
 
 
 

The GH VHDL Library  
 

An  
www.OpenCores.org  

Project 
 
 
 

ghuber@opencores.org 
gh_vhdl_lib@yahoo.com 

 
 

 
 
 
 



The GH VHDL Library  

Revision 3.48 ii 7 March 2009 
 

Revision History 
 
Revision Date Author Description 
1.0 3 Sept 2005 G Huber Initial Revision 
1.1 10 Sept 2005 G Huber Add parts, fix some typo’s 
2.0 17 Sept 2005 H LeFevre 1. Add LFSR’s   

2. Add gh_ prefix to the name of some parts. 
  (See chapter 4 for explanation on this change)  
3  Mod parts to use gh_ parts (where required) 

2.1 18 Sept 2005 G Huber Add decoder/mux, clock divider, and NCO  
2.2 24 Sept 2005 S A Dodd Add pulse generator 
2.3 1 Oct 2005 G Huber Add sweep generator 
2.4 4 Oct 2005 H LeFevre Add Random Number Generator/CASR 
3.0 8 Oct 2005 G Huber Reorganize library,  

add a couple of shift registers 
3.1 15 Oct 2005 S A Dodd Add parity generator, FIFO’s, integer counters 
3.2 23 Oct 2005 G Huber Add programmable LFSR’s 
3.3 29 Oct 2005 G Huber Add Configuration Registers 
3.4 13 Nov 2005 S A Dodd, 

G Huber 
Add some memory parts 

3.5 14 Jan 2006 G Huber Add delay lines 
3.6 21 Jan 2006 S A Dodd 

G Huber 
Add Control Registers 
Add a fixed delay line for a bus 

3.7 28 Jan 2006 H LeFevre Add a baud rate generator 
3.8 4 Feb 2006 S A Dodd 

H LeFevre 
Add FIFO with sync clear 
Add an In Place Multiplier 

3.9 11 Feb 2006 H LeFevre 
 
 
G Huber 

Add two more In Place Multipliers (one has both 
inputs unsigned and the other both inputs are 
signed) 
Add another shift register (shifts left) 

3.10 18 Feb 2006 G Huber Add another shift register (also shifts left) 
Finished adding the gh_ prefix to all parts 

3.11 25 Mar 2006 H LeFevre 
S A Dodd 

Add one more In Place Multiplier 
Mod gh_sincos to use Cordic + 45 

3.12 13 May 2006 S A Dodd Add FIR Filter 
3.13 26 May 1006 G Huber Add debounce, stretch low 
3.14 16 Sept 2006 G Huber Add a counter, 18 bit multipliers 
3.15 23 Sept 2006 SA Dodd Add complex math parts 
3.16 23 Dec 2006 H LeFevre Replace async FIFO (to use gray code) 
3.17 27 Dec 2006 G Huber 

HL/SD 
Add Gray code converters 
Update FIFO’s 

3.18 13 Jan 2007 H LeFevre add async FIFO’s with ¼. ½, and ¾ full flags 
3.19 27 Jan 2007 SA Dodd add digital attenuator 
3.20 3 Feb 2007 H LeFevre add parallel FIR Filter 
3.21 10 Feb 2007  H LeFevre add FIR Filters of odd order, negative symmetry  



The GH VHDL Library  

Revision 3.48 iii 7 March 2009 
 

3.22 9 June 2007 G Huber 
SA Dodd 

add programmable delay bus, FASM dual port Ram 
with reset, 3 multipliers with generics 

3.23 30 June 2007 H LeFevre 
G Huber 

add 2 in-place multipliers, with all data bits out 
add MAC with full generics and an unsigned array 
divider 

3.24 15 July 2007 S A Dodd add a FIR filter and Pulse time/width module 
3.25 12 Aug 2007 S A Dodd mod/add filter 
3.26 16 Aug 2007 S A Dodd add (two clock multiply) complex multipliers 
3.27 14 Oct 2007 H LeFevre add some filters w/o multipliers 
3.28 21 Oct 2007 S A Dodd 

 
G Huber 

Add rev A of rectangular to polar (CORDIC 
application) – increases pipelining 
add 4 byte memory 

3.29 22 Nov 2007 H LeFevre add VMEbus Slave Interface Module parts 
3.30 25 Nov 2007 H LeFevre add FIR filter, rev A for NCO 
3.31 8 Dec 2007 G Huber add VME read Modules 
3.32 30 Dec 2007 H LeFevre add 3 multiplier complex multipliers 
3.33 
3.33a 

3 May 2008 
4 May 2008 

H LeFevre Add random number scalar (serial multiplier) 
Add random number scalar (parallel multiplier) 

3.34 24 May 2008 H LeFevre Add two asynchronous fifo’s (with UART style 
flags) 

3.35 27 May 2008 G Huber Add programmable delay line using generics 
3.36 1 June 2008 S A Dodd 

 
3 complex multipliers, with an extra register  
    delay for higher operating frequency 
Data Mux(2:1) /DeMux (1:2) set 

3.37 4 July 2008 G Huber Add some NCO type accumulators 
3.38 1 Sept 2008 H LeFevre Add versions of a couple frequency syntheses parts 
3.39 20 Sept 2008 H LeFevre Add programmable Stretch parts, add init to some 

of the memory parts 
3.40 27 Sept 2008 H LeFevre Add 4 byte GPIO 
3.41 04 Oct 2008 H LeFevre Add Burst Generator 
3.42 11 Oct 2008 H LeFevre Add CORDIC’s with 28 bit atan functions 
3.43 26 Oct 2008 H LeFevre Add Sin Cos ROM’s 
3.44 1 Nov 2008 H LeFevre Add Sin Cos ROM’s with quarter size tables 
3.45 8 Nov 2008 H LeFevre Add config registers (3072, 4096 bits), fix notes 
3.46 25 Jan 2009 H LeFevre Add watch dog timers 
3.47 28 Feb 2009 H LeFevre Add Pulse Width Modulator  
3.48 7 Mar 2009 H LeFevre Add NCO’s that use Lookup tables for nsin/cos 



The GH VHDL Library  

Revision 3.48 iv 7 March 2009 
 

Table of Contents 
 
1 Introduction................................................................................................................. 1 

1.1 Purpose................................................................................................................ 1 
1.2 What the Library is Not ...................................................................................... 1 
1.3 GH VHDL License ............................................................................................. 1 

2 Basic Registers and Gates........................................................................................... 3 
2.1 D Flip Flop.......................................................................................................... 3 
2.2 JK Flip Flop ........................................................................................................ 3 
2.3 Basic Register and Latch .................................................................................... 4 
2.4 XOR Bus............................................................................................................. 4 
2.5 Comparators........................................................................................................ 5 
2.6 Decoders ............................................................................................................. 6 
2.7 Multiplexers ........................................................................................................ 6 
2.8 Shift Registers..................................................................................................... 7 
2.9 Four Byte Configuration Registers ..................................................................... 8 

3 Counters ...................................................................................................................... 9 
3.1 Binary Counters .................................................................................................. 9 
3.2 Modulo Counter ................................................................................................ 10 
3.3 Integer Counters................................................................................................ 10 

4 Custom MSI Parts ..................................................................................................... 11 
4.1 Pulse Stretcher .................................................................................................. 11 
4.2 Edge Detector.................................................................................................... 12 
4.3 Clock Divider.................................................................................................... 12 
4.4 Pulse Generator................................................................................................. 13 
4.5 Parity Generator ................................................................................................ 13 
4.6 Delay Lines ....................................................................................................... 14 
4.7 Baud Rate Generator......................................................................................... 15 
4.8 Control Registers .............................................................................................. 16 
4.9 A Switch de-bouncer......................................................................................... 17 
4.10 An Edge Detector for changing Clock Domains .............................................. 17 
4.11 Gray code converters ........................................................................................ 18 
4.12 Pulse Width/Time Measurement....................................................................... 18 
4.13 Lower Rate Clock Mirror.................................................................................. 19 
4.14 Data DeMux 1 to 2............................................................................................ 19 
4.15 Data Mux 2 to 1 ................................................................................................ 20 
4.16 Four Byte GPIO ................................................................................................ 20 
4.17 Burst Generator................................................................................................. 21 
4.18 Watch Dog Timers............................................................................................ 22 
4.19 Pulse Width Modulator ..................................................................................... 22 

5 Math Functions ......................................................................................................... 24 
5.1 Accumulator...................................................................................................... 24 
5.2 Multipliers......................................................................................................... 24 
5.3 Multipliers using Generics................................................................................ 25 
5.4 Multiplier Accumulator .................................................................................... 25 
5.5 Random Number Generation ............................................................................ 26 



The GH VHDL Library  

Revision 3.48 v 7 March 2009 
 

5.5.1 The Linear Feedback Shift Register (LFSR) ............................................ 26 
5.5.2 CASR and Random Number Generator.................................................... 27 
5.5.3 Programmable LFSR’s.............................................................................. 28 
5.5.4 Random Number Scalars .......................................................................... 29 

5.6 In Place Multipliers........................................................................................... 30 
5.7 Unsigned Array Divider.................................................................................... 31 
5.8 Complex Math .................................................................................................. 32 
5.9 Digital Attenuator ............................................................................................. 34 

6 Memory..................................................................................................................... 35 
6.1 Synchronous RAM............................................................................................ 35 
6.2 FIFO’s ............................................................................................................... 36 

6.2.1 Synchronous FIFO.................................................................................... 36 
6.2.2 Asynchronous FIFO.................................................................................. 37 
6.2.3 Asynchronous FIFO’s with UART Style Flags ........................................ 38 

6.3 Four Byte Dual Port RAM................................................................................ 39 
7 Frequency Synthesis ................................................................................................. 40 

7.1 The DDS (also known as the NCO, or DCO)................................................... 40 
7.1.1 NCO Style Accumulators ......................................................................... 41 

7.2 Sweep Generator ............................................................................................... 42 
7.2.1 Simulation of the Sweep Generator .......................................................... 45 

7.3 CORDIC Rotation Algorithm........................................................................... 46 
7.3.1 Theory of the CORDIC............................................................................. 47 
7.3.2 Applications for the CORDIC .................................................................. 49 

7.4 Sin Cos ROM Lookup Tables........................................................................... 50 
8 Filters ........................................................................................................................ 51 

8.1 CIC Filter .......................................................................................................... 51 
8.2 Time–Varying Fractional Delay Filters ............................................................ 54 

8.2.1 The Lagrange Interpolator ........................................................................ 54 
8.2.2 Time–Varying Control.............................................................................. 55 
8.2.3 TVFD Application Notes.......................................................................... 55 

8.3 A single MAC FIR Filter .................................................................................. 56 
8.4 Symmetrical, parallel FIR Filters...................................................................... 57 

8.4.1 FIR Filter Architecture.............................................................................. 58 
8.5 FIR Filters Without Multipliers ........................................................................ 59 

9 VMEbus [VXIbus] Interface Modules...................................................................... 60 
9.1 VME Slave Modules......................................................................................... 61 
9.2 VME Chip Select Modules ............................................................................... 63 
9.3 VME Read Modules ......................................................................................... 63 

10 Library Notes ........................................................................................................ 64 
 
 



The GH VHDL Library  

Revision 3.48 1 7 March 2009 
 

1 Introduction 
The GH VHDL Standard Parts Library is a collection of basic VHDL parts that may be 
included in larger designs.  There is nothing wrong with modifying library parts so that 
they will meet the system requirements. 
 
 

1.1 Purpose 
• Educational – this is a set of design examples that demonstrate some of the more 

important language constructs.   
• To have a set of building blocks to aid in the building of a VHDL design – Large 

designs can be broken up into smaller blocks.  When there are common functions 
in these blocks, time can be saved when these common functions can be designed 
once and reused many times. 

 
Note: The library is setup as a collection of design files – this makes it easy to 
examine the design of each part.  Some may want to put them together as a “proper” 
VHDL library. 

 

1.2 What the Library is Not 
• A VHDL language reference.   
• Complete – Contributions are encouraged, which may be added the library (or 

ignored) at our discretion. 
• Perfect.  Look for ways to improve it – even if we do not like your 

“improvements,” if they make your life easier, use them anyway. 
 

1.3 GH VHDL License 
 
Copyright (c) 2005, 2006, 2007, 2008, 2009 by George Huber  
 
Permission is hereby granted, free of charge, to any person obtaining a copy of this 
OpenCores Project and associated documentation (the "lesser IP"), to use it in the in 
larger designs (the “greater IP”) without restriction, subject to the following conditions: 

1. The copyright notice is retained in the source files, and if they are modified, the 
Revision block must updated to identify the changes. 

2. The lesser IP itself may not be sold, but this restriction is limited to the lesser IP 
itself, not to any greater IP that it may be used in.  (Inclusion on a distribution CD 
of, for example, OpenSource Projects is not considered a “sale”) 

3. Any greater IP which uses the lesser IP, when distributed as source code or 
synthesized net list, must include in the documentation an acknowledgement of 
using the GH VHDL Library (This acknowledgement is not required for the 



The GH VHDL Library  

Revision 3.48 2 7 March 2009 
 

distribution of a fuse map or other hardware implementation in CPLD, FPGA, 
ASIC or other form of custom IC). 

4. THE LESSER IP IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY 
KIND, EXPRESS OR IMPLIED.   

5. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE 
LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY ARISING 
FROM, OR IN CONNECTION WITH THE USE OF THE LESSER IP. 



The GH VHDL Library  

Revision 3.48 3 7 March 2009 
 

 

2 Basic Registers and Gates 
Here are the basic parts that make up many larger systems.  For some of these, it may be 
argued that it is more work to instantiate them than it is to rewrite the function.  However, 
a number of design entry tools allow the use of Block diagrams.  When using block 
diagrams, it is useful to have these parts available. 
 

2.1 D Flip Flop 
The D Flip Flop is almost too simple to be in the library, but it is here anyway. 
 
I/O Function 
CLK I Clock, rising edge is used 
rst I Asynchronous Reset, active high 
D I Input Data  
Q O Output Data 
 
File name: gh_DFF.vhd 
 

2.2 JK Flip Flop 
I/O Function 
CLK I Clock, rising edge is used 
rst I Asynchronous Reset, active high 
J I J Input 
K I K Input 
Q O Output Data 
 
File name: gh_JKFF.vhd 
 
 
Truth Table for the JKFF 

CLK rst J K Q 
X 1 X X 0 
� 0 1 0 1 
� 0 0 1 0 
� 0 1 1 toggle 
� 0 0 0 no change 

 
 
 



The GH VHDL Library  

Revision 3.48 4 7 March 2009 
 

 

2.3 Basic Register and Latch 
These parts have the generic “size” which sets the data width.  
 
I/O Function 
CLK I Clock, rising edge is used 
rst I Asynchronous Reset, active high 
LE I Latch enable (1 = transparent D to Q  

                       0 = hold Q) 
CE I Clock enable 
D(size-1 downto 0) I Input Data  
Q(size-1 downto 0) O Output Data 
 
Parts C

L
K 

r
s
t 

L
E 

C
E 

D Q 
 

comments 

gh_latch.vhd   x  x x  
gh_register.vhd x x   x x  
gh_register_ce.vhd x x  x x x  
 
 

2.4 XOR Bus 
This is just a XOR gate with a programmable length (using the generic “size”).  Its 
purpose is to make it easier to combine two LFSR’s (of different length), or a LFSR with 
a CASR (Cellular Automata Shift Register), to improve the characteristics of the 
generated random numbers. 
 
I/O Function 
A(size downto 1) I Size number of bits from LFSR A 
B(size downto 1) I Size number of bits from LFSR B 
Q(size downto 1) O output 
 
File name: gh_xor_bus.vhd 



The GH VHDL Library  

Revision 3.48 5 7 March 2009 
 

 

2.5 Comparators 
While Comparators are not strictly gates, they are included here because they are simple 
enough that some people will find it easier to rewrite the code, than it is to instantiate a 
component.  
 
 
I/O Function 
A (size-1 downto 0) I A input vector 
B (size-1 downto 0) I B input vector 
min (size-1 downto 0) I  
max (size-1 downto 0) I  
D (size-1 downto 0) I  
AGB O ABS of A is greater than the ABS of B when high 
AEB O ABS of A is equal to the ABS of B when high 
ALB O ABS of A is less than the ABS of B when high 
AS O A sign bit 
BS O B sign bit 
ABS_A(size-1 downto 0) O ABS of A 
ABS_B(size-1 downto 0) O ABS of B 
Y O Y = ‘1’ when D is between min and max 
 
Parts A B m

i
n 

m
a
x 

D A
G
B 

A
E
B 

A
L
B 

A
S 

B
S 

A
B
S
_
A 

A
B
S
_
B 

Y Comments 

gh_compare.vhd x x    x x x      Unsigned 
data 

gh_compare_ABS.vhd x x    x x x x x x x  Signed 
data 

gh_compare_BMM.vhd   x x x        x Unsigned 
data 

gh_compare_BMM_s.vhd   x x x        x signed 
data 

gh_compare_ABS_reg.vhd 
(clk and rst inputs added) 

x x    x x x x x x x  Signed 
data- adds 
pipeline 
registers 



The GH VHDL Library  

Revision 3.48 6 7 March 2009 
 

 

2.6 Decoders  
The design of the decoders is based on the 75LS138, except that the outputs, when active, 
are high. 
 
I/O Function 
A I Address/select input 
G1 I Output enable, active high 
G2n I Output enable, active low 
G2n I Output enable, active low 
Y(8 or 16 downto 0) O Output bus, only 1 output is active (high) at 

a time- when all enables are active  
 
Parts A G

1 
G
2
n 

G
3
n 

Y Comments 

gh_decoder_2to4.vhd x x x x 4 bits Output bit, which corresponds 
with value of A, is high 

gh_decoder_3to8.vhd x x x x 8 bits Output bit, which corresponds 
with value of A, is high 

gh_decoder_4to16.vhd x x x x 16 bits Output bit, which corresponds 
with value of A, is high 

 
 

2.7 Multiplexers  
 
I/O Function 
sel I Selects which input becomes the output 
A - P I Data inputs 

A input sel = 0, B input sel =1, 
C input sel = 2, D input sel =3 etc 

Y O Output  
 
Parts sel Data  Y Comments 
gh_mux_2to1.vhd 1 bit A, B x  
gh_mux_2to1_bus.vhd 1 bit A, B x Uses generic size to set width of 

data bus 
gh_mux_4to1.vhd 2 bits A – D x  
gh_mux_4to1_bus.vhd 2 bits A – D x 
gh_mux_8to1_bus.vhd 3 bits A – H x 
gh_mux_16to1_bus.vhd 4 bits A - P x 

Uses generic size to set width of 
data bus 

 



The GH VHDL Library  

Revision 3.48 7 7 March 2009 
 

 

2.8 Shift Registers 
These are just a simple shift registers – the input D is loaded into Q(0) [when shifting 
right] with each clock edge.  The data Q(n) is shifted to Q(n+1) at the same time [or 
Q(n+1) is shifted to Q(n) when shifting left].  The Shift Register’s have the generic “size” 
which sets the number of bits to be shifted.  
 
It should be noted the “shift left” and “shift right” refers to shifting the data as if it is 
lined up: q0 q1 q2 q3 q4…qn.  Default for this library is shift right (_sl in the name 
means it shifts left, _slr means it can shift either left or righ). 
 
I/O Function 
CLK I Clock, rising edge is used 
rst I Asynchronous Reset, active high 
srst I Synchronous reset, active high 
LOAD I Parallel Load command 
SE I Shift enable 
MODE I Mode Bits : 00 hold (do nothing) 

                    01 shit right (Qi = Qi-1) 
                    10 shift left (Qi = Qi+1) 
                    11 Parallel Load 

DSL I Serial data in for shift left 
DSR I Serial data in for shift right 
D or D(size-1 downto 0) I Data bit(s) to be shifted and/or loaded 
Q(size-1 downto 0) O Shifted bits out 
 
 
Parts C

L
K 

r
s
t 

s
r
s
t 

L
O
A
D 

S
E 

M
O
D
E 

D
S
L 

D
S
R 

D Q Comments 

gh_shift_reg.vhd x x       x x  
gh_shift_reg_rs.vhd x x x      x x Reset can be changed 

to Preset w/generic 
gh_shift_reg_PL.vhd x x  x x    x x Parallel Load, shift 

right 
gh_shift_reg_PL_sl.vhd x x  x x    x x Parallel Load, shift 

left 
gh_shift_reg_PL_SLR.vhd x x    x x x x x Parallel Load, shift 

left or right 
gh_shift_reg_se_sl.vhd x x x  x    x x  
 



The GH VHDL Library  

Revision 3.48 8 7 March 2009 
 

 

2.9 Four Byte Configuration Registers 
Here is a collection of registers intended for use as configuration/control - set up so that 
they may be initialized by byte, word, or long word access on a 32 bit data buss. 
 
With FPGA gate counts of over 3 million, how many configuration bits are required?  
 
I/O Function 
clk I Clock, rising edge is used 
rst I Asynchronous Reset, active high 
CSn I Chip Select, active low 
WR I Write strobe, active high 
BE(3 downto 0) I Byte enable bits  
A I Address bits (Long Word addressing, 

BE is used to identify which byte) 
D(31 downto 0) I Data buss in 
RD(31 downto 0) O Read Configuration Data 
Q O Configuration Bits 
 
Parts C

L
K 

r
s
t 

C
S
n 

W
R 

B
E 

A D R
D 

Q Comments 

gh_4byte_reg_32.vhd x x  x x  x  x Used on larger parts 
gh_4byte_reg_64.vhd x x x x x x x x x  
gh_4byte_reg_128.vhd x x x x x x x x x  
gh_4byte_reg_256.vhd x x x x x x x x x Used on larger parts 
gh_4byte_reg_512.vhd x x x x x x x x x  
gh_4byte_reg_768.vhd x x x x x x x x x  
gh_4byte_reg_1024.vhd x x x x x x x x x Used on larger parts 

(3072,4096) 
gh_4byte_reg_1536.vhd x x x x x x x x x  
gh_4byte_reg_2048.vhd x x x x x x x x x  
gh_4byte_reg_3072.vhd x x x x x x x x x  
gh_4byte_reg_4096.vhd x x x x x x x x x  
 
 
 
 
 
 
 
 
 
 



The GH VHDL Library  

Revision 3.48 9 7 March 2009 
 

3 Counters 
 

3.1 Binary Counters 
All of these counters use standard logic vectors and use the generic “size” to set the 
number of bits used in the counter.   
 
I/O 
 

Function 

CLK I Clock, rising edge is used 
rst I Asynchronous Reset, active high 
srst I Synchronous Reset, active high 
CE I Count enable, active high 
LOAD I Parallel load control 
UP_D I Up/down control 
D(size-1 downto 0) I Parallel load Data 
TC O Terminal Count 
one O Active when Count = 1 
Q(size-1 downto 0) O Count value out 
 
Parts C

L
K 

r
s
t 

s
r
s
t 

C
E 

L
O
A
D 

U
P
_
D 

D T
C 
 

o
n
e 

Q comments 

gh_counter.vhd x x  x x x x x  x Universal 
Up/down counter 

gh_counter_up_sr_ce.vhd x x x x      x Up counter 
gh_counter_up_ce.vhd x x  x      x Up counter 
gh_counter_up_ce_tc.vhd x x  x    x  x Up counter 
gh_counter_up_ce_ld.vhd x x  x x  x   x Up counter 
gh_counter_up_ce_ld_tc.vhd x x  x x  x x  x Up counter 
gh_counter_down_ce_ld.vhd x x  x x  x   x Down counter 
gh_counter_down_ce_ld_tc.vhd x x  x x  x x  x Down counter 
gh_counter_down_one.vhd x x  x x  x x x x Useful as an event 

counter 
gh_counter_fr.vhd x x         A free running 

binary counter 
 
Why have so many counters in the library, when the first one is a super set of (most) the 
rest?  After all, the synthesis tools will remove the excess logic.  Logic verification is the 
answer.   If a code coverage (and/or toggle coverage) tool is used to verify the design, 
some of the excess logic will show up as untested. 



The GH VHDL Library  

Revision 3.48 10 7 March 2009 
 

 

3.2 Modulo Counter 
The Modulo counter is a specialized counter.  It is incremented by the input N, and will 
roll over at the generic modulo.  It will increment by the specified value even as it rolls 
over.  The terminal count will go active the clock period before the roll over, for all 
values of N. 
 
I/O 
 

Function 

CLK I Clock, rising edge is used 
Rst I Asynchronous Reset, active high 
CE I Count enable, active high 
N(size-1 downto 0) I Increments by this value  
TC O Terminal Count 
Q(size-1 downto 0) O Count value out 
 
Parts C

L
K 

r
s
t 

C
E 

N T
C 

Q comments 

gh_counter_modulo.vhd x x x x x x Note: size must be large enough 
to count up to modulo 

 

3.3 Integer Counters 
The Integer Counters us integers, rather than standard logic vectors for holding the count 
values.  They have one generic, max_count.  The chief advantage this counter have is that 
they can be set to count to any value, without having a vector size to set. 
 
I/O 
 

Function 

clk I Clock, rising edge is used 
rst I Asynchronous Reset, active high 
LOAD I Parallel load control  
CE I Count enable, active high 
D I Parallel load Data 
Q O Count value out 
 
Parts C

L
K 

r
s
t 

C
E 

L
O
A
D 

D Q comments 

gh_counter_integer_up.vhd x x x x x x Counts up to max _count 
gh_counter_integer_down.vhd x x x x x x Counts down to zero, rolls over to 

max_count 



The GH VHDL Library  

Revision 3.48 11 7 March 2009 
 

 

4 Custom MSI Parts 
This is a collection of parts that have functions that are not normally found in Standard 
MSI parts, but are not particularly complex in design. 

4.1 Pulse Stretcher 
The fixed Pulse Stretchers have the generic “stretch_count” which sets the number of 
clock periods that the pulse will be stretched.  The programmable Pulse Stretches use the 
generic “size” the set the number of bits used to control the stretch count.  
 
I/O Function 
CLK I Clock, rising edge is used 
rst I Asynchronous Reset, active high 
D (Dn) I Input pulse to be stretched  
stretch(size -1 downto 0) I Number of clocks to stretch pulse by 
Q (Qn) O Stretched pulse out 
  
 
For the fixed Pulse Stretchers, an integer Variable is used to control the pulse stretching.  
This means only one generic is needed to be control the stretch time.  If a 
STD_LOGIC_VECTOR had been used, the number of bits in the vector would also need 
to be adjustable. 
 
 

Parts C
L
K 

r
s
t 

D(n) stretch Q Comments 

gh_stretch.vhd x x x  x stretches a high pulse 
gh_stretch_low.vhd x x x  x stretches a low pulse 
gh_stretch_programmable.vhd x x x x x stretches a high pulse 
gh_stretch_programmable_low.vhd x x x x x stretches a low pulse 
 



The GH VHDL Library  

Revision 3.48 12 7 March 2009 
 

 

4.2 Edge Detector 
This part will detect edges on the data input.  When the input is asynchronous, the “s” 
outputs should be used to avoid missing edges.  With synchronous inputs, the “s“ outputs 
will add a clock delay the non “s” outputs, without a gain in reliability. 
 
I/O Function 
clk I Clock, rising edge is used 
rst I Asynchronous Reset, active high 
D I Input data bit 
re O Rising edge detected (needs a synchronous 

input) 
fe O Falling edge detected (needs a synchronous 

input) 
sre O Rising edge detected (Data sampled before 

detection) 
sfe O Falling edge detected (Data sampled before 

detection) 
 
File name : gh_edge_det.vhd 
 
 

4.3 Clock Divider 
This uses a generic to set the dived ratio, the number of high speed clocks per low speed 
clock.  The output is one clock period wide, designed to drive a clock enable pin on the 
parts running at the lower clock rate. 
 
I/O Function 
CLK I Higher rate Clock 
rst I Asynchronous Reset, active high 
Q O Lower rate “clock enable” output 
 
File name : gh_clk_ce_div.vhd 
  
This part was designed specifically to be used by the TVFD_filter, the CIC_filter and any 
other part that requires two related clocks, where the lower rate “clock” is a clock enable 
pulse with the correct period.   
 
For the TVFD_filter, the Q output drives the START input.  For the CIC filtes, the Q 
output drives the ND input. 
 



The GH VHDL Library  

Revision 3.48 13 7 March 2009 
 

4.4 Pulse Generator 
Does this belong here? Well, where else??  The Pulse Generator it is a simple application 
of two counters.  If the Pulse Width is set to be equal to or larger than the Period, the 
output pulse will be a constant high. 
 
I/O Function 
clk I Clock, rising edge is used 
rst I Asynchronous Reset, active high 
Period (size_Period-1 DOWNTO 0) I The number of clocks between pulses 
Pulse_Width (size_Period-1 DOWNTO 0) I The Pulse width, in clock periods 
ENABLE I Enable, active high 
Pulse O The Output Pulse 
 

 
 
Here is a simulation of the Pulse generator with the period set to 9 and the pulse width set 
to 3.  File name : gh_pulse_generator.vhd 
 
 

4.5 Parity Generator 
This is a serial parity generator.  It needs to be before the start of a data word.  The SD 
(sample data command) is included so that it is easy to use a clock that is greater that the 
data rate.   
 
I/O Function 
clk I Clock, rising edge is used 
rst I Asynchronous Reset, active high 
srst I Synchronous Reset, active high 
SD I Sample Data control  
D I Serial data in 
Q O Parity Bit 
 
File name : gh_parity_gen_Serial.vhd 
 



The GH VHDL Library  

Revision 3.48 14 7 March 2009 
 

4.6 Delay Lines 
Here is a collection of registered delay lines.  All of the delay lines use shift registers, so 
it is not just an edge that is delayed, it will delay the entire serial data string. 
 
The fixed length delay line uses the generic “clock_delays” to set the number of register 
delays. 
 
The programmable delay lines use a number of fixed delay lines, each with a multiplexer 
at the input to select the source of the input, also a multiplexer is used to select the source 
for the output.  This avoids the need for a single large multiplexer to select the delay tap. 
 
Note: For the programmable delay lines- when the delay changes, any data in the shift 
registers may be at the “wrong delay.”   If it is not cleared, it will take the DELAY (or ½ 
max delay, which ever is less) number of clocks to shift out the “bad” data. 
 
I/O Function 
clk I Clock, rising edge is used 
rst I Asynchronous Reset, active high 
srst I Synchronous Reset, active high 
D I Data input 
DELAY (7, 6, 5, 4, or 3 downto 0) I Sets the programmable delay   
Q O Output data 
 

Parts C
L
K 

r
s
t 

S
r
s
t 

D D
E
L
A
Y 

Q Comments 

gh_delay.vhd x x x x  x Uses generic “clock_delays” to 
set number of clock delays 

gh_delay_bus.vhd x x x x  x Uses generic “clock_delays” to 
set number of clock delays and 
the generic “size” to set bus 
width 

gh_delay_programmable_15.vhd x x x x x x  
gh_delay_programmable_31.vhd x x x x x x  
gh_delay_programmable_63.vhd x x x x x x  
gh_delay_programmable_127.vhd x x x x x x  
gh_delay_programmable_255.vhd x x x x x x  
gh_delay_programmable_255_bus
.vhd 

x x x x x x  

gh_delay_programmable_bus.vhd x x  x x x Uses generics for data width 
and size of possible delay 
(address size of internal RAM) 

 



The GH VHDL Library  

Revision 3.48 15 7 March 2009 
 

 

4.7 Baud Rate Generator 
This 16 bit baud rate generator is designed to be a building block in UART’s.  It has 
separate clocks for loading the baud rate register and for the generating baud rate.  Valid 
baud rate divide ratio’s are from 2-65535.  Divide values of 1 or 0 will disable the 
generator.  The counter will be reloaded with a write to either byte. 
 
I/O Function 
clk I Clock, rising edge is used 
BR_clk I Baud rate counter clock 
rst I Asynchronous Reset, active high 
WR I Write, active high 
BE(1 downto 0) I Byte enable, active high 

        bit 1 for bits 15 downto 8 
        bit 0 for bits 7 downto 0 

D(15 downto 0) I data in 
RD(15 downto 0) O The baud rate register 
rCE O Baud rate clock (Typically 16x of 

UART’s baud rate- one BR_clk 
period wide) 

rCLK O Baud rate clock (duty cycle about 
50%) 

 
File name : gh_baud_rate_gen.vhd 



The GH VHDL Library  

Revision 3.48 16 7 March 2009 
 

 

4.8 Control Registers 
Embedded Systems often have Control Registers, where the software folks would like to 
be able to set or clear individual bits.  If they can not do this, they may need to do a Read-
Modify-Write, or use a shadow register so that only the desired bits are changed.   
 
These Control Registers allow individual bits to be set, reset, or inverted.  This is done by 
setting the MODE bits.  The four operations are to write entire register, set any number of 
individual bits, clear any number of bits, or invert any number of bits. 
 
One easy way of controlling the MODE bits is to tie them the to lower address bits. 
 
I/O Function 
clk I Clock, rising edge is used 
rst I Asynchronous Reset, active high 
CE I Clock enable, active high  

Note: this signal must by 
synchronous with clk, and must go 
low between data writes 

CSn I Chip Select, active low 
WE I Write strobe 
BE(3 downto 0) I Byte enable bits 
MODE(1 downto 0) I Mode bits   

    "00" writes D into Q 
    "01" sets bits that are ‘1’ in Q 
    "10" clears bits that are ‘1’ in Q 
    "11" inverts bits that are ‘1’ in Q 

A I Address (Long Word addressing, BE 
is used to identify which byte) 

D(size-1 downto 0) or (31 downto 0) I Data input 
Q(size-1 downto 0) or (31 downto 0) O Output data 
 
 
Parts C

L
K 

r
s
t 

C
E 

C
S
n 

W
E 

B
E 

M
O
D
E 

A D Q Comments 

gh_register_control_ce.vhd x x x    x   x Uses generic “size” 
to set bit width of 
the register 

gh_4byte_control_reg_32.vhd x x  x x x x   x  
gh_4byte_control_reg_64.vhd x x  x x x x x x x  
gh_4byte_control_reg_128.vhd x x  x x x x x x x  
gh_4byte_control_reg_256.vhd x x  x x x x x x x  
 



The GH VHDL Library  

Revision 3.48 17 7 March 2009 
 

 
 

4.9 A Switch de-bouncer 
Here is a logic module that will help in de-bouncing a switch. It has two generics that 
affect how it works: 

min_pw (an integer) number of clocks wide a pulse needs to be to change states 
hold (an integer) number of clocks to hold the output level 

 
The check for minimum pulse width can help in filtering out noise that may be on the 
line, while the hold time should wide enough to allow any ringing (or switch bouncing) to 
settle out.  It is setup to work the same way on signals that are active high as active low.  
 
I/O Function 
clk I Clock, rising edge is used  
rst I Asynchronous Reset, active high 
D I data in 
Q O De-bounced output 
 
File name: gh_debounce.vhd 
 

4.10 An Edge Detector for changing Clock Domains 
This part is designed so that the edges of a pulse generated in one clock domain, can be 
sampled in a different clock domain.  Although either clock may have a higher frequency 
than the other, if the output clock has the higher frequency, the gh_edge_detector.vhd 
will use fewer resources. 
 
Note: the period of the input D (rising to rising edge, or falling edge to falling edge) 
should be at lest three times the slower clock frequency for proper operation.  Also, a 
narrow input pulse may cause both outputs to be active at the same time (the greater the 
difference in clock frequencies, the higher probability this will happen). 
 
I/O Function 
iclk I Input clock for sampling D 
oclk I Clock which will be synchronous with 

outputs re and fe 
rst I Asynchronous Reset, active high 
D I Input data bit, if not synchronous with iclk, 

should be as lest as wide as an iclk period + 
(a register) setup time + hold time 

re O Rising edge detected  
fe O Falling edge detected 
 
File name : gh_edge_det_XCD.vhd 



The GH VHDL Library  

Revision 3.48 18 7 March 2009 
 

 
 
 
 

4.11 Gray code converters 
In a standard binary sequence, multiple bits may change at the same time (for example, in 
going from 2 to 3, two bits change at the same time). In contrast, Gray codes have only 
one bit change at a time.   
 
Gray code counters offer a major advantage in Asynchronous FIFO design.  For example, 
when the write count value is sampled by the read clock (for generating the EMPTY 
flag), with only one bit changing at a time, the worst that will happen is that the EMPTY 
flag will be high for one clock period longer than “ideal.”   
 
The two converters use combinational logic, and the generic “size” to set the data width. 
 
File Names: gh_binary2gray.vhd 
                     gh_gray2binary.vhd 
 
Reference 
 

1. Clive “Max” Maxfield, Bebop to the Boolean Boogie, Second Edition, Newnes 
2003 – page 361 

 

4.12 Pulse Width/Time Measurement 
This module will measure the pulse width, and provide a relative time of arrival (TOA), 
for a series of pulses.  The “current” time is also available.  There are separate generics 
for the pulse width and time measurements.  
 
For best operation,  T_size >= pw_size 
 
I/O Function 
clk I Input clock for sampling D 
rst I Asynchronous Reset, active high 
Pulse(pw_size-1 DOWNTO 0) I Pulse to measure 
NEW_PULSE O New Pulse detected, PW & TOA valid 
PW O Pulse Width measurement 
TOA(T_size-1 DOWNTO 0) O Time of Arrival for pulse, relative to TTIME  
TTIME(T_size-1 DOWNTO 0) O Free running counter to provide relative time 
ACTIVE O goes high with a pulse input, goes low when 

there is no new pulse in the wrap around time 
of the free running counter. 

 
File name : gh_pw_wTOA.vhd 



The GH VHDL Library  

Revision 3.48 19 7 March 2009 
 

 

4.13 Lower Rate Clock Mirror 
This module, in systems that have a 1x clock and a 2x clock, will generate a logic mirror 
of the 1x clock.  Works with the Data DeMux and Data Mux modules. 
 
In systems that use multiple, related clocks (multi-rate systems), the higher rate clock 
may need to sample the lower rate clock so that their phase relationship is known.  When 
using FPGA’s, it is highly recommended to avoid using clocks as anything other than a 
clock input for a register.   
 
I/O Function 
clk_2x I Clock, rising edge used - higher rate 
clk_1x I Clock, rising edge used – lower rate 
rst I Asynchronous Reset, active high 
mirror O Logical mirror of 1x clock 
 
File name: gh_clk_mirror.vhd 
 

4.14 Data DeMux 1 to 2 
This module will split a stream of data into two – at half the data rate of the input stream. 
 
I/O Function 
clk_2x I Clock, rising edge used - higher rate 
clk_1x I Clock, rising edge used – lower rate 
rst I Asynchronous Reset, active high 
mux_cnt I Controls demux timing (use mirror output 

of gh_clk_mirror.vhd module) 
D(size-1 downto 0) I Input data, sync to 2x clock 
Qa(size-1 downto 0) O Output data, sync to 1x clock (1st sample) 
Qb(size-1 downto 0) O Output data, sync to 1x clock (2nd sample) 
 
File name: gh_de_mux.vhd 



The GH VHDL Library  

Revision 3.48 20 7 March 2009 
 

 

4.15 Data Mux 2 to 1 
This module will split a combine of two data streams into one – at twice the data rate of 
the input stream.  It does not use the lower rate clock. 
 
I/O Function 
clk_2x I Clock, rising edge used - higher rate 
rst I Asynchronous Reset, active high 
mux_cnt I Controls mux timing (use mirror output of 

gh_clk_mirror.vhd module) 
Da(size-1 downto 0) I Input data, sync to 1x clock (1st sample) 
Da(size-1 downto 0) I Output data, sync to 1x clock (2nd sample) 
Q(size-1 downto 0) O Output data, sync to 2x clock 
 
File name: gh_mux.vhd 
 

4.16 Four Byte GPIO 
The four byte GPIO module is a modification of the four byte control register (see 
paragraph 4.8) to include tri-state IO. 
 
This Module allows flexible chip IO – the direction is controllable on a byte (8 bits) 
basis.  Each bit (for the bytes that are driving) can be controlled on an individually. 
 
I/O Function 
clk I Clock, rising edge is used 
rst I Asynchronous Reset, active high 
CSn I Chip Select, active low 
WE I Write strobe 
DRIVE(3 downto 0) I Per byte direction control  

(1 = drive, 0 = receive)  
BE(3 downto 0) I Byte enable bits 
MODE(1 downto 0) I Mode bits   

(see paragraph 4.8 for operation) 
D (31 downto 0) I Data input 
RD(31 downto 0) O Read back Data 
Q(31 downto 0) IO Input/Output data 
 
File name: gh_4byte_gpio_32.vhd 
 



The GH VHDL Library  

Revision 3.48 21 7 March 2009 
 

 

4.17 Burst Generator 
The Burst Generator it is a simple application of three counters.  A fourth counter can be 
used to create the trigger signal, making the bust periodic (an exercise left to the user).   
 
I/O Function 
clk I Clock, rising edge is used 
rst I Asynchronous Reset, active high 
Period (size_Period-1 DOWNTO 0) I The number of clocks between pulses 
Pulse_Width (size_Period-1 DOWNTO 0) I The Pulse width, in clock periods 
P_Count (size_pcount-1 downto 0) I The number of pulses in a burst 
trigger I Starts burst, active high 
Pulse O The Output Pulse 
busy O Active high between 1st pulse through 

the end of the last pulse 
 
Below is a simulation of the gh_Burst_Generator.vhd file: 
 

 



The GH VHDL Library  

Revision 3.48 22 7 March 2009 
 

 

4.18 Watch Dog Timers 
A Watch Dog Timer is a free running counter- which, if the system fails to reset before it 
times out, will (typically) re-start a system (reset, re-boot, or interrupt).  A generic, ticks, 
sets the number of clock ticks for the time out period in the fixed length version.  The 
programmable version uses a generic size that sets the maximum time out. 
 
 
I/O Function 
clk I Clock, rising edge is used 
rst I Asynchronous Reset, active high 
T_en I Timer enable 
t I Toggle input to reset counter 
t_time (size-1 downto 0) I Timer time out clocks 
Q O High after time out period has elapsed 
 
 
Parts clk rst T_en t t_time Q Comments 
gh_wdt.vhd x x  x x x  
gh_wdt_programmable.vhd x x x  x x  
 
 

4.19 Pulse Width Modulator  
A pulse width modulator is one way of converting digital data to analog.  The output is a 
series of pulses with the pulse widths (or duty cycle) that are proportional to the input 
digital value.   
 
I/O Function 
clk I Clock, rising edge is used 
rst I Asynchronous Reset, active high 
d_format I Input Data format 0 = 2’s 

complement, 1 = offset binary 
DATA(size-1 downto 0) I Input data 
PWMo  O Pulse Width Modulator output 
ND O New Data Sample strobe 
 
The minimum recommended clock frequency for the pulse width modulator module is: 
 

FPWM = 2 x Frange x R 
 
FPWM = PWM module clock frequency 
Frange = maximum frequency of input data stream  
R = resolution (typically a multiple of 2N, where N is the number of bits) 



The GH VHDL Library  

Revision 3.48 23 7 March 2009 
 

 
Parts c

l
k 

r
s
t 

d_format D
A
T
A 

PWMo N
D 

Comments 

gh_PWM.vhd x x x x x x  
        
 
Pulse width modulators can be used to control the intensity of LED’s, audio play back, 
and motor control.  The reference (listed below) is highly recommended reading. 
 
 
Reference: 
 

1. Rafael Camarota, How to control analog output from a CPLD using a pulse width 
modulator, Programmable Logic Design Line, February 24, 2009 
http://www.industrialcontroldesignline.com/howto/motorcontrol/214502805 

 
 

 



The GH VHDL Library  

Revision 3.48 24 7 March 2009 
 

 

5 Math Functions 
 

5.1 Accumulator 
The Accumulator has the generic “size” which sets the number of bits to be accumulated.   
When CE is high, the value of D is added to the value of Q.  No provision is made for 
overflow or underflow.   
 
I/O Function 
CLK I Clock, rising edge is used 
rst I Asynchronous Reset, active high 
srst I Synchronous Reset, active high 
LOAD I Load data w/o accumulate 
CE I Clock enable, active high 
D (size-1 downto 0) I Input Data  
Q(size-1 downto 0) Q Shifted bits out 
 
Parts C

L
K 

r
s
t 

s
r
s
t 

L
O
A
D 

C
E 

D Q Comments 

gh_acc.vhd x x x  x x x  
gh_acc_ld.vhd x x  x x x x Loads Data with out accumulate 

(has priority over CE) 
 
 

5.2 Multipliers 
The multipliers will be recognized, at lest by the Xilinx ISE synthesis tool, and placed 
into one of the multiplier blocks.  The two clock delay Multipliers are expected to operate 
at higher clock rates than the single clock delay multipliers. 
 
I/O Function 
clk I Clocks, rising edge is used for A/B ports 
DA(15 downto 0) I A input data port 
DB(15 downto 0) I B input data port 
Q(15 downto 0) O Output data 
 
Parts CLK DA/DB Q Comments 
gh_mult_g16.vhd x x x Has two clock delay, signed data 
gh_mult_g18.vhd x x x Has two clock delay, signed data 
gh_mult_g18_sc.vhd x x x Has a single clock delay, signed data 



The GH VHDL Library  

Revision 3.48 25 7 March 2009 
 

5.3 Multipliers using Generics 
The multipliers will be recognized, at lest by the Xilinx ISE synthesis tool, and placed 
into one of the multiplier blocks.  These use generics for the size of the input ports – the 
output port size is the sum of the size of the two input ports. 
 
I/O Function 
clk I Clocks, rising edge is used for A/B 

ports 
I(size-1 downto 0) I signed input data 
Scale(ssize-1 downto 0) I unsigned input data  
A(asize-1 downto 0), B(bsize-1 downto 0) I input data 
Q O Output data 
 
Parts CLK I Scale A/B Q Comments 
gh_scaling_mult.vhd x x x  x Has one clock delay 
gh_mult_gs.vhd x   x x Has one clock delay 
gh_mult_gus_sc.vhd x   x x Has one clock delay 
 

5.4 Multiplier Accumulator 
The Multiplier Accumulator is a basic building block used in digital filters. 
 
I/O Function 
clk I Clocks, rising edge is used for A/B ports 
rst I Asynchronous Reset, active high 
srst I Synchronous Reset, active high 
LOAD I Load data w/o accumulate 
ce I Clock enable 
DA(15 downto 0) I A input data port 
DB(15 downto 0) I B input data port 
Q(15 downto 0) O Output data 
 
Parts C

L
K 

r
s
t 

s
r
s
t 

L
O
A
D 

C
E 

D
A
/
D
B 

Q Comments 

gh_MAC_16bit.vhd x x x  x x x  
gh_MAC_16bit_ld.vhd x x  x x x x Loads Data with out accumulate 

(has priority over CE) 
gh_MAC_ld.vhd x x  x x x x includes generics to set size 

(separate for DA/DB) and for bit 
expansion to avoid accumulator 
overflow 



The GH VHDL Library  

Revision 3.48 26 7 March 2009 
 

 

5.5 Random Number Generation 
There are a number of was to generate pseudo random numbers in hardware.  The LFSR 
may be the one most used, but a CASR is also included. 
 

5.5.1 The Linear Feedback Shift Register (LFSR) 
The Linear Feedback Shift Register (LFSR) is used for generating pseudo random 
numbers.  These use the Fibonacci implementation, where the output from some of the 
registers are exclusive ORed together and feedback to the input of the beginning of the 
shift register. 
 
I/O Function 
CLK I Clock, rising edge is used 
rst I Asynchronous Reset, active high 
LOAD I Load the seed value 
seed(size of LFSR downto 1) I LFSR seed (initial value) 
Q(size of LFSR downto 1) O output 
 
Parts C

L
K 

r
s
t 
 

L
O
A
D 

S
e
e
d 

Q Approximant time pattern runs before repeating 
(when the clock rate is 100MHz) 

gh_lfsr_24.vhd x x   x 167.8ms 
gh_lfsr_36.vhd x x   x 11.45 minutes 
gh_lfsr_48.vhd x x   x 32.578 days 
gh_lfsr_64.vhd x x   x 5,849 years 
gh_lfsr_gfb4.vhd x x   x Has generics for size (first feedback tap) and three 

more feedback taps (these taps may be set to zero 
to have tap ignored). If Taps are picked that give a 
maximum sequence length: (2size -1) * 10 ns 

gh_lfsr_gfb4_ld.vhd x x x x x Adds Load / Seed inputs 
 
Bits Taps Bits Taps Bits Taps Bits Taps 
9 9,5 19 19,6,2,1 32 32,22,2,1 67 67,66,58,57 
10 10,7 21 21,19 33 33,20 72 72,66,25,19 
11 11,9 23 23,18 38 38,6,5,1 77 77,76,47,46 
12 12,6,4,1 25 25,22 43 43,42,38,37 81 81,77 
13 13,4,3,1 26 26,6,2,1 47 47,42 89 89,51 
15 15,14 28 28,25 51 51,50,36,35 96 96,94,49,47 
16 16,15,13,4 29 29,27 55 55,31 97 97,91 
17 17,14 30 30,6,4,1 57 57,50 99 99,97,54,52 
18 18,11 31 31,28 61 61,60,46,45 100 100,63 
 



The GH VHDL Library  

Revision 3.48 27 7 March 2009 
 

A selection of different length LFSR feedback taps.  For those who are interested in 
LFSR’s of different lengths should consult one of the references listed. 
 
According to The Art of Electronics, for all of the maximum length LFSR’s that have two 
feedback taps, the smaller feedback tap (n) can be replaced by the value of m – n (where 
m is the length of the LFSR). 
 
References: 
 

2. Paul Horowitz, Winfield Hill, The Art of Electronics, Second Edition, Cambridge 
Press, 1989 (lists taps for LFSR’s from 3 to 39 that need only two taps for 
maximum length) 

3. Synthaholic’s Electronic Music Site, LFSR Feedback Taps to 168 bits, 
http://home1.gte.net/res0658s/electronics/LFSRtaps.html 

4. Xilinx Inc, Linear Feedback Shift Register v3.0, LogiCore, March 28, 2003 
  

5.5.2 CASR and Random Number Generator 
The CASR (Cellular Automata Shift Register), and the Random Number Generator are 
added to the library with reservations.  The referenced paper does not suggest a seed 
value for the CASR – when it was simulated, with most seed values, the pattern repeats 
every 1.74762 ms (based upon a 100MHz clock rate – in contrast a 36 bit LFSR will run 
over 11 minutes before it will repeat).  A seed value of all ones will repeat faster. 
 
The Random Number Generator XOR’s 32 bits of the CASR output with 32 bits from a 
LFSR.  The generic flavor of the LFSR is used.  All of the generics of the LFSR and the 
seed value and load of the CASR are also on the Random Number generator to make 
experimenting with it easier.  The generated number is 32 bits wide.  Also, 32 bits from 
the two shift registers are also brought out to make it easier to play with. 
 
They are included with the hope that it will inspire someone to send me some additional 
references on its proper usage. 
 
CASR I/O Function 
CLK I Clock, rising edge is used 
rst I Asynchronous Reset, active high 
load I Active high, will load the seed value 
seed(37 downto 1) I start value for the shift register 
Q(37 downto 1) O output 
 
File names: gh_casr_37.vhd 
                   gh_random_number.vhd 
 
 
 
 



The GH VHDL Library  

Revision 3.48 28 7 March 2009 
 

Reference 
 

1. Thomas Tkacik, A Hardware Random Number Generator, a PDF file with 
Motorola’s “intelligence everywhere” logo, August 14, 2002. a copy can be found 
at http://ece.gmu.edu/crypto/ches02/talks_files/Tkacik.pdf 

 

5.5.3 Programmable LFSR’s 
For applications when the user may want dynamic control over the length, or start of the 
pseudo random number sequence, here are a couple of programmable LFSR’s.  One word 
of caution: area.  This programmable LFSR’s consume a lot more logic than the fixed 
length versions.  For comparison (in a Xilinx Virtex2p FPGA ): 
 
LFSR Slice Flip-Flops # of Slices # of LUT’s 
gh_lfsr_gfb4.vhd 
(with default, with a 
length of 43) 

43 32 15 

gh_lfsr_PROG_16.vhd 16 49 91 
gh_lfsr_PROG_32.vhd 32 94 178 
 
Programmable LFSR pin list 
I/O Function 
clk I Clock, rising edge is used 
rst I Asynchronous Reset, active high 
LOAD I Load value of D into LFSR  
TAPS(1 down to 0) I Sets the number of feedback taps 

00 = 1 feedback TAP used 
01 = 2 feedback TAPs used 
10 = 3 feedback TAPs used 
11 = 4 feedback TAPs used 

fb1,fb2, fb3, fb4 
(4 or 3 downto 1) 

I Value for fbx = feedback TAP -1 
 

D(32 or 16 downto 1) I Seed value in 
Q(32 or 16 downto 1) O Shift register out 
 



The GH VHDL Library  

Revision 3.48 29 7 March 2009 
 

 

5.5.4 Random Number Scalars 
There are cases where a random number within a specific range is needed.  This module 
uses the maximum and minimum values to get a range, which is used to as a scale value 
that is multiplied with a pseudo random number.  The product is then added with the 
minimum value for the result.  The basic equation used is: 
 

( )( )minmax_ −⊗⊕= randommimnumberScaled  
 
Note: the modules uses some rounding which is not shown. 
 
If an LFSR is used to generate the pseudo random number input, it should run at full 
clock rate, with only one sample per Nsam period.   
 
The nature of 2’s complement binary math allows the input data to be either unsigned or 
signed, with the following limitations: 

1. Data type may not be mixed: all must be signed, or all must be unsigned. 
2. The maximum must be larger than the minimum value for the output to be in the 

proper range. 
 
CASR I/O Function 
clk I Clock, rising edge is used 
rst I Asynchronous Reset, active high 
Nsam I New Sample command  

(minimum period is size+5 clock periods) 
Max(size-1 downto 0) I Maximum number wanted 
Min(size-1 downto 0) I Minimum number wanted 
random(size-1 downto 0) I Random number (from LFSR, for example) 
Sran(size-1 downto 1) O Output random number 

(Min < Random number < Max) 
 
Parts c

l
k 

r
s
t 
 

N
s
a
m 
 

M
a
x 

M
i
n 

r
a
n
d
o
m 

S
r 
a
n 

 

gh_ran_scale.vhd x x x x x x x minimum output sample period is 
size+5 clock periods) 

gh_ran_scale_par.vhd x   x x x x Uses parallel multiplier, output 
sample data rate is clock rate 
Suggestion: avoid using single 
LFSR for input – XOR two, or XOR 
with CASR (see par 5.5.2) 

 



The GH VHDL Library  

Revision 3.48 30 7 March 2009 
 

 

5.6 In Place Multipliers 
These Multipliers are slow (size + 3 clock cycles), but will use relatively little logic.  
Some of them truncate the lower half of the output – both input data ports are the same 
size, which is set by the Generic “size.” 
 
These Multipliers use the shift-and-add technique known as Booth’s Algorithm.  
Negative numbers have their 2’s complement sent through Booth’s Algorithm, if the 
output is negative (one negative input), a 2’s complement is done on the output data as 
well.  The shift register and the adder share the same set of registers, hence the name “In 
Place Multipliers.”   
 
Multiplier pin list 
I/O Function 
clk I Clock, rising edge is used 
rst I Asynchronous Reset, active high 
start I Start calculation, ignored while 

BUSYn is active  
A(size-1 downto 0) I A data input  
B(size-1 downto 0) I B data input  
Q([2*]size-1 downto 0) O Output  
BUSYn O Active low while calculating product 
 
Note:  Some synthesis tools do not handle these in place multipliers gracefully.   
 
Parts Comments 
gh_mult_ip_usus.vhd Both A and B inputs are unsigned 
gh_mult_ip_usus_mg.vhd Gain modified so that when A (or B) are all high, the output will 

follow the B (or  A) inputs 
gh_mult_ip_sus.vhd A input is signed, B input is unsigned  

– when all B input bits are set high, output Q follows input A 
gh_mult_ip_ss.vhd Both A and B inputs are signed  

- gain is modified – 16 bit examples: 
- this part:  x”8000” times  x”8000” = x“7FFF” 
  -  “normal” multiplier output (upper 16 bits) = x”4000” 
- this part:  x”7FFF” times  x”7FFF” = x“7FFE” 
  -  “normal” multiplier output (upper 16 bits) = x”3FFF” 

gh_mult_ip_usus_ab.vhd Both A and B inputs are unsigned – all bits on output 
gh_mult_ip_sus_ab.vhd A input is signed, B input is unsigned  – all bits on output 
 
Reference 
 

1. Clive “Max” Maxfield, Bebop to the Boolean Boogie, Second Edition, 
Newnes 2003 – page 78 

 



The GH VHDL Library  

Revision 3.48 31 7 March 2009 
 

5.7 Unsigned Array Divider 
An unsigned divider is borrowed from Reto Zimmermann’s public domain “VHDL 
Library of Arithmetic Units.”  Some minor edits were made it to so that it would fit better 
in this library.  (rz_ was added to the names, the full adder was placed in the same file 
with the divider, etc.) 
 
Multiplier pin list 
I/O Function 
X(widthX-1 downto 0) I dividend 
Y(widthY-1 downto 0) I divisor 
Q(widthX-widthY downto 0) O quotient  
R(widthY-1 downto 0) O remainder out 
 
File names: rz_DivArrUns.vhd 
 
The unsigned divider is implemented as a combination device.  Also, do not forget that 
division is a much slower process than multiplication. 
 
Those interested in VHDL Arithmetic, may be interested in Reto Zimmermann’s 
complete public domain “VHDL Library of Arithmetic Units,” which may be found at: 
www.iis.ee.ethz.ch/~zimmi/arith_lib.html 
 
Note: the singed divider in “VHDL Library of Arithmetic Units” does not work (as 
admitted to in the comments in the file) which is why only the unsigned part is included. 
 
(Note: this part is not covered by the GH VHDL License, no rights to it are claimed by 
anyone on the GH_VHDL_LIB team.)



The GH VHDL Library  

Revision 3.48 32 7 March 2009 
 

 

5.8 Complex Math 
Complex Math is used in processing quadrature signals, which are used in many digital 
signal processing applications.  For example: 
 

• Communications systems 
• Single sideband modulators/demodulators 
• Antenna beamforming applications 
• Time difference of arrival processing in radio direction finding schemes 
• Coherent pulse measurement systems 
• Radar systems 

 
Quadrature signals are two dimensional, whose value at an instant in time can be 
specified by a single complex number.  Traditionally, the two parts have been called the 
real part and the imaginary part.  Communications engineers prefer to call them the in-
phase (I) and quadrature phase (Q).   
 
Complex Math pin list 
I/O Function 
clk I Clock, rising edge is used 
rst I Asynchronous Reset, active high 
IA(size-1 downto 0) I I phase A data input 
IB(size-1  downto 0) I I phase B data input  
Scale(ssize-1  downto 0) I Scale Data input (unsigned)  
iI(size-1  downto 0) I I phase data input 
iQ(size-1  downto 0) I Q phase data input 
QA(size-1  downto 0) I Q phase A data input  
QB(size-1  downto 0) I Q phase B data input  
I(size-1  downto 0) O I phase output 
Q(size-1  downto 0) O Q phase output  
 
These multipliers use generic’s to set the data path width.  They are recognized (at lest by 
the synthesis tool’s from Altera and Xilinx) and placed in the fixed multiplier blocks.   



The GH VHDL Library  

Revision 3.48 33 7 March 2009 
 

 
 
Parts – complex adder, multipliers  C

l
k 

r
s
t 

I
A 

I
B 

Q
A 

Q
B 

I Q Comments 

gh_complex_add.vhd x x x x x x x x  
gh_complex_ssb_mult.vhd x x x x x x x   
gh_complex_mult.vhd x x x x x x x x uses 4 multipliers 
gh_complex_mult_3m.vhd x x x x x x x x uses 3 multipliers  
gh_complex_ssb_mult_2cm.vhd x x x x x x x  
gh_complex_mult_2cm.vhd x x x x x x x x 
gh_complex_mult_2cm_3m.vhd x  x x x x x x 

uses 2 clock 
multipliers 

gh_complex_ssb_mult_2cm_xrsp.vhd x  x x x x x  
gh_complex_mult_2cm_xrsp.vhd x  x x x x x x 
gh_complex_mult_2cm_3m_xrsp.vhd x  x x x x x x 

Has extra register 
in SUM path to 
increase operating 
frequency 

 
The complex adder will combine two signals – but care must be used to avoid overflow. 
 
 
Parts - Scaling Multiplier c

l
k 
 

S
c
a
l
e 

i
I 

i
Q 

I Q Comments 

gh_complex_scaling_mult.vhd x x x x x x Scale is an unsigned 
value 

gh_complex_scaling_mult_2cm.vhd x x x x x x uses 2 clock multipliers 
 
Reference 
 

1. Richard G. Lyons, Understanding Digital Signal Processing,  Second Edition, 
Prentice Hall, 2004 

2. Ian Ing and Asher Hazanchuk, Efficient FPGA Multiplier Usage in Wireless 
Basestations, (a Lattice Semiconductor Corp. sponsored White Paper for the) 
FPGA and Structured ASIC Journal, Sept. 2007 



The GH VHDL Library  

Revision 3.48 34 7 March 2009 
 

 

5.9 Digital Attenuator 
When creating multi-tone signals, digital attenuators will allow there amplitudes to be 
adjusted individually.  Care must be used when adding multiple signals to avoid math 
overflow. 
 
The attenuator has a ten bit control input. It has 0.125 dB resolution, total useful 
attenuation is limited by the dynamic range of its sixteen bit output bits.  The out put is an 
unsigned scale factor, intended to drive one input of a multiplier (the signal to be 
attenuated should be a signed, and applied to the multiplier’s other input). 
 
This function is implemented two different ways, a Lookup Table, or two smaller lookup 
tables (17 bits wide to minimize round off errors - which will be implemented in logic), 
and a multiplier.   
 
The basic equation that this function performs is: 

 
�
�

�
�
�

� ×

×+= 20
125.

10655355.
atten

Q   
 
It should be noted that atten is a negative number. 
 
 This is the (application specific) inverse of the well known  )(20 10 xLOGdB ×=  
 
I/O Function 
clk I Clock, rising edge is used 
Atten(9 downto 0) I Asynchronous Reset, active high 
Q(15 downto 0) O Scale output- unsigned 
 
Parts – Digital Attenuator clk 

 
Atten Q Comments 

gh_attenuation_10.vhd x x x Uses two smaller LUT’s and a 
multiplier 

gh_atten_rom_10.vhd x x x A single LUT  



The GH VHDL Library  

Revision 3.48 35 7 March 2009 
 

 

6 Memory 

6.1 Synchronous RAM 
 
generics Function 
size_data Size of the data bus 
size_add Size of the address bus 
 
I/O Function 
clk I Clocks, rising edge is used for A/B ports 
rst I reset memory contents 
WE I Write enable, active high 
add I Address lines 
D(size_data-1 DOWNTO 0) I Input data 
Q(size_data-1 DOWNTO 0) O Output data 
 
Note:  The signal names on dual port RAM’s have an “A_” or “B_” prefix, if both ports 
have that function, otherwise, no prefix is used. 
 
The FASM (FPGA and ASIC Subset Model) memory has a Synchronous write port, but 
the read ports are Asynchronous. 
 

Parts c
l
k 

r
s
t 

W
E 
 

a
d
d 

D Q Ports Notes: 

gh_sram_1wp_2rp.vhd x  x x x x 1 write 
2 read 

Minimum throughput (write 
to data read) 3 clocks.  
Recognized, by the Xilinx 
ISE synthesis tool, as Block 
RAM 

gh_fasm.vhd x  x x x x 1 write 
1 read 

gh_fasm_1wp_2rp.vhd x  x x x x 1 write 
2 read 

gh_fasm_1wp_2rp_r.vhd x x x x x x 1 write 
2 read 

Single clock write data, 
Asynchronous read.  
Recognized, at lest by the 
Xilinx ISE synthesis tool, as 
distributed RAM   

gh_sram.vhd x  x x x x 1 write 
1 read 

gh_sram_1wp_2rp_sc.vhd x  x x x x 1 write 
2 read 

Single clock to store or read 
data.  Minimum throughput 
(write to data read) 2 clocks.  
Recognized, at lest by the 
Xilinx ISE synthesis tool, as 
Block RAM. 



The GH VHDL Library  

Revision 3.48 36 7 March 2009 
 

 

6.2 FIFO’s 
The FIFO’s are intended for applications where portability more important than 
performance or efficiency.  It is expected that, for example, that a Xilinx CoreGen part 
would use fewer logic resources and run faster than using a FIFO out of this library.  
However, these FIFO’s are pure VHDL – they are portable.  The same design, without 
modification, can be used in Xilinx, Altera, Actel, Lattice, as well as any other FPGA 
families. 
 
The control logic for the write (WR) signal needs to sample the full flag to ensure that a 
write can take place.  When the empty flag is low, the output data word is ready, once it 
is used, an active read (RD) will increment the read counter for the next data word.  If the 
empty flag is high, the read command signal will be ignored. 
 
It should be noted that here, “synchronous” means the write and read ports use the same 
clock.  “Asynchronous” means that the write port has one clock and the read port has a 
second, unrelated clock– all the control signals are synchronous with their ports clock.   
 
FIFO generics Function 
add_width Number of address bits used to access 

RAM - sets FIFO depth = 2 ^add_width 
data_width Size of the data bus 
 

6.2.1 Synchronous FIFO 
 
I/O Function 
clk I Clock, active on rising edge 
rst I Reset, active high – resets counters, flags 
srst I Sync Reset, active high – resets counters, flags 
WR I Write command, advances the write counter 

after write 
RD I Read command, advances read counter to read 

next word  
D(data_width -1 DOWNTO 0) I Input data 
Q(data_width -1 DOWNTO 0) O Output data 
empty O When low, output data is valid 
full O When low, WR is sampled for write command 
 
File name gh_fifo_sync_sr.vhd (uses FSAM style memory) 
                 gh_fifo_sync_rrd_sr.vhd (uses gh_sram_1wp_2rp_sc.vhd  for memory- there 
                 is an extra clock delay on the output data path) 



The GH VHDL Library  

Revision 3.48 37 7 March 2009 
 

 

6.2.2 Asynchronous FIFO 
The Asynchronous FIFO uses Gray Code Counters (style #2, as defined in reference 1.)   
Binary counters are used to address the memory.  A binary to Gray code converter uses a 
second set of registers, the output of which is synchronized with the other clock domain 
(this insures that a maximum of one bit will be changing at the time it is sampled).   
 
The counters have an extra bit (above what is used to address the memory) for the flag 
generation.  If the entire count values of both counters match, the FIFO is empty.  If the 
memory address bits match and the extra bit do not, the FIFO is full. 
 
Optionally (parts with the suffix _wf in the name), have a ¼ Full, Half Full, and ¾ Full 
Flags (Gary to binary converters are used in generating these flags). 
 
I/O Function 
clk_WR I Clock for write port, active on rising edge 
clk_RD I Clock for read port, active on rising edge 
rst I Reset, active high – resets counters, flags 
srst I Sync Reset, active high – resets counters, flags 

defaults to 0 (synchronous with clk_WR, 
internally re-synchronized to clk_RD) 

WR I Write command, synchronous with clk_WR, 
advances the write counter after write 

RD I Read command, synchronous with clk_RD, 
advances read counter to read next word  

D(data_width -1 DOWNTO 0) I Input data 
Q(data_width -1 DOWNTO 0) O Output data 
empty O When low, output data is valid, 

synchronous with clk_RD 
full O When low, WR is sampled for write command, 

synchronous with clk_WR 
qfull O Quarter Full Flag, synchronous with clk_WR 
hfull O Half Full Flag, synchronous with clk_WR 
qqqfull O ¾ Full Flag, synchronous with clk_WR 
 
File names gh_fifo_async_sr.vhd, gh_fifo_async_sr_wf.vhd (uses FSAM style memory) 
                  gh_fifo_async_rrd_sr.vhd, gh_fifo_async_rrd_sr_wf.vhd (there is an extra 
                     clock delay on the output data path for these parts) 
 
Reference 
 

2. Clifford E. Cummings, Simulation and Synthesis Techniques for Asynchronous 
FIFO Design,  Revision 1.2 (June 2005), Sunburst Design 

3. Clive “Max” Maxfield, Bebop to the Boolean Boogie, Second Edition, Newnes 
2003 – page 361 



The GH VHDL Library  

Revision 3.48 38 7 March 2009 
 

 

6.2.3 Asynchronous FIFO’s with UART Style Flags 
These two FIFO’s are similar to the that are used in the VHDL 16550 UART project with 
the following modifications: 
 

1. These include generics for the size of the address bus for the internal memory. 
2. FSAM is not used for the internal memory, so that it can be instantiated in block 

RAM. (there is an extra clock delay in the data path output -  this will never be 
seen on the transmit side, and will not be seen on the receive side if one of the 
wrappers are used.) 

 
I/O Function 
clk_WR I Clock for write port, active on rising edge 
clk_RD I Clock for read port, active on rising edge 
rst I Reset, active high – resets counters, flags 
srst I Sync Reset, active high – resets counters, flags 

defaults to 0 (synchronous with clk_WR, 
internally re-synchronized to clk_RD) 

WR I Write command, synchronous with clk_WR, 
advances the write counter after write 

RD I Read command, synchronous with clk_RD, 
advances read counter to read next word  

D(data_width -1 DOWNTO 0) I Input data 
Q(data_width -1 DOWNTO 0) O Output data 
empty O When low, output data is valid, 

synchronous with clk_RD 
q_full O Quarter Full Flag, synchronous with clk_RD 
h_full O Half Full Flag, synchronous with clk_RD 
a_full O Almost Full Flag, synchronous with clk_RD 
full O When low, WR is sampled for write command, 

synchronous with clk_WR 
 
Parts – asynchronous  
FIFO’s with UART  
style flags 

c
l
k 
_
W
R 

c
l
k
_
R
D 

r
s
t 

s
r
s
t 

W
R 

R
D 

D Q e
m
p
t
y 

q
_
f
u
l
l 

h
_
f
u
l
l 

a
_
f
u
l
l 

f
u
l
l 

Comments 

gh_fifo_async_usrf.vhd x x x x x x x x x x x x x With Read Flags 
gh_fifo_async_uswf.vhd x x x x x x x x x    x With Write Flags 
 
 



The GH VHDL Library  

Revision 3.48 39 7 March 2009 
 

6.3 Four Byte Dual Port RAM 
These dual port RAM modules are intended for 32 bit processor systems that need lookup 
tables to perform some function.  The A port is for processor access (read/write) while 
the B port is read only.   
 
The processor bus (A port) is setup for 32 bit write access, with byte enables so byte 
access is possible.  For the B port, there are modules for 32 bit lookup tables, 16 bit 
lookup tables and 8 bit lookup tables.  For the 8 and 16 bit B port modules, big endian 
and little endian versions are savable.  (The big and little endian modules differ only in 
the byte/word order of the data on the B port output.) 
 
I/O Function 
A_clk I Clock, rising edge is for processer access 
B_clk I Clock, for B (read only) port 
CSn I Chip select, active low 
WE I Write enable, active high (for write cycles) 
BE(3 downto 0) I Byte enable  (for write cycles) 

BE(3) for Data bits (31 downto 24) 
BE(2) for Data bits (23 downto 16) 
BE(1) for Data bits (15 downto 8) 
BE(0) for Data bits (7 downto 0) 

A_add(size_add-[3,2, or1] downto 0) I Address lines for processor bus 
B_add(size_add-1 downto 0) I Address lines for B port 
D(31 DOWNTO 0) I Write Data (processor bus) 
A_Q(31 DOWNTO 0) O Read data (processor bus) 
B_Q(B data size -1 DOWNTO 0) O Read data, B port 
 

Parts Notes: 
gh_4byte_dpram_x32.vhd  
gh_4byte_dpram_x16_be.vhd  
gh_4byte_dpram_x16_le.vhd  
gh_4byte_dpram_x8_be.vhd  
gh_4byte_dpram_x8_le.vhd  
 



The GH VHDL Library  

Revision 3.48 40 7 March 2009 
 

 

7 Frequency Synthesis  
 

7.1 The DDS (also known as the NCO, or DCO) 
One of the most popular uses of the Accumulator is the DDS (Direct Digital Synthesizer), 
which is also know as the NCO (Numerically Controlled Oscillator) and the Digitally 
Controlled Oscillator.  The output frequency is calculated using the following equation: 

sizeclkout

D
FF

2
=  

Fout = Frequency out 
Fclk = Frequency of the Clock  
D = value of the input data 
Size = number of bits in the accumulator 
 
The MSB will toggle at the output frequency.  The frequency resolution can be calculated 
by setting D = 1, and solving for the output frequency.  The accuracy of output frequency 
is controlled by the accuracy of the Clock used.   
 
To reduce the output phase jitter to a sensible level, the 8, 10, 12, 14, or 16 MSB’s of the 
Accumulator used as the address for a sin lookup PROM, which can be used to drive a 
Digital Analog Converter – and once filtered, will produce a nice sin wave.  The 
CORDIC (a part that also shows up in this library) can also be used to generate a sin/cos 
pair. 
 
DDS Examples 
 
I/O Function 
CLK I Clock, rising edge is used 
rst I Asynchronous Reset, active high 
FREQ I Frequency data word 
PHASE I Phase input, adjusts the of the output  
sin O sin output 
nsin O Negative sin output 
cos O cos output 
 



The GH VHDL Library  

Revision 3.48 41 7 March 2009 
 

 
Parts C

L
K 

r
s
t 

F
R
E
Q 

P
H
A
S
E 

s
i
n 
 
 

n
s
i
n 

c
o
s 

Comments 

gh_nco.vhd x x x  x  x  
gh_nco_a.vhd x x x  x  x uses gh_sincos_a.vhd 
gh_nco_phase.vhd x x x x x  x Adds a phase adjust port 
gh_nco_phase_a.vhd x x x x x  x uses gh_sincos_a.vhd 
gh_nco_lut_12p.vhd x x x x  x x Uses look up table for nsin/cos 
gh_nco_lut_14p.vhd x x x x  x x Uses look up table for nsin/cos 
gh_nco_lut_16p.vhd x x x x  x x Uses look up table for nsin/cos 
 

7.1.1 NCO Style Accumulators 
This is a set of accumulators designed to be part of a NCO.  They include generics for the 
size of the accumulator (A_size) and number of bits (size) for addressing a lookup table 
or CORDIC.  Some of them include a phase port.   
 
Some of the parts split the output (as well as the input phase ports, if applicable) into 
multiple paths, which is useful in high speed DSP systems. 
 
I/O Function 
clk I Clock, rising edge is used 
rst I Asynchronous Reset, active high 
srst I Synchronous Reset, active high 
FREQ I Frequency data word 
Phase(x) I Phase input, adjusts the of the output  
Q(x) O sin output 
 
Parts c

l
k 

r
s
t 

s
r
s
t 

f
r
e
q 

p
h
a
s
e 

q Comments 

gh_Freq_Acc.vhd x x x x  x  
gh_Freq_Accp.vhd x x x x x x  
gh_Freq_Acc2.vhd x x x x  x  
gh_Freq_Acc2p.vhd x x x x 2 2  
gh_Freq_Acc4.vhd x x x x  4  
gh_Freq_Acc4p.vhd x x x x 4 4  
gh_Freq_Acc8.vhd x x x x  8  
gh_Freq_Acc8p.vhd x x x x 8 8  
gh_Freq_Acc16.vhd x x x x  16  



The GH VHDL Library  

Revision 3.48 42 7 March 2009 
 

 

7.2 Sweep Generator 
Here is another example of using an accumulator.  When a second accumulator is added 
before the DDS, the frequency will change, or sweep over time.   
 
I/O Function 
CLK I Clock, rising edge is used 
rst I Asynchronous Reset, active high 
min_freq I The minimum frequency – Must be less than 

max_freq for proper operation  
NOTE:  value is in 2’s complement  form 

max_freq I The maximum frequency – Must be greater 
than min_freq for proper operation 
NOTE:  value is in 2’s complement  form 

freq_step I The frequency change every sample clock 
NOTE:  In 2’s complement – a positive number 
will be an up sweep, and a negative value will 
produce a down sweep 

LOAD I Will load the start freq (min_freq for an up 
sweep, max_freq for a down sweep) and hold 
the phase output to 0° 

sw_en I Sweep enable, when disabled (= 0) output 
frequency is zero 

ping_pong I When active (= 1) will sweep from end point to 
end point, and then sweep back. 
When disabled (= 0), will jump to back start 

phase O The instantaneous phase output of the NCO 
sin O Load data w/o accumulate 
cos O Clock enable, active high 
sweep_freq O Output sweep frequency, to drive an NCO 
sweep_end O End of the sweep pattern 
 



The GH VHDL Library  

Revision 3.48 43 7 March 2009 
 

 
Parts C

L
K 

r
s
t 

m
i
n
_
f
r
e
q 

m
a
x
_
f
r
e
q 

f
r
e
q
_
s
t
e
p 

L
O
A
D 

p
h
a
s
e 

s
i
n 

c
o
s 

s
w
e
e
p
_
e
n
d 

s
w
_
e
n 

p
i
n
g
_
p
o
n
g 

s
w
e
e
p
_ 
f 
r 
e
q 

Comments 

gh_sweep_generator.vhd x x x x x x  x x x    A top level 
example 

gh_sweep_generator_a.vhd x x x x x x  x x x    Uses version A 
of sin_cos part 

gh_frequency_sweep.vhd x x x x x x x   x    The guts 
gh_frequency_sweep_wpp x x x x x x    x x x x Ping pong 

version 
  
The design is partitioned so that it will be easy to replace the CORDIC with either a sin 
lookup PROM or RAM.  If a RAM is used, rather than sweep a sin wave, any wave form 
can be sweep (a ramp, a triangle, etc.). 
 

sizeclk

D
FSweepRate

2
2=  

Sweep Rate = Rate of frequency change (hz/sec) 
Fclk = Frequency of the Clock  
D = value of the input data 
Size = 64 – merge_point, or size of accumulator (for ping pong version) 
 
The merge point is the bit in the NCO accumulator that meets the MSB of the sweep 
accumulator.  (Note: the merge_point bits are labeled from 32 down to 1, while the 
standard logic vectors are numbered from 31 down to 0).  Changing the merge point to a 
lower value will enable a slower sweep to be generated.  For example, with a 100 MHz 
clock, and the default merge point (24) the minimum sweep rate is about 9.09 KHz/sec.  
If the merge point is changed to 22, the minimum sweep rate will be about 2.27 KHz/sec.  
In this example, if a minimum sweep rate of less than 1 Hz/sec is required, the merge 
point would have to be set to 10.   
 
The ping pong version of the sweep generator does not include the NCO or the merge 
point generic.  Instead, it has a frequency output port (size settable with a generic) which 
may drive a NCO, and generics to set the size of the sweep step port and the internal 
accumulator. 
 
When setting the minimum and maximum frequencies, it has to be remembered that these 
values are in 2’s complement.  A negative frequency makes since in a I/Q (quadrature) 



The GH VHDL Library  

Revision 3.48 44 7 March 2009 
 

data path where a complex multiplier is used for signal mixing.  See the second 
simulation for an example of a sweep that goes from a “negative” frequency to a positive 
frequency.  In other systems, the output frequency will simply be an absolute value of the 
frequency generated. 
 
The given reference has some interesting comments on negative frequency (Section 8.4), 
which also includes a number of sections on quadrature systems. 
 
Reference 
 

1. Richard G. Lyons, Understanding Digital Signal Processing,  Second Edition, 
Prentice Hall, 2004 



The GH VHDL Library  

Revision 3.48 45 7 March 2009 
 

 

7.2.1 Simulation of the Sweep Generator 
Here is an example of using the LOAD input for generating a pulsed sweep waveform- 
sometimes called a “chirp waveform”.  
 

 
 
Here is a simulation illustrating a sweep through zero frequency.  Notice that on the left 
half of the simulation, SIN is leading COS, while on the right half the COS is leading 
SIN.  When driving one port of a complex mixer, one phase relationship will produce the 
sum of the two frequency’s, while the other phase relationship will produce the difference 
of the two frequency’s.   
 

 
 



The GH VHDL Library  

Revision 3.48 46 7 March 2009 
 

 

7.3 CORDIC Rotation Algorithm 
In 1959, Jack E.Volder came up with a system that he called the Coordinate Rotation 
Digital Computer (better known as the CORDIC) rotation algorithm.  It is a method for 
calculating trigonometry functions using only shift/adds (avoiding the need for hardware 
multipliers).  Its most common use is polar to rectangular translation (sin and cos 
waveform generation) and rectangular to polar translation (to calculate magnitude and 
phase angle of a quadrature signal). 
 
 
I/O Function 
CLK I Clock, rising edge is used 
rst I Asynchronous Reset, active high 
mode I Mode bit: 1 = rotation  0 = vectoring 
x_in(size-1 downto 0) I X vector in 
y_in(size-1 downto 0) I Y vector in 
z_in(19 downto 0) I Z vector in 
x_out(size-1 downto 0) O X vector out 
y_out(size-1 downto 0) O Y vector out 
z_out(19 downto 0) O Z vector out 
 
generics Function 
size Size of the X and Y vectors 
iterations The number of iterations the algorithm 

does 
 

I/O Parts 

C
L
K 

r
s
t 

m
o
d
e 

x_in 
y_in 
z_in 
x_out 
y_out 
z_out 

comments 

gh_cordic.vhd x x x x A superset 
gh_cordic_rotation.vhd x x  x  
gh_cordic_vectoring.vhd x x  x  
gh_cordic_rotation_28.vhd x x  x Uses 28 bit atan function 
gh_cordic_vectoring_28.vhd x x  x Uses 28 bit atan function 
 



The GH VHDL Library  

Revision 3.48 47 7 March 2009 
 

 

7.3.1 Theory of the CORDIC 
The theory of the CORDIC algorithm starts with the basic Vector Rotation Equation: 
 

�
�

	


�

�
�
�

	


�

� −
=�

�

	


�

�

Y

X

Y

X

θθ
θθ

cossin
sincos

'
'

  

 
For those who do not like matrix math, the equations look like this: 
 
x’ = x cos� – y sin� 
y’ = y cos� + x sin� 
 
By removing the cos� term we have: 
 
x’ = cos� (x – y tan�) 
y’ = cos� (y + x tan�) 
 
The CORDIC algorithm performs the vector translation in an iterative process.  Each 
iterative step uses successively smaller rotation angle: 
 
 �k = tan-1(2-k). 
 
To achieve the simple shift/add in the rotation process, the magnitude of the vectors 
through the algorithm is not maintained (the cos� gain factor is removed).  However, 
since the cosine function is even, the gain is the same for both positive and negative 
rotation steps.  The total gain depends only on the number of iterations performed.   
 
Trigonometry shows that cos(tan-1 x) = 1/sqrt(1 + x2), so the total gain becomes: 
 

∏
=

−+=
n

k

kGn
0

221  which becomes approximately 1.64676 for large n. 

 
The preceding equations lead to the following equations for each iterative step: 
 

1
1 2 −

− −= k
kk yxx α  

1
1 2 −

− += k
kk xyy α  

)2(tan 11
1

−−
− −= k

kk αθθ  
 )1,1( rotationCCWforrotationCWfor −+=α  
 
The equation for �k is necessary to keep track of phase angle during the rotation. 



The GH VHDL Library  

Revision 3.48 48 7 March 2009 
 

 
The CORDIC algorithm has two basic modes: 
 
Vector Rotation – rotates the vector (x,y) through the angle � to create a new vector 
(x’,y’).  The sum of the iteration angles must equal the rotation angle �: 

 0))2(tan(
0

1 =−
=

−−
n

k

kαθ  

In Vector Rotation, the value forα is based on the value of �k-1.  To select α  so that �k 
will converges towards zero, if �k-1 is negative,α  = -1, other wise it is +1. 
 
 
Vector Translation – rotates the vector (x,y) around the circle until the y component 
equals zero.  The output vector x is the magnitude (increased by the CORDIC gain) and 
the � vector has the angle of the input vector.  The sum of the yk iterations must equal the 
input vector y. 

 0
0

=−
=

n

k
kin yy  

In Vector Translation, the value forα is based on the value of yk-1.  If yk-1 is negative,α = 
+1, other wise it is -1.  (The � vector is not required if only the input vector magnitude is 
used.) 
 

It should be pointed out that the CORDIC algorithm only works from 
2
π−  to

2
π+ , the 

range where the tangent function is continuous.  (Well, ∞=)
2

tan(
π

, but the 

approximation of the algorithm is close enough to work.)   To work over the full π2  
range, the input has to be mapped to the range that the algorithm will accept, and the 
output has to be remapped to the correct quadrant. 



The GH VHDL Library  

Revision 3.48 49 7 March 2009 
 

 

7.3.2 Applications for the CORDIC 
The gh_sincos.vhd and the gh_r_2_polar.vhd files use the generic size, which controls 
the data bus width and the iterations that the CORDIC uses.  The A versions of these 
parts have increased pipelining.  They will have more clock delays but will run at higher 
clock frequencies. 
 
I/O for gh_sincos.vhd, gh_nsincos_28.vhd Function 
CLK I Clock, rising edge is used 
rst I Asynchronous Reset, active high 
add(size-1 downto 0) I Input Data 
(n)sin(size-1 downto 0) O Sin wave output (28 bit atan version has 

negative sin output) 
cos(size-1 downto 0) O Cos wave output 
 
 
I/O for gh_r_2_polar.vhd, gh_r_2_polar_28.vhd Function 
CLK I Clock, rising edge is used 
rst I Asynchronous Reset, active high 
x_in(size-1 downto 0) I X vector 
y_in(size-1 downto 0) I Y vector 
mag(size-1 downto 0) O Magnitude of complex vector 
ang(size-1 downto 0) O Angle of complex vector 
 
Note: The sin/cos signals are scaled to �full scale, while the gh_r_2_polar does not scale 
its output (the user has to take the CORDIC gain into account).  [the input of the 28 bit 
atan version has some scaling in it, so that it will not overflow with an unscaled input] 
 
 
 
References 
 

1. Jack E. Volder, The CORDIC Trigonometric Computing Technique, IRE 
Transactions on Electronic Computers, September 1959. 

2 Dean Groce, The CORDIC Rotation Algorithm, Unpublished Class paper  (DSP 
with FPGAs), June 8, 2002 

3. Xilinx Inc, CORDIC v2.0, LogiCore, March 28, 2003 
 



The GH VHDL Library  

Revision 3.48 50 7 March 2009 
 

 

7.4 Sin Cos ROM Lookup Tables 
The CORDIC is one method of generating Sin/Cos wave forms.  Another method is to 
use a lookup table.  These lookup tables are set up as constants, rather than as a case 
statement, so that syntheses tools will implement them in block ram (at lest the tools from 
Altera and Xilinix). 
 
I/O Function 
clk I Clock, rising edge is used 
ADD(15 or 11 downto 0) I Frequency data word 
(n)sin(15 or 11 downto 0) O (negative) sin output 
cos(15 or 11 downto 0) O cos output 
 
Parts Comments 
gh_sincos_rom_12.vhd Full table, 1 clock delay 
gh_nsincos_rom_12.vhd Full table, 1 clock delay 
gh_sincos_rom_12_2.vhd Half size table, mapped to full pattern – 2 clock delay 
gh_sincos_rom_16.vhd Full table, 1 clock delay 
gh_nsincos_rom_16.vhd Full table, 1 clock delay 
gh_sincos_rom_16_2.vhd Half size table, mapped to full pattern – 2 clock delay 
gh_sincos_rom_12_4.vhd Quarter size table, mapped to full pattern – 3 clock delay 
gh_nsincos_rom_12_4.vhd Quarter size table, mapped to full pattern – 3 clock delay 
gh_sincos_rom_14_4.vhd Quarter size table, mapped to full pattern – 3 clock delay 
gh_nsincos_rom_14_4.vhd Quarter size table, mapped to full pattern – 3 clock delay 
gh_sincos_rom_16_4.vhd Quarter size table, mapped to full pattern – 3 clock delay 
gh_nsincos_rom_16_4.vhd Quarter size table, mapped to full pattern – 3 clock delay 
 



The GH VHDL Library  

Revision 3.48 51 7 March 2009 
 

 

8 Filters 
 

8.1 CIC Filter 
The CIC (Cascaded Integrator-Comb) Filter is a multirate filter for large changes in the 
sample rate.   
 
I/O Function 
clk I Clock, rising edge is used 
rst I Asynchronous Reset, active high 
D (data_in_size-1 DOWNTO 0) I Input Data 
ND I Clock enable (for the differentiation 

section), active high 
Q(data_out_size-1 DOWNTO 0) O Shifted bits out 
 
generics Function 
Data_in_size Size of the input data bus 
Data_out_size Size of the output data bus 
mode mode 0 is decimation, mode 1 is 

interpolation 
Stages Number of stages (listed as N in formula's)  
M Either 1 or 2 (see theory section) 
 

I/O Generics Parts 

C
L
K 

r
s
t 

D N
D 

Q d
a
t
a
_
i
n
_
s
i
z
e 

d
a
t
a
_
o
u
t
_
s
i
z
e 

m
o
d
e 

s
t
a
g
e
s 

M 

comments 

gh_CIC_filter.vhd x x x x x x x x x x A superset 
gh_CIC_interpolation.vhd x x x x x x x  x x  
gh_CIC_interpolation_m1.vhd x x x x x x x  x   
gh_CIC_interpolation_m2.vhd x x x x x x x  x   
gh_CIC_decimation_m1.vhd x x x x x x x  x   
gh_CIC_decimation_m2.vhd x x x x x x x  x   



The GH VHDL Library  

Revision 3.48 52 7 March 2009 
 

 
The signal DCE must be high for one clock cycle every R clocks, where R the number of 
integration clocks for every differentiation clock. 
Theory of the CIC Filter 
The CIC filter is made from an equal number of two sections, the Integrator and the 
Differentiator (or Comb) sections.  The filter is made using only registers, adders and 
subtracters, no multipliers are needed.  The CIC filter has two forms, one used in for 
decimation, and the other for interpolation. 
 
The transfer function for a single integrator section is: 
 

11
1

)( −−
=

z
zH      

 

+

 
 
 
The transfer function for a single differentiator section is: 
 

RMzzH −−= 1)(  
 

+

 
 
 
The transfer function for the CIC filters is (referenced to the higher sample rate): 

N

NRM

z
z

zH
)1(
)1(

)( 1−

−

−
−=  

 
M = number of register delays in the differentiator section. 
R = data rate change between differentiator and integrator section. 
N = number of stages in each of the two sections. 



The GH VHDL Library  

Revision 3.48 53 7 March 2009 
 

 
 
Three Stage Decimating CIC Filter 
 
 

 
 
Three Stage Interpolation CIC Filter 
 
In the Interpolation for of the CIC Filter, the output of the differentiator section is the 
input for the integrator section once every low rate sample clock, and zero’s for the rest 
of the high speed sample clocks. 
 
The gain for a CIC decimators is:  

NRMG )(=  
 
For the CIC interpolator the gain is: 

G = { 2                     i = 1, 2, ..., N
2        (RM)
      R

i = N + 1,  ..., 2N2N-i         i-N

 
 
 

1. Matthew P. Donadio, CIC Filter Introduction, For Free Publication by Iowegian, 
July 18, 2000 

2. Richard Lyons, Understanding Cascaded Integrator-Comb Filters, Courtesy of 
Embedded Systems Programming, March 31, 2005. 

3. Xilinx Inc, Cascaded Integrator-Comb (CIC) Filter V3.0, LogiCore, March 14, 
2002 

 



The GH VHDL Library  

Revision 3.48 54 7 March 2009 
 

 

8.2 Time–Varying Fractional Delay Filters 
Fractional-Delay filters are a type of digital filter designed for bandlimited interpolation.  
Bandlimited interpolation is a technique for the evaluation a signal sample at an arbitrary 
point of time, even if it is located somewhere between two of the sample points. 
 
The Fractional Delay Filter can delay a digital signal by an arbitrary time period, which 
can be used to align the phase of one signal with that of another.  If the delay of the filter 
is changed over time, the output sample rate is modified, or (maintaining a constant 
sample rate) the output frequency can be shifted.  One of the more popular applications of 
Time-Varying Fractional Delay Filters is for sample rate conversion. 
 
I/O Function 
CLK I Clock, rising edge is used 
rst I Reset, active high 
START I The TVFD sample rate (high for one clock 

period) 
RATE(6 downto 0) I Instantaneous Fractional Delay (1-100 %)  
L_IN(15 downto 0) I Left channel input data 
R_IN(15 downto 0) I Right channel input data 
coef_data(15 downto 0) I Filter Coefficient data from ROM 
ND O Next data sample request 
ROM_ADD 
((modulo_bits + x -1) downto 0) 

O Address bus for the filter coefficient ROM 

L_OUT(15 downto 0) O Left channel output data 
R_OUT(15 downto 0) O Right channel output data 
 

8.2.1 The Lagrange Interpolator 
The Fractional Delay Filter is implemented using a FIR filter, setup as a Lagrange 
Interpolator.   
 
The coefficients of the Lagrange interpolator are given by the following equation: 

∏
≠= −

−=
N

nkk kn
kD

nh
,0

)(   for n = 0, 1, 2, …, N 

 
D = filter delay – see below for recommended rage of D (here 3.00 < D < 3.99) 
N = order of filter (this implantation uses N = 8) 
 
Lagrange interpolators have a number of desirable characteristics: 
 

1. Accurate model of the desired fractional delay 
2. A lowpass filter with an almost flat magnitude response (the error gets bigger as 

the frequency increases) 



The GH VHDL Library  

Revision 3.48 55 7 March 2009 
 

3 The amplitude of the signal is never overestimated (magnitude gain < 1) when the 
delay meets the following constraint: 

 

�
�

�
�
�

� +≤≤�
�

�
�
�

� −
2

1
2

1 N
D

N
 when N is odd 

 

�
�

�
�
�

� +≤≤�
�

�
�
�

� − 1
2

1
2

N
D

N
 when N is even 

 

8.2.2 Time–Varying Control 
The input data is stored in a circular buffer.  With each new delay step eight consecutive 
data samples are multiplied with the corresponding filter coefficients for the desired 
fractional delay and added together.  When the fractional delay step crosses an integer 
boundary, a new sample is loaded into the buffer. 

8.2.3 TVFD Application Notes 
The filter coefficients are stored in the file gh_tvfd_coef_prom.vhd.  If the synthesis tool 
does not recognize the structure, and place it into a PROM (or RAM with an initialization 
file), it will consume a lot of resources.   
 
The generics make it easy to modify the filter without editing the file.  For example, if a 
200 point Fractional Delay filter is used in place of the shown 100 point, a new 
coefficient ROM file is needed- set the modulo_bits generic to 8, and the modulo_count 
generic to 200.  Bingo, you’re done!!  
 
There are now two versions of the TVFD filter:  

gh_tvfd_filter.vhd  - 16 bit data path width, 1 to 100% fractional delay range 
gh_tvfd_filter_w.vhd – generics for data path width, 1 to 200% fractional delay  
 range – other than the gh_MAC_ld.vhd, self contained 
 

 
References 
 

1. Vesa Valimaki, Discrete-Time Modeling of Acoustic Tubes Using Fractional 
Delay Filers, Dissertation for Doctor of Technology, Helsinki University of 
Technology, December 1995. 

2. V. Valimaki and T. I. Laakso, Principles of Fractional Delay Filters, IEEE 
International Conference on Acoustics, Speech, and Signal Processing, Istanbul, 
Turkey, 5-9 June 2000 

3. Siddharth Mathur, Variable-Length Vocal Tract modeling for Speech Synthesis, 
Master Thesis at The University of Arizona, 2003 

. 



The GH VHDL Library  

Revision 3.48 56 7 March 2009 
 

8.3 A single MAC FIR Filter 
The FIR Filter part of the TVFD filter was removed to make this part.   
 
I/O Function 
CLK I Clock, rising edge is used 
rst I Reset, active high 
sample I The Filters sample rate (high for one clock 

period) 
D_IN(15 downto 0) I Input data 
coef_data(15 downto 0) I Filter Coefficient data from ROM (expects 

a two clock delay) 
ROM_ADD(x-1) O Address bus for the filter coefficient ROM 
D_OUT(15 downto 0) O Left channel output data 
 
File name: gh_FIR_filter.vhd 
                  gh_FIR_coef_prom.vhd (an example set of coefficients) 
                  gh_FIR_filter_fg.vhd  A version of the filter with generics  
 
The FIR Filter has the generic x, which sets the order of the filter: 
       Filter order = 2^x 
 
Zero’s can be used in the coefficient PROM to get a filter order less than 2^x.  The input 
“sample” must have a period at lest 2^x times greater than the period for the input 
“CLK”. 
 
Here is a simulation of the FIR Filter.  Note: a CIC interpolation filter was used in the test 
circuit to increase the number of samples in the plot. 
 

 
 



The GH VHDL Library  

Revision 3.48 57 7 March 2009 
 

 

8.4 Symmetrical, parallel FIR Filters  
These FIR Filters use a transposed parallel structure, giving them a data rate equal to the 
clock rate (unless the clock enable is used to slow the data rate).  They make use of 
symmetry, so that only half as many multipliers are needed.  
 
To help minimize round off, fractional bits are available (settable with a generic).  These 
are bits in the adder chain, below those that become the output data.  Using some of the 
“extra” bits out of the multipliers will minimize round off errors.   
 
The filters include an over flow limiter at the output – this will limit overflow from 
ringing in a step response, but may not stop overflow if the coefficients are too large.   
 
The filter coefficients are input as one large vector.  The use of the configuration registers 
(see section 2.9) will make them easily to modify with software.  The first (and last) 
coefficients in the data path are bits 15 down to 0.  The top 16 bits are used by the center 
tap(s). 
 
These filters have the generics “d_size”, “coef_size” and “half_tap_size” (which sets the 
number of filter taps [which is 2 * half_size]). 
 
I/O Function 
clk I Clock, rising edge is used 
rst I Reset, active high 
ce I Clock enable 
D (15 downto 0) I Input data (signed) 
coef(16 * half_tap_size -1 downto 0) I Filter Coefficient data (signed) 
Q(15 downto 0) O output data 
 
generics Function 
d_size number of bits in data path 
coef_size number of bits in each coefficients words 
fract_bits fractional bits – used to minimize round off errors 
half_tap_size half the number of taps (for odd order filters,  

number of taps = 2 * half_tap_size + 1) 
 
Parts comments 

gh_FIR pfilter.vhd even number of taps, positive symmetry 
gh_FIR pfilter_ns.vhd even number of taps, negative symmetry 
gh_FIR pfilter_ot.vhd odd number of taps, positive symmetry 
gh_FIR pfilter_ot_ns.vhd odd number of taps, negative symmetry - 

Center tap is always zero, to maintain negative symmetry 
gh_fir_pfilter_nsc.vhd A non symmetrical version - uses a multiplier for every tap  

The top coefficients create the first outputs  



The GH VHDL Library  

Revision 3.48 58 7 March 2009 
 

 
 

8.4.1 FIR Filter Architecture 
 
 

 
 
Standard FIR Filter Architecture 
 
 
 

 
Transposed FIR Filter Architecture 
 
I should be noted that for a symmetrical FIR Filter, Kn = K1, Kn-1 = K2… and for 
negative symmetry, Kn = -K1, Kn-1 = -K2…  
 
 



The GH VHDL Library  

Revision 3.48 59 7 March 2009 
 

8.5 FIR Filters Without Multipliers  
Since multiplication and division of powers of two is simply a data bit shift.  This makes 
coefficients of 0.5, 0.25, 0.125, 0.0625 etc easy to use.  Additional coefficients, such as 
0.75 are the summation of different shifted numbers (0.75 = 0.5 + 0.25) 
 
With enough shift and adds, any desired coefficient can be calculated.  However, too 
many shifts and adds will inspire most just to use a filter with multipliers. 
 
The compensation filters are high pass filters, where the change in gain (from DC to 
Nyquist) is part of the file name.  A close examination of the interpolation filter will 
show its limitations – it is only useful for narrow bandwidth signals (- 3 dB point is at 
about 15% of the sample rate, while at 44% of the sample rate has a gain -30 dB.  -80 dB 
is achieved by 49.53% of sample rate). 
 
 
I/O Function 
clk I Clock, rising edge is used 
rst I Reset, active high 
ce I Clock enable 
D (size-1 downto 0) I Input data (signed) 
Q(size-1 downto 0) O output data 
 
 
Parts comments 

gh_filter_compensation_2dB.vhd filter described on page 407, 408 of Richard G. 
Lyons’s, Understanding Digital Signal Processing 
Note: has a gain greater than 1 
coefficients  = [-0.0625  1.125  -0.0625] 

gh_filter_compensation_4dB.vhd coefficients  = [-0.09375  0.8125  -0.09375] 
gh_filter_compensation_6dB.vhd coefficients  = [-0.125  0.75  -0.125] 
gh_filter_AB_interpolation.vhd coefficients  = [0.03125  0.5  0.9375  0.5  0.03125] 
 
 
Reference 
 

1. Richard G. Lyons, Understanding Digital Signal Processing,  Second Edition, 
Prentice Hall, 2004 



The GH VHDL Library  

Revision 3.48 60 7 March 2009 
 

9 VMEbus [VXIbus] Interface Modules 
The VMEbus, in use for over 26 years, is ancient in computer years.  Yet, it still finds use 
in harsh and mission-critical environments.  It is an open architecture and custom cards 
are easy to design for it.  Although the buss has had a number of upgrades over the years, 
backwards compatibility has been rigorously defended along the way.   
 
The VXIbus is the VMEbus Extensions for Instrumentation.  The VXIbus has additional 
requirements above and beyond what the VMEbus requires.  But, standard VMEbus 
cards may be used in VXIbus systems. 
 
The VMEbus slave modules can be used to interface the VMEbus with the 4 byte 
configuration registers, control registers, and/or dual port ram.  The MUX, required if 
multiple blocks are to be read by the VMEbus, is left as an exercise to the user. 
 



The GH VHDL Library  

Revision 3.48 61 7 March 2009 
 

 
 

9.1 VME Slave Modules 
 
I/O Function 
clk I Clock, rising edge is used 
RESn I VME SYSRESET* signal, active low 
CRDSn I Card select, decode of MSB address bits  
WRITEn I VME signal 
IACKn I VME signal 
ASn I VME signal 
AM(5 downto 0) I VME signal 
LWORDn I VME signal 
DS0n I VME signal 
DS1n I VME signal 
Vadd(add_size-1 downto 0) I VME signal 
LD_IN(31 downto 0) I Local Data bus data In 
L_ACK I Local acknowledge signal (if low, will add 

wait states until driven high) 
VD(31 downto 0) I/O VME Data Bus 
BRDSLn O Local Board Select, active low 
rst O local reset, active high 
WR O local Write strobe, active high  
DTACKn O VME signal 
VD_ENn O VME Data buffer output enable 
VD_DIR O VME Data buffer Direction control 
BE(3 downto 0) O Local Byte Enables 

BE(3) for Data bits (31 downto 24) 
BE(2) for Data bits (23 downto 16) 
BE(1) for Data bits (15 downto 8) 
BE(0) for Data bits (7 downto 0) 

LA(add_size-1 downto 0) O Local Address bus 
LD_OUT(31 downto 0) O Local Data Out 
 
additional I/O for modules with interrupts Function 
IACK_INn I VME signal 
g_IRQ[A,B,C,D] I generate interrupt, active rising edge 
IRQ_L[A,B,C,D] (2 downto 0) I Interrupt level, from 1 to 6 (does not 

support level 7) 
IRQ_V[A,B,C,D] (7 downto 0) I Interrupt Vector  
IACK_OUTn O VME signal 
IRQn(6 downto 1) O VME Interrupt signals (can only generate 

interrupts on levels 1 through 6) 
 



The GH VHDL Library  

Revision 3.48 62 7 March 2009 
 

Parts comments 

gh_vme_slave_a16_d16.vhd allows word, byte access 
gh_vme_slave_a24_d16.vhd allows word, byte access 
gh_vme_slave_a32.vhd allows long word, word, byte access 
gh_vme_slave_a32_wi1.vhd allows long word, word, byte access 
gh_vme_slave_a32_wi4.vhd allows long word, word, byte access 
 
Design Notes: 
 

1. Data transfers must be aligned (i.e. Long Words must be on long word [32 bit] 
boundaries, word transfers must be on word [16 bit] boundaries). 

2. The upper address lines are not on the Slave modules – it is expected that they 
will be compared (outside the module) with the board select dip switches and the 
active low of the compare to drive the Card Select (CRDSn) module pin.  The 
number of lower address bits that the Slave Module uses is selectable with 
generics – by default, it is expected that the upper eight address lines will be used 
for the card select decode. 

3. Supervisory data Access and Non-Privileged Data Access are the address 
modifiers accepted for a data transfer. 

4. Block Transfers are not supported. 
5. The drive for the Open Collector outputs (DTACKn, IRQn[6-1] are set up to drive 

the output enable of a tri-state buffer (such as the 74ABT125) witch will act as an 
Open Collector output.  Using 74ABT125 buffers makes the modification to use 
Rescinding DTACKn (as recommended in the VXIbus, for example) easier. 

6. The designer must remember to take into account the delay of any buffers 
between the FPGA/ASIC and the VMEbus when verifying the bus timing on read 
cycles.  If the DTACKn buffer and the Data buffers have the same delay, the read 
cycle will have a timing margin of one clock period.  

 
References 
 

1. Motorola, The VMEbus Specification, Revision C.1, October 1985 
2. VXIbus Consortium, VMEbus Extensions for Instrumentation System 

Specification, Inc., Revision 3.0 November 24, 2003 
3. Secretariat VMEbus International Trade Association, American National 

Standard for VME64 [ANSI/VITA 1-1994], April 10, 1995 
4. Secretariat VMEbus International Trade Association, American National 

Standard for VME64 Extensions [ANSI/VITA 1.1-1997], October 7, 1998 
 



The GH VHDL Library  

Revision 3.48 63 7 March 2009 
 

 
 

9.2 VME Chip Select Modules 
The Slave Modules will expand the single local chip select from a VMEbus Slave 
module, and with the local address lines, generate up to 20 chip selects – the address 
range for each of them are set with generics.  
 
I/O  Function 
CRDSn I Local Card Select, active low 
Ladd I Local Address Bus (size varies with part) 
CSn (19 downto 0) O Local Chip Selects (20), active low 
 
Parts comments 

gh_vme_cs20lw_28a.vhd uses long word addressing, for 28 (byte) address lines 
gh_vme_cs20lw_24a.vhd uses long word addressing, for 24 (byte) address lines 
gh_vme_cs20w_20a.vhd uses word addressing, for 20 (byte) address lines 
gh_vme_cs20w_16a.vhd uses word addressing, for 16 (byte) address lines 
gh_vme_cs20w_12a.vhd uses word addressing, for 12 (byte) address lines 
 

9.3 VME Read Modules 
The VME read Modules are basically a custom mux to aid designing the read side of the 
interface.  The Chip Select input bus is easy to interface with the Chip Select Module, 
and each of the data inputs have a generic to set the input data size - the leading, unused 
data bits will be set to zero. 
 
I/O  Function 
CSn (x downto 0) I Local Chip Selects (20), active low 
RDx(CSx_dsize-1 downto 0) I Local Address Bus (size varies with part) 
DATA_o(31 or 15 downto 0) O Local Chip Selects (20), active low 
 
x depends on which module is used (number of words - 1)  
 
Parts comments 

gh_vme_read_20lw.vhd expects 20 data words, each 32 bits (max) 
gh_vme_read_10lw.vhd expects 10 data words, each 32 bits (max) 
gh_vme_read_5lw.vhd expects 5 data words, each 32 bits (max) 
gh_vme_read_20w.vhd expects 20 data words, each 16 bits (max) 
gh_vme_read_10w.vhd expects 10 data words, each 16 bits (max) 
gh_vme_read_5w.vhd expects 5 data words, each 16 bits (max) 



The GH VHDL Library  

Revision 3.48 64 7 March 2009 
 

 

10 Library Notes 
It seems egotistical to add gh_ to the name of the parts in this library.  However, would it 
be less egotistical to think that this library will be the only used in a design?   
 
As noted by Jiri Gaisler (of Gaisler Research), in his paper “A Dual-Use Open Source 
VHDL IP library”   

A common, and often challenging, design tasks during SOC development is to 
integrate a number of third-party IP cores into a single design… Other issues 
include resolving of name clashes… each IP vendor is assigned a unique library 
name. 

 
While integrating multiple libraries into a signal project can be problematic, it is hoped 
that the gh_ prefix is unique, making it easy for parts in this library to included in your 
next project. 
  
 
 
 


