
I2C Multiple Bus Controller

IP Core Specification

Author: Sergey Shuvalkin
sshuv2@opencores.org

Revision 1.0b
May 26, 2016

www.opencores.org

This page has been intentionally left blank.

 OpenCores I2C Multiple Bus Controller 05/26/16

Document Revision History

Revision Date Author Description

1.0 04/29/2016 Sergey Shuvalkin Initial release

1.0a 05/04/2016 Sergey Shuvalkin Minor improvements

1.0b 05/26/2016 Sergey Shuvalkin Minor improvements

Reference Documents

1. UM10204, I2C-bus specification and user manual, Rev. 6 – April 2014.

2. MNL-AVABUSREF, Avalon Interface Specifications, Ver. 14.1 – March 2015.

3. Wishbone B4, – 2010.

www.opencores.org 3 of 29

http://www.opencores.org/

 OpenCores I2C Multiple Bus Controller 05/26/16

Table of Contents
1 Introduction...5
2 Architecture...6
3 Operation...7

3.1 Byte-level FSM..7
3.2 Generic Interface...9
3.3 Bit-level FSM..9

4 Interfaces..13
4.1 Parameters..13
4.2 Wishbone Interface Signals...13
4.3 Avalon-MM Interface Signals...14
4.4 Sequencer Top Level Signals..15
4.5 I2C Serial Lines..16
4.6 Other Signals...17

5 Registers...18
5.1 Control/Status Register (CSR)..18
5.2 Data/Parameter Register (DPR)..19
5.3 Command Register (CMDR)...19
5.4 FSM States Register (FSMR)..20

6 Programming Examples..22
6.1 Example 1..22
6.2 Example 2..22
6.3 Example 3..22
6.4 Example 4..23
6.5 Example 5..23

7 Project Directory Structure..25
8 Hierarchy Of Modules...26
9 Implementation Results..28

9.1 Setup 1...28
9.2 Setup 2...29

www.opencores.org 4 of 29

http://www.opencores.org/

 OpenCores I2C Multiple Bus Controller 05/26/16

1 Introduction
This specification defines the architecture, hardware interface and parameterization op-
tions for the I2C Multiple Bus Controller (IICMB) core.

The IICMB core provides a low-speed, two-wire, bidirectional serial bus interfaces compli -
ant to industry standard I2C protocol. The key feature of the core is its ability to control sev-
eral connected I2C buses effectively reducing complexity of system.

At any given moment the IICMB core works with a single I2C bus chosen from the range of
connected buses (throughout this document such bus is called selected bus). When work
with a particular selected bus is finished, user can switch to another one to continue con-
figuring other peripherals. Every connected I2C bus is recognized by its number, or bus ID.

Note: The current version of the core supports master only functionality. Slave mode is un-
der development.

Features:

• Compatible with Philips I2C standard
• Works with up to 16 distinct I2C buses
• Statically configurable system bus clock frequency
• Statically configurable desired clock frequencies of I2C buses
• Multi-master clock synchronization
• Multi-master arbitration
• Clock stretching
• Digital filtering of SCL and SDA inputs
• Standard (up to 100 kHz) and Fast (up to 400 kHz) mode operation
• Connects as 8-bit slave on Wishbone bus
• Connects as 32-bit slave on Avalon-MM bus

www.opencores.org 5 of 29

Figure 1: High-level view on the interfaces

iicmb_m_wb

Wishbone Slave

Interrupt

I2C Bus #0

I2C Bus #1

...
I2C Bus #N

http://www.opencores.org/

 OpenCores I2C Multiple Bus Controller 05/26/16

2 Architecture
The core is provided with three examples of its top level (iicmb_m_wb.vhd,
iicmb_m_av.vhd and iic_m_sq.vhd). Two of them are designed for Wishbone and
Avalon-MM buses, while third version is a sequencer based one for deeply embedded ap-
plications without any system bus at all.

In the center of the IICMB core is iicmb_m.vhd module which integrates byte- and bit-
level master mode FSMs together with I2C bus multiplexer functionality. It is controlled with
byte-level commands sent through the so-called Generic Interface.

The wishbone.vhd module connects Wishbone bus to register block (regblock.vhd),
which converts system bus accesses to byte-level commands of the Generic Interface.

SCL and SDA inputs are digitally filtered to suppress unwanted spikes and to cope with
long rising time of the I2C bus signals. The bus_state.vhd modules independently moni-
tor busy states of all connected buses.

The conditioner_mux.vhd module, controlled by bus_id input, performs switching be-
tween connected I2C buses.

The mbit.vhd and mbyte.vhd implement bit-level and byte-level FSMs, generating ap-
propriate SCL and SDA waveforms in accordance to I2C Bus Specification.

www.opencores.org 6 of 29

Figure 2: Block diagram of the Wishbone version of the top level

mbit

mbyte

Ge
ne

ri
c

In
te

rf
ac

e

filter

conditioner

bus_state

filter

conditioner

bus_state

'1'

'1'

conditioner_muxi2c_m

wishbone

scl_o(0)
sda_o(0)

scl_i(0)
sda_i(0)

scl_o(n)
sda_o(n)

scl_i(n)
sda_i(n)

bus_id

scl_tx
sda_tx

scl_rx
sda_rx

busy

i2c_m_wb

mbc

mbrmcmd

mrsp

busy

busy

regblock

W
is
hb

on
e

Sl
av

e

interrupt

http://www.opencores.org/

 OpenCores I2C Multiple Bus Controller 05/26/16

3 Operation

3.1 Byte-level FSM
The byte-level FSM module (mbyte.vhd) communicates with upper level through so
called Generic Interface. It accepts several byte-level commands listed in the Table 1 be-
low. After completion, each command is answered with an appropriate response. The main
responsibility of the mbyte.vhd module is to translate byte-level commands to one or
more commands for bit-level FSM (mbit.vhd).

Reception of a response is a mark of completion of the previously issued command. It is
an error to send next command before previous command is responded. Such a command
is ignored.

Command Code Parameter Description

Start “100” – If bus is not captured yet: issue Start Condition
and capture selected bus. If bus captured:
issue Repeated Start Condition.

Stop “101” – Issue Stop Condition and free selected bus.

Read With Ack “010” – Receive a byte with acknowledge.

Read With Nak “011” – Receive a byte with not-acknowledge.

Write “001” Byte of data Transmit the byte given as a parameter.

Set Bus “110” Bus number (ID) Connect to the specified bus (select bus).

Wait “000” Milliseconds Do nothing for specified amount of time.

Table 1: Byte-level commands

Response Code Parameter Description

Done “000” – Command completed.

Arbitration Lost “010” – Arbitration lost. Selected bus is freed, FSMs
are set to their idle states.

No Acknowledge “001” – Byte written got no acknowledge.

Byte “100” Byte of data Byte of data received.

Error “011” – Something went wrong.

Table 2: Byte-level responses

www.opencores.org 7 of 29

http://www.opencores.org/

 OpenCores I2C Multiple Bus Controller 05/26/16

Done Arb. Lost No Ack. Byte Error

Start + +

Stop +

Read With Ack + +

Read With Nak + + +

Write + + + +

Set Bus + +

Wait + +

Table 3: Possible responses to byte-level commands

The following diagram depicts the byte-level FSM:

www.opencores.org 8 of 29

Figure 3: Byte-level FSM

Write Byte

Start

Stop

Idle

Error

Done

Stop
Read with Ack
Read with Nak
Write

Start

Bus Is Taken

Start Is Pending

Read Byte

Set Bus Done
Error

Start

Start

Start

Read with Ack
Read with Nak

Read

Stop

Stop

Write

Write 0
Write 1

Done

Done

Done

Bit 0
Bit 1

Error
Arbitration Lost

Error
Arbitration Lost

Done

Byte

Bit 0
Bit 1

Done
No Acknowledge

Error
Arbitration Lost

Error
Arbitration Lost

Done Write 0
Write 1
Read

Read
Write 0
Write 1

Wait

Wait Done

Set Bus
WaitError

Arbitration Lost

http://www.opencores.org/

 OpenCores I2C Multiple Bus Controller 05/26/16

3.2 Generic Interface
The Generic Interface consists of the following signals:

Signal Name I/O Description

mcmd_wr Input Byte-level command write (active high).

mcmd_id[2:0] Input Byte-level command ID.

mcmd_data[7:0] Input Byte-level command parameter.

mrsp_wr Output Byte-level response write (active high).

mrsp_id[2:0] Output Byte-level response ID.

mrsp_data[7:0] Output Byte-level response parameter.

Table 4: Generic Interface signals

3.3 Bit-level FSM
Bit-level commands and responses are hidden from the user of the core, but listed here for
better understanding of how the two FSMs interact with each other.

Bit-level commands and responses have no parameters.

www.opencores.org 9 of 29

clk

mcmd_wr

mcmd_id[2:0]

mcmd_data[7:0]

CMD0

CPAR0

mrsp_wr

mrsp_id[2:0]

mrsp_data[7:0]

RSP0

RPAR0

CMD1

CPAR1

>= 1 cycle >= 1 cycle

Figure 4: Generic Interface timing diagram

http://www.opencores.org/

 OpenCores I2C Multiple Bus Controller 05/26/16

Command Description

Start Issue Start Condition or Repeated Start Condition.

Stop Issue Stop Condition.

Write 0 Send bit '0'.

Write 1 Send bit '1'.

Read Receive a bit.

Table 5: Bit-level commands

Response Description

Done Command completed.

Arbitration Lost Arbitration lost.

Bit 0 Bit '0' received.

Bit 1 Bit '1' received.

Error Something gone wrong.

Table 6: Bit-level responses

Done Arb. Lost Bit 0 Bit 1 Error

Start + +

Stop +

Write 0 + +

Write 1 + + +

Read + + +

Table 7: Possible responses to bit-level commands

The following diagram depicts the bit-level FSM:

www.opencores.org 10 of 29

http://www.opencores.org/

 OpenCores I2C Multiple Bus Controller 05/26/16

Traversing along bit-level FSM states produces the following waveforms on SCL and SDA
bus signals.

www.opencores.org 11 of 29

R/W B

R/W C

R/W D

R/W E

Done
Bit 0
Bit 1

Write 0
Write 1
Read

Start

Stop

Stop B

Stop C

Idle
Start

Done
ErrorDone

Stop
Write 0
Write 1
Read

Arbitration
Lost

Rep. Start C

Start A

Start B

Start C

Rep. Start B

Done

Start

Done
Write 0
Write 1
Read

Stop

R/W A

Stop A

Rep. Start A

Figure 5: Bit-level FSM

Figure 6: Start and Repeated Start conditions waveform

Repeated Start

SDA

SCL

A C

Start

CA B

tSU;DAT >= tSU;STA

>= tSCL

tHD;STA tVD;DAT

B

http://www.opencores.org/

 OpenCores I2C Multiple Bus Controller 05/26/16

www.opencores.org 12 of 29

Figure 7: Read/Write waveform

Read/Write

SDA

SCL

A C D E

tSU;DAT tHIGH >= tVD;DAT

>= tSCL

B

Figure 8: Stop Condition waveform

SDA

SCL

Stop

A C

Idle

tSU;DAT >= tSU;STO

>= tSCL

B

http://www.opencores.org/

 OpenCores I2C Multiple Bus Controller 05/26/16

4 Interfaces

4.1 Parameters
These are generics on the top level VHDL entities of the core.

Name Type Default Value Description

g_bus_num positive 1 Number of connected I2C buses

g_f_clk real 100000.0 Frequency of system clock (in kHz)

g_f_scl_0 real 100.0 Frequency of SCL clock of I2C bus #0 (in kHz)

g_f_scl_1 real 100.0 Frequency of SCL clock of I2C bus #1 (in kHz)

g_f_scl_2 real 100.0 Frequency of SCL clock of I2C bus #2 (in kHz)

g_f_scl_3 real 100.0 Frequency of SCL clock of I2C bus #3 (in kHz)

g_f_scl_4 real 100.0 Frequency of SCL clock of I2C bus #4 (in kHz)

g_f_scl_5 real 100.0 Frequency of SCL clock of I2C bus #5 (in kHz)

g_f_scl_6 real 100.0 Frequency of SCL clock of I2C bus #6 (in kHz)

g_f_scl_7 real 100.0 Frequency of SCL clock of I2C bus #7 (in kHz)

g_f_scl_8 real 100.0 Frequency of SCL clock of I2C bus #8 (in kHz)

g_f_scl_9 real 100.0 Frequency of SCL clock of I2C bus #9 (in kHz)

g_f_scl_a real 100.0 Frequency of SCL clock of I2C bus #10 (in kHz)

g_f_scl_b real 100.0 Frequency of SCL clock of I2C bus #11 (in kHz)

g_f_scl_c real 100.0 Frequency of SCL clock of I2C bus #12 (in kHz)

g_f_scl_d real 100.0 Frequency of SCL clock of I2C bus #13 (in kHz)

g_f_scl_e real 100.0 Frequency of SCL clock of I2C bus #14 (in kHz)

g_f_scl_f real 100.0 Frequency of SCL clock of I2C bus #15 (in kHz)

Table 8: Core parameters

Allowed range of the g_bus_num is from 1 to 16.

The g_f_clk parameter specifies the main clock frequency. Depending on top level ver-
sion the main clock input is clk_i or clk.

Actual frequencies of I2C clocks will be little bit lower than specified with parameters
g_f_scl_N.

4.2 Wishbone Interface Signals
Wishbone version of the core top level has the following signals:

www.opencores.org 13 of 29

http://www.opencores.org/

 OpenCores I2C Multiple Bus Controller 05/26/16

Signal Name I/O Description

clk_i Input Wishbone clock. Main clock for the controller.

rst_i Input Synchronous reset. Active high.

cyc_i Input Valid bus cycle.

stb_i Input Strobe signal/Core select.

ack_o Output Bus cycle acknowledge.

adr_i[1:0] Input Lower address bits.

we_i Input Write enable.

dat_i[7:0] Input Data input.

dat_o[7:0] Output Data output.

Table 9: Wishbone interface signals

The frequency of clk_i clock (in kHz) should be indicated in g_f_clk parameter.

For more information about Wishbone signals please refer to Wishbone B4 Specification.

4.3 Avalon-MM Interface Signals
Avalon-MM version of the core top level has the following signals:

Signal Name I/O Description

clk Input Avalon-MM clock. Main clock for the controller.

s_rst Input Synchronous reset. Active high.

waitrequest Output Wait request.

readdata[31:0] Output Data output.

readdatavalid Output Data validity indication.

writedata[31:0] Input Data input.

write Input Indicates a write transfer.

read Input Indicates a read transfer.

byteenable[3:0] Input Enables specific byte lane(s) during transfer

Table 10: Avalon-MM interface Signals

There is no address signal in this group. This is because we have only 4 bytes of registers
and all of them can be accessed in one single read or write.

The frequency of clk clock (in kHz) should be indicated in g_f_clk parameter.

For more information about Avalon-MM signals please refer to Avalon Interface Specifica-
tions.

www.opencores.org 14 of 29

http://www.opencores.org/

 OpenCores I2C Multiple Bus Controller 05/26/16

4.4 Sequencer Top Level Signals
The iicmb_sq_m.vhd is example of the top level without using any system bus interface. It
includes a simple sequencer, which allows to play back any sequence of byte-level com-
mands on the Generic Interface. The sequencer is controlled by the following signals:

Signal Name I/O Description

clk Input Main clock for the controller.

s_rst Input Synchronous reset. Active high.

cs_start Input Start executing the command sequence.

cs_busy Output Sequencer busy status.
'1' = command sequence is being executed;
'0' = command sequence finished executing.

cs_status[2:0] Output Command sequence execution status.

Table 11: Sequencer related interface signals

The frequency of clk clock (in kHz) should be indicated in g_f_clk parameter.

The cs_status signal takes the codes of byte-level responses: Done, Arbitration Lost,
No Acknowledge and Error.

Issuing another cs_start pulse after cs_busy has returned back to '0' repeats the com-
mand sequence again from its start.

The iicmb_sq_m.vhd module has additional parameter (VHDL generic), g_cmd, which
holds the sequence of byte-level commands to playback:

www.opencores.org 15 of 29

Figure 9: Sequencer control timing diagram

clk

cs_start

cs_status[2:0] Status Status

cs_busy

http://www.opencores.org/

 OpenCores I2C Multiple Bus Controller 05/26/16

Name Type Default Value Description

g_cmd[– : –] seq_cmd_type_array c_empty_array Sequence of byte-level
commands in special format.

Table 12: Additional parameter of sequencer-based top-level module.

The seq_cmd_type_array type and c_empty_array constant are defined in
iicmb_pkg.vhd VHDL package. The same package also defines several functions which
simplify defining byte-level command sequences. Example definition of a such sequence
can be found in the iicmb_sq_m_tb.vhd testbench file.

4.5 I2C Serial Lines

Signal Name I/O Description

scl_i[0:g_bus_num - 1] Input Serial clock line inputs.

sda_i[0:g_bus_num - 1] Input Serial data line inputs.

scl_o[0:g_bus_num - 1] Output Serial clock line outputs.

sda_o[0:g_bus_num - 1] Output Serial data line outputs.

Table 13: I2C serial lines

Physical layer of I2C serial lines must be created outside of the IICMB core by means of tri-
state buffers which are connected in the following way:

Such buffers can be instantiated implicitly, for example, with the VHDL code below:

www.opencores.org 16 of 29

Figure 10: Connecting tri-state buffers

sda_o(i)

sda_i(i)

sda(i)

scl_o(i)

scl_i(i)

scl(i)

http://www.opencores.org/

 OpenCores I2C Multiple Bus Controller 05/26/16

phy_gen:

for i in 0 to g_bus_num - 1 generate

 scl_i(i) <= scl(i);

 scl(i) <= '0' when (scl_o(i) = '0') else 'Z';

 sda_i(i) <= sda(i);

 sda(i) <= '0' when (sda_o(i) = '0') else 'Z';

end generate phy_gen;

4.6 Other Signals

Signal Name I/O Description

irq Output Interrupt request.

Table 14: Other signals

The irq signal is a level sensitive interrupt (active level = '1'). The interrupt request is gen-
erated when a byte-level command has been completed and Interrupt Enable bit (IE) in the
Control/Status Register (CSR) is equal to '1'.

It is generated by register block and can be cleared (reset to '0') by reading CMDR register
(see register descriptions below).

www.opencores.org 17 of 29

http://www.opencores.org/

 OpenCores I2C Multiple Bus Controller 05/26/16

5 Registers
Wishbone and Avalon-MM based top level modules of IICMB controller
(iicmb_m_wb.vhd and iicmb_m_av.vhd) contain a register block with the following
registers. Note, that the sequencer based top level (iicmb_m_sq.vhd) does without
them.

Name Offset Access Description

CSR 0x00 R/W Control/Status Register

DPR 0x01 R/W Data/Parameter Register

CMDR 0x02 R/W Command Register

FSMR 0x03 RO FSM States Register

Table 15: IICMB registers

5.1 Control/Status Register (CSR)
Control/Status register, offset 0x00:

7 6 5 4 3 2 1 0

0x00 E IE BB BC Bus ID

R/W R/W RO RO RO

'0' '0' '0' '0' “0000”

Name Bits Access Reset Value Description

E 7 R/W '0' Enable. Effectively resets IICMB core.
'0' = IICMB is disabled;
'1' = IICMB is enabled.

IE 6 R/W '0' Interrupt Enable.
'0' = irq output is disabled;
'1' = irq output is enabled.

BB 5 RO '0' Bus Busy. Indicates selected bus state.
'0' = Selected bus is idle;
'1' = Selected bus is busy.

BC 4 RO '0' Bus Captured. Indicates when IICMB has
captured the selected bus.
'0' = Selected bus isn't captured by IICMB.
'1' = Selected bus is captured by IICMB.

Bus ID 3 – 0 RO “0000” Bus ID. Indicates selected bus ID.

www.opencores.org 18 of 29

http://www.opencores.org/

 OpenCores I2C Multiple Bus Controller 05/26/16

After reset or power-up the Enable bit (E) has value '0'. This effectively resets the IICMB
core and prohibits writing to other registers (except bits E and IE of the CSR). Therefore,
the first action after reset should be writing to CSR register to set bit E to '1' and, by the
way, to set bit IE to any desired value.

Bus Bysy bit (BB) and Bus Captured (BC) bit (as well as Bus ID field) should be used
mostly for diagnostic purposes. For example, there is no need to refer to BB bit to deter-
mine bus busyness before giving a Start command – this is done automatically by the
byte-level FSM.

5.2 Data/Parameter Register (DPR)
Data/Parameter register, offset 0x01:

7 6 5 4 3 2 1 0

0x01 Data

R/W

“00000000”

Name Bits Access Reset Value Description

Data 7 – 0 R/W “00000000” Data or a parameter for a byte-level command.

Before issuing a Write command, a byte to transmit has to be written into the DPR.

Reading DPR register returns last byte received via I2C bus.

Parameters for the Set Bus and Wait commands are also written into the DPR. These two
commands interpret content of the DPR register as unsigned 8-bit integer. The parameter
written for the Set Bus command should be in range from 0 to g_num_bus – 1, otherwise
the command returns ERR status. The parameter for the Wait command is number of mil-
liseconds to wait.

5.3 Command Register (CMDR)
Command register, offset 0x02:

7 6 5 4 3 2 1 0

0x02 DON NAK AL ERR R CMD

RO RO RO RO RO R/W

'1' '0' '0' '0' '0' “000”

Name Bits Access Reset Value Description

DON 7 R/W '1' Done. Indicates command completion.
'0' = FSMs are busy, or a command was

www.opencores.org 19 of 29

http://www.opencores.org/

 OpenCores I2C Multiple Bus Controller 05/26/16

Name Bits Access Reset Value Description

completed with one of the three other
completion statuses;
'1' = Command completed normally.

NAK 6 R/W '0' Data write was not acknowledged.
'0' = FSMs are busy, or a command was
completed with one of the three other
completion statuses;
'1' = Write command was not acknowledged.

AL 5 RO '0' Arbitration Lost.
'0' = FSMs are busy, or a command was
completed with one of the three other
completion statuses;
'1' = Arbitration was lost during command
execution.

ERR 4 RO '0' Error indication.
'0' = FSMs are busy, or a command was
completed with one of the three other
completion statuses.
'1' = Last command terminated with an error.

R 3 RO '0' Reserved bit.

CMD 2 – 0 R/W “000” Byte-level command code. Writing to this field
starts execution of the correspondent
command. Reading returns last written
command code.

Writing to the register starts execution of a byte-level command and clears all status bits
(DON, NAK, AL and ERR).

During command execution all status bits (DON, NAK, AL and ERR) are '0'.

When a command is completed, one of the four status bits (DON, NAK, AL or ERR) be-
comes '1', depending on the completion results. In the same moment, the interrupt output
is activated (irq = '1'), if it is enabled by setting bit IE in CSR to level '1'.

Reading the register clears the interrupt output (irq = '0'), while the status bits retain their
values.

5.4 FSM States Register (FSMR)
FSM States register, offset 0x03:

www.opencores.org 20 of 29

http://www.opencores.org/

 OpenCores I2C Multiple Bus Controller 05/26/16

7 6 5 4 3 2 1 0

0x03 Byte FSM Bit FSM

RO RO

“0000” “0000”

Name Bits Access Reset Value Description

Byte FSM 7 – 4 RO “0000” Current state of Byte-level FSM.

Bit FSM 3 – 0 RO “0000” Current state of Bit-level FSM.

The register displays current states of bit- and byte-level FSMs. Knowing these states is
not needed for normal operation, but might be useful when analyzing erroneous situations.

www.opencores.org 21 of 29

http://www.opencores.org/

 OpenCores I2C Multiple Bus Controller 05/26/16

6 Programming Examples

6.1 Example 1
Task: Enable the IICMB core after power-up.

System bus actions:

1. Write byte “1xxxxxxx” to the CSR register. This sets bit E to '1', enabling the core.

6.2 Example 2
Task: Disable or reset the IICMB core.

System bus actions:

1. Write byte “0xxxxxxx” to the CSR register. This sets bit E to '0', disabling the core.

6.3 Example 3
Task: Write a byte 0x78 to a slave with address 0x22, residing on I2C bus #5.

System bus actions:

1. Write byte 0x05 to the DPR. This is the ID of desired I2C bus.

2. Write byte “xxxxx110” to the CMDR. This is Set Bus command.

3. Wait for interrupt or until DON bit of CMDR reads '1'.

4. Write byte “xxxxx100” to the CMDR. This is Start command.

5. Wait for interrupt or until DON bit of CMDR reads '1'.

6. Write byte 0x44 to the DPR. This is the slave address 0x22 shifted 1 bit to the left +
rightmost bit = '0', which means writing.

7. Write byte “xxxxx001” to the CMDR. This is Write command.

8. Wait for interrupt or until DON bit of CMDR reads '1'. If instead of DON the NAK bit
is '1', then slave doesn't respond.

9. Write byte 0x78 to the DPR. This is the byte to be written.

10.Write byte “xxxxx001” to the CMDR. This is Write command.

11.Wait for interrupt or until DON bit of CMDR reads '1'.

12.Write byte “xxxxx101” to the CMDR. This is Stop command.

13.Wait for interrupt or until DON bit of CMDR reads '1'.

www.opencores.org 22 of 29

http://www.opencores.org/

 OpenCores I2C Multiple Bus Controller 05/26/16

6.4 Example 4
Task: Write a byte of data to an I2C memory device. Slave address = 0x23. Slave resides
on I2C bus #4. Memory location to write to = 0x9B. Byte of data to write = 0xEE.

System bus actions:

1. Write byte 0x04 to the DPR. This is the ID of desired I2C bus.

2. Write byte “xxxxx110” to the CMDR. This is Set Bus command.

3. Wait for interrupt or until DON bit of CMDR reads '1'.

4. Write byte “xxxxx100” to the CMDR. This is Start command.

5. Wait for interrupt or until DON bit of CMDR reads '1'.

6. Write byte 0x46 to the DPR. This is the slave address 0x23 shifted 1 bit to the left +
rightmost bit is '0' which means writing.

7. Write byte “xxxxx001” to the CMDR. This is Write command.

8. Wait for interrupt or until DON bit of CMDR reads '1'. If instead of DON the NAK bit
is '1', then slave doesn't respond.

9. Write byte 0x9B to the DPR. This is the memory location to write to.

10.Write byte “xxxxx001” to the CMDR. This is Write command.

11.Wait for interrupt or until DON bit of CMDR reads '1'.

12.Write byte 0xEE to the DPR. This is the byte of data to write.

13.Write byte “xxxxx001” to the CMDR. This is Write command.

14.Wait for interrupt or until DON bit of CMDR reads '1'.

15.Write byte “xxxxx101” to the CMDR. This is Stop command.

16.Wait for interrupt or until DON bit of CMDR reads '1'.

6.5 Example 5
Task: Read a byte of data from an I2C memory device. Slave address = 0x44. Slave re-
sides on I2C bus #1. Memory location to read from = 0xAA.

System bus actions:

1. Write byte 0x01 to the DPR. This is the ID of desired I2C bus.

2. Write byte “xxxxx110” to the CMDR. This is Set Bus command.

3. Wait for interrupt or until DON bit of CMDR reads '1'.

4. Write byte “xxxxx100” to the CMDR. This is Start command.

5. Wait for interrupt or until DON bit of CMDR reads '1'.

6. Write byte 0x88 to the DPR. This is the slave address 0x44 shifted 1 bit to the left +

www.opencores.org 23 of 29

http://www.opencores.org/

 OpenCores I2C Multiple Bus Controller 05/26/16

rightmost bit is '0' which means writing.

7. Write byte “xxxxx001” to the CMDR. This is Write command.

8. Wait for interrupt or until DON bit of CMDR reads '1'. If instead of DON the NAK bit
is '1', then slave doesn't respond.

9. Write byte 0xAA to the DPR. This is the memory location to read from.

10.Write byte “xxxxx001” to the CMDR. This is Write command.

11.Wait for interrupt or until DON bit of CMDR reads '1'.

12.Write byte “xxxxx100” to the CMDR. This is Start command (repeated start).

13.Wait for interrupt or until DON bit of CMDR reads '1'.

14.Write byte 0x89 to the DPR. This is the slave address 0x44 shifted 1 bit to the left +
rightmost bit is '1' which means reading.

15.Write byte “xxxxx001” to the CMDR. This is Write command.

16.Wait for interrupt or until DON bit of CMDR reads '1'.

17.Write byte “xxxxx011” to the CMDR. This is Read With Nak command.

18.Wait for interrupt or until DON bit of CMDR reads '1'.

19.Read DPR to get received byte of data.

20.Write byte “xxxxx101” to the CMDR. This is Stop command.

21.Wait for interrupt or until DON bit of CMDR reads '1'.

www.opencores.org 24 of 29

http://www.opencores.org/

 OpenCores I2C Multiple Bus Controller 05/26/16

7 Project Directory Structure

iicmb Project directory

doc Documentation directory

src Specification source files

iicmb_spec.odt

iicmb_spec.pdf Specification (this document)

src VHDL sources of the core

avalon_mm.vhd

bus_state.vhd

conditioner.vhd

conditioner_mux.vhd

filter.vhd

iicmb_int_pkg.vhd Package for internal definitions

iicmb_m.vhd

iicmb_m_am.vhd Top level (Avalon-MM version)

iicmb_m_sq.vhd Top level (Sequencer version)

iicmb_m_wb.vhd Top level (Wishbone version)

iicmb_pkg.vhd Global package

mbit.vhd

mbyte.vhd

regblock.vhd

sequencer.vhd

wishbone.vhd

src_tb VHDL sources of the test benches

iicmb_m_sq_arb_tb.vhd Testbench for the sequencer-based top level

iicmb_m_sq_tb.vhd Testbench for the sequencer-based top level

iicmb_m_tb.vhd Testbench for the iicmb_m.vhd module

iicmb_m_wb.vhd Testbench for the Wishbone-based top level

sim Simulation directory

software C code examples

www.opencores.org 25 of 29

http://www.opencores.org/

 OpenCores I2C Multiple Bus Controller 05/26/16

8 Hierarchy Of Modules
Hierarchy of modules with Wishbone top level:

iicmb_pkg.vhd

iicmb_int_pkg.vhd

iicmb_m_wb.vhd

wishbone.vhd

regblock.vhd

iicmb_m.vhd

mbyte.vhd

mbit.vhd

conditioner_mux.vhd

conditioner.vhd

filter.vhd

bus_state.vhd

Hierarchy of modules with Avalon-MM top level:

iicmb_pkg.vhd

iicmb_int_pkg.vhd

iicmb_m_av.vhd

avalon_mm.vhd

regblock.vhd

iicmb_m.vhd

mbyte.vhd

mbit.vhd

conditioner_mux.vhd

conditioner.vhd

filter.vhd

bus_state.vhd

www.opencores.org 26 of 29

http://www.opencores.org/

 OpenCores I2C Multiple Bus Controller 05/26/16

Hierarchy of modules with sequencer top level:

iicmb_pkg.vhd

iicmb_int_pkg.vhd

iicmb_m_sq.vhd

sequencer.vhd

iicmb_m.vhd

mbyte.vhd

mbit.vhd

conditioner_mux.vhd

conditioner.vhd

filter.vhd

bus_state.vhd

www.opencores.org 27 of 29

http://www.opencores.org/

 OpenCores I2C Multiple Bus Controller 05/26/16

9 Implementation Results

9.1 Setup 1
Top level module: iicmb_m_wb.vhd.

Number of I2C buses (g_num_bus) = 1.

System clock frequency (g_f_clk) = 100 MHz.

I2C bus clock frequency (g_f_scl_0) = 100 kHz.

Manufacturer Family Device Fmax Registers Logic

Altera Cyclone IV E EP4CE6E22C9L 130 MHz 172 463 LEs

Cyclone V GX 5CGXBC3B7F23C8 183 MHz 233 269 ALMs

MAX II EPM2210F324I5 85 MHz 172 465 LEs

Arria II GX EP2AGX45CU17C6 260 MHz 173 413 ALUTs

Arria V GZ 5AGZME1E3H29C4 455 MHz 236 269 ALMs

Stratix IV EP4SGX70DF29C4 350 MHz 173 409 ALUTs

Stratix V 5SGSMD3E3H29C4 434 MHz 230 269 ALMs

MAX 10 10M02DCU324C8G 173 MHz 172 462 LEs

Arria 10 10AS016C4U19E3LG 510 MHz 230 270 ALMs

Xilinx Spartan-3A xc3s50a-5tq144 141 MHz 167 414 LUTs

Spartan-6 xc6slx4-3tqg144 216 MHz 154 271 LUTs

Virtex-4 xc4vfx12-12-sf363 266 MHz 164 430 LUTs

Virtex-5 xc5vlx20t-2-ff323 289 MHz 164 344 LUTs

Virtex-6 xc6vcx75t-2-ff484 325 MHz 154 264 LUTs

Kintex-7 xc7k70t-3-fbg676 400 MHz 154 309 LUTs

Artix-7 xc7a100t-3-csg324 322 MHz 154 268 LUTs

Virtex-7 xc7vx330t-3-ffg1157 426 MHz 154 309 LUTs

www.opencores.org 28 of 29

http://www.opencores.org/

 OpenCores I2C Multiple Bus Controller 05/26/16

9.2 Setup 2
Top level module: iicmb_m_wb.vhd.

Number of I2C buses (g_num_bus) = 16.

System clock frequency (g_f_clk) = 100 MHz.

I2C bus clock frequencies:

g_f_scl_0 = 100 kHz, g_f_scl_1 = 120 kHz, g_f_scl_2 = 130 kHz, g_f_scl_3 =
200 kHz, g_f_scl_4 = 50 kHz, others = 30 kHz.

Manufacturer Family Device Fmax Registers Logic

Altera Cyclone IV E EP4CE6E22C9L 93 MHz 667 1520 LEs

Cyclone V GX 5CGXBC3B7F23C8 152 MHz 853 785 ALMs

MAX II EPM2210F324I5 68 MHz 667 1496 LEs

Arria II GX EP2AGX45CU17C6 234 MHz 677 1238 ALUTs

Arria V GZ 5AGZME1E3H29C4 330 MHz 803 784 ALMs

Stratix IV EP4SGX70DF29C4 290 MHz 667 1234 ALUTs

Stratix V 5SGSMD3E3H29C4 368 MHz 794 784 ALMs

MAX 10 10M02DCU324C8G 148 MHz 667 1516 LEs

Arria 10 10AS016C4U19E3LG 400 MHz 804 785 ALMs

Xilinx Spartan-3A xc3s50a-5tq144 154 MHz 641 999 LUTs

Spartan-6 xc6slx4-3tqg144 215 MHz 649 781 LUTs

Virtex-4 xc4vfx12-12-sf363 218 MHz 641 1005 LUTs

Virtex-5 xc5vlx20t-2-ff323 221 MHz 638 921 LUTs

Virtex-6 xc6vcx75t-2-ff484 290 MHz 649 757 LUTs

Kintex-7 xc7k70t-3-fbg676 355 MHz 649 875 LUTs

Artix-7 xc7a100t-3-csg324 292 MHz 649 765 LUTs

Virtex-7 xc7vx330t-3-ffg1157 364 MHz 649 873 LUTs

www.opencores.org 29 of 29

http://www.opencores.org/

	1 Introduction
	2 Architecture
	3 Operation
	3.1 Byte-level FSM
	3.2 Generic Interface
	3.3 Bit-level FSM

	4 Interfaces
	4.1 Parameters
	4.2 Wishbone Interface Signals
	4.3 Avalon-MM Interface Signals
	4.4 Sequencer Top Level Signals
	4.5 I2C Serial Lines
	4.6 Other Signals

	5 Registers
	5.1 Control/Status Register (CSR)
	5.2 Data/Parameter Register (DPR)
	5.3 Command Register (CMDR)
	5.4 FSM States Register (FSMR)

	6 Programming Examples
	6.1 Example 1
	6.2 Example 2
	6.3 Example 3
	6.4 Example 4
	6.5 Example 5

	7 Project Directory Structure
	8 Hierarchy Of Modules
	9 Implementation Results
	9.1 Setup 1
	9.2 Setup 2

