
The Huffman decoder Core
publish at www.opencores.org

written by René Doss
(Dossmatik GmbH/ Germany)

Version 0.1/ Date 20.12.2009

Disclaimer:

Dossmatik is not responsible for the end product or the success of the end product in any way. The
final sign and acceptance of any products or designs is the sole responsibility of the user. This core
is at the moment not full tested. The actual state is alpha phase.

Introduction:

In the follow document a decoder is described for baseline jpeg pictures. The code is written for real
time video streaming. Some efforts are made in optimization for speed and dynamic huffman table
and dynamic quantization tables load.

Language: VHDL

License:

If you use this code for simulation there are only one restrictions. You have to mention the core
origin in your documentations and publications in a valuable position. Of cause you can send me
also a publication.

If you fit this code into hardware components like FPGA, ASIC or analogous proceeding then is the
license GPL.

It is not allowed to put this code with commercial code together in hardware. If you have a problem
with this restriction you can contact me.

Generally explanation:

This core analyses jpeg baseline makers is the incoming data stream. A state machine switch in the
correct state. The incoming picture header information is analyzed and is applied in the decoding
process. All tables are dynamic.

Actual are this:

0xFFD8 Start of image

0xFFE0 App0 application segment

0xFFDB define quantization table

0xFFC0 SOF0 Baseline DCT

0xFFC4 define huffman table

0xFFDA start of scan

0xFFD9 End of image

Interface:

entity huffman_decoder is

port(

clk :in std_logic;

--interface data input

wr :in std_logic; --write

data_in : in unsigned (7 downto 0); --data jpeg stream input

wr_en : out std_logic:='1'; --write enable

--interface data out

output_valid : buffer std_logic; --use it as write signal in the follow IDCT

data_out : out signed (15 downto 0); --decoded and dequantized coefficient

next_eob : buffer std_logic:='0'; --the next data is the last coefficient of block

--all higher zigzag coeficients are zero

sop : out std_logic:='0'; --start of picture

eop : out std_logic:='0'; --end of picture

zrl : out unsigned (3 downto 0); -- number of consecutive zeros before the next
--coefficient

decoder_enable : in std_logic);

end huffman_decoder;

Implementation

The main part is a 32bit circular buffer (signal rot_buffer: unsigned(31 downto 0);) and inside this
buffer is a shifted barrel. At the initialization the first value is stored at the highest address in the
circular buffer. The next datas are stored in the lower addesses. The Barrel is at the highest address
and decode the huffcode. The FSM sos_state control the process.

First sos_state decode:

The decoder decode the huffcode and shift the barrel as long the huffcode is. DC huffman table of
the first component have to applicate. In this example it is 10 the huffcode and the corresponding
code 6. The code is the length of the mantissa bits.

Second sos_state catch:

The amplitude value is token from barrel. 100100 is the value from data stream. Also the barrel is
shifted to the next position.

Third sos_state post_catch:

Only a state that all value are valid.

Fourth and fifth sos_state:

The huff table are two change two clocks are needed. For table change.

sixth sos_state:

The decoder decode the huffman code now with the AC huff table of the first component. The code
is 1101 and has the length 4. Also in this step the values at the buffer addresss 0x1F..0x18 are
invalid. Also in this step the next values from the input stream are loaded into the buffer.

In this timing diagram you can see only some clocks are needed in this implementation. This is
important for high value streaming like video applications.

first picture:
header information

• quantization tables

• huffman tables

Pixel information in the stream:
sop (start of picture) goes high

switch to the valid table
decode and dequantizered
output the value in zigzag order

eop (end of picture) goes high

second picture:

header information
• quantization tables

• huffman tables

Pixel information in the stream:
sop (start of picture) goes high

switch to the valid table
decode and dequantizered
output the value in zigzag order

eop (end of picture) goes high

	The Huffman decoder Core
	written by René Doss

