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Preface

When I started this project, I was informed that other projects similar to this one existed. The
OpenRISC project has used an SD–Card controller, for example, as has the Google project vault.
Of these two, the first uses the full SD–Card interface which is unavailable on the XuLA2 board,
and I could never find the code for the second.

Still, had I found such interfaces, I would’ve still had another reason for building my own:
controlling the license. By rolling my own interface, I can offer it to anyone interested in it under
the GPL license, such as you have here. Further, by not using code belonging to others, I am not
restricted or encumbered by any of their licenses–whether it be the GPL or otherwise. This code,
and specification document, are therefore completely the product of Gisselquist Technology, LLC.

That said, I am indebted to Mr. Tambe for sharing his interface. While the current work does
not use his approach and represents a complete rewrite, his approach was valuable in helping me
understand what the SD–Card specification meant at several points along the way.

Dan Gisselquist, Ph.D.
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1.

Introduction

This Verilog core exports an SD card controller interface from internal to an FPGA to the rest of
the FPGA core, while taking care of the lower level details internal to the interface. Unlike the other
OpenCores SD Card controller1 which offers a full SD–interface, this controller focuses on the SPI
interface of the SD Card. While this is a slower interface, the SPI interface is necessary to access
the card when using a XuLA2 board2, or in general any time the full 9–bit, bi–directional interface
to the SD card has not been implemented. Further, for those who are die–hard Verilog authors, this
core is written in Verilog as opposed to the XESS provided demonstration SD Card controller found
on GitHub3, which was written in VHDL. For those who are not such die–hard Verilog authors,
this controller provides a lower level interface to the card than these other controllers. Whereas the
XESS controller will automatically start up the card and interact with it, this controller requires
external software to be used when interacting with the card. This makes the SDSPI controller both
more versatile, in the face of potential changes to the card interface, but also less–turn key.

While this core was written for the purpose of being used with the ZipCPU, as enhanced by the
Wishbone DMA controller used by the ZipCPU, nothing in this core prevents it from being used
with any other architecture that supports the 32–bit Wishbone interface of this core.

This core has been written as a wishbone slave, not a master. Using the core together with a
separate master, such as a CPU or a DMA controller, only makes sense. This design, however, also
restricts the core from being able to use the multiple block write or multiple block read commands,
restricting us to single block read and write commands alone.

1See http://www.opencores.org/project,sdcard mass storage controller.
2See http://www.xess.com/shop/product/xula2-lx25/
3See https://github.com/xesscorp/VHDL Lib/SDCard.vhd

www.opencores.com Rev. 0.1 1
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2.

Architecture

This SD Card interface is designed to provide a means of commanding an SD Card, via the SPI
port, and returning its results.

The first thing to know about the SDSPI interface is that it is designed to work over a shared
SPI port. Hence, when the SDSPI controller lowers the CS line to select the SD–Card, the lowered
line is only a request to an external controller. Once that external controller grants access to the
SPI port to this device, it will tell this controller and processing can continue. If your application
does not have any contention for the SPI interface, you may simply wire this grant line high. The
controller will still work, although it will wait one clock more than necessary in that case before
starting any transaction.

Second, the SDSPI core is completely controlled via the wishbone bus. In particular a command
register is used to initiate interaction across the bus. A separate data register is used to provide an
argument to the command, and two FIFO registers are used when transferring larger amounts of
data to the card. We’ll examine each of these interactions in turn.

Writes to the command register (CMD) will initiate actions across the port, whether they be
reads from or writes to the card. These writes take the form of sending a 48–bit command to the
card. The command sent to the card is taken from the lower 8–bits of the command register, and
the argument to the command is taken from the DATA register. The last 8–bits of the command
sent to the card are formed from a command CRC byte which the core generates internally. From
the perspective of the Wishbone bus, writes to the register will complete immediately, even though
the action they initiate will may take much longer to complete. Further, writes made to the CMD
register will be silently ignored if the device is already busy.

Reads from the CMD register will always return immediately. In particular, the busy bit, as
returned by the CMD register, can be used to determine if the interface is busy.

There is one exception to the rule that writes take many clocks to complete, and that is writes
which configure the SDSPI port. Internal to the SDSPI port is a configuration register, which
determines the speed of the port clock as well as the length of the FIFO (up to 128 samples, or 512–
bytes). To read the current speed and FIFO configuration, write an 0x00bf value to the command
register. This will cause the DATA register to be filled with the internal configuration register.
Likewise writing a 0x0ff to the CMD register will cause the current DATA value, or specifically
those non-zero parts, to be transferred to the internal configuration register possibly setting the
clock divider and/or the FIFO length.

As part of each write to the CMD register, the controller must also be told which type of response
to expect from the SDSPI card. Responses can be either R1 (single byte), R1b (single byte, followed

www.opencores.com Rev. 0.1 2
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by a variable delay), or R1 followed by up to four bytes, such as the R2, R3, or R7 responses.
(Expected responses for particular commands may be found in the SD Specifications documents.1

Finally, individual commands may or may not use the FIFO. Commands that need use of the
FIFO will be specified by the use fifo bit of the CMD register. Commands writing to the device
will also set the fifo wr bit of the CMD register, whereas commands simply reading from the fifo
will set the use fifo bit alone.

The DATA register is used during these transactions to first provide the argument to the CMD
interaction, and second to provide a place to put the R2, R3, or R7 response after the transaction
has completed. The register will be set to 0xffffffff if not set by the response.

Finally, this core supports two separate FIFO’s. This allows a program to fill (or read) one FIFO
while the second FIFO can be read/written from the SD card. The FIFO internal address will be
cleared and reset to the beginning upon any write to the CMD register. After clearing, the FIFO
may be written (read) one value at a time. Reading both FIFO’s in any interleaved fashion, however,
is not allowed as they share a common internal address.

Currently, the core will detect two types of errors in the interface. The first is a CRC error, and
the second a timeout error. Either error will set an error bit in the CMD register. Once set, only
writing the error bit back to the CMD register will clear it.

Now, if this discussion isn’t thoroughly confusing, let’s move on to the Operation chapter to see
some examples of how this might be used.

1This particular interface, and the examples using it, were built using the SD Specifications, Part 1: Physical Layer

Simplified Specification, Version 4.10, dated 22 January, 2013.
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3.

Operation

This chapter will walk through some constants that can be used to simplify interaction with the
controller, the logic necessary to start up the card, to read its registers, and then examples of how
to read and write sectors from the SD Card using this interface.

3.1 Constants

Since so much of the interface is controlled by the CMD register, it helps to define several constants
which can be used when issuing commands to the SD Card. Lets discuss some of these constants.

First, as discussed in the last chapter, the SDSPI core maintains an auxiliary register to handle
FIFO length and clock speed. To set this register, we define SD SETAUX to 0x0ff. Thus, when
SD SETAUX is written to the CMD register, the value of the DATA register is transferred to the
internal configuration. Likewise, we also define SD READAUX to 0x0bf. When this value is written
to the SD–Card, the internal configuration registers value will be copied to the DATA regiseter.
#define SD SETAUX 0x0ff

#define SD READAUX 0x0bf

Second, every command to the SD–Card starts with a single byte. Of that byte, bit-7 must
be clear and bit 6 set. For this purpose, we define SD CMD to be 0x040. Thus, SD CMD+0 can be
used to send an SD command CMD0, and SD CMD+1 can be used to send an SD command CMD1.
#define SD CMD 0x040

Third, for those commands that will read an SD–Card register, such as those expecting an R2,
R3, or R7 response from the card, we define SD READREG to be 0x0200. Thus, we can send a CMD8
by writing SD CMD|SD READREG to the port. #define SD READREG 0x0200

The next thing we’ll want to be able to do is use the FIFO. There are two types of commands
that use the FIFO, those that read from the card and those that write to the card. Both need the
FIFO bit set, so we’ll set SD FIFO OP to 0x0800 to be a read operation from the card, and the same
but with the write bit set SD WRITEOP will be set to 0x0c00 to write to the card.

#define SD FIFO OP 0x800

#define SD WRITEOP 0xc00

Finally, we want to be able to choose which FIFO we are using. For this purpose, we define
SD ALTFIFO to be 0x01000. When this bitmask is included in a command, FIFO number one will
be used for the command data, otherwise FIFO zero. (Note that this is separate from the DATA
register, which is still used for any command argument.)

#define SD ALTFIFO 0x1000

Two other constants are necessary: SD BUSY, set to 0x04000, which can be used to test when
the SD interface is still busy, and SD ERROR, set to 0x08000 which can be used to tell if an error has
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occurred. Clearing an error may be done by writing SD ERROR back to the card, but to make things
simpler we also create SD CLEARERR for the same purpose.

#define SD BUSY 0x4000

#define SD ERROR 0x8000

#define SD CLEARERR 0x8000

The two most important commands, though, are probably going to be those that read and write
a sector. For these, we shall define SD READ SECTOR and SD WRITE SECTOR. As the first is a CMD17
to the card and the second a CMD24, these can be defined as:

#define SD READ SECTOR ((SD CMD|SD CLEARERR|SD FIFO OP)+17)

#define SD WRITE SECTOR ((SD CMD|SD CLEARERR|SD WRITEOP)+24)

‘Or’ing the SD ALTFIFO mask to either of these commands will cause the interface to read from
or write to the alternate FIFO.

As a very last #define, we can define the macro SD WAIT WHILE BUSY to wait until the SD
operation completes:

#define SD WAIT WHILE BUSY while(CMD & SD BUSY)

Alternatively, we could wait for an interrupt instead since the SDSPI core will create an interrupt
upon completion. For now, and for this example, we’ll ignore interrupts.

3.2 SD–Card Setup

Setting up an SD–Card takes a bit of work. There’s a series of commands and interactions that need
to take place with the card before the card can be used. You can read about how to do this within
the SD–Specification, so we won’t repeat the how’s or why’s here. Instead, let’s focus for now on
how this interaction can be made to take place using this controller.

The first step in any start up sequence is to clear the card from any prior condition. Hence we
wait for the card to be no longer busy (it shouldn’t be busy anyway), and we then clear any errors:

SD WAIT WHILE BUSY;

CMD SD CLEARERR;

Now that the controller is idle (which it should’ve been from startup anyway), we can now set up
our interface. For this, we’ll set our clock rate to 400 KHz. The clock division register, sometimes
erroneously called the speed, is found in the lower eight bits of the soft-core configuration register.
The actual SPI clock frequency, given this value, will be:

fSDSPI =
fCLK

2 (CLKDIV+ 1)
(3.1)

Hence, since the XuLA2-LX25 SoC runs at an 80 MHz clock, setting this value to 0x63 sets the SPI
clock to 400 kHz.

DATA = 0x063;
CMD = SD SETAUX;

Note that we could have also set the higher order configuration bits to set the size of the FIFO. In
particular, the next four bits, bits 8–11, set the FIFO length. Setting these to zero will cause the
controller to ignore the change, whereas setting the value to three will set the FIFO length to 4 · 23

bytes, and setting it to seven will set the FIFO length to the nominal 4 · 27 or 512 bytes.

www.opencores.com Rev. 0.1 5
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The controller is now ready to send commands to the SD card. The first command to the card
is always a command zero, with zero data. This is sometimes called the GO IDLE STATE command.
We then wait for the command to complete:

DATA = 0;

CMD = SD CMD+0;

SD WAIT WHILE BUSY;

The card should now be in its idle state.
The next part of the negotiation tells the card whether or not we are able to handle high capacity

cards. For this, we send a command one, SEND OP COND, with an argument of 0x40000000 to tell it
that we are able to support high capacity cards. (An argument of zero would mean that we could
not.)

DATA = 0x40000000;

CMD = SD CMD+1;

SD WAIT WHILE BUSY;

Then the card needs to know what voltage it will be run at. We communicate this via a
SEND IF COND command, or CMD8. Since the XuLA2 only operates the card at 3.3V, we tell the
card we wish to run at 3.3V in the argument. The last eight bits of the argument, however, are
simply to determine whether communication has taken place. We set these bits to 0x0a5, although
they could be anything. The card will echo this value back in the response:

DATA = 0x1a5;

CMD = SD CMD+8;

SD WAIT WHILE BUSY;

// assert((DATA&0x0ff)==0x01a5);

The card will also echo back the voltage range, if it accepts it. Thus, we should receive 0x01a5 as a
response.

The card will now try to start up its own internal state machines. This could take a while. We
therefore poll the device, and wait for its startup sequence to complete:

bool dev busy = false;

do {
// CMD55 gives us access to SD specific commands
DATA = 0;

CMD = SD CMD+55;

SD WAIT WHILE BUSY;

// Now we can issue the ACMD41, to get the idle
// status
DATA = 0x40000000;

CMD = SD CMD+41;

DATA = 0x1a5;

CMD = SD CMD+8;

SD WAIT WHILE BUSY;

www.opencores.com Rev. 0.1 6
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// The R1 response can be found in the lower 8 bits
// of the CMD register after the command is complete.
// Bit 1 of R1 indicates the card hasn’t finished its
// startup
dev busy = CMD&1;

} while(dev busy);

3.3 Reading Card Registers

Once the card has started, we can request its operating conditions register, or OCR register as it is
called. For this, we issue a READ OCR command, or CMD58 by number. Since this command returns
a 32–bit value, we use the SD READREG macro as well:

int OCR;

DATA = 0;

CMD = (SD READREG|SD CMD)+58;

SD WAIT WHILE BUSY;

OCR = DATA;

When I issue this command on my card, I get a 0xc0ff8000 response telling me that my card can
handle between 2.7 and 3.6 Volts, that it is a higher capacity card, and that it has completed its
startup sequence.

Now let’s switch up to a higher speed, and read the 16–byte Card Specific Data (CSD) register
field from the card. First, the switch to a 20 MHz clock and a 16–byte fifo,

DATA = 0x0201;
CMD = SD SETAUX;

Remember that the 0x0200 switches to a FIFO of length 22 words, or equivalently 4 · 22 = 16
bytes. Likewise the 0x01 component switches our frequency to 20 MHz. Now we can issue the
SEND CSD COND, or CMD9, command itself. Note that we didn’t need to wait for the SD SETAUX

command to complete. Further, since this command is going to read from our FIFO, we need to
include the SD FIFO OP part of the command:

int CSD[4];

DATA = 0;

CMD = (SD FIFO OP|SD CMD)+9; SD WAIT WHILE BUSY;

for(int i=0; i<4; i++)

CSD[i] = FIFO[0];

Once the command is complete, we can read the four 32–bit words of the CSD register from the
FIFO, as shown above. Alternatively, we could have issued another command first, before reading
that FIFO result.

We could read the Card Identification (CID) register as well, but this would’ve been the same
sequence as above, save only that we would’ve written a (SD READREG|SD CMD)+10) to CMD.

www.opencores.com Rev. 0.1 7
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Reading the STATUS is similar, only the response to the SEND STATUS command is an 8–bit
value from an R2 response, not the 32–bit values of the R3 (OCR) or R7 responses. Still, the R2
response is provided in the DATA register, so we only need to send (SD READREG|SD CMD)+13 to
the CMD register in order to read its result from the DATA register. The status register will be
returned in the top eight bits of the DATA register (the interface still reads 32–bits, even though
the other 24 can be ignored), so:

int card status;

DATA = 0;

CMD = (SD READREG|SD CMD)+13; SD WAIT WHILE BUSY;

card status = DATA>>24;

As a final register example, let’s read the SD Card Configuration Register (SCR). This register is
read in a fashion very similar to the CSD register, except that because of its width the FIFO needs
to be set for a shorter register width:

int SCR[2];

// Set the FIFO length to two words, 21.
DATA = 0x0100;
CMD = SD SETAUX;
// Issue an ALT command, to get the other command set.
DATA = 0;

CMD = (SD CMD)+55;

SD WAIT WHILE BUSY;

// Now get the SCR register.
DATA = 0;

CMD = (SD FIFO OP|SD CMD)+51;

SD WAIT WHILE BUSY;

for(int i=0; i<2; i++)

SCR[i] = FIFO[0];

3.4 Reading and Writing

For our first example, let’s read the boot sector from our card. For this, we set our FIFO back to
128 words (512 bytes), and then issue a read sector command:

void read(int sector num, int *buf) {
// Set the FIFO length to 128 words, 27.
DATA = 0x0700;
CMD = SD SETAUX;
// Read from the requested sector
DATA = sector num;

CMD = SD READ SECTOR;

SD WAIT WHILE BUSY;

for(int i=0; i<128; i++)

buf[i] = FIFO[0];

www.opencores.com Rev. 0.1 8
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}

We could also write to any sector on the card in a very similar fashion:

void write(int sector num, int *buf) {
// Set the FIFO length to 128 words, 27.
DATA = 0x0700;
CMD = SD SETAUX;
// Fill the FIFO with our data
for(int i=0; i<128; i++)

FIFO[0] = buf[i];

// Issue the write command
DATA = sector num;

CMD = SD WRITE SECTOR;

SD WAIT WHILE BUSY;

}

As mentioned in the introductory chapter, this interface does not support reading or writing
multiple blocks at once. Hence, I expect all interaction using this card controller to be accomplished
through these two commands: reading a single sector, and writing to a single sector.

www.opencores.com Rev. 0.1 9
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4.

Registers

As mentioned in the last two chapters, the SDSPI core has only four registers, and one internal
register. These are shown in Tbl. 4.1. The most powerful of these is the command register, CMD,

Name Address Width Access Description

CMD 0x00 32 R/W SDSPI Command register
DAT 0x01 32 R/W SDSPI return data/argument register
FIFO[0] 0x02 32 R/W FIFO[0] data
FIFO[1] 0x03 32 R/W FIFO[1] data
CONFIG 12 R/W Internal configuration register

Table 4.1: I/O Peripheral Registers

so we’ll spend most of our time discussing that one.

4.1 CMD Register

Writes to the CMD register will cause the device to act, or if the device is already busy then any
writes will be ignored. The CMD register itself is composed of several packed bit fields, as shown in
Fig. 4.1. Perhaps the most important of these is the R1/CMD field. If bits 7–6 are the two bits 2’b01,
then the write is a command and the bottom six bits specify the rest of the 8–bit command identifier.
Once the command is complete, these 8–bits represent the R1 response from the device. R1 should
be one while the device is still starting, or zero in the case of no error. Further interpretation of this
value may be found in the SD–Card Specification.

Of next importance is the R field. This specifies the response the controller should expect from
the card given the command that was issued to the card. There are three possible values for this
field: 2′b00, meaning the controller should expect an R1 response, 2′b01, meaning the controller
should expect an R1b response, and 2′b10 meaning the controller should expect an R2/R3/R7 32–
bit response.

012345678910111213141516171819202122232425262728293031

Unused CEB 0 I FW R R1/CMD

Figure 4.1: CMD Register fields
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The F , or FIFO, field should be set if the command being given requires the use of the FIFO.
W should be set at the same time if the controller will be writing to the card from the FIFO, and
cleared if the controller will be reading from the card into the FIFO. Finally, I specifies which FIFO
will be used: 0 for the primary, or 1 for the alternate.

While the command is running, the BUSY or B bit will be set.
Once the command has completed, the E bit may be set if either the command timed out, or a

CRC error was noted while reading from the card. (To detect a CRC error when writing to the card,
check the R1 response according to the SD Card specification.) Errors may be cleared by writing a
1 to this bit. Until such time as an error is cleared, the error condition will simply persist.

4.2 DATA Register

Compared to the CMD register, the DATA register is quite simple. Like the CMD register, the
DATA register may only be written when the interface is idle. When issuing a command to the
device, the 32–bit argument for the command is taken from the DATA register. When reading the
results of a device command, the DATA register will contain the R2 response in the upper 8–bits,
or an R3 or R7 response in the full 32–bits.

4.3 FIFO Registers

The SDSPI controller maintains two 128 word (512 byte) FIFOs. Reads from the card will read data
into one of the two FIFO’s, whereas writes to the card will write data out from one of the FIFO’s.
Which FIFO the card uses is determined by the I bit in the CMD register (above).

Further, upon any write to the CMD register, the FIFO address will be set to point to the
beginning of the FIFO.

The purpose of the FIFO’s is to allow one to issue a command to read into one FIFO, then when
that command is complete to read into a second FIFO. While the second command is ongoing, a
CPU or DMA may read the data out of the first FIFO and place it wherever into memory. Then,
when the second read is complete, a third read may be issued into the first buffer while the data is
read out of the second and so forth.

This interleaving approach, sometimes called ping-pong buffering, can also be used for writing:
Write into one FIFO, issue a write command, write into the second FIFO, wait for the first write
command to complete, issue a second write command, and so forth.

One item to note before closing: there is only one internal address register when accessing the
FIFO from the wishbone bus. Attempts to read from or write to either FIFO from the wishbone
bus will increment this address register. Interleaved read, or write attempts, such as reading one
item from FIFO[0] and writing another item to FIFO[1], will each increment the internal address
pointer so that the result is likely to be undesirable. For this reason, it is recommended that only
one FIFO be read from or written by the wishbone bus at a time.

4.4 CONFIG Register

The CONFIG register controls the SPI clock rate and the FIFO size. Specifically, with regards to
the FIFO size, it controls how many bytes will be written into the FIFO (which is really of a fixed
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012345678910111213141516171819202122232425262728293031

Unused Max LgFIFO LgFIFO 0 CLKDIV

Figure 4.2: CONFIG Register fields

size) before the expecting a CRC, or equivalently how many bytes to read out of the FIFO before
adding a CRC. The fields of this register are shown in Fig. 4.2.

The CLKDIV field sets a divisor from the current clock to create a SPI clock. The minimum
value of this field is ‘1’, corresponding to dividing the input clock by ‘4’. As discussed earlier, the
input clock will be divided by twice this field plus one. Hence, setting this field to one will cause
the original clock to be divided by 2(1 + CLKDIV) or 4. Thus an 80 MHz input clock will become a
20 MHz SPI clock. Setting this value to zero will cause the set to be ignored.

The LgFIFO field sets the log, base two, of the FIFO size. The actual FIFO size used will be
2LGFIFO words. The maximum size the device will support is returned by the Max LgFIFO field, which
is currently set to 7 for a 128 word (512 byte) FIFO.

To set the CONFIG register, first set the DATA register to the new config value (or zero for
the fields that will not change), and then write 0x0ff to the CMD register. Likewise, to read the
CONFIG register write a 0x0bf to the CMD register and read the CONFIG register from the DATA
register.
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5.

Wishbone Datasheet

Tbl. 5.1 is required by the wishbone specification, and so it is included here. Note that all wishbone

Description Specification

Revision level of wishbone WB B4 spec
Type of interface Slave, (Block/pipelined) Read/Write
Port size 32–bit
Port granularity 32–bit
Maximum Operand Size 32–bit
Data transfer ordering Big Endian
Clock constraints (See below)

Signal Names

Signal Name Wishbone Equivalent
i clk CLK I

i wb cyc CYC I

i wb stb STB I

i wb we WE I

i wb addr ADR I

i wb data DAT I

o wb ack ACK O

o wb stall STALL O

o wb data DAT O

Table 5.1: Wishbone Slave Datasheet

operations may be pipelined, to include FIFO operations, for speed.
The particular constraint on the clock is not really a wishbone constraint, but rather an SD–Card

constraint. Not all cards can handle clocks faster than 25 MHz. For this reason, the wishbone clock,
which forms the master clock for this entire controller, must be divided down so that the SPI clock
is within the limits the card can handle.
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6.

Clocks

This core is based upon the XuLA2-LX25 SoC design. The XuLA2 development board contains
one external 12 MHz clock, which is internally boosted within the SoC to 80 MHz. This clock is
divided by a programmable divider, often set to four, to create the 20 MHz clock used to drive the
device. (Maximum device speed is usually 25MHz, although some devices can run at 50 MHz.) This
controller does not support setting the SPI clock frequency any faster than one quarter of the input
clock rate.
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7.

I/O Ports

Table. 7.1 lists all of the input and output ports to this core. You may notice these inputs and

Port Width Direction Description

i clk 1 Input Clock

i wb cyc 1 Output Wishbone bus cycle active
i wb stb 1 Output Wishbone Strobe, true one clock only for each interac-

tion
i wb we 1 Output Wishbone Write-Enable line
i wb addr 2 Output Selects our I/O register
i wb data 32 Output Incoming wishbone bus data
o wb ack 1 Output Acknowledge a WB request, always true one clock after

the request
o wb stall 1 Output Always zero
o wb data 32 Output 32–bit wishbone data response

o cs n 1 Output Chip–select and SPI request line
o sck 1 Output SD Card clock
o mosi 1 Output Output data wire to the SD Card
i miso 1 Input Input data wire from the SD Card

o int 1 Output An interrupt line to the CPU controller
i bus grant 1 Input True if the SDSPI controller is controlling the bus
o debug 32 Output See Verilog for details

Table 7.1: List of IO ports

outputs are divided into sections: the master clock, the wishbone bus, the SPI interface to the card,
and three other wires. Of these, the last two chapters discussed the wishbone bus interface and the
clock. The SPI interface should be fairly straightforward, so we’ll move on and discuss the other
three wires.

This controller supports an interrupt line, o int. Upon completion of any operation, when the
SPI chip select line is deactivated (raised high), o int will be strobed for one cycle. It is up to the
logic using this chip to catch and use that interrupt line or ignore it. In particular, it is possible to
use that interrupt line to trigger a DMA service to move data in or out of the FIFO, although the
details of that are beyond this discussion here.
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The second wire, i bus grant, exists because this controller is expected to operate together with
other SPI controllers that may also wish to drive the same three wires (o sck and o mosi to the
device, and i miso from the device). When the controller therefore lowers the o cs n line to make
it active, it then waits for i bus grant to go high. This is its signal, from the outside world, that its
chip has been selected and that it is now driving the o sck and o mosi pins. Should you not need
this in your environment, you can simply leave this line wired high.

The final bus of 32–wires, o debug, is defined internally and used when/if necessary to debug
the core and watch what is going on within it. These wires may be left unconnected in most
implementations, as they are not necessary for using the actually controller.
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