|Final Chapter of Report

CHAPTER 7

DESIGN STRATEGIES & TOoLS UTILIZED

7-1. Field Programmable Gate Array

The internal architecture of an FPGA consist of several uncommitted logic
blocks in which the design is to be encoded. The interna logic blocks consist of
several universal gates that can be programmed to qoerate like multiplexers, logic
gates, transistors and random access memory. The internal cell blocks are connected
through different types of devices, such as static random access memory, electrically
erasable programmable read only memory, or anti-fuse [18].

In conclusion, FPGA's offer fast time-to- market, low risk, low cost, low stress,
high density and high speed-performance [22]. The FPGA kit used for this project
was appropriate for testing and verification and has proven to be a very important tool
for successful project completion.

7-2. Verilog HDL

Verilog HDL is the hardware descriptive language software that was used in
this RISC design. It has syntax very similar to the high-level language known as 'C'.
Hardware design languages such as Verilog alow designers to model the concurrence
of processes found in hardware elements. Initially, HDL's were popular for logic
verification but proved difficult to manually trandate the HDL-based design into a

99

Oceans & Skys
Final Chapter of Report

schematic circuit with interconnections between gates. The advent of logic synthesis
tools such as Synplify by Synopsis Inc. and ModelSim by Mentor Graphics Inc.,
pushed HDL's into the forefront of digital design.

Hardware design languages have many advantages compared to traditional
schematic-based design. For example,

- Designers can write the software without choosing a specific fabrication
technology and Logic Synthesis tools can automatically convert the design
to any fabrication technology.

- Functional verification of the design can be done early in the design cycle.

Most design bugs can be eliminated at this point [16].

The design strategy is shown in Figure 7.1, below.

Top-Level Block

|

|

| RISC
| Microprocessor
|

Machine Program
Control Unit Memory ALU Cycle Conler
Courter

Leaf Cell Blocks

Figure7.1: Top-Down Design.

100

7-3. Bottom — up Vs Top —down design

Veilog has two man design flow capabilities known as top-down and
bottom up design. In a top-down design methodology, the top-level block is defined
and then sub-blocks are created as necessary. In a bottom-up design methodol ogy, the
building blocks that are available are defined. Bigger cells are built using these
building blocks and these cells are then used for higher-level blocks to eventually
build the top-level block in the design.

This particular project uses a bottomup design flow methodology. The
preliminary design strategy consisted of creating a module for each hardware entity.
Verilog provides the concept of a module. A module provides the necessary
functionality to the higher-level block through its port interface (inputs and outputs),
but hides the internal implementation. There is a module for the Arithmetic Logic
Unit, Latch, Transceiver, Tristate Buffer, Register, Display and Control Unit. These
hardware blocks were used to create the higher level block of the processor, thus

creating atop-level hierarchy that behaves like a processor [16].

7-4. Stimulus

One of the mgjor advantages of designing using hardware design languages is
the ability to test the design without ever moving outside the Verilog environment.
This can be accomplished by applying the stimulus and checking the results. In
Verilog, this type of block is known as the Simulus Block. The Stimulus block is a
block of Verilog code that instantiates the design block and directly drives the signals
that control the processor. Figure 7.2 illustrates how the stimulus block was used to
become the temporary top-level block during testing. Throughout the design process
for the RISC machine, there have been numerous stimulus blocks crested as the
design progressed.

101

Clock Reset Hold

1 1 1

RISC Processor

Display Cuﬁtm] Signals

Figure7.2: StimulusBlock Structure.

7-5. Xilinx Tools

Three primary tools made by Xilinx were used in the design flow for realizing
and optimizing the RISC design and the XST is used for synthesizing the designed
into a netlist.

7.5-1. ISE PROJECT NAVIGATOR

The Xilinx-1SE Project Navigator as shown in Figure 7.3 provides the basic
platform for the design development of the ".v' file designed by the user. At this point
the designer should be ready to define the speed, size of the target device. This tool
also provides the necessary interface for accessing other development tools.

102

O xiinu Project Navigefor - C:AFYMTest] Filest i Teslnpl - [proc]

[{] e Edt Wew Proect Soeca Proces: Wik Halp ¥ -&x
DEE@ =F= UL H BEE R |-l o T ARAR R
148 e e
'S'UIHT_PIWU: .I.' -::C:' madule pooo(Resetp, Holdp, Clockp, ledlb; led2h, Clock, PCount, poowcpuc, Comnk, BOA&
B Test i | B e ot e
L a 52:1m&q|u :: Port Declexsation
= 1v] pe pace| A
s IR e e
il il
= '-'-"—'—'—E—I— 50 input Holdp:
Wlhakds | e it 51 putput [6:0] l=dlh, lecEh:
ez a2 garput (V0] Flounc:
8z 0unput. [15:0] peoucpuc:
Piriscas siaes b Sowdis “onc” I: 6d ouCpur [1:0] Cousr:
O 4dd Ewsding Smupe 65 oucpuc [7:0] PO, B, B2, R, A, G
O CosalnMeaSoeea 1] pocpuc Clock!
- w Drzign Enp Lbbe: a7
D Creata 5 chermod i Syundo e rey [7:0] Fuavices, Exe;
1 aunchio dedaim Simia Bl-] ceg [7:0] Daca, Jwo:
o Mo Carranard Lina Lag 50 rex [1 = 0] Bx, By
s Loy ecd andisdion L4 reg [3 1 0] Ey
5 @ User Dovokmints B3 ceg [3:0] AddSubz
Create Tirdwg Constiants B3 ey [0i3] Ein, Bomks
easion Packape Firs B4 cesg Dome=, iin, Gin, Gout, Extecn, Jeet:
Creste Apas Con s anks BE
|% EdtComiank(Ted] ae wire [7:0] Sun;
= 3T Gprdesis- 5T 87 wire catch, J8:
[E1e# Wi Zurtbreic Flepart L vire [1:0] Councs
E Yy ATL Schenakc [.[] vite [5:0] I:
i Theck St 70 wita [0:3] ¥rey, ¥:
= Gg‘ Irpherert Depgn 71 wirm [7:=0] RO, P4, B2, R, &, G, POounc;
-3 Tienidse T3 wire [1=5] Fum=Poo:
i TrandsbanAepat - wire [1:8] Fums
Floarpdan (e 74 wirte [15:0] pooucpucs W
m Farsacss Fred-Tia = e A PR LAY AR L. LA,
| {7 dE] 3
T Do o
x
— ¥

£
I 8 8 O o W W

Propess Yo ATL Scheratn®im up bo date, Ln4dCol]

Figure7.3: | SE Project Navigator.

7.5-2. XILINX SYNTHESIS TECHNOLOGY (XST)

You can synthesize your design once design files have been created. The
synthesis process will check code syntax, and analyze the hierarchy of your design.
These processes will ensure your design is optimized for the design architecture you
have selected.

The synthesis process can be used with the following synthesis technology
tools.

Xilinx Synthesis Technology (XST)
L eonardoSpectrum from Mentor Graphics Inc.

Synplify and Synplify Pro from Synplicity Inc.

103

L eonardoSpectrum from Mentor Graphics, Inc, and Synplify and Synplify Pro
from Synplicity Inc. can be purchased separately as synthesis programs. When these
synthesis programs are instaled, 1SE provides the necessary interface to use the
Xilinx implementation tools.

First select the source file in the Sources in Project window you want to
synthesize and then double-click on the Synthesize process in the Processes for
Source window. All processes necessary to successfully complete the Synthesis
process run automatically. XST will create an NGC file and place it in your project
directory._Default property values are used for the synthesize process unless you
modify them. You can set the Synthesis Property Options in the Process Properties
dialog box.

XST is executed from the main window of Xilinx-1SE Project Navigator.
When the HDL code is completed with Verilog there are several steps that must be
performed in order to synthesize the HDL design. The "check syntax” command
verifies the design and identifies any errors to be corrected. Using XST can be a very
time consuming task and for this particular design, it took approximately one or two
minutes to create a netlist file. The RTL schematic option will display the graphical
structure of the verilog code as shown in Figure 7.4.

104

Clockp led1h<6:0> =0
Holdp Proc.v

Resetp led2h<6:0> =

= Xilinx ECS - [proc.ngr]

O Fi= Edt Wiew Window Help -

DeLHd S oo @ | ®RaQEEAE 40 BB0 (LK
| HEA L A4LFE ===
laxl
oyt Symbols o | — Clockp A<T 0> ——
Lalegories
Count<1.0> ——
G<7.0=
led1h<6:0> F——
led2h<6:0> ——
PCount<7.0> ——
— Holdp
pooutput< 150> ——
RO<7.0> ——
Symbols
R1<T.0> ——
R2<T.0> ——
Symbel Narme Fiter R3<7.0> ——
|
Qiierlation —Resetp Clock ——
|Rotate 0 =
|] proc.ng
Retady [-259,172]

Figure7.4: XST Synthesis Tool.

7.5-3. FLOOR PLANNER

The Xilinx Floor Planner tool can be used to view the interconnection between
the CLBsin the FPGA and monitor the consumed surface area of the FPGA.

The Xilinx Flow Engine tool trandates a XST NGC gate-level netlist file into
the FPGA chip specific gate-level, based on the chip's libraries. This tool is activated
by selecting "Design-> Implement” from the Xilinx-1SE Project Navigator window as

shown in figure.

105

The Map, Place & Route stages of the Flow Engine tool maps the gate level
design into CLBs (Cell Logic Blocks). The tool then determines where to place and
route each of the design CLBs for optima mapping and timing. The designer can
select the effort level on how to best fit the design into the chip, area-wise and/or

timing-wise.

= Xilnk Floorglenner - prac
Flw Eci Wew Herethy Fatben Poopln Windos Help

DFE SCF B AIG2%F 27 GARAT HARKRA

= [TX 0T s ltable Flrplan fae XEIS100.5.Ta144 LCF Flow)

Peoe” [21080 JELERAMY & IE! prog Placemen fos XCIS100-5- 10148

D° oo Pamiines” |52108: 3
‘E\:' CappChaiz_16 “TamgChae™
Sl CampChain 25 “TaryChan®
CarpChaiz_23 "CargCham™
CarpChann_21 "Carplham®™
Caiwg Chais_ 13 "TaingChoan™
L} CampChais 1 "Casplhais” |
CappChain_7 “Cusplkain® |
LT CarmpChasin_fi "ol bain® |
e Carplhain_ 2 “Camrplhain® |
HEE CaspChain_14 "CampChan
CeispChais_# CasgChais” |
CompChain_3 CanyChais™ |

(e
T
E; o o)

58 A

AT
-5
oo (oo

whi_Mwi e d_red W3 1000

|+

Figure7.5: Xilinx Floor Planner Tool.

The Generate Timing report tool will determine the maximum and minimum
timing delays through gates of the design. The maximum guaranteed speed (MHz) at
which the design should be run is reported by the tool at this stage.

7.5-4. GENERATE PROGRAMMING FILE

The Generate Programming File tool then completes the design development
cycle by creating a ".bit' file which can be downloaded via the LPT Cable using the
IMPACT tool as shown in below figure or the tools provided by the Xess

106

