
sockit_owm
1-wire (onewire) master

Copyright (CC BY-SA 3.0) 2010-2011

Iztok Jeras

Project home pages:

https://github.com/jeras/sockit_owm

http://opencores.org/project,sockit_owm

1

https://github.com/jeras/sockit_owm
http://opencores.org/project,sockit_owm

Table of Contents
1 Introduction..5

1.1 1-wire protocol and devices..5
1.2 Features...5
1.3 List of source files...5

2 Verilog module parameters and ports...6
2.1 Parameters...6

2.1.1 Optional functionality...6
2.1.2 Data bus width, number of wires and overdrive enable..6
2.1.3 Clock divider ratio and base time periods...6

2.2 Ports..7
2.2.1 CPU bus interface...8
2.2.2 1-wire interface...8

2.3 Metastability evaluation..9
3 Supported 1-wire functionality...10

3.1 RTL description..10
3.2 1-wire cycle timings..10

4 Processor interface..13
4.1 Address space..13
4.2 Clock dividers...13
4.3 1-wire line multiplexing and power enable..14
4.4 Control/status register...14
4.5 Driver access sequences..15

4.5.1 Polling routines...16
Reset and presence pulses..16
Read/write data slots..16
Delay of 0ms or 1ms..17

4.5.2 Interrupt routines...17
Reset and presence pulses, read/write data slots..17
OS initialization and interrupt service routine...18

5 Software driver...19
5.1 Port of Public Domain Kit components to Nios II HAL and μC/OS-II..................................19

5.1.1 Nios II HAL and μC/OS-II drivers...19
5.1.2 Public Domain Kit components..19

5.2 Adding support for new devices...20
5.3 Possible improvements...20

6 Altera development tools integration..21
6.1 SOPC Builder and Nios II EDS integration..21

6.1.1 SOPC Builder..21
Adding the component to a project..21
Configuring the component..21

6.1.2 Nios II EDS...22
7 Demo hardware and software implementation...23

7.1 Demo hardware...23
7.1.1 Demo hardware logic consumption..23

7.2 Demo software..24
7.2.1 Demo software memory consumption..24

2

8 Testing..25
8.1 Verilog RTL simulation...25

8.1.1 1-wire slave model..25
8.1.2 Verilog testbench...26
8.1.3 Parameter tests..26

8.2 C driver tests...27
8.3 Testing TODO...27

9 License..28
10 References..29

Index of Tables
Table 1: File list..5
Table 2: List of sockit_owm module parameters..6
Table 3: Base time period and base frequency options..7
Table 4: List of sockit_owm module ports...7
Table 5: Wishbone equivalents of Avalon MM signals..8
Table 6: 1-wire protocol standard timing restrictions...11
Table 7: Timing options..11
Table 8: 32bit interface address space..13
Table 9: 8bit interface address space..13
Table 10: Control/status register structure..14
Table 11: Control/status register bits with descriptions..14
Table 12: List of supported cycles..15
Table 13: Files for Nios II HAL and μC/OS-II integration..19
Table 14: Files from the Public Domain Kit...20
Table 15: Driver configuration options..22
Table 16: Pin-out of the PS/2 connector on the Terasic DE1 board...23
Table 17: Demo software main function files..24
Table 18: Verilog RTL testbench files..25

Drawing Index
Drawing 1: Bus timing (read/write cycle and interrupt status)..8
Drawing 2: 1-wire line driver schematic..9
Drawing 3: RTL block diagram..10
Drawing 4: Reset and presence timing diagram...12
Drawing 5: Write 0 timing diagram..12
Drawing 6: Write 1, read timing diagram...12
Drawing 7: Write 1 or read timing diagram...12
Drawing 8: Component GUI for sockit_owm..22
Drawing 9: Image of the PS/2 connector on the Terasic DE1 board..23
Drawing 10: 1-wire slave model timing diagram...25

3

Abbreviations, terminology and product names

Verilog HDL Verilog hardware description language

RTL register transfer level

SoC system on chip

CPLD complex programmable logic device

FPGA field-programmable gate array

ASIC application-specific integrated circuit

BSP board support package

HAL hardware abstraction layer

OS operating system

μC/OS-II preemptive, real-time deterministic multitasking kernel written in ANSI C

1-wire (onewire) single wire serial bus protocol

Quartus II FPGA design and synthesis tool from Altera

SOPC Builder system on a programmable chip builder

Nios II EDS Nios II (32-bit soft-core processor from Altera) embedded development suite

Avalon MM Avalon memory mapped switch fabric interface

Wishbone open source hardware computer bus

PS/2 PS/2 connector (6-pin Mini-DIN)

4

http://en.wikipedia.org/wiki/PS/2_connector
http://en.wikipedia.org/wiki/Wishbone_(computer_bus)
http://en.wikipedia.org/wiki/Nios_II#Avalon_switch_fabric_interface
http://en.wikipedia.org/wiki/Nios_II
http://en.wikipedia.org/wiki/Sopc_builder
http://en.wikipedia.org/wiki/Quartus_II
http://en.wikipedia.org/wiki/1-Wire
http://en.wikipedia.org/wiki/MicroC/OS-II
http://en.wikipedia.org/wiki/Operating_system
http://en.wikipedia.org/wiki/Hardware_abstraction_layer
http://en.wikipedia.org/wiki/Board_support_package
http://en.wikipedia.org/wiki/Application-specific_integrated_circuit
http://en.wikipedia.org/wiki/Field-programmable_gate_array
http://en.wikipedia.org/wiki/Complex_programmable_logic_device
http://en.wikipedia.org/wiki/System-on-a-chip
http://en.wikipedia.org/wiki/Register_transfer_level
http://en.wikipedia.org/wiki/Verilog

1 Introduction
This document describes a 1-wire master written in Verilog HDL, ready for integration into a FPGA
or ASIC based SoC. A port of the 1-wire Public Domain Kit (version 3.10r2) from Maxim is also
provided, with all the code required for integration into the Altera development environment.

1.1 1-wire protocol and devices

The 1-wire protocol was defined by Dallas Semiconductor. In 2001 the company was bought by
Maxim Integrated Products, Inc. Maxim is the main manufacturer of 1-wire and iButton devices.
Devices and standards can be found on their web-page http://www.maxim-ic.com/products/1-wire/.

1.2 Features

Only the physical layer of the protocol is implemented in hardware, so only bit level data transfers
are possible, a software driver or hardware state machine is required to perform byte level transfers
and to support higher protocol layers. Features:

1. reset pulse generation and presence detection, bit level write and read, timed idle cycle

2. overdrive mode

3. from 1 to 16 wires (4 wires for an 8bit interface)

4. power (strong pull-up)

5. polling or interrupt driven CPU interface

There are no special features, like active pull-up or adaptive timing, for handling a long and
unstable bus. Hardware interrupt (rarely used part of a reset cycle) is also not supported.

1.3 List of source files

The sources can be divided into Verilog RTL and testbench code, C code for drivers, code required
for integration into Altera development tools and documentation.

Table 1: File list

file name description

doc/onewire.odt this document (onewire.odg contains source drawings)

hdl/onewire_tb.v Verilog testbench

hdl/onewire_slave_model.v Verilog model of 1-wire slave device (very simplified)

hdl/sockit_owm.v main module Verilog RTL source

hdl/wishbone2bus.v Wishbone to bus protocol converter Verilog RTL source

sockit_owm_hw.tcl Script for integrating the hardware into Altera dev. tools

sockit_owm_sw.tcl Script for integrating the software into Altera dev. tools

inc/sockit_owm_regs.h C header file describing CPU bus accessible registers

HAL/inc/sockit_owm.h C header file for Nios II HAL integration

HAL/src/owlnk.c, ... C source code ported from the 1-wire Public Domain Kit

5

http://www.maxim-ic.com/products/1-wire/
http://www.maxim-ic.com/
http://en.wikipedia.org/wiki/Dallas_Semiconductor

2 Verilog module parameters and ports
The next section describes how to properly integrate the Verilog module into a SoC.

2.1 Parameters

The next list of parameters is almost complete, but there are some timing parameters that should be
modified only by developers able to read the Verilog HDL source code.

Table 2: List of sockit_owm module parameters

parameter type default range (8bit interface) description

OVD_E integer 1 0, 1 overdrive functionality enable

CDR_E integer 1 0, 1 clock divider register enable

BDW integer 32 32 (8) bus data width

OWN integer 1 1, 2, ..., 16 (4) number of 1-wire lines

BTP_N string "5.0" "7.5", "5.0", "6.0" base time period for normal mode

BTP_O string "1.0" "1.0", "0.5" base time period for overdrive mode

CDR_N integer 15 0, 1, ..., 65535 (255) clock divider ratio for normal mode

CDR_N integer 2 0, 1, ..., 65535 (255) clock divider ratio for overdrive mode

2.1.1 Optional functionality

If overdrive mode is not required it can be disabled (OVD_E=0).

If the input clock is constant, clock divider ratios can be implemented as constant parameters
(CDR_E=0) instead of registers (DCR_E=1).

2.1.2 Data bus width, number of wires and overdrive enable

The width of the data bus is 32bit by default. An 8bit bus option is provided for connecting to to a
8bit CPU, but this restricts the number of 1-wire lines to 4 (OWN<=4). The details are explained in
the section on module ports.

For 32 bit CPU interfaces if is possible to have from 1 to 16 1-wire lines. Note that only one line
can be active at the same time. If simultaneous data transfers on more than one line are required,
one solution would be to instance more than one sockit_owm module, but this would require a
software driver modification.

2.1.3 Clock divider ratio and base time periods

The internal state machine requires a base time period. For normal mode the base can be exactly
7.5μs or 5.0μs, or in the range from 6.0μs to 7.5μs. For overdrive mode the base can be 1.0μs or in
the range from 0.5μs to 0.66μs. The system clock frequency must be such that it is possible to
divide it into the desired base period. If overdrive is enabled, both normal and overdrive mode
periods must be achievable. Exact time periods offer a better optimized implementation, range
periods should be used only if a round frequency is not possible.

6

Table 3: Base time period and base frequency options

overdrive support (OVD_E) disabled enabled

base time period [μs] (normal mode) 7.5 5 6.0 - 7.5 7.5 5.0 6.0 - 7.5

base time period [μs] (overdrive mode) 1.0 1 0.5 - 0.66

base frequency [Mhz] 0.133 0.2 0.166 - 0.133 2 1 2 - 1.5

The clock divider ratio parameters (register values) are computed with the next formulas (replace
the base period as required):

CDR_N= f clk⋅5.0 s−1

CDR_O= f clk⋅1.0 s−1

And the exact base time period is computed as:

BTP_N=
CDR_N1

f clk

BTP_N=
CDR_N1

f clk

If the dividing factor is not a round integer, than the timing of the controller will be slightly off, and
would support only a subset of 1-wire devices with timing closer to the typical 30μs base. If the
relative error is large (this is possible if the system clock frequency is low) than range periods
should be used. For range periods longer times (closer to the higher limit) offer a better signal
quality, although a lower data rate.

2.2 Ports

Module ports are divided into two groups: CPU interface ports and 1-wire interface ports.

Table 4: List of sockit_owm module ports

signal width direction description

bus_wen 1 input bus write enable

bus_ren 1 input bus read enable

bus_adr BAW* input bus address

bus_wdt BDW input bus write data

bus_rdt BDW output bus read data

bus_irq 1 output bus interrupt request status

owr_i OWN input 1-wire bus status

owr_e OWN output 1-wire open collector driver enable

owr_p OWN output 1-wire power enable (strong pull-up)
* for a 32 bit interface BAW=1, for an 8bit interface BAW=2

7

2.2.1 CPU bus interface

The default bus interface is 32bit Avalon MM compatible. It is trivial to connect it to Wishbone
(wishbone2bus module) and it should be easy to connect to AMBA APB. The module can be also
connected to an 8bit bus (a micro-controller for example).

Table 5: Wishbone equivalents of Avalon MM signals

bus signal Avalon MM signal Wishbone signal

bus_wen avalon_write cyc & stb & we

bus_ren avalon_read cyc & stb & ~we

bus_adr avalon_address adr

bus_wdt avalon_writedata dat_w

bus_rdt avalon_readdata dat_r

bus_irq avalon_interrupt irq

All CPU related signals are active high. Both read and write cycles are a single clock period long,
the omitted Avalon MM signal bus_waitrequest would be a constant '0'. Read data is valid only
the first cycle of bus_ren being active, it might change in the next cycle due to the interrupt status
being cleared.

The interrupt signal indicates, that a reset (with presence detection) or a read/write bit 1-wire cycle
has finished. After reading the control/status register the interrupt is cleared.

2.2.2 1-wire interface

The 1-wire module requires an external open drain driver to be able to drive a bidirectional pin. The
owr_p signal can be used to supply extra power to the 1-wire line (for temperature conversion, ...),
if the signal is not used, 0 should be applied instead. The next scheme shows the driver for the i-th
line.

8

Drawing 1: Bus timing (read/write cycle and interrupt status)

clk

bus_wen

bus_ren

bus_wdt

bus_rdt

bus_irq

bus_adr

The next Verilog code should be used for the i-th line on the top level of the SoC.

assign owr [i] = (owr_p[i] | owr_e[i]) ? owr_p[i] : 1'bz;
assign owr_i[i] = owr;

And if the power signal is ignored.

assign owr [i] = owr_e[i] ? 1'b0 : 1'bz;
assign owr_i[i] = owr;

On some FPGA it is possible to set driver strength at compile time. There are no extra features for
long 1-wire networks, but it is suggested to use weak drivers (slow slew rate) to minimize
transitional effects on the network. If the FPGA pin is to be used to provide power to an 1-wire
slave, the opposite, to use strong drivers is suggested. If both requirements are present the user must
choose the proper compromise based on specifications and testing.

2.3 Metastability evaluation

The 1-wire line is sampled at the presence detection point for reset cycles and at the data sample
point for read/write data cycles. The sampled value is first stored in a register and later at the end of
the 1-wire cycle copied into a register visible on CPU interface data bus. The shortest time between
sampling the 1-wire line and data being available on the CPU bus is 5μs, this is enough for all
metastability problems to level out.

9

Drawing 2: 1-wire line driver schematic

owr_p[i]

owr_p[i] | owr_e[i]

owr_i[i]

owr[i]

3 Supported 1-wire functionality
The sockit_owm module provides timed cycles for 1-wire reset/presence and write/read bit for
both normal and overdrive mode. This section describes how the 1-wire link layer is implemented
by the sockit_owm module RTL.

3.1 RTL description

The core of the RTL is a state machine with a 7bit or 8bit counter. On each bus write the counter
and owr signals are set to appropriate values. The clock generator provides pulses every base time
period (depends on overdrive mode being used), on each pulse the counter is decremented and the
owr signals are changed as required. More details can be found in the RTL source.

3.2 1-wire cycle timings

The timing for 1-wire cycles is defined as a set of minimum and maximum values for certain cycle
segments. In case the master is the data source (reset and write) the minimal values are optimal
since they provide the fastest transfer rate. In case the slave is the data source (presence and read)
the maximum values are optimal since they allow the signal to stabilize as much as possible.

10

Drawing 3: RTL block diagram

power

select

control
/

status

owr_estate
machine

7/8bit
counter owr_i

owr_p

clk

bus_wen

clock generator

ovd pls

bus_ren

bus_rdt

rst

dat

bus_wdt

bus_irq

bus_adr

cdr_n cdr_o

irq

cyc

Table 6: 1-wire protocol standard timing restrictions

timing
[μs]

normal overdrive
optimal descriptionmin max min max

tRSTL 480 640 48 80 min reset low

tRSTH 480 ∞ 48 ∞ min reset high (on newer devices this time is lower)

tRSTP 60
+8.1

75 6
+1.3

10 max reset presence detect
(the extra delay is due to slow slave IO)

tDAT0 60 120 6 16 min data bit 0

tDAT1 5 15 1 2 min data bit 1

tDATS 15 2 max data sample

tREC 5 ∞ 2 ∞ min recovery

tDLY 1ms idle delay (not standard, about tRSTL+ tRSTH)

tRSTT 960 ∞ 69 0 reset pulse cycle (tRSTL+ tRSTH)

tDATT 61 121 7 17 read/write slot cycle (tDAT0+ tREC)

The exact timing of 1-wire cycles is provided as a table with 3 options for normal mode and 2
options for overdrive mode. For exact base time periods only typical values are provided, for range
base time periods minimum and maximum value are provided.

Table 7: Timing options

normal mode times [μs] overdrive mode times [μs]

name "7.5" "5.0" "6.0" "1.0" "0.5"

timing N typ N typ N min max N typ N min max

base 1 7.5 1 5 1 6 7.5 1 1 1 0.5 0.66

tRSTL 64 480 96 480 80 480 600 48 48 96 48 64

tRSTH 64 480 96 480 80 480 600 48 48 96 48 64

tRSTP 10 75 15 75 10 60 75 10 10 15 7.5 10

tDAT0 8 60 12 60 10 60 75 6 6 12 6 8

tDAT1 1 7.5 1 5 1 6 7.5 1 1 2 1 1.33

tDATS 2 15 3 15 2 12 15 2 2 3 1.5 2

tREC 1 7.5 1 5 1 6 7.5 2 2 4 2 2.66

tDLY 128 960 200 1000 160 960 1200 96 96 192 96 128

The 7.5μs base time period option is also explained with timing diagrams.

The reset cycle is 128 base periods long. Reset low and high time each take 64 base periods. After
the rising edge on the wire a typical 1-wire slave would assert its presence after 4 base periods (min
2, max 8), and keep it asserted for 16 base periods (min 8, max 32). The presence status is sampled

11

when most stable at 10 base periods after the reset rising edge.

The write '0' cycle is 9 base periods long. The wire is tight low for 8 base periods than released. The
recovery time is 1 base period.

The write '1' or read cycle is 9 base periods long. The wire is tight low for 1 base period than
released. A typical 1-wire slave would answer with '0' by holding the wire down for 4 base periods
(min 2, max 8) from the falling edge of the read command. Data is sampled at the most stable point
at 2 base periods from the falling edge. There is 1 base period at the end for recovery.

12

Drawing 6: Write 1, read timing diagram

8 7 6 5 4 3 2 1 0

tDATS

tLOW1

tREC

tDATT

tSLOT

Drawing 4: Reset and presence timing diagram

tRSTT

127...

tRSTS

...64 ...063...

tRSTL tRSTH

Drawing 5: Write 0 timing diagram

8 7 6 5 4 3 2 1 0

tREC

tDATT

tSLOT = tLOW0

Drawing 7: Write 1 or read timing diagram

8 7 6 5 4 3 2 1 0

tDATS

tLOW1

tREC

tDATT

tSLOT

4 Processor interface
The processor interface is described in three steps:

1. address space

2. clock dividers

3. 1-wire line multiplexing and power enable functionality

4. control/status register description

5. driver access sequences (polling and interrupts)

The document is focused on describing the 32bit CPU interface. Some aspects of a 8bit interface are
mentioned, but many details are omitted.

4.1 Address space

The sockit_own module is designed to be accessible by a 32bit CPU through a single 32bit register,
if between 1 and 16 (OWN parameter) 1-wire lines are required. If a single line is enough than all but
one power and all select bits have no function, and the interface can be compacted into an 8bit
control/status register.

If implemented (CDR_E=1), there are two 16bit clock divider ratio registers (cdr_n, cdr_o) one for
normal and one for overdrive mode.

Table 8: 32bit interface address space

address 31..24 23..16 15..8 7..0

0 power unused select control/status

1 cdr_o cdr_n

Since all the controls are in a single register and there is no byte select signal, on every write all
controls must have the correct value. In software this can be achieved by having a permanent
structure holding the interface current state.

Alternatively an 8bit interface is possible. The maximum number of 1-wire lines is reduced to 4 and
the clock divider ratio register size is reduced to 8bit.

Table 9: 8bit interface address space

address 7..0

0 control/status

1 power unused select

2 cdr_n

3 cdr_o

4.2 Clock dividers

If clock divider ratio registers cdr_n and cdr_o are implemented (CDR_E=1) than the reset value of

13

the registers will be as defined by CDR_N and CDR_O parameters, and the registers can be written to
with new divider ratios while there is no 1-wire cycle in progress. If the registers are not
implemented (CDR_E=0) than a read will provide values defined by parameters and writes will be
ignored.

4.3 1-wire line multiplexing and power enable

The sockit_owr module can implement more than one 1-wire line depending on the value of the
OWN parameter. The main purpose of having multiple lines is the ability to attach sensors
(thermometers for example) to separate lines, so that the physical position of the sensor can be
deduced without requiring sensors with addressing or chain structures.

Since there is a single state counter in the module, it is not possible to communicate with more than
one device at the same time. To be exact only one contemporary reset or write/read bit cycle can be
issued, but it is possible to time multiplex between lines on bit transfer level. Each cycle must finish
before a new cycle on the same or different line can be issued.

The select[3:0] register is used to select one from OWN lines. If the module is configured for only
one line (OWN=1), than select is not implemented and therefore ignored. If a line is not selected its
owr_e signal is not active. After reset line 0 is selected, but the proper value has to be provided on
each write to the register.

The power[15:0] register is directly connected to the owr_p[OWN-1:0] output port. If the module
is configured for only one line (OWN=1), than power[15:0] is not implemented and ignored and the
pwr bit from the control/status register is used instead. If the module is configured for more than
one line (OWN=1) than writes to the pwr bit are ignored. After reset all bits in the register are zero
and all lines are only powered over the required weak pull-up resistor. By writing 1 into the n-th bit
the n-th 1-wire line will provide power supply instead of being only an input. While power to a line
is enabled it is not possible to perform 1-wire cycles on the same line, but it is possible to
communicate on other lines.

4.4 Control/status register

The control/status register is used to initiate 1-wire cycles and to check their status.

Table 10: Control/status register structure

7 6 5 4 3 2 1 0

name ien irq / pwr cyc ovd rst dat

access r/w r/c / r/w r/w r/w r/w r/w

reset 0 0 x 0 0 0 0 x

Table 11: Control/status register bits with descriptions

bit description

0 dat write: data transmit request (0 - perform write 0 slot, 1 - perform write 1 or/and read slot)
read: data receive status (read value for each 1-wire read slot)
read: presence detect status (0 - device presence detected, 1 - no device detected)

1 rst reset pulse request (0 - data cycle, 1 - reset and read presence detect cycle is selected)

14

2 ovd overdrive setting (0 - standard speed, 1 - overdrive speed)

3 cyc write: initiate an 1-wire cycle (0 - no action, 1 - start a new cycle)
read: 1-wire cycle status (0 - no cycle in progress, 1 - cycle in progress)

4 pwr power supply (0 - normal operation, 1 - supply power over 1-wire)

5 / reserved

6 irq status of cycle interrupt (set on end of 1-wire cycle, cleared by bus read)

7 ien enable cycle interrupt (0 - disabled, 1 - enabled)

Bits ovd, rst, dat are used to configure a cycle and bit cyc is used to start it. Bit dat provides the
write data, bit rst selects a reset cycle and bit ovd is used to specify the transfer speed mode.
Combinations of this three bits are used to select 8 different cycle types (see table below, timing
values are for normal mode "5.0" and overdrive mode "1.0" base time periods). Detailed timing for
this cycles is explained in the section "Supported 1-wire functionality".

Writing '1' into cyc register will always initiate an 1-wire cycle. Writing '1' into the register while a
cycle is already in progress will break the running cycle and start a new cycle, usually causing a
protocol error. When read, cyc shows the cycle status, which can be used for polling.

Table 12: List of supported cycles

ovd rst dat timing description

0 0 0 65μs write '0' cycle

0 0 1 65μs write '1' cycle or read cycle

0 1 0 960μs reset and presence detect cycle

0 1 1 1000μs timed idle cycle, can be used to generate timed delays

1 0 0 8μs overdrive write '0' cycle

1 0 1 8μs overdrive write '1' cycle or read cycle

1 1 0 96μs overdrive reset and presence detect cycle

1 1 1 0μs zero time idle cycle

Bit pwr has a different meaning for write than for read. The write functionality is only implemented
if only a single 1-wire line is implemented (OWN=1), then the write value directly controls the status
of the owr_p[0] signal. Read of pwr provides state of the selected line power (power[select] or
pwr).

Read only bit irq describes the current interrupt request status and is set at the end of each 1-wire
cycle. Interrupt status is cleared by a register read, so care must be taken to check its value on every
read. Bit ien (interrupt enable) specifies if irq will trigger an interrupt or not.

4.5 Driver access sequences

The 1-wire master can be used to perform most actions defined in the iButton specification as the
physical layer. It is possible to use polling or interrupts, both options will be described.

The reference implementation for Nios II HAL and μC/OS-II is available as source code.

15

The description uses the next pseudo functions:

• write (data) - 32bit (or 8bit) write to the configuration/status register

• data = read () - 32bit (or 8bit) read from the configuration/status register

If clock divider ratio registers are implemented (CDR_E=1) they must be written with proper divider
ratios prior to issuing any 1-wire cycles.

Note that the provided pseudo code does not implement power delivery and is designed for a single
1-wire lane (select is not used). For a proper implementation of this functionality see the ported
public domain kit code (owlnk.c).

4.5.1 Polling routines

Polling is not an optimal implementation, but it might be useful for debugging purposes. Since
interrupts are not used '0' should be written into interrupt enable register and cycle status bit cyc is
used to identify the end of the cycle.

Two basic functions are provided one for reset pulse and the other for a combined write/read data
slot. Separate write and read data functions are based on the combined data slot function.

Reset and presence pulses

A '1' is written into the rst bit and a '0' is written into the dat bit. Bit ovd is used to select normal
or overdrive mode. The cycle will start after writing '1' into cyc. The software must wait in a loop
till the cycle ends (cyc=0), and than the presence status can be read from bit dat. The next function
returns the presence detect status.

bool owr_reset (bool overdrive)
{
 int reg;
 write (0x08 | (overdrive << 2) | 0x02);
 while (0x08 & (reg = read()));
 return (reg & 0x01);
}

Read/write data slots

A boolean value bit is written into the dat bit, this will cause a write bit cycle on the 1-wire bus.
Bit ovd is used to select normal or overdrive mode. The cycle will start after writing '1' into cyc.
The software must wait in a loop till the cycle ends (cyc=0), and than the read bit can be read
from status register bit dat. The next function returns the read bit.

bool owr_slot (bool overdrive, bool bit)
{
 int reg;
 write (0x08 | (overdrive << 2) | bit);
 while (0x08 & (reg = read()));
 return (reg & 0x01);
}

Read data bit and write data bit functions are based on the slot function.

bool ovd_read (bool overdrive) {return owr_slot (overdrive, 0x1);}
void ovd_write (bool overdrive, bool bit) {owr_slot (overdrive, bit);}

16

Delay of 0ms or 1ms

By writing '1' to rst and dat an idle cycle is produced. If ovd bit is set for normal mode the delay
is of 1ms, if it is set for overdrive mode the delay is of zero time. The 1ms delay is intended to be
used as a timed delay with power delivery, so the pseudo code provides the power option.

The next code generates a zero time delay.

void owr_delay_0 (bool power)
{
 write (0x08 | (power << 4) | 0x07);
 while (0x08 & read());
}

The next code generates an 1ms delay.

void owr_delay_1 (bool power)
{
 write (0x08 | (power << 4) | 0x03);
 while (0x08 & read());
}

4.5.2 Interrupt routines

The 1-wire protocol is slow compared to clock speeds of most embedded processors, even low
power micro-controllers. Because of the low speed a polling driver might spend many clock periods
(at leas 7 for bit read/write and 960 for the reset pulse) busy waiting for the 1-wire cycle to finish,
this time could be better spent performing useful tasks. To be able to use this idle time, a task
scheduler (usually provided by an operating system) is also required, so that there can be
alternative threads that can be executed while waiting for the interrupt (or waiting for temperature
conversion to finish).

Since the 1-wire bus can be accessed from more than one task, a locking mechanism is required, so
that higher level protocol sequences are not corrupted. Only locking of low level transfers is
described here. Locking for higher protocol layers is provided by the "public domain kit".

The provided pseudo code is for a pseudo OS, to implement the driver for a real OS, many OS
specific details related to task and IO scheduling must be taken into account. The OS must provide
the next functions (and others for initialization):

• os_sem_lck (sem) - lock the resource (it becomes unavailable to other tasks)

• os_sem_rel (sem) - release the resource lock

• os_io_wait (flag) - return the CPU to the OS and wait for IO data for flag

• os_io_done (flag) - tell the OS IO data for flag is available, this will end the wait

The main detail to be careful about is interrupt status bits being cleared by a status register read.

Reset and presence pulses, read/write data slots

The functions for reset pulses and data slots are similar to the polling versions. The busy wait while
loop is replaced with the os_io_wait function that returns the CPU to the OS and waits for an IO
event (interrupt) when the CPU is returned to the 1-wire driver. The 1-wire cycle is also wrapped
into a semaphore based lock preventing a different task from disrupting the cycle.

17

bool owr_reset (bool overdrive)
{
 os_sem_lck (sem);
 write (0x80 | 0x08 | (overdrive << 2) | 0x02);
 os_flag_wait (flag);
 os_sem_rel (sem);
 reg = ;
 return (read() & 0x01);
}

bool owr_slot (bool overdrive, bool bit)
{
 os_sem_lck (sem);
 write (0x80 | 0x08 | (overdrive << 2) | bit);
 os_flag_wait (flag);
 os_sem_rel (sem);
 return (read() & 0x01);
}

OS initialization and interrupt service routine

The HAL or OS must declare and initialize the semaphore and flag and register the interrupt service
routine.

os_type_sem sem;
os_type_flag flag;

os_create_sem (sem);
os_create_flag (flag);

os_irq_register (irq_sockit_owm);

The interrupt service routine must clear the interrupt (by reading the status register) and using the
flag tell the OS that the wait for data has ended.

void irq_sockit_owm ()
{
 read();
 os_io_done (flag);
}

18

5 Software driver
A port of the Public Domain Kit (version 3.10r2) to Nios II HAL and μC/OS-II real time OS is
available with the sockit_owr component. This section describes this port, and how it can be
extended.

5.1 Port of Public Domain Kit components to Nios II HAL and μC/OS-II

The port is done based on instructions from Altera and Maxim.

5.1.1 Nios II HAL and μC/OS-II drivers

The integration into Nios II software development environment is done with a TCL script and C
source and header files. The integration is done based on instructions from Altera.

Table 13: Files for Nios II HAL and μC/OS-II integration

file description

sockit_owm_hw.tcl TCL script for integration into SOPC Builder

sockit_owm_sw.tcl TCL script for integration into Nios II EDS

inc/sockit_owm_regs.h specification of hardware registers and low level access macros

HAL/inc/sockit_owm.h initialization and interrupt handling code
HAL/src/sockit_owm.c

The hardware TCL script provides the software with macros defining the hardware configuration.
The software TCL script provides integration into the Nios II EDS, by defining:

• driver version and compatibility

• list of C sources and headers

• list of driver configuration options

The register definitions are mostly used for initialization and interrupts related code and for the 1-
wire protocol link layer. The next IO macros are provided for reading from and writing into the
control/status and clock divider ratio registers:

IORD_SOCKIT_OWM_CTL(base)
IOWR_SOCKIT_OWM_CTL(base, data)
IORD_SOCKIT_OWM_CDR(base)
IOWR_SOCKIT_OWM_CDR(base, data)

Interrupt support is provided for a system without or with the μC/OS-II real time OS. But there are
no advantages using interrupts if there is no task scheduling implemented on the system. Since the
sockit_owm module provides only bit sized data transfers, there are interrupts for each bit. If the
CPU is running at low clock speeds, the operating system overhead might be substantial.

5.1.2 Public Domain Kit components

The Public Domain Kit provides a layered 1-wire protocol implementation. The focus of the port
was on layers common to all 1-wire devices, device drivers with the exception of thermometers

19

were omitted. Support for other devices and applications have to be ported separately by the user.

The ported files were located in the next directories from the Public Domain Kit package:

• owpd310r2/common - some common code (CRC, err, findtype) and device drivers

• owpd310r2/apps/temp - the thermometer demo application is from here

• owpd310r2/doc - documentation

• owpd310r2/lib/general - data link and session layer TODO files

• owpd310r2/lib/general/shared - transport and network layer files

Table 14: Files from the Public Domain Kit

file description

HAL/inc/ownet.h main protocol stack header file

HAL/src/owlnk.c 1-wire protocol data link layer functions

HAL/inc/ownet.c 1-wire protocol network layer functions

HAL/src/owtran.c 1-wire protocol transport layer functions

HAL/src/owses.c 1-wire protocol session layer functions

HAL/src/owerr.c 1-wire driver error handling

HAL/src/crcutil.c 1-wire protocol CRC utilities

HAL/inc/findtype.[hc] 1-wire network search for devices

HAL/inc/temp10.[hc] thermometer device driver (ID 0x10 - DS1920/DS1820)

HAL/inc/temp28.[hc] thermometer device driver (ID 0x28 - DS18B20)

HAL/inc/temp42.[hc] thermometer device driver (ID 0x42 - DS28EA00)

Most code changes were done to owlnk.c and owses.c. Some platform specific code for unrelated
platforms was removed from ownet and owerr. Other files are mostly unchanged, check the Git
repository to see details.

5.2 Adding support for new devices

Support for a new device can be added by copying needed files from the /common directory in the
Public Domain Kit into the working directory of the Nios II project. Applications can also be ported
from the /apps directory.

5.3 Possible improvements

The main limitation the user has to be careful with is only one hardware module instance can be
handled by the driver. This is due to how the Public Domain Kit handles ports (1-wire lines) and its
use of global variables. Since this affects almost all high level functions in the Public Domain Kit,
there would be too many changes necessary to enable multiple instances.

So a possible improvement would be to rewrite the Public Domain Kit to have a structure instead of
an integer for the portnum variable, this structure would also store global variables.

20

6 Altera development tools integration
The sockit_owm component can be used in any FPGA, but special care has been taken integrating
it into the Altera development tools environment. The directory sockit_owm can be used as a
portable component for easy integration into an Altera FPGA design.

6.1 SOPC Builder and Nios II EDS integration

Integration is done according to Altera specification with two TCL scripts.

• sockit_owm_hw.tcl for SOPC Builder integration

• sockit_owm_sw.tcl for Nios II EDS integration

6.1.1 SOPC Builder

Adding the component to a project

SOPC builder component IP search path must point to the directory containing the sockit_owm
directory. The easiest way to achieve this is to put sockit_owm into the directory of the Quartus II
project and add the project directory to the search path. Use this menu path:

SOPC Builder > Tools > Options > IP Search Path > Add ...

Once the proper IP search path is set, the module will be available under:

Library > Interface Protocols > Serial > 1-wire (onewire)

Configuring the component

The next configuration options are available in the component GUI:

• OVD_E enable overdrive mode implementation

• CDR_E enable clock divider ratio register implementation

• OWN select the number of implemented 1-wire lines

• BTP_N base time period for normal mode

• BTP_O base time period for overdrive mode

Overdrive mode can be disabled (OVD_E=0) in case devices that only support normal mode will be
used. Disabling overdrive mode implementation provides a small reduction in logic consumption.

For low-end and midrange devices the clock frequency is usually defined at compile and fixed
during runtime, so there is no need for software to change values of clock divider ratio registers. If
the registers are not implemented (CDR_E=0) the divider values are constant. Disabling clock
divider ratio registers implementation provides a small reduction in logic consumption.

The number of 1-wire lines can be set with OWN. Although many 1-wire devices can be connected to
the same line there are usage scenarios where the device can be identified by the line it is connected
to. An example would be more than one thermometer on the same circuit board.

It is possible to change the base time period for normal and overdrive mode, although the default is
usually appropriate.

The TCL script calculates the correct clock divider ratios automatically based on the system clock

21

frequency and base time periods. The script also reports deviations from ideal values and if the error
is more than 2% an error event is generated.

6.1.2 Nios II EDS

The C driver is integrated into the BSP automatically if a SOPC Builder project containing the
sockit_owm component is used to generate the BSP.

The system requires some application code to use the driver. An example application is present in
the demo. Device driver files from the public domain kit can be added to the project and device
drivers already included in the base driver can be disabled within BSP configuration tools.

The user can configure the driver with some options, but the default values should be appropriate
for most projects. This options are translated into define macros and can be enabled or disabled
within BSP configuration tools.

Table 15: Driver configuration options

option default description

SOCKIT_OWM_POLLING disabled use polling instead of interrupts

SOCKIT_OWM_HW_DLY enabled use the hardware delay cycle instead of usleep

SOCKIT_OWM_ERR_ENABLE enabled enable the error code from the public domain kit

SOCKIT_OWM_ERR_SMALL enabled small version of the error implementation

22

Drawing 8: Component GUI for sockit_owm

7 Demo hardware and software implementation
The popular Terasic DE1 demo board is used for a demo implementation. 1-wire devices can be
connected directly to the PS2 port. The demo software is using the JTAG UART to communicate
with the user.

This section also provides hardware logic an software memory sizes.

7.1 Demo hardware

The demo project is a Nios II SoC with 8MiB SDRAM for software and JTAG UART for
communication with the Nios II EDS. Two 1-wire lines are connected to the PS/2 connector.

The PS/2 connector is used since it provides a 5V power supply and the signals already have 2kΩ
pull-up resistors (required to implement the 1-wire bus) and 120Ω series resistors (useful for
preventing damage to the board). The DATA and CLK pins are used to connect the two 1-wire lines.

Table 16: Pin-out of the PS/2 connector on the Terasic DE1 board

pin name description

1 OWR[0] 1-wire line 0 with a 2kΩ pull-up to 5V and 120Ω serial resistor to the FPGA pin

2 NC not connected

3 GND ground

4 VCC +5V power supply

5 OWR[0] 1-wire line 1 with a 2kΩ pull-up to 5V and 120Ω serial resistor to the FPGA pin

6 NC not connected

1-wire devices can be connected to the two lines in any combination. A single DS1820 or DS18B20
thermometer in TO92 package can even be directly inserted into the PS/2 connector.

7.1.1 Demo hardware logic consumption

The demo hardware has the default parameters ("5.0" and "1.0" base time periods, no clock divider
registers) except for the two 1-wire lines. This configuration is implemented inside an Altera
Cyclone II device running at 48MHz and consumes 66 combinatorial LC and 26 LC registers.

To fit inside smaller devices like CPLDs with few logic cells the next steps can be taken:

23

Drawing 9: Image of the PS/2 connector on the Terasic DE1 board

• implement a single lane, so select and power registers will not be implemented

• lower the clock frequency, so a smaller clock divider is required

• disable overdrive mode

• use the 8bit bus width option

• fix the bus address to 0, so read of clock divider ratios will not be implemented

• use the "7.5" base time period, this should reduce the state machine size

7.2 Demo software

Two options for the demo software are available, one running directly on the Nios II HAL, the other
requires μC/OS-II.

Table 17: Demo software main function files

fail with main function description

demo/Terasic_DE1/software/onewire/onewire.c Nios II HAL main

demo/Terasic_DE1/software/onewire_ucosii/onewire_ucosii.c μC/OS-II main

To run the demo software an appropriate BSP must be generated (with or without μC/OS-II). An
UART is used to show the software progress. The demo focuses on thermometers, it will detect any
thermometer within one of the three device groups 0x10, 0x28 and 0x42. The demo will display the
device unique ID and the temperature measurement. The next printout is the result of running the
demo with two thermometers (DS18S20 and DS18B20).

Temperature device demo:

(0) 3F000000C8CF9B28 22.3 Celsius
(1) 44000801E51EC510 22.8 Celsius

Press any key to continue

7.2.1 Demo software memory consumption

An estimate of 10kB for code size is based on the thermometer demo, memory consumption can be
reduced by removing device drivers or unused protocol layers. The memory utilization by file can
be found in project_name.map.

0x25c ../onewire_bsp/libhal_bsp.a(owerr.o)
0x2cc ../onewire_bsp/libhal_bsp.a(crcutil.o)
0x0d0 ../onewire_bsp/libhal_bsp.a(findtype.o)
0x710 ../onewire_bsp/libhal_bsp.a(owlnk.o)
0xdbc ../onewire_bsp/libhal_bsp.a(ownet.o)
0x110 ../onewire_bsp/libhal_bsp.a(owses.o)
0x37c ../onewire_bsp/libhal_bsp.a(owtran.o)
0x0c0 ../onewire_bsp/libhal_bsp.a(sockit_owm.o)
0x224 obj/temp10.o
0x2b4 obj/onewire.o (main)

24

8 Testing
The sockit_owm component was tested on two levels. The Verilog RTL was tested in simulation
and the C driver was tested on the demo implementation.

8.1 Verilog RTL simulation

Extensive RTL simulation testing is required, since the RTL module can be used separately from the
provided C driver (with a Linux kernel driver for example) and can be implemented in an ASIC.

Table 18: Verilog RTL testbench files

file description

hdl/onewire_slave_model.v 1-wire slave with parameterizable timing and debug features

hdl/onewire_tb.v Verilog testbench

sim/iverilog_gtkwave.scr Bash script for running the bench with RTL parameter options

sim/iverilog_gtkwave.cmd Windows cmd script

sim/gtkwave.sav GTKWave waveform save file

8.1.1 1-wire slave model

The Verilog 1-wire slave model onewire_slave_model.v is based on the assumption that 1-wire
devices have an internal time base (probably implemented with a RC oscillator) on which an
internal state machine is running.

For normal mode this time base is typically Ttyp=30μs, but can vary from a minimum of
Tmin=Ttyp/2=15μs on fast devices to a maximum of Tmax=Ttyp*2=60μs on slow devices. This
assumptions are based on the the 1-wire protocol specification mentioning that the fastest device is
4 times faster than the slowest device.

For overdrive mode the typical time base seems to be Ttyp,o=Ttyp/8=3.75μs. The tolerances for
devices supporting overdrive mode seem to be more strict, and on the fast side. So for fast devices
Tmin,o≈16μs/8=2μs and for slow devices Tmax≈48μs/8=6μs.

25

Drawing 10: 1-wire slave model timing diagram

T

read '0'

write '0'

reset presence

8T

T

4T

0 1 3 42 5 6

1-wire slave model timing diagram check points are assumptions based on the 1-wire timing from
the standard.

0 - the 1-wire master pulls the line low

 for a read slot the slave pulls the line low if read data is '0'

1 - for a write slot the slave samples data from the line state

 for a read '0' slot the slave releases the line

2 - the slave samples reset status from the line state

3 - the master releases the line at the end of reset low time

4 - the slave pulls the line low to indicate its presence

5 - the slave releases the line, ending presence indication

8.1.2 Verilog testbench

The bench code is separated into two parts, a Verilog testbench for RTL internals and a Bash script
for parameters. The Verilog testbench tests the RTL logic and 1-wire timing. The logic tests are:

• CPU bus access

• clock dividers

• 1-wire state machine

• overdrive mode

• power delivery

1-wire timing tests are performed on three 1-wire slave models with different timings: minimum (2
times faster than typical), typical and maximum (2 times slower than typical). This should ensure
that the timing from the protocol are implemented correctly. The next 1-wire cycles are tested:

• reset pulse

• write/read '0'/'1'

• 1ms delay pulse

• 0ms idle pulse

With each test data transfers in both directions are checked (presence detection, read from slave,
write to slave) and power delivery status is also checked.

8.1.3 Parameter tests

A Bash script is used to run the testbench with different parameters:

• 32 and 8 bit CPU data bus width

• clock divider ratio registers enabled/disabled

• base time period normal/overdrive mode option pairs ("5.0", "1.0"), ("6.0", 0.5") and ("7.5",
overdrive not implemented)

The Bash script can be modified to run a specific test. The parameter nested loop can be commented
out and the last test will generate waveforms and open them in GTKWave.

26

8.2 C driver tests

C drivers are tested using the demo implementation. Most of the tests focus on 1-wire functionality,
but some focus on Nios II HAL and μC/OS-II.

The next 1-wire functionality was tested:

• functions reset pulse, presence detection, read/write slots

• overdrive mode

• power delivery

The next parts of Nios II HAL integration were tested:

• hardware 1ms delay

• software 1ms delay (it is longer than it should be)

• polling driver

• interrupt driven driver

The next parts of μC/OS-II integration were tested:

• accessing the driver from two tasks simultaneously

• returning the CPU to the OS while a task is waiting for an 1-wire cycle to complete

8.3 Testing TODO

Not everything was tested and some parts might not be properly implemented:

• timed delay functions provided by μC/OS-II (not implemented properly)

• semaphore protection of 1-wire cycles (probably works, but was not tested)

• 1-wire devices other than thermometers

27

9 License
Verilog RTL and testbench files are licensed under LGPL 3.

Bash and Windows cmd scripts are licensed under LGPL 3.

http://www.gnu.org/licenses/lgpl.html

TCL scripts for integration into Altera tools are licensed under LGPL 3. This files were at first
based on Altera demos, but are now entirely rewritten according requirements described in SOPC
Builder documentation.

http://www.gnu.org/licenses/lgpl.html

The glue code for the Nios II HAL is licensed with the original public domain like license by Altera.
This files were at first based on Altera demos, but are now almost entirely rewritten according
requirements described in Nios II documentation.

The license for the "public domain kit" has not been changed. The modified code is also public
domain.

lic/license_pub.txt

The documentation (including all drawings except the PS/2 connector) is licensed under the
Creative Commons Attribution-ShareAlike 3.0 Unported (CC BY-SA 3.0) License.

http://creativecommons.org/licenses/by-sa/3.0/

http://creativecommons.org/licenses/by-sa/3.0/legalcode

The PS/2 connector SVG drawing is from Wikipedia, and its copyright holder released it into the
public domain.

http://en.wikipedia.org/wiki/File:MiniDIN-6_Connector_Pinout.svg

28

http://en.wikipedia.org/wiki/File:MiniDIN-6_Connector_Pinout.svg
http://creativecommons.org/licenses/by-sa/3.0/legalcode
http://creativecommons.org/licenses/by-sa/3.0/
http://www.gnu.org/licenses/lgpl.html
http://www.gnu.org/licenses/lgpl.html

10 References

1-Wire Products Design Guide

http://www.maxim-ic.com/design_guides/en/1_WIRE_PRODUCTS_4.pdf

iButton Overview

http://pdfserv.maxim-ic.com/en/an/appibstd.pdf

1-Wire Public Domain Kit

http://files.dalsemi.com/auto_id/public/owpd310r2.zip

http://pdfserv.maxim-ic.com/en/an/AN1097.pdf

http://pdfserv.maxim-ic.com/en/an/AN155.pdf

DS18S20 1-Wire Parasite-Power Digital Thermometer

http://datasheets.maxim-ic.com/en/ds/DS18S20.pdf

DS18B20 Programmable Resolution 1-Wire Digital Thermometer

http://datasheets.maxim-ic.com/en/ds/DS18B20.pdf

SOPC Builder User Guide

4. SOPC Builder Components

7. Component Interface Tcl Reference

10. SOPC Builder Component Development Walkthrough

http://www.altera.com/literature/ug/ug_sopc_builder.pdf

Avalon MM

www.altera.com/literature/manual/mnl_avalon_spec.pdf

μC/OS-II

Jean J. Labrosse: MicroC OS II: The Real Time Kernel

29

http://www.amazon.com/MicroC-OS-II-Kernel-CD-ROM/dp/1578201039
http://www.altera.com/literature/manual/mnl_avalon_spec.pdf
http://www.altera.com/literature/ug/ug_sopc_builder.pdf
http://datasheets.maxim-ic.com/en/ds/DS18B20.pdf
http://datasheets.maxim-ic.com/en/ds/DS18S20.pdf
http://pdfserv.maxim-ic.com/en/an/AN155.pdf
http://pdfserv.maxim-ic.com/en/an/AN1097.pdf
http://files.dalsemi.com/auto_id/public/owpd310r2.zip
http://pdfserv.maxim-ic.com/en/an/appibstd.pdf
http://www.maxim-ic.com/design_guides/en/1_WIRE_PRODUCTS_4.pdf

	1 Introduction
	1.1 1-wire protocol and devices
	1.2 Features
	1.3 List of source files

	2 Verilog module parameters and ports
	2.1 Parameters
	2.1.1 Optional functionality
	2.1.2 Data bus width, number of wires and overdrive enable
	2.1.3 Clock divider ratio and base time periods

	2.2 Ports
	2.2.1 CPU bus interface
	2.2.2 1-wire interface

	2.3 Metastability evaluation

	3 Supported 1-wire functionality
	3.1 RTL description
	3.2 1-wire cycle timings

	4 Processor interface
	4.1 Address space
	4.2 Clock dividers
	4.3 1-wire line multiplexing and power enable
	4.4 Control/status register
	4.5 Driver access sequences
	4.5.1 Polling routines
	Reset and presence pulses
	Read/write data slots
	Delay of 0ms or 1ms

	4.5.2 Interrupt routines
	Reset and presence pulses, read/write data slots
	OS initialization and interrupt service routine

	5 Software driver
	5.1 Port of Public Domain Kit components to Nios II HAL and μC/OS-II
	5.1.1 Nios II HAL and μC/OS-II drivers
	5.1.2 Public Domain Kit components

	5.2 Adding support for new devices
	5.3 Possible improvements

	6 Altera development tools integration
	6.1 SOPC Builder and Nios II EDS integration
	6.1.1 SOPC Builder
	Adding the component to a project
	Configuring the component

	6.1.2 Nios II EDS

	7 Demo hardware and software implementation
	7.1 Demo hardware
	7.1.1 Demo hardware logic consumption

	7.2 Demo software
	7.2.1 Demo software memory consumption

	8 Testing
	8.1 Verilog RTL simulation
	8.1.1 1-wire slave model
	8.1.2 Verilog testbench
	8.1.3 Parameter tests

	8.2 C driver tests
	8.3 Testing TODO

	9 License
	10 References

