
Debugging System
for OpenRisc 1000-

based Systems

Nathan Yawn
nathan.yawn@opencores.org

6/14/2009

mailto:nathan.yawn@epfl.ch

Copyright (C) 2008-2009 Nathan Yawn

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free
Documentation License, Version 1.2 or any later version published by the Free Software Foundation;
with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license
should be included with this document. If not, the license may be obtained from www.gnu.org, or by
writing to the Free Software Foundation.

This document is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE.

http://www.gnu.org/

History

Rev Date Author Comments
1.0 20/7/2008 Nathan Yawn Initial version
1.1 14/6/2009 NY Legacy dbg support, Improved BSDL section

Contents

1.Introduction...5
1.1 Overview...5
1.2 Versions and Compatibility...6
1.3 Stub-based methods...6

2.System Components..7
2.1 Hardware...7

2.1.1 OR1200 CPU...7
2.1.2 WishBone...8
2.1.3 Advanced Debug Interface..8
2.1.4 JTAG TAP..9
2.1.5 JTAG Cable...10

2.2 Software...10
2.2.1 Advanced JTAG Bridge...10
2.2.2 GDB...11
2.2.3 Optional GDB Front-end...11

3.Operation...12
3.1 Hardware...12
3.2 Setup..12
3.3 Control and Data Flow..13

4.Simulation...14
4.1 Or1ksim...14
4.2 RTL simulation..14

4.2.1 File IO..15
4.2.2 VPI IO..16

1. Introduction

1.1. Overview
This document describes the debugging system for computing systems based on OpenRISC

1000-compatible processors; in particular, the OpenRISC 1200. This system allows a programmer to
perform source-level debugging of software running on the target hardware, without use of supervisor
code or GDB “stub” code. This system includes both hardware and software components; a block
diagram of the system is shown in Figure 1.

The source-level debug functionality depends on GDB, the GNU debugger. For ease of use, a
graphical front-end such as DDD can be used. GDB sends its command to a “bridge” program, which
translates the commands to a format understood by the debug hardware modules in the system being
debugged. The bridge program uses hardware drivers to send the translated commands to the target
system via an external JTAG cable.

The JTAG cable sends the signal to a JTAG TAP, a hardware module included in the target
system. The TAP enables the hardware debug module, and passes commands and data to it. The
hardware debug module acts as the interface to the rest of the system, communicating directly to the
CPU and the system WishBone bus. By accessing the CPU, the debug module can start and stop the
processor, and read and write CPU internal registers. By accessing the system WishBone bus, the
debug module can read and write program variables, upload program code, and set “soft” breakpoints
(by temporarily replacing a microinstruction with a CPU trap instruction).

Figure 1: Debugging system block diagram

OR1200
CPU

Advanced
Debug

Interface

JTAG
TAP

JTAG Cable

Advanced JTAG
Bridge

GDB

GDB Front-end
(DDD, Eclipse)

W
i
s
h
b
o
n
e

Target System

PC Workstation Software

1.2. Versions and Compatibility
Several versions of various debug hardware and software modules are available. The oldest

hardware debug module found at OpenCores is called “dbg_interface,” and requires a separate JTAG
TAP module “jtag” from the same source. The compatible bridge program is called “jp1” or “jp2”.
This combination (jp2 in particular) was written for a specific hardware combination, and may need to
be modified for systems with a different configuration.

It is highly recommended to use the latest debug system (the Advanced Debug Interface), which
offers the most functionality. A new hardware debug module called “adv_dbg_if” offers support for
multi-device JTAG chains, as well as reduced logic requirements. This hardware module is compatible
with a newer, modified “jtag” TAP core, or any version of the altera_virtual_jtag or xilinx_internal_jtag
cores. This version also uses a new protocol between the bridge program and the debug hardware
module, thus a new bridge program is also required. This bridge program is called “adv_jtag_bridge,”
and includes support for auto-enumeration of JTAG chains and BSDL file parsing. All of the advanced
debug hardware and software modules are packaged together at OpenCores as the “Advanced Debug
System.”

The rest of this document assumes the use of this newest combination of debug components.
Note that in general, there is NO interoperability between old and new versions; the old old “jtag” core
is not compatible with the adv_dbg_if, none of the new TAP modules (altera_virtual_jtag,
xilinx_internal_jtag) are compatible with the old debug_if, and jp2 is not compatible with any part of
the advanced debug system.

The compatibility exception is the the adv_jtag_bridge proxy software. Support for the legacy
“debug_if” has been added to adv_jtag_bridge as a compile-time option. If the adv_jtag_bridge
program has been explicitly compiled with support for the legacy debug unit hardware, then
adv_jtag_bridge may be used as a drop-in replacement for jp1/jp2. This will allow systems which must
use the legacy debug hardware to work with the updated version of GDB (using the RSP protocol).

1.3. Stub-based methods
This document describes hardware-based debugging, sometimes called “backdoor” debugging.

An alternate method, using a GDB “stub,” may be mentioned in other documents. The “stub” method
uses supervisor software running on the target system to perform debugging, instead of the hardware
module and bridge program. Communication with the stub is usually done serially or via ethernet.
Stub debugging, however, has some drawbacks: the stub must be ported to the target architecture, the
system must have a communication device dedicated to the stub, and a driver for that device must be
available and stable. Hardware-based debugging places no such requirements on the target system.
Stub debugging will not be discussed further in this manual; for further information, see the
documentation for GDB.

2. System Components
This chapter will describe briefly all of the hardware and software components involved in the

debugging system, as well as the connections between them. Note that each system component has its
own individual documentation, which can be found in the doc/ subdirectory under each component
directory. These component-specific documents describe each component in added detail.

2.1. Hardware
This section describes the hardware components, implemented in HDL, which form the debug

system. This section will mention both hardware which performs debugging functions (such as the
adv_dbg_if core), and the hardware which will be debugged (the system CPU and bus).

2.1.1. OR1200 CPU
The OpenRISC 1200 is the CPU of the target system. Software running on this CPU will be

debugged. While this document assumes an OR1200, the debug system hardware may also work with
other processors which use the same external interface to the debug unit. Note that if the CPU being
debugged is not OR1000-compatible, a version of GDB specific to the other processor will be required.

The following signals are required from the OR1200 in order to interface to the adv_dbg_if
debug hardware module:

CPU Signal name Direction Description
dbg_stall_i DBG->CPU Logic '1' causes CPU to stall (stop executing instructions)
dbg_bp_o CPU->DBG Indicates CPU has reached breakpoint condition
dbg_stb_i DBG->CPU Indicates register read or write request from debug module
dbg_ack_o CPU->DBG Indicates end of cycle
dbg_adr_i DBG->CPU Address of CPU register to be read or written
dbg_we_i DBG->CPU Write enable. Write cycle when true, read cycle when false
dbg_dat_i DBG->CPU Register write data to the CPU
dbg_dat_o CPU->DBG Register read data from the CPU

Note that there have been two different versions of the interface between the OR1200 and the
hardware debug module. The current set of signals includes a strobe signal (dbg_stb) and an ack signal
(dbg_ack). Older versions of the CPU did not include these signals. These older versions are not
compatible with the Advanced Debug Interface module.

The OR1200 includes other signals marked as 'dbg'. These signals include dbg_lss_o,
dbg_is_o, dbg_ewt_i, and dbg_wp_o. These signals are not used by the debug hardware module as of
this writing, and the outputs may be safely left disconnected at the CPU. The dbg_ewt_i input to the
CPU should be connected as a constant logic '0'.

2.1.2. WishBone
The WishBone is the system bus of the target system. For the debug system to work correctly,

the WishBone must be connected to each memory which contains code or data used by the program to
be debugged, and each memory must appear to the debug unit at the same address it appears to the
OR1200. The hardware debug module (adv_dbg_if) must also be connected to the WishBone bus,
along with any peripherals you wish to access via the debug system. Note that the hardware debug
module is a WishBone 'master', and must be connected to a WishBone master interface.

The adv_dbg_if core does not perform WishBone burst cycles. Therefore, it should be
compatible with any version of the WishBone standard, (up to B.3 as of this writing). The following
WishBone signals are used to interface to the hardware debug module:

WB Signal name Direction Description
wb_cyc_i DBG->WB Bus request / ongoing cycle indication
wb_stb_i DBG->WB Request start of cycle
wb_ack_o WB->DBG End of cycle acknowledge
wb_sel_i DBG->WB Byte lane enables
wb_we_i DBG->WB Write enable
wb_err_o WB->DBG Bus error indication
wb_adr_i DBG->WB Bus address
wb_dat_o WB->DBG Read data
wb_dat_i DBG->WB Write data

The adv_dbg_if WishBone interface also includes the signals wb_cab_o, wb_cti_o, and wb_bte_o.
These are fixed to constant values, and are only used when the debug module is connected to a
WishBone master interface which includes these signals. If the master interface does not include these
signals, then they may safely be left unconnected.

2.1.3. Advanced Debug Interface
The hardware debug module (“adv_dbg_if” core) controls transactions to the CPU and the

WishBone bus, and provides clock domain synchronization between the CPU, the WishBone, and the
JTAG TAP. The debug module decodes the protocol sent via JTAG by the 'bridge' software program.
This protocol includes CPU stall and reset commands, CPU register reads and writes, and WishBone
data reads and writes. It is the primary hardware component of the debug system.

Note that the adv_dbg_if includes two CPU interfaces, one of which is disabled at synthesis
time by default. While the debug hardware module and the bridge software program both support
multiple CPUs, this support is currently absent from GDB. Therefore, the second CPU module is
disabled in hardware.

The debug hardware module receives commands and data via a JTAG Test Access Port (TAP);
the debug module appears as one of several scan chains in the TAP, and data is moved in and out via a
clocked serial interface. This interface is described here:

DBG Signal name Direction Description
tck_i TAP->DBG Clock signal
tdi_i TAP->DBG Serial data to the debug module
tdo_o DBG->TAP Serial data out to the TAP
rst_i TAP->DBG Reset
capture_dr_i TAP->DBG TAP CAPTURE_DR state, load output data to shift register
shift_dr_i TAP->DBG TAP SHIFT_DR state, do serial in/out shift
pause_dr_i TAP->DBG TAP PAUSE_DR state, do nothing
update_dr_i TAP->DBG TAP UPDATE_DR state, capture input from shift register
debug_select_i TAP->DBG Enable debug module

Note that the adv_dbg_if must be reset before use, therefore rst_i must be connected to a valid reset
signal. Additionally, as of this writing, the pause_dr_i input is unused, and may therefore be safely
connected to a constant logic '0'.

2.1.4. JTAG TAP
The JTAG TAP is the debug hardware's access off-chip. It consists of an Instruction Register

(IR) and one or more scan chains, which appear as Data Registers (DR). The TAP multiplexes the
serial input and output data to one DR at a time, based on the value in the IR. The hardware debug
module appears as a DR.

Several different JTAG TAP implementations are available; the choice of TAP depends on the
technology used to implement the system. As of this writing, three implementations are available.
These are described below.

Standard JTAG
The “jtag” core represents a standard JTAG TAP, as described by standard IEEE 1149.1. It is

accessed by four (or five) external pins, and includes an IR and several DRs. This TAP is suitable for
use in ASICs and all FPGAs. The TAP's off-chip interface is described below.

TAP Signal name Direction Description
TCK EXT->TAP Serial clock
TMS EXT->TAP Mode Select signal
TDI TAP->EXT Serial data to TAP
TDO EXT->TAP Serial data from TAP
TRSTN EXT->TAP Optional reset line

Note that the TRSTN line is active-low. The TRSTN signal is not present on all JTAG cables.
The TRSTN pin should be configured with a pull-up, or tied to a logic '1' when used with a cable
without this signal.

Altera Virtual JTAG
This TAP is implemented in the “altera_virtual_jtag” core. It may be used only when the

system is implemented in an Altera FPGA which supports the “sld_virtual_jtag” megafunction. The
Altera Virtual JTAG TAP allows a user to connect the debug hardware through the FPGA's TAP (the
same TAP used to download a bitstream to the FPGA). This means that separate, dedicated pins for a
debug system TAP are not required, and the FPGA can be configured and then the software debugged
without changing the JTAG cable connection or using a second cable.

Xilinx Internal JTAG
This TAP is implemented in the “xilinx_internal_jtag” core. It may be used only when the

system is implemented in a Xilinx FPGA which supports a BSCAN_* macro block (e.g.
BSCAN_SPARTAN3, BSCAN_VIRTEX4, etc.). The Xilinx Internal JTAG TAP allows a user to
connect the debug module through the FPGA's TAP (the same TAP used to download a bitstream to the
FPGA). This means that a separate TAP for the debug system is not required, and the FPGA can be
configured and the software debugged without changing the JTAG cable connection or using a second
cable. This TAP module has no external pin connections.

2.1.5. JTAG Cable
This is a piece of hardware used to connect the user's PC / workstation to the system being

debugged. The target-side interface consists of the JTAG signals described above (external interface to
the “jtag” core). The PC interface may vary, but is usually parallel port or USB. While many different
cables are made by many different manufacturers, there is no standard driver interface for them. As
such, the JTAG cable must be explicitly supported by the 'bridge' software program, which must
contain a driver for the cable. See the section on the Advanced JTAG Bridge for a list of cables
supported by that program.

2.2. Software
This section discusses the software components of the debug system. These components run

under the operating system of the user's workstation. Both components written specifically for the
debug chain (adv_jtag_bridge) and components which may be used to debug any system (e.g. the DDD
front-end for GDB) are mentioned here.

2.2.1. Advanced JTAG Bridge
This software program runs in the background of the user's workstation. It receives commands

and data from GDB over a network socket, translates them into a JTAG bitstream formatted for the
adv_dbg_if hardware core, and sends the bitstream to the target system using a JTAG cable driver.
Data is read from the hardware debug module and returned to GDB by the reverse process.

The following JTAG cables are supported by the advanced JTAG bridge:

● Xilinx Parallel Cable III (and IV in compatibility mode)

● Xilinx Platform Cable USB (DLC9)*

● Altera USB-Blaster

● XESS, Inc. direct connections
 * The Xilinx DLC9 driver only supports low speed “bit-bang” mode as of this writing.

At startup, the bridge program attempts to enumerate the JTAG chain, identifying all devices in
the chain. If available, BSDL files will be used to determine the IR length of each device, and the
command for the target device's TAP which will make the hardware debug module active. If BSDL
files are not available, the user must enter the IR lengths on the command line. Once the chain has
been enumerated, the bridge program can run an optional test on the memory and CPU on the target
system. The bridge then opens a socket and waits for GDB to connect to it.

2.2.2. GDB
GDB is the GNU debugger, a program commonly used to debug software on many system types

and architectures. The OR1000 debug system requires a version of GDB which has been modified for
use with the OR1000 processor. In addition, the Advanced Debug system requires a version of GDB
which uses the RSP protocol to communicate with remote systems. Currently, this is version 6.8.

GDB has information on all of the registers within the target system CPU; this allows it to read
or write CPU registers by address. GDB also reads debug information compiled into the programs run
on the target system; this allows it to find the memory addresses at which program variables are stored
on the target system, and find the line of code in a source file associated with the current value of the
CPU's program counter. GDB can also request that the processor be stalled or restarted. All activity in
the debug system is directed by GDB.

A more thorough discussion of GDB is beyond the scope of this document. For more
information, see the GDB documentation.

2.2.3. Optional GDB Front-end
GDB is a command-line program, and the user interface is text-based. It may therefore be

desirable to use a graphical front-end to GDB, to aid in visualization and usability. “DDD” is one such
program; no modifications need to made to DDD in order to use it with the OpenRISC debug system.
DDD allows the user to start and stop the program, set breakpoints, and examine variables and data
graphically. DDD must be told to use the version of GDB modified for the OR1000; add the
command-line switch “--debugger or32-uclinux-gdb” when starting DDD, assuming “or32-uclinux-
gdb” is the OR1000 version of GDB, and can be found in the current $PATH. You will also need to
manually enter commands at the DDD/GDB console to connect to the adv_dbg_if program (“target
remote :9999”), and to load your program onto the target (“load”). Consult the DDD manual for more
information on debugging with DDD.

Other graphical front-ends, such as the one integrated with the Eclipse development
environment, may also work, but are currently untested. In general, front-ends that have the CPU
register list hard-coded will need modification, while those without may work as-is.

3. Operation
This section describes the setup and operation of the OpenRISC debugging system.

3.1. Hardware
In order to use the debugging system, the hardware modules must be included in the target

system. To do this, the adv_dbg_if core and one of the JTAG TAP cores must be instantiated in the
HDL for the top-level system module, and connected to each other according to the connection lists
above. The debug hardware core should have the WishBone module and one CPU module enabled,
and these interfaces must be connected to the system bus and OR1200, respectively. The debugging
option in the OR1200 must also be enabled at synthesis time. If the standard JTAG TAP is used, the
five JTAG signals must be routed to external pins; if not, no external connections must be made. The
system can then be synthesized, and implemented by downloading to an FPGA.

3.2. Setup
The target system must be connected to the user's workstation with a JTAG cable. For systems

which use the altera_virtual_jtag or xilinx_internal_jtag cores, this connection has already been made
in order to download the bitstream to the FPGA. If the standard TAP has been used, the target-side
connection of the cable must be attached to the appropriate pins of the target chip, and the PC side must
be attached to the user's workstation.

After the target system (and, if necessary, the JTAG cable) has been powered on, the
adv_jtag_bridge program should be started on the user's workstation. Note that the program may
require root privileges in order to access the parallel port. The USB cable drivers use libusb, which
requires no special privileges. The bridge program will probe for the cable specified on the command
line, then enumerate all devices on the JTAG chain.

In order to operate correctly, adv_jtag_bridge needs to know the length of the IR in every device
on the JTAG chain, and the command for the target device's IR which will make the debug hardware
module active. The easiest way to provide this information is using BSDL files. Most chip
manufacturers provide a BSDL file for each of their chips, specifically for use with JTAG driver
programs. A BSDL file contains all the information for each chip that adv_jtag_bridge needs. To use
BSDL files, simply place a copy of the BSDL file for each chip in the JTAG chain into the directory
where the adv_jtag_bridge binary resides (or one of the directories adv_jtag_bridge searches – see the
program's individual documentation for details). Adv_jtag_bridge will automatically parse the BSDL
files and use the information.

If a BSDL file is not available for a device in the JTAG chain, the device's IR length must be
specified on the command line using the '-l' option. If a BSDL file is not available for the target device,
the debug command (IR value to select the debug module) must also be specified on the command line
with the '-c' command. A brief summary of the command line options for the adv_jtag_bridge is
available by running the program with the '-h' option. More detailed information is available in the
program's individual documentation.

Assuming the bridge program can find all information it needs, it will open a network socket on
port 9999 (assuming this has not been overridden on the command line) and wait for a connection from
GDB (optionally after a test of the target's memory and CPU, if the '-t' option is specified).

Once adv_jtag_bridge is running and ready, GDB must be started. If no front-end is used, GDB

may be started directly on the command line by typing “or32-uclinux-gdb <program name>”. Once
GDB is started and the GDB console is ready, it must be pointed at the bridge program. Use the
command “target remote :9999” to make GDB connect to the bridge program. Note that it is also not
required for GDB to run on the same machine as the bridge program; if a different machine is used, add
the name or IP address of the machine on which adv_jtag_bridge is running before “:9999”, with no
space between.

After the 'target' command, type “load” at the GDB console. This make GDB send the program
to the target system's memory via the debug system. After the upload is complete, the CPU's program
counter must be set to the start address of the program. Use the GDB command “set $pc=<hex
address>” to do this. Because the memory system may be differently configured, this address may
change depending on your system and linker script. At this point, GDB is ready to begin running or
single-stepping the program, set breakpoints, or any other debugging operation. See the GDB manual
for details on debugging with GDB.

If DDD is used, “--debugger or32-uclinux-gdb” should be added on its command line. GDB
will be started automatically. However, the 'target,' 'load,' and 'set $pc' commands must still be entered
at the DDD/GDB console before any of the debugging operations may be used.

3.3. Control and Data Flow
To illustrate information flow in the debugging system, we will use the example of the user

interrupting the program running on the target system, then reading the current value of the program
counter. We assume that the system has already been set up, and the code has been downloaded and
started on the target CPU.

The process begins with the user pressing the 'break' button in DDD, or typing 'control-C' in the
GDB console. GDB sends a message via network socket to adv_jtag_bridge, indicating that it should
stop running the program.

Upon receipt of the message, adv_jtag_bridge formats a JTAG bitstream for the TAP, which will
make the debug hardware module the active DR in the TAP (if it has not done so already). This
bitstream is sent over the JTAG cable via a cable driver in adv_jtag_bridge. Once the hardware debug
module is active, a second JTAG bitstream is sent which makes the CPU sub-module active inside the
debug module (this is also only done if it has not been done already). Finally, the bridge program
forms and sends a message which will set the stall bit inside the CPU sub-module. This will cause the
dbg_stall_o line of the debug module to go high, which will cause the CPU to stop executing
instructions and freeze its pipeline. Once this is done, adv_jtag_bridge will send a response to GDB
via network socket, indicating the CPU is stopped.

Once this message is received, GDB will attempt to read the program counter (PC) to determine
where in the program the CPU is executing. GDB will send another request via network socket
indicating a read from the CPU, at the register address of the PC.

The bridge program will again receive this request, and insure that the debug module is active in
the TAP and that the CPU sub-module is active in the debug module. The bridge will then form a
JTAG bitstream requesting a read from the CPU's internal register bus, starting at the PC's address and
with length 1. The read must be performed in two separate JTAG transactions; the first transaction
sends the address to the CPU sub-module and begins the read operation on the CPU register bus. The
second transaction gets the read data from the CPU sub-module and brings it back into the bridge
program. The bridge program then returns the read data (the value of the OR1000's program counter)
to GDB via the network socket.

4. Simulation
Sometimes it may be desirable to use a software debugger on a simulation of the target system.

This may be because the target hardware is not yet available, or to verify functionality before
committing the design to silicon.

4.1. Or1ksim
The program “or1ksim” is the OpenRISC 1000 architectural simulator. It is a stand-alone C

program which emulates the instruction set and behavior of an OR1000 CPU. The simulator has also
been expanded to included simulations of many OpenCores peripherals, including serial ports, memory
controllers, etc. The simulator may be used to develop software for the target platform before the
hardware becomes available or fully verified. This will allow the user to separate debugging of the
hardware and software, rather than having to run untested software on uncertain hardware.

The or1ksim simulator includes a built-in GDB server. This means that GDB can connect
directly to the simulator, and the bridge program and JTAG cable are not required. A block diagram of
this system is shown in Figure 2.

Note that if you want to simulate any peripherals, the simulator must be configured to match
your target hardware system. This configuration is beyond the scope of this document, see the or1ksim
documentation for details.

4.2. RTL simulation
It is possible to connect GDB to an HDL simulation of an OR1200 / WishBone system and

debug it as if it were real hardware. The HDL simulation may be run using ModelSim, or another
simulator with the necessary features (described below). Most of the same debug system components
are used; code which connects the bridge program to the simulator takes the place of the hardware

Figure 2: Block diagram of debugging system using or1ksim

OR1200
CPU

Simulation

GDB

GDB Front-end
(DDD, Eclipse)

Or1ksimPC Workstation Software

GDB
Server Peripheral

Simulation

JTAG cable. There are two different methods available to connect the bridge program to an HDL
simulation, the method you choose will depend upon the capabilities of your simulation program.

4.2.1. File IO
This method uses the workstation's file system to pass data between the adv_jtag_bridge

program and an HDL simulation. As such, the HDL simulator must support verilog file IO in order for
this method to work.

A verilog module is added to the hardware system which uses data read from a file to set the
states of the JTAG lines. The state of the serial data output is written to another file. These files are
written and read, respectively, by the bridge program. A block diagram of the file IO simulation debug
system is shown in Figure 3.

The verilog module which performs the file IO and controls the JTAG lines (dbg_comm.v)
should be included with the adv_jtag_bridge program, in the rtl_sim/ subdirectory. To use it, a top-
level HDL module must be created (by hand) which instantiates both the regular hardware system and
the dbg_comm entity, and connects them together. Note the dbg_comm module also provides system
clock and reset signals, for ease of use. The standard JTAG TAP must be used when simulating: the
FPGA-specific TAP cores do not have external inputs for the JTAG signals.

dbg_comm Signal name Direction Description
SYS_CLK COMM->TAP Clock for WishBone and OR1200 CPU
SYS_RSTN COMM->TAP Reset for WishBone and OR1200 CPU; active low
P_TCK COMM->TAP Clock signal for JTAG TAP
P_TMS COMM->TAP Mode Select signal for JTAG TAP
P_TDI COMM->TAP Data In to JTAG TAP
P_TDO TAP->COMM Data Out from JTAG TAP
P_TRST COMM->TAP Reset signal for JTAG TAP; active low

In order to use a file IO simulator connection, select the cable “rtl_sim” when starting
adv_jtag_bridge. Be sure to specify the same directory for the communication files on the command
line that is specified in the dbg_comm.v verilog file; the verilog file must be changed to match user
preferences before compilation. All other setup steps are the same as described above for hardware
debugging. Remember that your simulation must be actually running in order to communicate with the
bridge program and GDB.

The adv_jtag_bridge program waits for an acknowledgment each time it writes a signal to the
simulator. As such, the bridge program and the simulation may be started in any order. If the
simulation is started first, it will run without changing the state of the JTAG lines. If the bridge
program is started first, it will attempt to write the first bit to the simulator, then wait for the simulator
to acknowledge. The simulation will wait until reset is complete before reading the shared files and
reading the bit from the bridge program. Note however that the files are actually created by the bridge
program; if they do not exist when the simulator is running, warnings may occur in the simulator.

It should be noted that debugging a simulation using file IO can be very slow. Depending on
the capabilities of your workstation and the complexity of the simulated system, the optional self-test

may take an hour or more to simulate. You may wish to use a RAMdisk in order to reduce file IO
latency.

4.2.2. VPI IO
This method uses the Verilog Program Interface (VPI) to connect a verilog simulation to the

bridge program. VPI is an interface which allows arbitrary verilog system tasks to be written by a user
in C. The code is compiled into a shared library, which is linked to the simulator at run-time. This
allows the newly defined system tasks to be called by verilog code during simulation.

A C library has been implemented which performs communication to the bridge program. The
library uses network sockets for communication instead of filesystem IO, and may be faster than file
IO. However, this method is more complex to use: your HDL simulator must support UDI / VPI in
order for this method to work. Modelsim, NCsim, and Icarus are all known to support VPI. The
source code for the C library (jp-io-vpi.c) should be included along with the source for the
adv_jtag_bridge program, in the rtl_lib/src/ subdirectory. Because it may be used with several different
simulators and operating systems, the method for building the library may vary. Makefiles for some
combinations are included in subdirectories of the rtl_lib/ directory, and pre-built binaries may be
included as well. If a Makefile is not included for your simulator / operating system, see the
documentation for your simulator for instructions on how to build a VPI library for your system.

You will also need to find how to connect the library to your simulator. This step also differs
for each simulator. For Modelsim, it is sufficient to place the compiled library in the base directory of

Figure 3: Debugging system block diagram using file IO simulator connection

OR1200
CPU

Advanced
Debug

Interface

JTAG
TAP

Filesystem:
gdb_in.dat

gdb_out.dat

Advanced JTAG
Bridge

GDB

GDB Front-end
(DDD, Eclipse)

W
i
s
h
b
o
n
e

HDL Simulator

PC Workstation Software

dbg_comm

the simulator project, and to indicate the library to be used by setting the simulator's PLIOBJS
environment variable (you may also specify VPI libraries in the modelsim.ini file, and on the vsim
command line using the “-pliobjs” argument). For other simulators, different library locations and
indications may be required. Check your simulator documentation for details.

Similar to the file IO method, a verilog module is added to the hardware system which
interfaces to the C library. This module receives commands from the bridge program, sets the JTAG
outputs accordingly, and returns the state of the TDO line to the bridge program via the C library. A
block diagram of the VPI simulation debug system is shown in Figure 4.

The verilog module which connects to the library and controls the JTAG lines
(dbg_comm_vpi.v) should be included with the adv_jtag_bridge program, in the rtl_sim/ subdirectory.
To use it, a top-level HDL module must be created (by hand) which instantiates both the regular
hardware system and the dbg_comm_vpi entity, and connects them together. Note the dbg_comm_vpi
module also provides system clock and reset signals, for ease of use. The standard JTAG TAP must be
used when simulating: the FPGA-specific TAP cores do not have external inputs for the JTAG signals.

dbg_comm_vpi Signal name Direction Description
SYS_CLK COMM->TAP Clock for WishBone and OR1200 CPU
SYS_RSTN COMM->TAP Reset for WishBone and OR1200 CPU; active low
P_TCK COMM->TAP Clock signal for JTAG TAP
P_TMS COMM->TAP Mode Select signal for JTAG TAP
P_TDI COMM->TAP Data In to JTAG TAP
P_TDO TAP->COMM Data Out from JTAG TAP
P_TRST COMM->TAP Reset signal for JTAG TAP; active low

In order to use a VPI connection, select the cable “vpi” when starting adv_jtag_bridge. You
may optionally specify the host the VPI library is running on (default is “localhost”), and the port that
the VPI library listens for a connection on (default is 4567; this is set for the VPI module in the
dbg_comm_vpi.v file at compile time). All other setup steps are the same as described above for
hardware debugging. Remember that your simulation must be actually running in order to
communicate with the bridge program and GDB.

The VPI library acts as the network server, adv_jtag_bridge acts as a client. As such, the
simulation must be started and some simulator time must have elapsed before adv_jtag_bridge can be
started; starting adv_jtag_bridge first should result in a network connection error. Also note that the
server socket is closed after a connection is made – this means that if adv_jtag_bridge is killed, the
simulation must be restarted before it will accept another network connection from adv_jtag_bridge.

It should be noted that debugging a simulation can be slow. Depending on the capabilities of
your workstation and the complexity of the simulated system, the optional self-test may take 20
minutes or more to simulate.

Figure 4: Debugging system block diagram with VPI simulator connection

OR1200
CPU

Advanced
Debug

Interface

JTAG
TAP

VPI Library
jp-io-vpi

Advanced JTAG
Bridge

GDB

GDB Front-end
(DDD, Eclipse)

W
i
s
h
b
o
n
e

Verilog Simulation

PC Workstation Software

dbg_comm_vpi

HDL Simulator

