8[7:0], 4'h0 }

4'h15 { 22'h0, imm_8[7:0], 2'h0 }

4.4 Register transfer offset encoding

Table 10 TRANS: Offset Encoding

Category Type Syntax 25
'I'

24
'P'

23
'U'

22
'B'

21
'W'

20
'L'

11 10 9 8 7 6 5 4 3 2 1 0

Immediate offset /
index

Immediate offset [<Rn>, #+/-<offset_12>] 0 1 - - 0 - offset_12

Immediate pre-indexed [<Rn>, #+/-<offset_12>]! 0 1 - - 1 - offset_12

Immediate post-indexed [<Rn>], #+/-<offset_12> 0 0 - - 0 - offset_12

Immediate post-indexed,
unprivilaged memory access

[<Rn>], #+/-<offset_12> 0 0 - - 1 - offset_12

Register offset / Register offset [<Rn>, +/-<Rm>] 1 1 - - 0 - 8'h0 Rm

Released under the GNU Lesser General Public License (v2.1) terms 16 of 26

Amber Amber 2 Core Specification March 2015

Category Type Syntax 25
'I'

24
'P'

23
'U'

22
'B'

21
'W'

20
'L'

11 10 9 8 7 6 5 4 3 2 1 0

index Register pre-indexed [<Rn>, +/-<Rm>]! 1 1 - - 1 - 8'h0 Rm

Register post-indexed [<Rn>], +/-<Rm> 1 0 - - 0 - 8'h0 Rm

Register post-indexed,
unprivilaged memory access

[<Rn>], +/-<Rm> 1 0 - - 1 - 8'h0 Rm

Scaled register
offset / index

Scaled register offset [<Rn>, +/-<Rm>, <shift> #<shift_imm>] 1 1 - - 0 - shift_imm Shift 0 Rm

Scaled register pre-indexed [<Rn>, +/-<Rm>, <shift> #<shift_imm>]! 1 1 - - 1 - shift_imm Shift 0 Rm

Scaled register post-indexed [<Rn>], +/-<Rm>, <shift> #<shift_imm> 1 0 - - 0 - shift_imm Shift 0 Rm

Scaled register post-indexed,
unprivilaged memory access

[<Rn>], +/-<Rm>, <shift> #<shift_imm> 1 0 - - 1 - shift_imm Shift 0 Rm

Where;

Pre-indexed: Address adjusted before access

Post-indexed: Address adjusted after access

I25, P24 and W21 encode the instruction as shown in the table above.

U23 = 1; address = Rn + offset_12

 = 0; address = Rn – offset_12

B22 = 0; data type is 32-bit word

= 1; data type is byte

L20 = 1; load

= 0; store

4.5 Shift Encoding

This encoding is used in both register and single data transfer instructions.

Table 11 REGOP, TRANS: Shift Encoding

Conditi
on

Type Syntax

2'h0 Logical Shift Left lsl

2'h1 Logical Shift Right lsr

2'h2 Arithmetic Shift Right (sign extend) asr

2'h3 Rotate Right with Extent (CO -> bit 31, bit 0 -> CO), if shift amount = 0, else
Rotate Right

ror, rrx

4.6 Load & Store Multiple

Table 12 MTRANS: Index options with ldm and stm

Mode Stack Load
Equivalent

Stack Store
Equivalent

Instructions 24
'P'

23
'U'

22
'S'

21
'W
'

20
'L'

Increment After (ia) Full Descending (fd) Empty Ascending (ea) ldmia, stmia, ldmfd, stmea 0 1 - - -

Increment Before (ib) Empty Descending (ed) Full Ascending (fa) lmdib, stmib, ldmed, stmfa 1 1 - - -

Decrement After (da) Full Ascending (fa) Empty Descending (ed) ldmda, stmda, ldmfa, stmed 0 0 - - -

Released under the GNU Lesser General Public License (v2.1) terms 17 of 26

Amber Amber 2 Core Specification March 2015

Mode Stack Load
Equivalent

Stack Store
Equivalent

Instructions 24
'P'

23
'U'

22
'S'

21
'W
'

20
'L'

Decrement Before (db) Empty Ascending (ea) Full Descending (fd) lmddb, stmdb, ldmea, stmfd 1 0 - - -

S22

The S bit for ldm that loads the PC, the S bit indicates that the status bits loaded. For

ldm instructions that do not load the PC and all stm instructions, the S bit indicates

that when the processor is in a privileged mode, the User mode banked registers are

transferred instead of the registers of the current mode. Ldm with the S bit set is

unpredictable in User mode.

W21

Indicates that the base register is updated after the transfer.

L20

Distinguishes between Load (L==1) and Store (L==0) instructions.

4.7 Branch offset

Branch instructions contain an offset in the lower 24 bits of the instruction. This

offset is combined with the current pc value to calculate the branch target, as follows:

1. Shift the 24-bit signed immediate value left two bits to form a 26-bit value.

2. Add this to the pc.

4.8 Booth's Multiplication Algorithm

Booth's algorithm involves repeatedly adding one of two predetermined values A and

S to a product P, then performing a rightward arithmetic shift on P. Let m and r be the

multiplicand and multiplier, respectively; and let x and y represent the number of bits

in m and r.

1. Determine the values of A and S, and the initial value of P. All of these numbers

should have a length equal to (x + y + 1).

1. A: Fill the most significant (leftmost) bits with the value of m. Fill the

remaining (y + 1) bits with zeros.

2. S: Fill the most significant bits with the value of (−m) in two's

complement notation. Fill the remaining (y + 1) bits with zeros.

3. P: Fill the most significant x bits with zeros. To the right of this, append

the value of r. Fill the least significant (rightmost) bit with a zero.

2. Examine the two least significant (rightmost) bits of P.

1. If they are 01, find the value of P + A. Ignore any overflow.

2. If they are 10, find the value of P + S. Ignore any overflow.

Released under the GNU Lesser General Public License (v2.1) terms 18 of 26

Amber Amber 2 Core Specification March 2015

3. If they are 00, do nothing. Use P directly in the next step.

4. If they are 11, do nothing. Use P directly in the next step.

3. Arithmetically shift the value obtained in the 2nd step by a single place to the

right. Let P now equal this new value.

4. Repeat steps 2 and 3 until they have been done y times.

5. Drop the least significant (rightmost) bit from P. This is the product of m and r.

Here is the algorithm in C-code form;

unsigned int mul (unsigned int Rm, unsigned int Rs)
{
unsigned int multiply_result_hi, multiply_result_lo, n, booth_bits;

for (n=0;n<33;n++){
 if (n==0) {
 booth_bits = ((Rs & 1)<<1);
 multiply_result_lo = Rs;
 if (booth_bits == 1) { multiply_result_hi = Rm; }
 else if (booth_bits == 2) { multiply_result_hi = ~Rm + 1;}
 else { multiply_result_hi = 0; }
 }
 else {
 booth_bits = multiply_result & 3;
 multiply_result_lo = (multiply_result_lo >>1) | ((multiply_result_hi & 1)<<31);
 multiply_result_hi = (multiply_result_hi >>1) | (multiply_result_hi & 0x80000000);
 if (booth_bits == 1) { multiply_result_hi = multiply_result_hi + Rm; }
 if (booth_bits == 2) { multiply_result_hi = multiply_result_hi + (~Rm + 1); }
 }
 }

return multiply_result_lo;
}

Released under the GNU Lesser General Public License (v2.1) terms 19 of 26

Amber Amber 2 Core Specification March 2015

5 Interrupts

Table 13 Interrupt Types

Interrupt Type Processor Mode Address

Reset Supervisor (svc) 0x00000000

Undefined Instructions Supervisor (svc) 0x00000004

Software Interrupt (SWI) Supervisor (svc) 0x00000008

Prefetch Abort (instruction
fetch memory abort)

Supervisor (svc) 0x0000000C

Data Abort (data access
memory abort)

Supervisor (svc) 0x00000010

Address exception Supervisor (svc) 0x00000014

IRQ (interrupt) IRQ (irq) 0x00000018

FIRQ (fast interrupt) FIRQ (firq) 0x0000001C

- User (usr) -

The modes other than User mode are known as privileged modes. They have full

access to system resources and can change mode freely. When an exception occurs,

the banked versions of r14, the link register, is used to save the pc value and status

bits.

Released under the GNU Lesser General Public License (v2.1) terms 20 of 26

Amber Amber 2 Core Specification March 2015

6 Registers

Table 14 Register Sets

User
(USR)

Supervisor
(SVC)

Interrupt
(IRQ)

Fast Interrupt
(FIRQ)

r0

r1

r2

r3

r4

r5

r6

r6

r7

r8 r8_firq

r9 r9_firq

r10 r10_firq

r11 (fp) r11_firq

r12 (ip) r12_firq

r13 (sp) r13_svc r13_irq r13_firq

r14 (lp) r14_svc r14_irq r14_firq

r15 (pc)

Table 15 Status Bits – Part of the PC

Field Position Type Description

flags [31:28] User Writable { Negative, Zero, Carry, oVerflow }

I 27 Privileged IRQ mask, disables IRQs when high

F 26 Privileged FIRQ Mask, disables FIRQs when high

mode [1:0] Privileged Processor mode
3 - Supervisor
2 - Interrupt
1 - Fast Interrupt
0 - User

Released under the GNU Lesser General Public License (v2.1) terms 21 of 26

Amber Amber 2 Core Specification March 2015

7 Cache

The Amber cache size is optimized to use FPGA Block RAMs. Each way has 256

lines of 16 bytes. 256 lines x 16 bytes x 2 ways = 8k bytes. The address tag is 20 bits.

Each cache can be configured with either 2, 3, 4 or 8 ways.

Table 16 Cache Specification

Ways 2 3 4 8

Lines per way 256 256 256 256

Words per line 4 4 4 4

Total words 2048 3072 4096 8192

Total bytes 8192 12288 16384 32768

FPGA 9K Block RAMs 8 + 2 = 10 12 + 3 = 15 16 + 4 = 20 32 + 8 = 40

Released under the GNU Lesser General Public License (v2.1) terms 22 of 26

Amber Amber 2 Core Specification March 2015

8 Amber Project

The Amber project is a complete processor system implemented on an FPGA

development board. The purpose of the project is to provide an evironment that gives

an example usage of the Amber 2 core, and supports a set of tests that verify the

correct functionality of the code. This is especially important if modificatiosn to the

core are made.

8.1 Amber Port List

The following table gives the port list for the Amber 2x core. The Amber 23 and

Amber 25 cores have identical port lists.

Table 17 Amber 2x Core Port List

Name Width Direction Description

i_clk 1 in Clock input. The core only has a single clock. The Wishbone
interface also works on this clock.

i_irq 1 in Interrupt request, active high. Causes the core to switch to IRQ
mode and jump to the IRQ address vector when asserted. The
switch does not occur until the end of the current instruction. For
example if the core is executing a stm instruction it could take 40
or 50 cycles to complete this instruction. Once the instruction
has completed the core will jump to the IRQ vector and execute
the instruction at that location.

i_firq 1 in Fast Interrupt request, active high. Causes the core to switch to
FIRQ mode and jump to the FIRQ address vector when
asserted. Again the core makes the switch after the current
instruction has completed.

i_system_rdy 1 in Connected to the stall signal that stalls the decode and execute
stages of the core. The system uses this signal to freeze the
core until the DDR3 main memory initialization has completed.

Wishbone Interface

o_wb_adr 32 out Byte address. Note that the core only generates 26-bit
instruction addresses but can generate full 32-bit data
addresses.

o_wb_sel 4 out Byte enable for writes. Bit 0 corresponds to byte 0 which is bits
[7:0] on the data buses.

o_wb_we 1 out Write enable, active high.

i_wb_dat 32 in Read data. Active when i_wb_ack is asserted in a read cycle.

o_wb_dat 32 out Write data. Active when o_wb_stb is high.

o_wb_cyc 1 out Holds bus ownership during multi-cycle accesses.

o_wb_stb 1 out Per-cycle strobe.

i_wb_ack 1 in Used to terminate read and write accesses.

i_wb_err 1 in Used to indicate an error on an access. Currently not used
within the Amber 2 core.

8.2 Amber 23 Verilog Files

The following table describes each Verilog source file in the Amber 2 core. These

files are located in $AMBER_BASE/hw/vlog/amber.

Released under the GNU Lesser General Public License (v2.1) terms 23 of 26

Amber Amber 2 Core Specification March 2015

Table 18 Amber 23 Core Source Files

Name Description

a23_config_definesv Defines used to configure the amber core. The number of ways in the cache is
configurable. Also contains a set of debug switches which enable debug
messages to be printed during simulation.

a23_localparams.v Local parameters used in various amber source files.

a23_wishbone.v The Wishbone interface connecting the Execute stage and Cache to the rest of
the system. Instantiated in Fetch.

a23_alu.v The arithmetic logic unit. Includes a 32-bit 2's compliment adder/subtractor as
well as logical functions such as AND and XOR.

a23_functions.v Common Verilog functions.

a23_core.v Top-level Amber module.

a23_barrel_shifter.v 32-bit barrel shifter instantiated in Execute.

a23_cache.v Synthesizable cache. Instantiated in Fetch. Cache misses cause the core to stall.
The cache then issues a quad-word read on the wishbone bus, starting with the
word that missed, and wrapping at the quad-word boundary.

a23_coprocessor.v Co-processor 15 registers and control signals. Instantiated in Amber.

a23_decode.v The instruction decode pipeline stage. Instantiated in Amber.

a23_decompile.v The decompiler. This is a non-synthesizable debug module. It creates the
amber.dis file which lists every instruction executed by the core.

a23_execute.v The execute pipeline stage. Instantiated in Amber. It contains the alu, multiply,
and register_bank sub-modules.

a23_fetch.v The Fetch stage. This contains the Cache and Wishbone interface modules. It is
instantiated in Amber.

a23_multiply.v 32-bit 2's compliment multiply and multiply-accumulate unit. Uses the Booth
algorithm and takes 34 cycles to complete a signed multiply-accumulate
operation but is quite small in logic area.

a23_register_bank.v Contains all 27 registers r0 to r15 for each mode of operation. Registers are
implemented as real flipflops in the FPGA. This allows multiple read and write
access to the bank simultaneously.

The following diagram shows the Verilog module structure within the Amber 2

core.

Released under the GNU Lesser General Public License (v2.1) terms 24 of 26

Amber Amber 2 Core Specification March 2015

Figure 5 - Amber 23 Core Verilog Structure

Released under the GNU Lesser General Public License (v2.1) terms 25 of 26

a23_decode.v
Instruction decode

a23_fetch.v

Address & Write Data

a23_core.v

a23_wishbone.v
Wishbone
Interface Wishbone I/F

IRQ

FIRQ

a23_cache.v
Unified

instruction
and data

cache

Read Data

execute.v

a23_register_bank.v
27 Registers

a23_multiply.v
32-bit Multiply &

Accumulate

a23_barrel_shift.v
32-bit Barrel Shifter

a23_alu.v
32-bit ALU

Control & Read Data

Amber Amber 2 Core Specification March 2015

9 License

All source code provided in the Amber package is release under the following license

terms;

Copyright (C) 2010 Authors and OPENCORES.ORG

This source file may be used and distributed without
restriction provided that this copyright statement is not
removed from the file and that any derivative work contains
the original copyright notice and the associated disclaimer.

This source file is free software; you can redistribute it
and/or modify it under the terms of the GNU Lesser General
Public License as published by the Free Software Foundation;
either version 2.1 of the License, or (at your option) any
later version.

This source is distributed in the hope that it will be
useful, but WITHOUT ANY WARRANTY; without even the implied
warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the GNU Lesser General Public License for more
details.

You should have received a copy of the GNU Lesser General
Public License along with this source; if not, download it
from http://www.opencores.org/lgpl.shtml

 Author(s):
 - Conor Santifort, csantifort.amber@gmail.com

Released under the GNU Lesser General Public License (v2.1) terms 26 of 26

	1 Introduction
	1.1 Amber 23 Features
	1.2 Amber 25 Features

	2 Amber 23 Pipeline Architecture
	2.1 ALU
	2.2 Pipeline Operation
	2.2.1 Load Example
	2.2.2 Store Example

	3 Instruction Set
	4 Instruction Set Encoding
	4.1 Condition Encoding
	4.2 Opcode Encoding
	4.3 Shifter Operand Encoding
	4.3.1 Encode immediate value

	4.4 Register transfer offset encoding
	4.5 Shift Encoding
	4.6 Load & Store Multiple
	4.7 Branch offset
	4.8 Booth's Multiplication Algorithm

	5 Interrupts
	6 Registers
	7 Cache
	8 Amber Project
	8.1 Amber Port List
	8.2 Amber 23 Verilog Files

	9 License

