
802.11a Transmitter: A Case Study in Microarchitectural Exploration

Nirav Dave, Michael Pellauer, Steve Gerding, & Arvind

Computer Science and Artificial Intelligence Lab
Massachusetts Institute of Technology

Cambridge, Massachusetts 02139
Email: {ndave, pellauer, sgerding, arvind}@mit.edu

Abstract

Hand-held devices have rigid constraints regarding
power dissipation and energy consumption. Whether a new
functionality can be supported often depends upon its power
requirements. Concerns about the area (or cost) are gener-
ally addressed after a design can meet the performance and
power requirements. Different micro-architectures have
very different area, timing and power characteristics, and
these need RTL-level models to be evaluated. In this paper
we discuss the microarchitectural exploration of an 802.11a
transmitter via synthesizable and highly-parametrized de-
scriptions written in Bluespec SystemVerilog (BSV). We also
briefly discuss why such architectural exploration would be
practically infeasible without appropriate linguistic facili-
ties.

No knowledge of 802.11a or BSV is needed to read this
paper.

1. Introduction

802.11a is an IEEE standard for wireless communica-
tion [4]. The protocol translates raw bits from the MAC
into Orthogonal Frequency-Division Multiplexing (OFDM)
symbols or sets of 64 32-bit fixed-width complex numbers.
The protocol is designed to operate at different data rates; at
higher rates it consumes more input to produce each sym-
bol. Regardless of the rate, all implementations must be
able to generate an OFDM symbol every 4 microseconds.

Because wireless protocols generally operate in portable
devices, we would like our designs to be as energy-efficient
as possible. This energy requirement makes software-based
implementations of the transmitter unreasonable; a good
implementation on a current-generation programmable de-
vice would need thousands of instructions to generate a sin-
gle symbol, requiring the processor to run in the hundreds
of MHz range to meet the performance rate of 250K sym-

bols/sec. A dedicated hardware block, on the other hand,
may be able to meet the performance rate even while oper-
ating in the sub-MHz range and consequently consume two
orders of magnitude less power.

In general, the power consumption of a design can be
lowered by parallelizing the design and running it at a lower
frequency. This requires duplicating hardware resources. A
minimum power design can be achieved by lowering the
clock frequency and voltage to just meet the performance
requirement. On the other hand we can save area by folding
the hardware — reusing the same hardware over multiple
clock cycles — and running at a higher frequency. Though
we are primarily concerned with keeping the power of the
entire system to a minimum, it is not obvious a priori which
particular transmitter microarchitecture is best: the large
lowest power one, or a smaller higher-power design which
frees up critical area resources for other parts of the design.
The entire gamut of designs from highly parallel to very se-
rial must be considered.

In this paper we describe the implementation of several
highly-parametrized designs of the 802.11a transmitter in
Bluespec SystemVerilog (BSV). We present performance,
area, and power results for all of these designs. We discuss
the benefits of a language with a strong enough type sys-
tem and static elaboration capability to express and imple-
ment non-trivial parametrization. We conclude by arguing
that without these kinds of linguistic facilities, such archi-
tectural exploration becomes significantly more difficult, to
the point where it may not take place at all. In fact, the main
contribution of this paper is to show, by a real example, that
such exploration is possible early in the the design process
and yields deep insight into the area-power tradeoff.

No knowledge of 802.11a is needed to understand the ar-
chitectural explorations discussed in this paper. We explain
BSV syntax as we use it. However, some familiarity with
Verilog syntax is assumed.
Organization: We begin with an overview of the 802.11a
transmitter and show why it is important to focus on the

Controller Scrambler Encoder

Interleaver Mapper

IFFT Cyclic
Extend

Figure 1. 802.11a Transmitter Design

IFFT block (Section 2). In Section 3 we present a combi-
national circuit implementation of the IFFT and use it as a
reference implementation in the rest of the paper. We also
show the power of BSV functions and parametrization in
the design of combinational circuits. In Sections 4, 5, and 6
we discuss general microarchitectural explorations and how
they are applied to our transmitter pipeline. In Section 7 we
discuss the performance, area, and some power characteris-
tics of each design. In Section 8 we discuss related work.
Finally we conclude by discussing the role of HDLs in de-
sign exploration and reusable IP packaging.

2. 802.11a Transmitter Design

The 802.11a transmitter design can be decomposed into
separate well-defined blocks as shown in the Figure 1.
Controller: The Controller receives packets from the MAC
layer as a stream of data. The Controller is responsible for
creating header packets for each data packet to be sent as
well as for making sure that each part of the data stream
which comprises a single packet has the correct control an-
notations (e.g. the encoding rate).
Scrambler: The Scrambler XORs each data packet with
a pseudo-random pattern of bits. This pattern is concisely
described at 1-bit per cycle using a 7-bit shift register and 2
XOR gates. A natural extension of this design would be to
unroll the loops to operate on multiple bits per cycle. The
initial value of the shift register is reset for each packet.
Convolutional Encoder: The Convolutional Encoder gen-
erates 2 bits of output for for every input bit it receives.
Similar to the scrambler, the design can be described con-
cisely as 1-bit per cycle with a shift register and a few XOR
gates. Again unrolling the loop is an obvious and natural
parametrization.
Puncturer: Our design only implements the lowest 3 data

rates ({6, 12, 24} Mb/s) of the 802.11a specification. At
these rates the Puncturer does no operation on the data, so
we will omit it from our design and discussion.
Interleaver: The Interleaver operates on the OFDM sym-
bol, in block sizes of 48, 96, or 192 bits depending on which
rate is being used. It reorders the bits in a single packet. As-
suming each block only operates on 1 packet at a time, this
means that at the fastest rate we can expect to output only
once every 4 cycles.
Mapper: The mapper also operates on an OFDM sym-
bol level. It takes the interleaved data and translates it di-
rectly into the 64 complex numbers representing different
frequency “tones.”
IFFT: The IFFT performs an 64-point inverse Fast Fourier
Transform on the complex frequencies to translate them into
the time domain, where they can then be transmitted wire-
lessly. Our initial implementation (discussed in greater de-
tail in Section 3) was a combinational design based on a
4-point butterfly.
Cyclic Extender: The Cyclic Extender extends the IFFT-ed
symbol by appending the beginning and end of the message
to the full message body.

2.1. Preliminary Design Synthesis

When we began this project we had a good description
of the 802.11a transmitter algorithm available to us. It took
approximately three man-days to understand and code up
the algorithm in BSV (the authors are BSV experts). This
time included coding a library of arithmetic operations for
complex numbers. This library is approximately 265 lines
of BSV code.

The RTL for our initial design was generated using
the Bluespec Compiler (version 3.8.67), and synthesized
with Synopsis Design Compiler (version X-2005.09) with
TSMC 0.18µm standard cell libraries. In this design,
the steady state throughput at the highest-supported rate
(24Mb/s) was 1 symbol for every four clock cycles. There-
fore, we needed a clock frequency of 1MHz to meet the 4
microsecond requirement. The clock frequency for synthe-
sis was set to 2 MHz to provide sufficient slack for place-
and-route. With this setting the initial implementation had
an area of 4.69 mm2 or roughly 500K 2X1-NAND gates
equivalents. The breakdown of the lines of code and rela-
tive areas for each block is given in Figure 2.

We can see that the number of lines of source code for
a block have no correlation with the size of the area the
block occupies. The Convolutional Encoder requires the
most code to describe, but takes effectively no area. The
IFFT, on the other hand, is only slightly shorter, yet repre-
sents a substantially larger fraction of the total area. Addi-
tionally, the critical path of the IFFT is many times larger
than the critical path of any other block in the design.

Given these preliminary statistics, we focused our efforts
on the design of the IFFT block. Ultimately we will present
seven different designs for the transmitter created by plug-
ging in seven different variations of the IFFT block.

Design Block Lines of
Code Relative Area

Controller 49 0%
Scrambler 40 0%

Conv. Encoder 113 0%
Interleaver 76 1%

Mapper 112 11%
IFFT 95 85%

Cyc. Extender 23 3%

Figure 2. Initial Design Results

3. Baseline: Combinational IFFT

In this section we describe the combinational IFFT block
from our initial transmitter design. This implementation
serves both as a reference implementation for verification
and as a baseline to compare with our alternative microar-
chitectures.

At a high level, the n-point IFFT can be partitioned into
logk(n) stages of n

k k-point “butterfly” submodules (bflyk
for short). At the end of each stage of butterflies, the output
values are permuted before being passed to the next stage.
It would be straightforward to create an IFFT description
parametrized by n but such parametrization is not needed in
this design because the 802.11a specification requires only
a 64-point IFFT.

Even limited to a 64-point IFFT, we are free to choose
the size of the butterfly submodule. An IFFT using bfly4s
uses fewer arithmetic operators than one using bfly2s. By
similar reasoning, a bfly8-based design uses fewer opera-
tors than bfly4. However, larger butterflies constrain where
the computation can be partitioned, and can limit further mi-
croarchitectural choices. To simplify the discussion we only
consider bfly4 sub-blocks in this work. Figure 3 shows the
circuit structure of our combinational IFFT.

3.1. The bfly4 Function

There are many similarities between combinational hard-
ware logic and functions in a software language. Both have
well-defined inputs and outputs and are composed of simple
sub-functions (in hardware, gates and in software, assembly
instructions). Intermediate values have a hardware analog
in wires.

In Bluespec a function definition corresponds exactly to
a combinational logic definition. A function call is evalu-

Figure 3. Combinational IFFT Module

ated by the compiler, and the resulting combinational logic
inlined. There is no notion of a run-time stack in BSV: even
recursive function calls are totally unfolded at compile time.

Figure 4. The bfly4 Circuit: twiddle values t[n]
are statically-known parameters

The bfly4 circuit is shown in Figure 4. It takes as input 4
complex numbers to be transformed, and three “twiddle”
factors which represent an initial rotation. The output of the
circuit is four new complex numbers. This circuit can be
described in Bluespec as the following function:

function Vector#(4,Complex#(n))
bfly4(Vector#(3,Complex#(n)) twids,

Vector#(4,Complex#(n)) xs);

Vector#(4, Complex#(n)) retval = newVector(),
tao = newVector(),
alpha = newVector();

Complex#(n) rots[0] = xs[0];
Complex#(n) rots[1] = twids[0] * xs[1];
Complex#(n) rots[2] = twids[1] * xs[2];
Complex#(n) rots[3] = twids[2] * xs[3];

Complex#(n) temp[0] = rots[0] + rots[2];
Complex#(n) temp[1] = rots[0] - rots[2];
Complex#(n) temp[2] = rots[1] + rots[3];
Complex#(n) temp[3] = rots[1] - rots[3];

// rotate temp_3 by 90 degrees

temp[3] = mult_by_i(temp[3]);

retv[0] = temp[0] + temp[2];
retv[1] = temp[1] - temp[3];
retv[2] = temp[0] - temp[2];
retv[3] = temp[1] + temp[3];

return retv;
endfunction

Note that the Complex type has been written in such a
way that it represents complex numbers of any bit-precision
n. Type parameters are indicated by the # sign. For ex-
ample, Vector#(4, Complex#(n)) is a vector of 4
n-bit precision complex numbers. The newVector func-
tion creates an uninitialized vector. The Complex type is
a structure consisting of real and imaginary parts (i and q
respectively):

typedef struct {
SaturatingBit#(n) i;
SaturatingBit#(n) q;

} Complex(type n);

All arithmetic on complex numbers is defined in terms
of saturating fixed-point arithmetic. For lack of space we
omit the description of these complex operators — all of
them have been implemented in BSV using ordinary inte-
ger arithmetic and bitwise operations. The parametrization
of the bfly4 is realized partially through the overloading of
arithmetic operators; the compiler is able to select statically
the correct operator based on its type.

A polymorphic BSV function such as the above bfly4 de-
scription can be thought of as a combinational logic gener-
ator. The Bluespec compiler instantiates the bfly4 function
for a specific bit-width during a compiler phase known as
static elaboration. During this phase the compiler:

• Instantiates functions and submodules with specific
parameter values

• Unrolls loops and recursive function calls

• Performs aggressive constant propagation including
the propagation of don’t-care values

We can leverage static elaboration to create a more con-
cise, more generalized description [1]. For example, a vec-
tor in the above function is simply a convenient way of
grouping wires. The vector addresses are statically known
and do not survive the elaboration phase. In our design we
often use vectors of variables, and vectors of submodules
such as registers.

In hardware compilation constant propagation some-
times achieves results which are surprising from a software
point of view. For example, for each bfly4 in our com-
binational design the twiddle factors are statically known.
Each twiddle factor is effectively a random number which

rules out any word level simplification (e.g., multiplication
by 1 or 0). But the bit-level representation of each constant
allows the gate-level constant propagation to dramatically
simplify the area-intensive multiply circuit. A general bfly4
circuit which takes all values as inputs is 2.5 times larger
than a specialized circuit with statically known twiddle fac-
tors (208µm2 vs. 83µm2)!

Later, we will explore other variants of the IFFT where
the multipliers cannot be statically optimized, but sharing
of hardware occurs at a higher level.

3.2. IFFT Function

A straightforward way to represent the IFFT of Figure 3
is to write each bfly4 block explicitly. We use vectors to
represent the intermediate values (wires) between the dif-
ferent stages of bfly4 blocks. We also need to define the
specific twiddle values used for each bfly4 block. Similarly
we will define a vector to represent the permutations be-
tween stages. Expressed as a function we get:
function ifftA(Vector#(64,Complex#(16)) x);
prebfly0 = x;
twid_0_0 = ... ;
twid_0_1 = ... ;

// Stage 1
postbfly0[3:0] = bfly4(twid_0_0,

prebfly0[3:0]);
...
postbfly0[63:60] = bfly4(twid_0_15,

prebfly0[63:60]);
//Permute 1
prebfly1[0] = postbfly0[0];
prebfly1[1] = postbfly0[4];
...

// Stage 2
postbfly1[3:0] = bfly4(twid_1_0,

prebfly1[3:0]);
...
postbfly1[63:60] = bfly4(twid_1_15,

prebfly1[63:60]);
//Permute 2
prebfly2[0] = postbfly1[0];
prebfly2[1] = postbfly1[4];
...

// Stage 3
postbfly2[3:0] = bfly4(twid_2_0,

prebfly2[3:0]);
postbfly2[7:4] = bfly4(twid_2_1,

prebfly2[7:4]);
...
final[0] = postbfly2[0];
final[1] = postbfly2[4];
return(final[63:0]);

endfunction

In fact this is how many Verilog programmers would write
this code, probably using their favorite generation scripts.

Improved Representations in BSV: Looking at this de-
scription we can see a lot of replication. Each bfly4 in the
stage has a very regular pattern in its input parameters. If

we organize all of the twiddles and permutations as vectors,
then we can rewrite each stage using loops:
function ifftB(Vector#(64,Complex#(16)) x);
//compute following constants at compile time
twid0[0] = ... ; ... twid0[47] = ... ;
twid1[0] = ... ; ... twid1[47] = ... ;
twid2[0] = ... ; ... twid2[47] = ... ;

permute[2:0][63:0] = ... ;

prebfly0 = x;

//Stage 1
for(Integer i = 0; i < 16; i = i + 1)

postbfly0[4*i+3 : 4*i] =
bfly4(twid0[3*i+2 : 3*i],

prebfly0[4*i+3 : 4*i]);
for(Integer i = 0; i < 64; i = i + 1)

prebfly1[i] = postbfly0[permute[0][i]];

//Stage 2
for(Integer i = 0; i < 16; i = i + 1)

postbfly1[4*i+3 : 4*i] =
bfly4(twid1[3*i+2 : 3*i],

prebfly1[4*i+3 : 4*i]);
for(Integer i = 0; i < 64; i = i + 1)

prebfly2[i] = postbfly1[permute[1][i]];

//Stage 3
for(Integer i = 0; i < 16; i = i + 1)

postbfly2[4*i+3 : 4*i] =
bfly4(twid2[4*i+3 : 4*i],

prebfly2[4*i+3 : 4*i]);
for(Integer i = 0; i < 64; i = i + 1)

final[i] = postbfly2[permute[2][i]];

return(final[63:0]);
endfunction

This new organization makes no change to the represented
hardware. After the compiler unrolls the for-loops and does
constant propagation the result is the exact same gate struc-
ture as ifftA.

Here we can see another level of regularity. This time it
lies across all of the stages. We can rewrite the rule as:
function ifftC(Vector#(64,Complex#(16)) x);

//compute following constants at compile time

twid[2:0][47:0] = ... ;
permute[2:0][63:0] = ... ;

for(Integer stage=0; stage<3; stage=stage+1)
begin

if (stage == 0)
prebfly[stage][63:0] = x;

else
prebfly[stage][63:0] = out[stage-1];

for(Integer i = 0; i < 16; i = i + 1)
postbfly[stage][4*i+3 : 4*i] =

bfly4(twid[stage][3*i+2 : 3*i],
prebfly[stage][4*i+3 : 4*i]);

for(Integer i = 0; i < 64; i = i + 1)

out[i] = postbfly[stage][permute[stage][i]];
end

return(out[2][63:0]);
endfunction

Now we have a concise description of the hardware, exactly
what an experienced BSV designer would have written in
the first place. We have not shown the code for generat-
ing the twiddles and the permutation. Fortunately, like the
bfly4 organization, these constants have a mathematical def-
inition which can be represented as a function using sines,
cosines, modulo, multiply, etc. A good question to ask is if
such a description still represents good combinational logic.
Again, just like the bfly4 parametrization, the inputs to each
call to these functions are statically known. Consequently
the compiler can aggressively optimize away the combina-
tional logic to produce circuits exactly the same as ifftA.

As noted in the last section this IFFT design occupies
roughly 85% of the total area and has a critical path several
times larger than the critical path of any other block. Next
we explore how to reuse parts of this hardware to reduce the
area. All such designs involve introducing registers to hold
intermediate values. As a stepping store to the designs that
reuse hardware we first describe a simple pipelining of the
combinational IFFT in the next section. This will also have
the effect of reducing the critical path of the IFFT design by
a factor of three.

4. The Pipelined IFFT

At a high level, pipelining is simply partitioning a task
into a sequence of smaller sub-tasks which can be done in
parallel. We can start processing the next chunk of data
before we finish processing the previous chunk. Generally,
the stages of a pipeline operate in lockstep (see Figure 5).

Figure 5. Synchronous Pipeline

In BSV, we can represent such a 3-stage pipeline using the
following Guarded Atomic Action, or rule:

rule sync-pipeline (True);
let sx0 = inQ.first();
inQ.deq();
sReg1 <= f0(sx0);
let sx1 = sReg1;
sReg2 <= f1(sx1);
let sx2 = sReg2;
outQ.enq(f2(sx2));

endrule

A rule consists of a set of actions that alter the state and
a predicate (guard) which signifies when it is valid for
these state changes to occur. The state altered by the above
rule consists of two fifos (inQ, outQ) and two registers
(sReg1, sReg2); the actions are to set the value of reg-
isters (e.g., sReg2 <= f2(sx1)), or to enqueue or de-
queue from a fifo. The actions are combined into one atomic
action which are inherently parallel. This means that all the
reads happen before all writes as in non-blocking assign-
ments in Verilog.

This rule shows that all stages of the pipeline read a value
from the previous stage and store the value for the next
stage. According to BSV semantics, this rule won’t fire
if either inQ is empty or outQ is full. These conditions
are implicit and incorporated into the rule predicate by the
compiler. For details of Bluespec synthesis and scheduling
see [3] and [6].

Though straightforward to write, this rule has some prob-
lems. First, some registers may not hold valid values, for
instance, when the pipeline has just started to fill. We
must be careful not to enqueue junk values into the out-
put queue. Second, since we do not move data when we
cannot take a value from inQ, the last few values will be
left in the pipeline. BSV provides elegant solutions to both
these problems. We can prevent junk values from entering
by providing a valid bit for each value and explicitly pred-
icating the enqueue operation on outQ for valid data only.
In BSV this is done using the Maybe datatype, which is a
tagged union:

typedef union tagged {
void Invalid;
data_T Valid;

} Maybe#(type data_T);

This is equivalent to adding a valid bit to any datatype.
We declare the registers to hold a Maybe type. Then we

replace the inQwith a FIFO which returns Invalidwhen
empty and outQ with a FIFO which accepts Maybe values
(by simply ignoring enqueued Invalid).

Once this is done, we can easily prevent values from be-
coming stuck by checking to see if the input queue is empty
and using the Invalid value in place of attempting to re-
move an input.

Note that the rule was already parametrized by functions
f0, f1 and f2. This level of parametrization is sufficient for

the pipelined IFFT; we only need to replace these function
calls representing the 3 bfly stages. In fact we can gener-
alize further by writing a single function stage f given
below. Most of the code for the stage f is taken from the
outer loop body of ifftC. The first parameter selects one
of the 3 possible stage operations.

function stage_f(Bit#(2) stage,
Vector#(64, Complex#(n)) prebfly);

Vector#(64, Complex#(n)) out = newVector();

for(Integer i = 0; i < 16; i = i + 1)
postbfly[stage][4*i+3 : 4*i] =

bfly4(twids[stage][3*i+2 : 3*i],
prebfly[stage][4*i+3 : 4*i]);

for(Integer i = 0; i < 64; i = i + 1)
out = postbfly[stage][permute[stage][i]];

return(out[63:0]);
endfunction

Now f0 (and similarly f1 and f2) can be defined as fol-
lows:

function Vector#(64, Complex#(n)) f0(
Vector#(64, Complex#(n)) x);

return(stage_f(0,x));
endfunction

We note in passing that we can also write the syn-
chronous pipeline rule so that it is parametrized by the num-
ber of stages. Assume that we have a combinational func-
tion f , similar to our stage f function, which takes two
parameters: the current stage i and the input value x and
returns the result of fi on x. The following now models an
n stage synchronous pipeline:

Vector#(TSub#(n,1), Reg#(Maybe#(data_T)))
sRegs = newVector();

//Instantiate n registers
for (Integer i = 0; i < n - 1 ; i = i + 1)

sRegs[i] <- mkReg(Invalid);

rule sync-pipeline (True);
Maybe#(data_T) sx;
for (Integer i = 1; i < n; i = i + 1)
begin
//Get stage input
if (i != 0)

sx = sRegs[i-1];
else
if (inQ.notEmpty)

begin
sx = inQ.first();
inQ.deq();

end
else

sx = Invalid;

//Calculate value
Maybe#(data_T) ox;
case(sx) matches

tagged Valid .x:
ox = f(fromInteger(i),x);

tagged Invalid:
ox = Invalid;

endcase

//Write Outputs
if(i == n-1)

outQ.enq(ox);
else

sRegs[i] <= ox;
endrule

It is important to keep in mind that because the stage
parameter is known at compile time, the compiler can opti-
mize each call of f to be specific to each stage.

5. Folded or Circularly-Pipelined IFFT

Our synchronous IFFT pipeline can produce a result ev-
ery clock cycle. This is overkill as we can’t produce that
rate of input from the transmitter. If we can meet the spec-
ifications by producing a data element every three cycles
then it may be possible to fold all three stages from the
pipeline in Figure 5 into one, saving area. An example of
such a pipeline structure is the folded pipeline shown in Fig-
ure 6, which assumes that all stages do identical computa-
tion represented by function f . In this structure a data ele-
ment enters the pipeline, goes around three times, and then
is ejected.

Figure 6. Folded or Circular Pipeline Design

In a folded pipeline, since the same hardware is used
for conceptually different stages, we often need some extra
state elements and muxes to choose the appropriate combi-
national logic. For example it is common to have a stage
counter and associated control logic to remember where
the data is in the pipeline. The code for an n-way folded
pipeline such as shown in Figure 6 may be written as fol-
lows:

rule folded-pipeline (True);
if (stage==0) in.deq();
sxIn = (stage==0) ? inQ.first() : sReg;
sxOut = f(stage, sxIn);
if (stage==n)

outQ.enq(sxOut);
else

sReg <= sxOut;
stage <= (stage == n)? 0 : stage + 1;

endrule

The stage function for a folded pipeline with three stages
may be written as follows:

function f(stage, sx);
case(stage)

0: return f0(sx);
1: return f1(sx);
2: return f2(sx);

endcase
endfunction

Figure 7. Function f

Considering the pipelines in Figures 5 and 6 and this defi-
nition of function f (shown in Figure 7) it is difficult to see
how any hardware would be saved. The folded pipeline uses
one pipeline register instead of two but it also introduces po-
tentially two large muxes one at the input and one at the out-
put of function f . If f1, f2 and f3 represent large combi-
national circuits then the real gain can come only by sharing
the common parts of these circuits because these functions
will never operate together at the same time. As an example,
suppose each fi is composed of two parts: a sharable part fs
and an unsharable part fui and fi(x) = fs(fui(x)). Given this
information we could have written function f as follows:

function f (stage,sx);
let sxt = case (stage)

0: return fu0(sx);
1: return fu1(sx);
2: return fu2(sx);

endcase;
return fs(sxt);

endfunction

where fs(sx) represents the shared logic among the three
stages (Figure 8). A compiler may be able to do this level of

Figure 8. Function f with explicit sharing

common subexpression elimination automatically, but this
form is guaranteed to generate the expected hardware.

It turns out that the stage f function given earlier, ef-
fectively captures the sharing of the 16 bfly4 blocks in the
design. To our dismay, In spite of this sharing, we found
that the folded pipeline area (5.89mm2) turned out to be
larger than the area of the simple pipeline (5.14mm2)!

Sharing of the bfly4s comes at a cost. Since each bfly4
in our design uses different twiddle constants in different
stages it is no longer possible to take advantage of the con-
stant twiddle factors in our optimizations. Recall from our
earlier discussion in Section 3 that this results in an increase
in area of a factor of 2.5; close to the three-fold reduction
we expect from folding! In addition to this, additional area
overhead is introduced by the muxes required to pass differ-
ent twiddles into the bfly4s.

On further analysis, we discovered a contributing factor
to the lack of sharing was the use of different permutations
for different stages implying one more set of muxes. Once
we realized this, we made an algorithmic adjustment and
recalculated the constants so that the permutations were the
same for each stage in the design, removing these muxes.
As can be seen in Figure 9, the folded transmitter design
using the new algorithm took 75% of the area of the simple
pipeline design (3.97 vs 5.25).

It’s not clear how much of this was due to the improved
sharing, as we had to change the twiddle constants, which
may have changed the possible optimizations. A possible
explanation for the increased area for the combinational and
simply pipelined IFFTs is the lack of twiddle-related opti-
mizations.

Design Old Area(mm2) New Area(mm2)
Combinational 4.69 4.91

Simple Pipe 5.14 5.25
Folded Pipe 5.89 3.97

Figure 9. IFFT Area Results: New vs. Old Al-
gorithm

6. Further Hardware Reuse: Super-Folded
Pipeline IFFT

We wanted to determine if we could further reduce area
by using less then 16 bfly4s (i.e. by folding the stage func-
tion in the folded pipeline). The stage function given eariler,
can be modified to support this. We can “chunk” the i loop
in the stage f function to make use of m (< 16) bfly4s
as follows:

for(Integer i1 = 0; i1 < 16; i1 = i1 + m)
for(Integer i2 = 0; i2 < m; i2 = i2 + 1)

begin
let i = i1 + i2;
postbfly[stage][4*i+3 : 4*i] =

bfly4(twids[stage][3*i+2 : 3*i],
prebfly[stage][4*i+3 : 4*i]);

This change by itself has no effect on the generated hard-
ware as both loops would be unrolled fully. What we would
like to is to build a new superfolded stage function using the
inner i2 loop.

Consider the case of m = 2. What we would like is
to pick up the data (64 complex numbers) from the input
queue, go around the m bfly4s 48

m (= 24) times, and then en-
queue the result (64 complex numbers) in the output queue.
In each iteration, we will take the entire set of 64 complex
numbers, but only manipulate 4 ∗ m(= 8) numbers (us-
ing the m bfly4s) and leave the rest unchanged. We can
deal with permutations by applying the permutation every
16
m (= 8) cycles (i.e. when all new data has been calculated).

Taking this approach, the new stage function with m
bfly4 blocks is:

function Vector#(64,Complex#(n)) stage_f_m_bfly4
(Bit#(6) stage,
Vector#(64,Complex#(n)) s_in);

Vector#(64,Complex#(n)) s_mid = s_in;

Bit#(6) st16 = stage % 16;
for(Bit#(6) i2=st16; i2 < st16+n; i2=i2+1)

s_mid[4*i2+3:4*i2]
= bfly4(twid(stage[5:4],i2),

s_in[4*i2+3:4*i2]);

// permute
Vector#(64,Complex#(n)) s_out = newVector();
for(Integer i = 0; i < 64; i = i + 1)

s_out[i] = s_mid[permute[i]];

//return permuted value is appropriate
return ((st16+m == 16) ? s_out[63:0]:

s_mid[63:0]);
endfunction

Our new stage function has the exact same form as our origi-
nal folded design, differing only in the number of iterations

required to complete the computation. Consequently, the
rule is also almost the same:

rule super-folded-pipeline(True);
sx = (stage == 0) ? inQ.first(): sReg;
if(stage == 0)

inQ.deq();
Vector#(64,Complex#(n)) sout =

stage_f_m_bfly4(stage, sx);

//constant integer divide (optimized away)
if(stage == (3*16 div m) - 1)

begin
outQ.enq(sout);
stage <= 0;

end
else

begin
sReg <= sout;
stage <= stage + 1;

end
endrule

7. Results

In our explorations we described many different versions
of the 802.11a transmitter, varying only the IFFT block im-
plementation. We used 7 specific IFFT designs: the com-
binational version, a synchronous pipeline version, and 5
super-folded pipeline versions with 16, 8, 4, 2, and 1 bfly4
nodes respectively.

We were able to perform this exploration very quickly.
Including the initial 3 man-days to describe the initial de-
sign, generating the variants took only an additional 2 man-
days. This includes the changing of the algorithm to use
constant permutations.

We took all 7 transmitter designs using our new constant
permutation IFFT algorithm and ran them through gate-
level synthesis (as described in Section 2) to get area es-
timates. Each of these synthesis runs took approximately
8 hours. We then fed these gate-level descriptions into Se-
quence Design PowerTheatre to get power estimates. All
these results are presented in Figure 10.

At their maximum frequencies, all the designs easily met
the performance criteria of producing a symbol every 4 mi-
croseconds. As expected, the pipelined design was largest,
followed by the combinational, and the folded designs in
descending order of the number of bfly4 blocks used.

For power, we see that as we fold our pipeline we take
more power. This makes intuitive sense; folding forces the
remaining bfly4 blocks to be general, and causes each in-
dividual block to be switched proportionally faster, which
means more power usage from the IFFT (plus the additional
power from a global increase in clock frequency across the
entire clock domain).

After our exploration we found that the 5 folded designs,
and the combinational design were all Pareto optimal and

therefore candidates for the final 802.11a transmitter block
in our full system. While the pipelined IFFT design itself is
Pareto optimal for IFFT designs, the inability to gain further
power reduction from voltage scaling causes it to be worse
overall than the combinational design.

In our analysis it became clear that some parts of the
802.11a pipeline (e.g. the IFFT) were constantly generat-
ing data at full throughput, while other parts cannot be con-
stantly busy. Thus, these idling blocks could operate at a
much lower frequency without affecting performance. This
seems to indicate that a multiple-clock domain [2] design
should be explored as it could further improve the power
usage results.

Lastly, since Place and Route takes a long time (addi-
tional tens of hours), our area and timing numbers were
generated at the synthesized gate level. Methodologically
this is acceptable because one is primarily interested in the
relative merits of each design. To ensure that each design
could meet timing after place and route, we placed the re-
quired clock period for synthesis as half of that needed to
meet the performance requirement. We plan to run our de-
signs through Place and Route to generate more accurate
area and power numbers to validate our estimates.

8. Related Work

Efficient implementations of 802.11a is an active field of
research. Here we limit consideration to works we consider
to be representative of the broader approaches in the field.

Maharatna et al. [5] demonstrate that the IFFT can be
effectively implemented as an ASIC using a similar design
flow. While their specific microarchitecture achieves results
competitive with commercial systems, they do not present
the results of any architectural exploration. With a general-
ized description we could explore whether a variant of their
system would achieve even better results.

Zhang and Broderson [8] conducted a case study of
several possible implementations of both the IFFT of the
802.11a transmitter and the Viterbi block of a receiver.
Rather than exploring standard tool-flow ASICs they used
Function-Specific Reconfigurable Hardware (FSRH), stan-
dard cell ASICs which retains some dynamic configuration
capabilities. Their work shows that the the FSRH imple-
mentation significantly outperforms DSP and FPGA imple-
mentations in terms of energy efficiency and computation
density. We expect that non-reconfigurable ASICs such as
those presented here to be at least as efficient.

An alternative strategy to implementing an efficient FFT
is to use high-latency RAM banks to store the complex
numbers and a small processing element to load addresses
from the RAM, process them, and write them back. Son
et al. [7] compared such an implementation to a pipelined
FFT as presented in Section 4. They conclude that although

Transmitter Design
(IFFT Block)

Area
(mm2)

Symbol
Latency
(cycles)

Throughput
(cycle/symbol)

Min. Freq to
Achieve Req. Rate

Avg. Power
(mW)

Combinational 4.91 10 04 1.0 MHz 3.99
Pipelined 5.25 12 04 1.0 MHz 4.92

Folded (16 Bfly4s) 3.97 12 04 1.0 MHz 7.27
Folded (8 Bfly4s) 3.69 15 06 1.5 MHz 10.9
Folded (4 Bfly4s) 2.45 21 12 3.0 MHz 14.4
Folded (2 Bfly4s) 1.84 33 24 6.0 MHz 21.1
Folded (1 Bfly4) 1.52 57 48 12.0 MHz 34.6

Figure 10. Performance of 802.11a Transmitters for Various Implementations of the IFFT Block

a RAM-based implementation uses less area, it requires a
significantly higher clock-speed, and thus is less power-
efficient overall.

9. Conclusions

In this paper we explored various microarchitectures of
an IFFT block, the critical resource-intensive module in an
802.11a transmitter. We demonstrated how languages with
powerful static elaboration capabilities can result in hard-
ware descriptions which are both more concise and more
general. We used such generalized descriptions to explore
the physical properties of a wide variety of microarchitec-
tures early in the design process. We argue that such high-
level language capabilities are essential if future architec-
tural decisions are to be based on empirical evidence rather
than designer intuition.

All the folded designs were generated from the same
source description, only varying the input parameters. Even
the other versions share a lot of common structure, such as
the bfly4 definition and the representation of complex num-
bers and operators. This has a big implication for verifica-
tion, because instead of verifying seven designs, we had to
verify only three, and even these three leveraged submod-
ules which had been unit-tested independently.

The six Pareto optimal designs we generated during ex-
ploration provide some good intuition into the area-power
tradeoff possible in our design. To reduce our the area of
our initial (combinational) design by 20% (the folded de-
sign), we increase our power usage by 75%. This tradeoff
becomes less costly as we further reduce the design; if we
wish to reduce the size by 70%, we increase the power us-
age by 760%.

In the future we wish to apply this methodology to more
complex designs, such as the H.264 video decoder blocks.
Such designs would have many more critical design blocks,
and better emphasize the benefits of out methodology.

Acknowledgments: The authors would like to thank Nokia
Inc. for funding this research. Also, the authors would

like to thank Hadar Agam of Bluespec Inc., for her invalu-
able help in getting power estimates using Sequence Design
PowerTheatre.

References

[1] Arvind, R. S. Nikhil, D. L. Rosenband, and N. Dave. High-
level Synthesis: An Essential Ingredient for Designing Com-
plex ASICs. In Proceedings of ICCAD’04, San Jose, CA,
2004.

[2] E. Czeck, R. Nanavati, and J. Stoy. Reliable design with mul-
tiple clock domains. In Proceedings of Formal Methods and
Models for Codesign (MEMOCODE), 2006.

[3] J. C. Hoe and Arvind. Synthesis of Operation-Centric Hard-
ware Descriptions. In Proceedings of ICCAD’00, pages 511–
518, San Jose, CA, 2000.

[4] IEEE. IEEE standard 802.11a supplement. Wireless LAN
Medium Access Control (MAC) and Physical Layer (PHY)
Specifications, 1999.

[5] K. Maharatna, E. Grass, and U. Jagdhold. A 64-Point Fourier
Transform Chip for High-Speed Wireless LAN Application
Using OFDM. IEEE JOURNAL OF SOLID-STATE CIR-
CUITS, 39(3), March 2004.

[6] D. L. Rosenband and Arvind. Modular Scheduling of
Guarded Atomic Actions. In Proceedings of DAC’04, San
Diego, CA, 2004.

[7] B. S. Son, B. G. Jo, M. H. Sunwoo, and Y. S. Kim. A High-
Speed FFT Processor for OFDM Systems. In Proceedings of
the IEEE International Symposium on Circuits and Systems,
pages 281–284, 2002.

[8] N. Zhang and R. W. Brodersen. Architectural evaluation of
flexible digital signal processing for wireless receivers. In
Proceedings of the Asilomar Conference on Signals, Systems
and Computers, pages 78–83, 2000.

