
High-throughput Pipelined Mergesort

Kermin Fleming, Myron King, Man Cheuk Ng,
Asif Khan, Muralidaran Vijayaraghavan

MIT - CSAIL
Cambridge, MA

{kfleming,mdk,mcn02,aik,vmurali}@csail.mit.edu

Abstract: We present an implementation of a high-
throughput cryptosorter, capable of sorting an encrypted
database of eight megabytes in .15 seconds; 1102 times
faster than a software implementation.

1 Introduction
In the second MEMOCODE hardware/software code-

sign contest [4] we were given the task of implementing
a mechanism to sort an encrypted database. The intended
target of the design was specified as a Xilinx XUP develop-
ment board on which the work can be shared between the
PowerPC and the FPGA. In this paper we describe our de-
sign methodology and discuss our solution, including some
attempts that did not work. The XUP design was completed
in approximately three weeks by a three people, while two
people worked on a parallel design which was not finished.

With the exception of an AES core, acquired from
OpenCores.org[6] and written in Verilog, we implemented
our cryptosorter entirely in Bluespec SystemVerilog[1], al-
lowing us to reuse components from our MEMOCODE
2007 design contest submission[5].

The cryptosort task begins with an unsorted encrypted
database of 128-bit records placed in external DRAM mem-
ory. Initially, the database must be decrypted using a fixed
series of keys generated by encrypting the record index with
128-bit AES. After the database has been sorted into as-
cending order, it must be re-encrypted and placed in mem-
ory. Legal database sizes are the powers of two between 26

to 218, inclusive.

2 Design Principles
A typical methodology involves the composition of hard-

ware accelerators with software control. In the case of cryp-
tosort, the control logic is simple enough to implement the
entire design in hardware. We decided to develop a sin-
gle parametric cryptosorter targeting two platforms: the
XUP board and the high-performance BEE2 board [2]. We
were aware of the risks involved in a full hardware imple-
mentation; many of the classical problems of hardware de-
sign are exacerbated by a short development window. In
particular, system integration becomes challenging due to
the volume of new components and the number of imple-
mentors. Integration is usually accompanied by rigorous
system-level simulation, but, in our case, the run-time and
implementation-time overhead precludes this level of veri-
fication. To give ourselves a better chance of delivering a
working design by the end of the contest, we adopted a set
of design principles to help us overcome traditional hard-
ware development risks. First, we required strict adherence

to abstract parameterized interfaces. Secondly, we imple-
mented all these interfaces in a latency-insensitive manner,
and lastly, to aid in deadlock prevention, we required all
requesting modules to reserve space for responses before
issuing the request. We believe these principles gave us a
competitive advantage in implementing a functioning hard-
ware cryptosorter.

In order to facilitate a parallel multi-platform design ef-
fort, we specified a set of abstract parameterized interfaces,
which allowed us to work on implementations at various
points along the performance-resource utilization curve. In-
cluded in these were a set of general peripheral interfaces
(e.g. memory) through which we could connect the cryp-
tosorter to platform-specific hardware on target platforms,
without modifying the cryptosorter. We defined these inter-
faces in a request-response manner. Our choice of Bluespec
SystemVerilog greatly aided this effort because we were
able to specify descriptive interfaces and share them among
several module implementations.

Latency insensitivity at module boundaries is a conve-
nient way of preventing implementors from making critical
timing assumptions about other modules, thereby allowing
a system to be composed seamlessly. Along with providing
a very useful framework to think about division of tasks,
latency insensitivity (in our experience) removes a whole
class of integration bugs. Bugs arising from inter-module
timing assumptions are particularly difficult to repair be-
cause it is difficult to describe and enforce timing assump-
tions. While adherence to the interfaces is enforced by the
compiler, latency insensitivity is much more difficult to en-
force, requiring great discipline on the part of the imple-
mentor.

As testament to the importance of these principles, our
adherence allowed us to entirely avoid writing a system
level test bench. Instead, we debugged the system level de-
sign on the XUP platform. Most integration problems we
encountered were due to incorrect synthesis of our design
by the Xilinx toolchain. We did not finish the BEE2 imple-
mentation.

3 System Description
Our cryptosorter core, shown in Figure 1, implements

the mergesort algorithm. In addition to having optimal
Nlog(N) operation-complexity, mergesort has a number of
features that make it amenable to hardware implementation.
Mergesort parallelizes well; merging independent streams
is fully data parallel and the number of streams available
to merge scales with the size of the input problem. Since
mergesort operates on streams, it is suited to block data



Level 6 Sorter

Level 1 Sorter

Level 2 Sorter

Level 3 Sorter

Level 4 Sorter

Level 5 Sorter

AES
Cores (2)

xor

xor

Memory Write
Logic

Read
Memory
Logic

Record Input

Record Output

PLB

PPC

PLB
Master

DRAM

Sort
Tree

Feeder

Figure 1. System Architecture

transfers, which are of great practical importance in achiev-
ing high memory throughput. Furthermore, a tree of merg-
ers can be constructed to introduce on-chip data locality. Fi-
nally, the control logic of mergesort is highly local, allowing
for a full-chip implementation without having to deal with
the overhead of global communication.

3.1 Control
The three steps involved in sorting an encrypted database

are decrypting, sorting, and encrypting. The merging algo-
rithm requires multiple passes over memory, and we were
able to combine the decryption stage with the first sorting
pass and the encryption stage with the last. Additionally,
since the encryption keys are statically known, we generate
them at runtime without any additional memory traffic. The
control logic makes use of a sort tree, an AES engine, and a
memory controller to accomplish this task.

The sort tree merges multiple sorted streams into one
sorted stream. In the first pass over memory, it merges
streams of length one, writing streams of length sixty-four
to consecutive memory locations. These streams are subse-
quently merged and at each pass over memory, the length of
the sorted output stream grows by a factor of 26. When the
length of the output stream equals the size of the database,
the sort is complete.

The logic which drives the sort tree can be viewed as sev-
enth level of the sort tree (discussed in detail in 3.2). It must
first check among the leaf mergers to determine which have
room for more data and issues a memory request if space is
found. The control issues key requests to the AES engine
during the first sort pass to decrypt the records and during
the last sort pass to encrypt them. The controller employs a
double-buffering scheme in order to maintain memory con-
sistency.

The control logic can issue and multiple memory re-
quests and process multiple responses per cycles, but its
throughput is bounded by other modules.

3.2 Sort Tree
The number of memory accesses required to sort a list

with a sort tree is Ndlog2d(N)e, where d corresponds to the

<

2-to-1 Merger

2-to-1 Merger 2-to-1 Merger

2-to-1 Merger 2-to-1 Merger2-to-1 Merger 2-to-1 Merger

Figure 2. Logical Sort Tree Structure

depth of the tree. Deeper sort trees, will therefore outper-
form shallow trees when memory throughput is the system
bottleneck. Initially, we explored implementing mergesort
with a binary tree, as shown in Figure 2, composed of two-
to-one merger modules. Although easy to conceptualize and
implement, the area of this structure grows quite quickly as
the depth of the sort tree increases. Each merger module
requires 3% of slice resources on the XUP, restricting a bi-
nary sort tree implementation to a maximum depth of four
(fifteen mergers).

We observe that the throughput-limiting factor of the sort
tree is the root merger, which can output one record per cy-
cle. This bottleneck limits the benefit derived from paral-
lelism in the higher levels of the tree. Consequently, we
decided to rate match the sort tree levels by time multiplex-
ing a single comparator among multiple logical mergers at
each level. This folding results in the architecture shown
in Figure 3, which consists of sort levels in which multiple
logical mergers share a single comparator. Since only one
merger per level can be active, all the logical mergers in a
level can be mapped onto the same dense memory structure,
a pair of block RAMs. This mapping not only takes advan-
tage of dense storage resources, but also eliminates the need
to use multiplexors to select between mergers. Every cycle,
each level’s scheduler chooses one logical merger for com-
parison. After comparing records, the smaller of the two
records is forwarded to the next level of the tree. Since the
levels of the sort tree are very similar, we were able to write
a parameterized sort level module that could be to used in-
stantiate all levels of the sort tree.

In order to select a merger for comparison, the scheduler
collects the element count for the merger’s two source FI-
FOs, as well as the destination FIFO in the next sort level.
If both the source FIFOs contain at least one record, and
the destination FIFO is not full, then the merger is ready for
execution, and may be scheduled. Since the critical path of
the scheduler increases with the number of mergers in the
level, some level schedulers did not initially meet timing.
To deal with this issue, we created a number of pipelined
and combinational scheduler modules, and made the sched-
uler a parameter of the sort tree level. This allowed us to
experiment with a variety of scheduler designs, although
ultimately we determined that a simple, greedy scheduler
offered satisfactory performance.

The largest sort tree that we were able to fit on the XUP



board had six levels, allowing it to merge sixty-four sorted
streams into one sorted stream in one sort pass. With sixty-
four to one merging, this sorter requires at most three passes
over memory to sort the competition test cases.

Scheduler

Pointer Bank

Bank Select Output Record Output 

Record Input Bank Select Input

Merger 0 FIFO 1

BRAM 1

Merger 1 FIFO 1
Merger 2 FIFO 1
Merger 3 FIFO 1

Merger 0 FIFO 0

BRAM 0

Merger 1 FIFO 0
Merger 2 FIFO 0
Merger 3 FIFO 0

Figure 3. Physical Implementation of Level 3
of the Sort Tree

3.3 AES
The encryption and decryption portion of the cryp-

tosorter task requires an implementation of the AES[3]
algorithm. We acquired an existing AES core from
OpenCores.org[6]. This core can perform a complete en-
cryption sequence in twelve clock cycles: one cycle for key
expansion at the beginning, ten cycles for performing the
ten encryption rounds, and one cycle for buffering the out-
put.

Due to the resource limitations of the XUP board, the
XUP cryptosorter instantiates only two AES cores, giving
a throughput of 1

6 of an encryption value per cycle. We
anticipated that the throughput of the AES engine would be
a system bottleneck. To alleviate this issue, the AES cores
were modified to run in a separate clock domain. In the final
XUP implementation, the AES cores were clocked at 120
MHz, which increases the aggregate throughput of the cores
to 1

5 of an encryption value per cycle, which resulted in a
small performance increase on the two benchmarks, shown
in Figure 5(b).

3.4 Memory Interface
The cryptosorter interfaces to the system memory

through a high-speed PLB bus master, a core originally de-
veloped for the MEMOCODE 2007 design contest. The bus
master supports burst requests of sixteen sixty-four bit beats
and may have a load and a store request in flight simultane-
ously. The bus master supports a relaxed memory ordering,
allowing loads and stores to bypass one another.

Our testing shows that the setup time for a burst transfer
is approximately 14 cycles, after which data beats proceed
on back to back cycles. The default Xilinx DDR controller
supports only a single 64-bit load or store transfer per cycle.
Therefore, since we issue sixteen beat requests, we expect

Problem Single 100MHz 120MHz AES
Size Domain Domain

Random Rotated Random Rotated
(µs) (µs) (µs) (µs)

26 8.8 8.8 7.8 7.7
210 165.1 166.0 160.9 161.7
214 3756.0 3740.3 3744.8 3732.8
218 59604.2 59491.1 59657.1 59612.4

Figure 4. Benchmark Results for Cryp-
tosorter

to achieve no more than 427 MB/s of memory bandwidth,
approximately one record every four cycles. Since every
record passed through the cryptosorter must be loaded and
stored, the effective cryptosorter throughput can be no more
than record every eight cycles.

4 Evaluation
Since each pass of the cryptosorter merges up to sixty-

four sorted streams into a single sorted stream, the al-
gorithmic time complexity of the entire procedure is
KNdlog26(N)e, where N is the size of the input and K
is some constant. This bound implies that in most cases,
doubling the input size will double the processing time, ex-
cept when the input size crosses a power of 26 boundary.
In this case, the processing time should more than double
due to the need for another pass over the database. This
effect is illustrated in Figure 5(a) by the slight kink be-
tween the 212 and 213 input sizes. Figure 4 contains raw
runtime results for the input sizes used to compute the de-
sign contest performance metric, an equal weight normal-
ized geometric mean. The random benchmark sorts a ran-
dom database, while the rotated benchmark sorts a partially
sorted database. Our implementation is insensitive to the
order of input data. Therefore, the speedups we achieve are
the same for the two benchmarks provided. According to
the metric, our cryptosorter achieved a factor of 1102 per-
formance increase over the reference software implemen-
tation. At peak performance, we achieve approximately
0.8 comparisons per cycle at a memory throughput of 424
MB/s.

For most input sizes, runtimes can be predicted using
the previously mentioned bound with K equal to .075 us,
the minimum memory round trip time for a single record.
The smaller input sizes, however, diverge from this theoret-
ical model. To explain these empirical results, we exam-
ine the modular throughput analysis contained in section 3.
The maximum memory bandwidth, roughly one record ev-
ery four cycles, is insufficient to saturate either the control
logic or the sort tree, both of which are capable of achieving
throughputs of at least one record every two cycles. Analyz-
ing the interaction of the AES engine and the memory con-
troller will help us understand the throughput of the cryp-
tosorter in these deviant cases.

The AES engine, even when clocked to 120MHz, pro-
duces one AES key every five cycles, while the memory



12

14

16

18

L
o

g
 R

u
n

ti
m

e

2

4

6

8

10

5 10 15 20

L
o

g
 R

u
n

ti
m

e

Log Input Size

(a) Logarithm of Cryptosorter Runtime

0.08

0.1

0.12

N
o

rm
a

li
ze

d
 S

p
ee

d
u

p

0

0.02

0.04

0.06

5 10 15 20

N
o

rm
a

li
ze

d
 S

p
ee

d
u

p

Log Input Size

(b) Performance Speedup with 120 MHz AES Do-
main

370

390

410

430

M
em

o
ry

 B
a
n

d
w

id
th

 (
M

B
/s

)

250

270

290

310

330

350

5 10 15 20

M
em

o
ry

 B
a
n

d
w

id
th

 (
M

B
/s

)

Log Input Size

(c) Cryptosorter Memory Throughput

Figure 5. Cryptosort Runtime and Performance Metrics

returns a record once every four cycles. At first glance,
it would seem that these mismatched rates would reduce
the observed memory bandwidth to 80% of the theoretical
maximum (340 MB/s). However, the observed bandwidth,
shown in Figure 5(c), exceeds this percentage substantially,
except in the case of the smallest input. Figure 5(b) suggests
that, except in the case of the the smaller inputs, upclocking
the AES provides no performance benefit. For inputs larger
than 212, a portion of the memory bandwidth increase is due
to the middle sorting passes over memory, which do not in-
volve the AES engine. The remainder of the bandwidth dif-
ferential can be attributed to the relaxed memory ordering
used by the PLB Master. For input sizes larger than 26,
the first pass over memory (in which the initial data is de-
crypted) is able to hide the latency of the AES engine by
overlapping load/decrypt operations with store operations.
In the last pass, the latency of the store/encrypt operation
is similarly hidden by overlapped loads. For smaller in-
put sizes, the cost of filling and draining the sort tree is not
amortized; in addition, the absence of overlapping opportu-
nities exposes the AES-bottleneck.

The synthesis results of the final design are included in
Figure 6. Unsurprisingly, the sort tree accounts for most of
the resource utilization. Slice usage of sort tree levels two
through six scale approximately linearly with the number of
logical mergers present. Sort tree level one does not scale,
since its single internal merger is implemented with regis-
ters rather than BRAMs. The control logic requires almost
as many resources as the sixth level of the sort tree, since it
must maintain roughly the same number of pointers.

The sorter core requires 55% of the slices and 47% of the
BRAMs available on the Virtex-II Pro 30 FPGA, while the
full system requires 73% of slices and 58% of the BRAMs.

There are several modifications which we believe will
further increase the performance of the cryptosorter. Ex-
panding the AES engine to three cores would improve sort
times for smaller input sizes. The addition of a a sev-
enth sort tree level would improve sort times for most in-
put sizes. However, a seventh sort level would likely not
fit on the XUP since it requires an additional 25% of the
slices. Increasing the memory burst size beyond sixteen

Module Total Slices LUTs Flip Flops BRAMs
Control 1586 585 2898 4
PLB Master 726 749 1359 0
AES Engine 1024 947 1879 20

AES Core 430 405 804 10
Sort Tree 4096 1941 7748 40

Sort Level 6 1875 706 3583 8
Sort Level 5 722 235 1345 8
Sort Level 4 434 117 799 8
Sort Level 3 355 65 653 8
Sort Level 2 271 36 492 8
Sort Level 1 916 784 1699 0

Sorter Total 7658 4487 14294 64
System Total 10051 6367 17069 80

Figure 6. Synthesis Results for Cryptosorter

is the simplest and perhaps most beneficial of the poten-
tial improvements. If large bursts maintain the same back-
to-back beat transfer of the size sixteen burst, then such a
change would dramatically increase the theoretical maxi-
mum memory bandwidth. Such a change would have lim-
ited impact on area, perhaps only increasing the number of
BRAMs consumed by the sort tree.

References

[1] Bluespec Inc. http://www.bluespec.com.
[2] C. Chang, J. Wawrzynek, and R. W. Brodersen. Bee2: A

high-end reconfigurable computing system. IEEE Des. Test,
22(2):114–125, 2005.

[3] J. Daemen and V. Rijmen. Rijndael for aes. In AES Candidate
Conference, pages 343–348, 2000.

[4] Krste Asanovic and James Hoe and Patrick Schau-
mont. The Second MEMOCODE Design Contest.
http://rijndael.ece.vt.edu/memocontest08,
March 2008.

[5] N. Dave, K. Fleming, M. King, M Pellauer, M. Vijayaragha-
van. Hardware Acceleration of Matrix Multiplication on a Xil-
inx FPGA. In Proceedings of Formal Methods and Models for
Codesign (MEMOCODE), Nice, France, 2007.

[6] Rudolf Usselmann. http://www.opencores.org/
cvsweb.shtml/aes core.


