
A Guide to PERL ILOG

Eli Billauer
elib@flextronics.co.il

November 11, 2003

This guide applies to version 0.3 (beta) of PERLILOG .

Copyright c© 2003, Eli Billauer.

Permission is granted to copy, distribute and/or modify this document under the terms
of the GNU Free Documentation License, Version 1.2 or any later version published
by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts,

and no Back-Cover Texts. A copy of the license is included in Appendix A.

Eli Billauer elib@flextronics.co.il

Contents

1 Introduction 10
1.1 PERLILOG in a nutshell . 10

1.1.1 What is PERLILOG ? . 10
1.1.2 Bye bye Verilog? . 10
1.1.3 Status of the project . 11
1.1.4 Other usability . 11

1.2 What’s PERLILOG ? A broader look . 11
1.3 How PERLILOG is used . 12
1.4 The key features of PERLILOG . 13
1.5 About the project . 14
1.6 About the author . 14
1.7 Acknowledgements . 15
1.8 This guide’s outline . 15

2 A jump into the water 17
2.1 A jump into what? . 17
2.2 Installing and running PERLILOG . 17

2.2.1 Automatic installation . 17
2.2.2 Manual installation . 18

2.3 First example: A simple connection . 19
2.3.1 The template files . 19
2.3.2 The Perl script . 20
2.3.3 The output Verilog files . 21
2.3.4 Ports and interface . 23
2.3.5 “via” wires . 24
2.3.6 The Silos project file output . 25
2.3.7 Two files instead of three . 25

2.4 Other examples: Wishbone connections 27
2.4.1 Purpose . 27
2.4.2 A simple master-slave connection 27
2.4.3 Connecting three Wishbone ports 30
2.4.4 Multiple instances of the same module 32
2.4.5 Mapping a non-Wishbone port to the bus 33
2.4.6 Non-Wishbone port: A nicer example 36

2.5 Last example: Embedded Perl code . 39
2.5.1 The main script . 39
2.5.2 The template file . 40

3 Template objects 43
3.1 About this section . 43
3.2 How it works . 43
3.3 What to expect from template objects 44
3.4 A template object as an object . 45
3.5 Variable declarations . 45

A Guide to PERLILOG 2

Eli Billauer elib@flextronics.co.il

3.5.1 Same syntax, different meaning 45
3.5.2 Undeclared bit range [:] . 46
3.5.3 Verilog input and output . 46
3.5.4 wire and iwire . 47
3.5.5 Variable rules summary . 47
3.5.6 simple rom.pt revisited . 47

3.6 Declaring ports . 48
3.7 Embedded Perl . 49

3.7.1 How it works . 49
3.7.2 perl or perlonload? . 50
3.7.3 Rules for writing embedded scripts 50

3.8 Importing prewritten modules . 51
3.8.1 Verilog compatability . 51
3.8.2 The Verilog module declaration 51
3.8.3 Unhandled Verilog variables . 52
3.8.4 Verilog task and function . 52
3.8.5 Comments in Verilog . 53

4 Writing main scripts 54
4.1 Introduction . 54
4.2 The init() call . 54
4.3 The object dumper . 55

5 PERL ILOG objects 56
5.1 Background . 56
5.2 An example . 56
5.3 Properties . 57

5.3.1 The basics . 57
5.3.2 Property names . 58
5.3.3 Undefs and empty lists . 58
5.3.4 More about constant properties 59
5.3.5 “Magic” callbacks . 60
5.3.6 The property path . 61
5.3.7 Methods for lists . 62

5.4 Creating and using objects . 62
5.4.1 The formalilties . 62
5.4.2 An example . 62
5.4.3 Property paths in new . 63
5.4.4 Common object types . 63
5.4.5 The global object . 64

6 Creating code-generating classes 65
6.1 How this section is organized . 65
6.2 Overview . 66

6.2.1 What’s a code generating class? 66
6.2.2 Why bother learning this . 66

A Guide to PERLILOG 3

Eli Billauer elib@flextronics.co.il

6.2.3 PERLILOG objects and Verilog code 67
6.2.4 Instantiation and the object tree 67

6.3 An example . 67
6.4 Classes and inheritance . 71

6.4.1 Source files and classes . 71
6.4.2 The phases of the object system 72
6.4.3 Class definition . 73
6.4.4 “Normal” methods . 74
6.4.5 Methods overriding new . 75
6.4.6 The autoloading mechanism . 76
6.4.7 The built-in class tree . 76
6.4.8 PERLILOG objects vs. plain Perl objects 77

6.5 The execution stages . 78
6.5.1 The concept . 78
6.5.2 The methods called . 79

6.6 Useful methods . 80
6.7 PERLILOG variables and Verilog variables 81

6.7.1 Introduction . 81
6.7.2 Identifying a variable in PERLILOG 81
6.7.3 Variable drive and connection . 82
6.7.4 Connecting variables with attach() 83
6.7.5 The variable’s attributes . 84
6.7.6 attach() and the dim property 86
6.7.7 Creating new variables . 86

6.8 Automatic vs. explicit instantiation . 87
6.8.1 Instantiation in general . 87
6.8.2 Explicit instantiation . 87

6.9 Static objects . 88
6.9.1 What it is . 88
6.9.2 How to instantiate static objects 88
6.9.3 Variables of static objects . 89
6.9.4 Example of using a static object 89
6.9.5 Making a static ROM class . 91

6.10 Error reporting . 91
6.10.1 Some philosophy . 91
6.10.2 The list of functions . 92
6.10.3 “Hidden” classes . 93

6.11 Summary: How to write classes properly 93

7 Ports and creating interface classes 95
7.1 PERLILOG ports . 95

7.1.1 An overview of ports . 95
7.1.2 What ports must be . 96
7.1.3 The labels property . 96
7.1.4 New ports classes . 97

7.2 Interface classes overview . 98

A Guide to PERLILOG 4

Eli Billauer elib@flextronics.co.il

7.2.1 General . 98
7.2.2 Approaching interface objects . 98
7.2.3 Assumptions to start with . 98
7.2.4 The Perl snippets presented . 99

7.3 The vars2vars class in detail . 99
7.3.1 Example revisited . 99
7.3.2 The attempt() method . 100
7.3.3 The nick property . 101
7.3.4 The generate method . 101
7.3.5 The labelID() method . 101
7.3.6 Doing the actual work . 102

7.4 The wbsimple class . 103
7.5 The vars2wbm class . 104

7.5.1 A more complex attempt() . 104
7.5.2 A call to intobjects() . 105
7.5.3 Whose port is this anyway? . 107
7.5.4 The whereto() method . 108
7.5.5 Creating new variables . 108
7.5.6 Setting up the labels property 109
7.5.7 The rest of the class . 109
7.5.8 The IDvar() method . 110
7.5.9 The copyvar() method . 110
7.5.10 codetargets() and whereto() 111

7.6 Two examples revisited . 112
7.7 The wbsingmaster class . 115

7.7.1 The attempt() method . 115
7.7.2 The generate() method . 118
7.7.3 Setting up the slave port . 118
7.7.4 Retrieving bit range . 119
7.7.5 Some initializations . 120
7.7.6 The main loop . 121
7.7.7 The mates property . 121
7.7.8 Creating the slave selector . 122
7.7.9 Variables and samedim() . 122
7.7.10 Slave-specific Verilog code . 123
7.7.11 Setting up labels . 124
7.7.12 Grand finale . 124
7.7.13 What we didn’t have in this class 124

7.8 The elements of an interface class . 125
7.8.1 The common methods . 125
7.8.2 The elements of the attempt() method 125
7.8.3 The elements of the generate() method 126

7.9 How PERLILOG uses interface classes 127
7.9.1 Registration of interface classes 127
7.9.2 Quering order of interface classes 127
7.9.3 interface() vs. intobjects() 128

A Guide to PERLILOG 5

Eli Billauer elib@flextronics.co.il

7.9.4 intobjects() and recursive calls 128
7.10 Transient objects . 129

7.10.1 Why transient objects . 129
7.10.2 How it works . 130
7.10.3 Guidelines for correct code . 131
7.10.4 The sustain() method . 131

7.11 Advanced issues . 132
7.11.1 Dispatch classes . 132
7.11.2 Static objects in interface objects 133
7.11.3 Objects that don’t generate files 134

8 PERL ILOG main script API 136
8.1 Exported subroutines . 136

8.1.1 The exported subroutine init() 136
8.1.2 The exported subroutine inherit() 136
8.1.3 The exported subroutine inheritdir() 138
8.1.4 The exported subroutine override() 139
8.1.5 The exported subroutine underride() 140
8.1.6 The exported subroutine definedclass() 141
8.1.7 The exported subroutine globalobj() 142
8.1.8 The exported subroutine execute() 142
8.1.9 The exported subroutine interfaceclass() 142

8.2 The global variables . 143
8.2.1 The variable $VERSION . 143
8.2.2 The variable $globalobject . 143
8.2.3 The variable %classes . 143
8.2.4 The variable %objects . 143
8.2.5 The variable @VARS . 144
8.2.6 The variable @EQVARS . 144
8.2.7 The variable @interface classes 144
8.2.8 The variable $interface rec . 144

9 The root class API 145
9.1 Methods . 145

9.1.1 The method new() . 145
9.1.2 The method set() . 145
9.1.3 The method get() . 146
9.1.4 The method const() . 148
9.1.5 The method globalobj() . 149
9.1.6 The method who() . 150
9.1.7 The method safewho() . 150
9.1.8 The method isobject() . 151
9.1.9 The method objbyname() . 152
9.1.10 The method objdump() . 153
9.1.11 The method suggestname() . 154
9.1.12 The method addmagic() . 155

A Guide to PERLILOG 6

Eli Billauer elib@flextronics.co.il

9.1.13 The method seteq() . 157
9.1.14 The method registerobject() 159
9.1.15 The method pshift() . 159
9.1.16 The method ppop() . 160
9.1.17 The method punshift() . 160
9.1.18 The method ppush() . 161
9.1.19 The method addchild() . 162
9.1.20 The method prettyval() . 162
9.1.21 The method linebreak() . 163
9.1.22 The method treestudy() . 164

9.2 Properties . 164
9.2.1 The property name . 164
9.2.2 The property parent . 164
9.2.3 The property children . 165
9.2.4 The property nick . 165
9.2.5 The property perlilog-transient 166
9.2.6 The property treepath . 166

10 The code generating class API 168
10.1 Methods . 168

10.1.1 The method varwho() . 168
10.1.2 The method attach() . 168
10.1.3 The method IDvar() . 169
10.1.4 The method getID() . 169
10.1.5 The method samedim() . 170
10.1.6 The method getport() . 170
10.1.7 The method labelID() . 171
10.1.8 The method whereto() . 172

11 The Verilog class API 173
11.1 Methods . 173

11.1.1 The method suggestvar() . 173
11.1.2 The method addvar() . 173
11.1.3 The method namevar() . 175
11.1.4 The method copyvar() . 176
11.1.5 The method suggestins() . 176
11.1.6 The method addins() . 177
11.1.7 The method equivalent() . 178
11.1.8 The method ontop() . 178
11.1.9 The method append() . 179

11.2 Properties . 179
11.2.1 The property vars . 179
11.2.2 The property varslist . 180
11.2.3 The property verilog . 180
11.2.4 The property vfile . 180
11.2.5 The property static . 181

A Guide to PERLILOG 7

Eli Billauer elib@flextronics.co.il

11.2.6 The property viasource . 181
11.2.7 The property perlilog-no-file 181

12 The global object’s API 182
12.1 Methods . 182

12.1.1 The method execute() . 182
12.2 Properties . 182

12.2.1 The property filesdir . 182
12.2.2 The property vfiles . 182
12.2.3 The property system . 183
12.2.4 The property MAX INTERFACE REC 183

13 Port and interface object’s properties 184
13.1 Port object properties . 184

13.1.1 The property labels . 184
13.1.2 The property mates . 184

13.2 Interface object properties . 184
13.2.1 The property perlilog-ports-to-connect 184

A GNU FDL license 185
A.0 PREAMBLE . 185
A.1 APPLICABILITY AND DEFINITIONS . 185
A.2 VERBATIM COPYING . 187
A.3 COPYING IN QUANTITY . 187
A.4 MODIFICATIONS . 188
A.5 COMBINING DOCUMENTS . 190
A.6 COLLECTIONS OF DOCUMENTS . 190
A.7 AGGREGATION WITH INDEPENDENT WORKS 191
A.8 TRANSLATION . 191
A.9 TERMINATION . 191
A.10 FUTURE REVISIONS OF THIS LICENSE 192

B To Do 193
B.1 Core issues . 193

B.1.1 File generation condition . 193
B.1.2 AUTOLOAD caching . 193

B.2 Complete the half-made . 193
B.2.1 The error messages . 193
B.2.2 Nicks and names . 193
B.2.3 Instance names in template objects 194

B.3 System management . 194
B.3.1 Run options . 194

B.4 User Interface . 194
B.4.1 Deleting files . 194
B.4.2 GUI tool . 194
B.4.3 Self-doc . 194

A Guide to PERLILOG 8

Eli Billauer elib@flextronics.co.il

B.5 Debug tools . 194
B.5.1 Error trace . 194
B.5.2 All class loader . 195

A Guide to PERLILOG 9

Eli Billauer elib@flextronics.co.il

1 Introduction

1.1 PERL ILOG in a nutshell

1.1.1 What is PERL ILOG ?

PERLILOG is a design tool, whose main target is easy integration of Verilog IP cores.

The philosophy behind Perilog is that an IP core should be like a black box. Fitting it for
a certain purpose should be as easy as defining the desired requirements. Connect-
ing the cores, to become a system, should be as easy as drawing a block diagram.

With plain Verilog, the reality couldn’t be further away. But by using PERLILOG cor-
rectly, integration can be that simple.

PERLILOG introduces a new meaning to “IP core”. It also introduces a different way
to approaching the task of interfacing cores with each other.

PERLILOG was built to make core programming and integration intuitive tasks. As
such, it is based on new, rather natural concepts, which one must get used to in order
to gain the most of the tool.

PERLILOG is written in Perl, currently with no GUI. While the scripts, that the system
consists of, are rather sophisticated, only plain Perl knowledge is needed to use its
scripting capabilities.

1.1.2 Bye bye Verilog?

Absolutely not. Verilog is still the language to define the functionality of the core. The
final output of a design, which incorporates PERLILOG , is perfectly normal Verilog
files.

PERLILOG will do the following tasks instead of you:

• Instantiation of modules

• Connection between modules

• Setting up modules’ attributes (word width, address mapping on buses etc.)

A Guide to PERLILOG 10

Eli Billauer elib@flextronics.co.il

1.1.3 Status of the project

The current version is as a release for developers. If PERLILOG was an operating
system, it would be declared as crashing rarely, but having few applications. In other
words, PERLILOG works well, but still lacks script pieces, which makes it directly
useful to connect real-life cores.

The project comes with a guide, which includes all knowledge needed to enrich the
tool, so it can connect real-life IP cores as promised above.

1.1.4 Other usability

Aside from its main purpose, PERLILOG can be used an excellent starting point for
writing various scripts, that manipulate Verilog modules.

1.2 What’s PERL ILOG ? A broader look

We’ll begin with what it’s not: It’s not a new language, and it doesn’t come instead of
either Perl or Verilog.

A Perl programmer will come up with the quickest answer: It’s a Perl module. A Verilog
HDL programmer may consider it as a scripting extension of good old Verilog.

And the truth lies somewhere in the middle: PERLILOG is a mixture, both in syntax
and in spirit, of these two languages.

The interesting part is the mixture in spirits. Perl programming is natural and intuitive,
while Verilog can be very technical. The main idea behind PERLILOG , is to free the
HDL programmer from those moments, in which the human functions like a machine.
One of the concepts that was highly adopted, was that an environment is made for
humans and not for computers. This means that the language should be closer to
how humans see things, than how they are actually working in the computer.

Using PERLILOG does not mean leaving the Verilog tools you’re familiar with, or
throwing away your Verilog coding skills. On the contrary. PERLILOG is something
you run on a bunch of files you’ve written, some of which are very similar to plain
Verilog, and get a set of Verilog files to feed your Verilog simulator or synthesizer with.
If you want, it can be seen as a compiler from some loosely defined language to strict
Verilog.

Unlike Perl, HDL programming is targeted towards efficiency, which can’t be compro-
mised in any HDL environment. Neither is there any tolerance for bugs in ASIC de-
signs. PERLILOG was designed with thought of helping the human to avoid both lack
of efficiency and buggy code. Much of this help comes from dismissing the program-
mer from performing boring tasks. A bored programmer is a dangerous programmer.

But like Perl, the only way to understand why it’s different, is to learn it. The plain Perl

A Guide to PERLILOG 11

Eli Billauer elib@flextronics.co.il

language looks ugly and obscure until you get the hang of it – there is no way to know
how powerful it is without using it. PERLILOG can’t really be explained in a few words
either. Like Perl, its strength lies in its spirit.

1.3 How PERL ILOG is used

Figure 1 depicts the data flow using PERLILOG . To begin with, we note that the
final target of the process is plain Verilog files, which can be fed into the well-known
simulators or synthesizers with no hassle at all.

These target Verilog files are a complete system, which comprises of several IP cores.
What PERLILOG did, was to glue a group of cores (or just Verilog modules) into
this system. This effort involved connecting the cores, and setting them up to work
together.

The actual execution of a PERLILOG process, is running a Perl script, which uses the
PERLILOG module (by literally saying use Perlilog). This main script is in general
straightforward to write. Its function is to describe how the cores are related to each
other, and set up their attributes.

The cores can be given to PERLILOG in several ways, which can be divided into two
forms: Writing Verilog-like files, or writing small Perl scripts.

Writing Verilog-like files includes the possibility to use existing Verilog code without

Perl running
main script

Verilog-like
files

Small Perl
scripts

Perlilog
environment

Verilog
files

Figure 1: Data flow with PERLILOG

A Guide to PERLILOG 12

Eli Billauer elib@flextronics.co.il

needing to change a single line of it, but there are several advantages in making slight
adaptions to PERLILOG . Once the principles are known, this is a quick and rewarding
process.

Creating a core as a Perl script is preferred when the we want the Verilog code to be
primarily created by a Perl script. This is an advanced feature, which we discuss later
on.

All in all, PERLILOG is primarily an integration tool. It is intended to make reuse and
integration of cores as simple as drawing the targeted system’s block diagram.

1.4 The key features of PERL ILOG

This is an attempt to summarize some goodies about PERLILOG :

• Easy connection of IP cores: Instead of connecting the cores in Verilog instantia-
tion, wire by wire, PERLILOG allows to group wires and classify this group. This
means not only that possible confusion of which wire goes to which is avoided,
but also that misunderstandings of the wires’ definitions are spared.

• Reusability of cores: Many cores, especially those who fit the category of “pe-
ripherals” can be written independently of the bus that they are going to be
mapped to.

• The interfacing between cores, even if it’s complicated, can be done automati-
cally by prewritten and well-tested scripts. Bus controllers can be upgraded and
configured separately, by simple means.

• Teamwork: PERLILOG IP cores are easy to encapsulate for trivial use by oth-
ers. In fact, highly skilled programmers may create cores, that less advanced
personell may integrate into a system.

• Easy configurability: IP cores fit in as objects in an object-oriented environment,
and can be configured by virtue of the object’s properties. This, together with
simple Perl scripting, allows the IP core to be configured by attributes that hu-
mans understand. Since Perl scripts interpret the properties, sanity checks are
easy to perform. In addition, one single property may affect several aspects of
the Verilog code, in ways that are very difficult to achieve with Verilog compiler
directives.

• Configuration files for simulators and synthesizers, as well as reports are easy
to generate in PERLILOG .

• The environment is easily customized to meet specific needs. It’s easy to add
extra scripts to make slight changes in an already functioning design.

• Once the system is adapted by some design group, and is up and running for
a while, it’s easy for someone new to get started with it (a new employee, for
example). No need to be an expert to use the system.

A Guide to PERLILOG 13

Eli Billauer elib@flextronics.co.il

• PERLILOG is GUI-ready in the sense that a GUI-based application will interface
naturally with PERLILOG , and that the concept of the environment are easily
depicted in graphics.

The word “easy” appears a lot of times, and after trying to do a few things with
PERLILOG I stand behind every one of these.

The real difficulty is to get used to the concepts that makes it all this easy. And at this
first stage, the scripts that make this all move are not written yet.

So getting started is a difficult, but yet rewarding process.

1.5 About the project

The idea of creating another way to write Verilog cores came after writing an IP core,
which was to become part of a larger project at Flextronics Semiconductors. The core
itself was signal-processing oriented, but I found myself dealing far too much with how
my core should interface with the whole project’s main bus. All this core really needed
was to have a few registers set up, and some data coming in, and there I was learning
the exact rules of the bus interface.

And what if that bus wouldn’t be good for the next project? Will I be asked to learn
a new bus? Will someone else play with my code? Why can’t a core be bus-
independent? Why are we wasting so much effort on connecting cores to a bus,
when this task is theoretically simple?

I discovered that there were a few Perl scripts here and there that wrote Verilog for
different purposes, but they were all very specific for a special task. And they were
hard to maintain, because they were written like Perl scripts usually are.

The main problem with those Perl scripts, was that they were written from scratch
every time, and usually with a very certain task in mind. PERLILOG was originally
thought of some library that would make it easy to write smarter scripts for manipulat-
ing Verilog. But the idea went further.

The project started at about January 2002, and I’ve been on and off it for a year now.
I’ve receieved a lot of help and support from Flextronics Semiconductors during this
work, and the project is deeply affected by them and the people who work there.

1.6 About the author

Eli Billauer was born in 1971, in the Israeli city Haifa, where he lives today, and works
as a freelancer (recently taken picture to the right).

He received his B. Sc. in Electrical Engineering (Summa Cum Laude) in 1993 at
the Technion, Haifa. He spent the six following years as a development engineer in
a well-established hi-tec environment. During these years he was fortunate enough

A Guide to PERLILOG 14

Eli Billauer elib@flextronics.co.il

to gain experience in various fields of his profession. The main focus was on digital
communication and signal processing, with MATLAB and DSP programming as the
primary tools, but he was keen to learn any new field, as required. The result was
knowledge in diverse subjects, such as RF on one hand, and Internet protocols on
the other.

He has one year and a half of experience in managing and lead-
ing a project, which had a core of 4 engineers, and several other
members for various tasks of shorter terms.

He is a freelancer since year 2000, as which he’s taken projects in
various fields, such as writing DSP code for GSM Layer I, signal
processing of motion-detecting optical sensors, and a Sigma-Delta
modulator for audio frequencies.

It was due to the last mentioned project that he learned Verilog.

Eli installed Linux on his home computer in 1998, and has been a Linux fan since. He
learned Perl at about this time, originally in order to create a web site.

He is a proud member of Haifux, the Linux club of Haifa.

More information, other projects and his detailed Curriculum Vitae can be found at his
personal website: http://www.billauer.co.il.

1.7 Acknowledgements

This project would not exist without the warm support of Flextronics Semiconductors
in Israel, and Dan Gunders in particular. Lior Shtram made the connection between
me and Flextronics, so I owe him thanks as well.

Erez Volk opened my eyes by introducing me to the wonderful world of GNU and
Linux. He is also responsible for my first encounter with Perl.

Thanks to Guy Keren for many lectures in Haifux, during which he shared his wisdom
and knowledge. Without being aware of it, he inspired PERLILOG in many ways.

And Larry Wall created this magic named Perl. We all owe him, I think.

1.8 This guide’s outline

This is a guide, not a reference manual.

Meaning, that the information is not organized by topic, but in an order which is sen-
sible to learn by. Still, the sections are heavily cross-referenced to allow a quick jump
to related issues, so it should be fairly easy to find specific information.

Sections 2 and 3 teach how to use PERLILOG in its simplest way – with template files.
This is what you need to know if you know Verilog and some basic Perl, and you’d like
to use PERLILOG to connect modules.

This section will show examples, and the next one completes the examples with some

A Guide to PERLILOG 15

Eli Billauer elib@flextronics.co.il

insight about what really happened. Reading and understanding the examples will
probably be enough to try a few things of your own.

Section 4 is short, and gives a few tips for using the environment a bit better.

Next, section 5 explains how objects are used in PERLILOG . This is another stage
in understanding what actually happens in the system, and it opens some additional
possibilities.

And here comes the turnpoint. Sections 6 and 7 teach how to enrich PERLILOG . This
means knowing how to write new classes (which generate objects) and then how to
write classes that connect modules in interesting ways. It does not require to read the
source of PERLILOG or anything like that, but a good feeling of the ideas, on which it
is based, is nothing you can do without at this stage. Once the ideas are clear, writing
classes is really easy.

After that, we have several sections which are written as an API reference but unlike
the classic way of writing references, there are plently of usage examples there too,
so it’s possible to understand something from that part as well.

At the time of writing this, PERLILOG has very few classes, which makes it far less
useful than it can be. My hope is that others (you?) will enrich the system with some
real-life classes, which will make it a powerful tool as it can be.

A Guide to PERLILOG 16

Eli Billauer elib@flextronics.co.il

2 A jump into the water

2.1 A jump into what?

PERLILOG is very Perlish. That means, among others, that if you read some code
written PERLILOG , you’ll probably get a good idea about what the whole thing is
about.

This is the reason why we begin with several examples. Actually, trying to explain the
ideas behind PERLILOG without seeing examples first would make this guide look like
an academic paper. And be as hard to read.

The examples do not respresent the abilities of PERLILOG , but rather demonstrate
a few concepts. They should be viewed merely as a slow drive in the parking lot, but
they are nevertheless a crucial element of this guide.

Slow drive or not, this is what the examples are going to show:

• A connection of several wires in one chunk

• Wishbone SoC bus master and slave connection

• Connecting two Wishbone bus slaves with one master, without needing to write
the bus controller

• Connecting a module, with no bus interface logic, to a Wishbone bus

• A module with embedded Perl script, which writes parts of the Verilog

But the examples are not enough. Following conventions is very important in
PERLILOG , because it’s an environment where many people’s code melt together.
Writing code that works is nice, but if wasn’t written according to some rules it will
soon make trouble.

2.2 Installing and running PERL ILOG

2.2.1 Automatic installation

PERLILOG was written under ActivePerl 5.6.1, but should work properly on any Perl
version above 5.004.

A Guide to PERLILOG 17

Eli Billauer elib@flextronics.co.il

PERLILOG can be installed as any CPAN Perl module. Simply uncompress
perlilog-xx.tar.gz into a local directory, and perform the following commands at
prompt:

perl Makefile.PL
make
make install

Note that you must be superuser (root) to perform make install.

2.2.2 Manual installation

There are several cases in which the automatic installation is not possible. The com-
mon ones are lack of GNU make (on non-UNIX systems) or lack of enough priviliges
on the computer to install the files. Since the automatic installation procedure is so
simple, it’s always recommended to try it before installing manually.

Manual installation is performed by copying the files and directories in the lib subdi-
rectory to any directory, but preferably to one of the directories that appear in @INC, as
can be shown with

perl -e "print join ’,’, @INC"

Note, that in any case, the lib directory itself is not copied, but its content.

If the files are installed in one of the @INC directories, the command line for running
Perl will be shorter, and the following guidelines are recommended:

• A directory path, in which the word site appears somehow, is usually preferred,
just to keep the files organized in your system.

• If the computer has multiple users, the files should be owned by the superuser
or the administrator, and should be read-only to regular users (this is a regular
security measure).

After putting the files in some directory, the following command can be used to run
scripts (may depend on your Perl flavor). We’ve taken try1.pl as the example of the
script to run:

• perl -w try1.pl if the installation was done into one of the directories men-
tioned in @INC.

• perl -w -IC:\perlilog try1.pl on Windows-based systems, assuming that
Perlilog.pm and the subdirectories were put in C:\perlilog\.

• perl -w -I/home/myself/perlilog try1.pl on UNIX/Linux sys-
tems, assuming that Perlilog.pm and the subdirectories were put in
/home/myself/perlilog/.

A Guide to PERLILOG 18

Eli Billauer elib@flextronics.co.il

The -w flag is recommended, since it makes Perl supply warnings if something looks
bad.

2.3 First example: A simple connection

2.3.1 The template files

We now see the first example of a trivial connection between two modules. There are
three files involved, which can be found in the examples/ex1 directory.

The first file, myff.pt is:

port ffport vars clk:clock, rst:reset, d:data, q:register;

module myff_template(clock, reset, data, register);
input clock, reset, data;
output register;

reg register;

always @(posedge clock or posedge reset)
if (reset)

register <= #1 0;
else

register <= #1 data;
endmodule

The .pt extension stands for “PERLILOG template”.

Except for the first line, this is no more than a Verilog implementation of a D-flipflop.
The port declaration in the first line will be discussed later on. We now look on the
second file, mytest.pt:

port testport vars clk:clk, rst:rst, d:d, q:q;

module mytest_template(clk, rst, d, q);
input q;
output clk, rst, d;
reg clk, rst;

always #5 clk = ~clk;

assign d = ~q;

initial

A Guide to PERLILOG 19

Eli Billauer elib@flextronics.co.il

begin
clk = 0; rst = 0;

#1; rst = 1;
#1; rst = 0;

repeat (100) @(posedge clk);
$stop;

end
endmodule

Again, we have something familiar, except for the first line. This time it’s a basic
stimulus generator (some will call this a test bench).

2.3.2 The Perl script

We now view a Perl script, which connects these two modules. It’s in try1.pl:

use Perlilog;
init;

$top = verilog->new(name => ’top’);

$ff = template->new(name => ’flipflop’,
tfile => ’myff.pt’,
parent => $top);

$test = template->new(name => ’test’,
tfile => ’mytest.pt’,
parent => $top);

interface($ff->getport(’ffport’), $test->getport(’testport’));

execute;

silos->new(name => ’silos_configfile_creator’)->makesilosfile;

The script begins with use Perlilog which activates the PERLILOG module. The
init command means that we’ve finished extra configurations (none), and the system
may initialize.

Next we create an object of class verilog, give it the name top, and put its handle in
$top. As we shall see later on, this will result in a Verilog module, named top and put
in a file named top.v.

A Guide to PERLILOG 20

Eli Billauer elib@flextronics.co.il

As a matter of fact, the name => ’top’ in the declaration actually means that the name
property should have the string value top. In general, => pairs mean initial values of
properties when we call the new() method.

Now we create two other objects, both of class template, which is a class derived from
verilog. The first class is given the name flipflop, and is assigned the template
file myff.pt, which we saw earlier. This will end up with a Verilog module named
flipflop in flipflop.v, which will look very much like myff.pt.

In quite a similar way, will we have a module named test, which will look like
mytest.pt.

Both of these objects have the parent property set to $top which is the handle of the
first object we generated. This will result in both of these object being instantiated in
the first object. Figure 2 depicts the relation between the objects.

The next line, which is the interface() call is where we connect between these two
modules. It will be explained in section 2.3.4.

The execute command that follows kicks off the generation of Verilog code, along with
almost any other task that needs to be performed. In fact, all we did until this point
was to prepare the environment for execution. It’s only when we reached this point,
that something really happens.

Even so, we’re left with a small post-execution task, which is done in the last line of
the script: We generate another object, of class silos, and call its makesilosfile()
method. This will create a project file for Silos III, which makes it easy to use this
simulator. More about this in section 2.3.6.

2.3.3 The output Verilog files

As a result of running the Perl script above, a new directory, PLverilog is generated
(if it existed already, it was deleted along with anything in it – beware).

Three Verilog files are generated, and one Silos .prj file.

We shall now view each of them. We start with flipflop.v:

top

flipflop test

top

flipflop test

Figure 2: Instantiation tree (left) and module illustration (right)

A Guide to PERLILOG 21

Eli Billauer elib@flextronics.co.il

‘timescale 1ns / 10ps

module flipflop(clock, reset, data, register);

input clock;
input reset;
input data;
output register;
reg register;

always @(posedge clock or posedge reset)
if (reset)

register <= #1 0;
else

register <= #1 data;

endmodule

We see that the module has changed name, and that there are some cosmetical
changes in the declaration part of the module. Nothing interesting here. Same thing
with test.v:

‘timescale 1ns / 10ps

module test(q, clk, rst, d);

input q;
output clk;
output rst;
output d;
reg clk;
reg rst;

always #5 clk = ~clk;

assign d = ~q;

initial
begin

clk = 0; rst = 0;

#1; rst = 1;
#1; rst = 0;

repeat (100) @(posedge clk);
$stop;

A Guide to PERLILOG 22

Eli Billauer elib@flextronics.co.il

end

endmodule

So let’s have a look on the on top.v:

‘timescale 1ns / 10ps

module top;

wire clk_via;
wire rst_via;
wire d_via;
wire register_via;

flipflop flipflop_ins(.clock(clk_via), .reset(rst_via), .data(d_via),
.register(register_via));

test test_ins(.q(register_via), .clk(clk_via), .rst(rst_via), .d(d_via));

endmodule

This module is interesting for the simple reason that it was generated automatically.
The two modules were instantiated, and four Verilog wires were created to connect
them. Surprisingly enough, the connection between the modules makes sense. We
now explain how PERLILOG knew how to connect these modules.

2.3.4 Ports and interface

We now go back to the template files, and look on the first line of each. In myff.pt we
had:

port ffport vars clk:clock, rst:reset, d:data, q:register;

This line declared a PERLILOG port. It is given the name ffport and is of type vars.
Then we have a list of pairings between labels and their respective variables.

The best way to understand ports is to imagine them as electrical connectors, that you
plug into your computer, for example. The port’s type is like the physical format of the
connector, and that tells you what kind of adaptor you need to connect with another
connector.

Each of the Verilog wires (or registers) are labeled with a name, which is like we put
a label on each of the wires of the connector, describing what function the wire has.
We disregard the fact that a Verilog wire or register can have more than one bit – it’s
a wire to us.

A Guide to PERLILOG 23

Eli Billauer elib@flextronics.co.il

In the port above, we have four labels: clk, rst, d and q, each of them is associated
with a Verilog wire or register in the current Verilog module.

Finally, the name (ffport) is just the identifier of the entire port (connector?) so we
can relate to it in the Perl script.

Now to the port declaration in mytest.pt:

port testport vars clk:clk, rst:rst, d:d, q:q;

This is very similar to the one in myff.pt, only the port’s name is different, and the
names of Verilog wires and registers are different (they relate to the Verilog module of
mytest.pt).

Note that the labels themselves are exactly the same on the two ports. This is how
PERLILOG knows what to connect with what.

Generally, the vars type of port is the simplest kind. It’s used to take some wires and
registers, view them as a group, and give each an arbitrarily named label. When two
vars ports are interfaced, wires and registers with the same label are connected. We
shall see later on how interconnection can be made much smarter.

We now get to the line we didn’t explain in the Perl script,

interface($ff->getport(’ffport’), $test->getport(’testport’));

The expression $ff -> getport(’ffport’) is a request from the flip-flop object
(whose handle is kept in $ff) to give us the handle of its port, named ffport. Do-
ing the same with testport, we have two handles of ports, which we pass to the
interface() routine.

This is actually the point where we ask the system to “connect” the two ports, or if you
like, to get the plug and jacket together.

Note that we can interface any ports from any modules, regardless of where they are
instantiated.

2.3.5 “via” wires

The modules flipflop and test are not directly connected, but are both instantiated
in the top module. But as a result of the connection of ffport with testport, wires
need to be drawn between the two modules. This can only be done by creating extra
wires in top. These are called via wires, or vias.

In this case, PERLILOG generated clk_via, rst_via, d_via and register_via in
top.v.

The _via suffix marks the wires as vias. If better control of the names is desired, the
viasource property can be set. See section 11.2.6.

A Guide to PERLILOG 24

Eli Billauer elib@flextronics.co.il

2.3.6 The Silos project file output

We finish this example with showing the Silos project file, perlilog.spj:

[Files]
0=top.v
1=flipflop.v
2=test.v

[Settings]
Mode=Debug

The nice thing about this file is that when we give it to the Silos III simulator, we’re
ready to run a simulation right away. In other words, the PERLILOG environment
prepared a file with all the Verilog files listed in it, so the human user doesn’t need to
bother which Verilog files were generated.

This demonstrates the possibility to generate configuration files and scripts to go along
with the Verilog files automatically. The Perl language is highly suitable for this kind of
task, and the relevant data is easy to access within the PERLILOG environment.

2.3.7 Two files instead of three

A small variant of the previous example, is to instantiate the flip-flop module in the
test bench module, rather than having them both instantiated in a common top-level
module.

To do this, we only change the Perl script slightly. We don’t generate a top object, and
we choose the test object as the flip-flop object’s parent (see figure 3). The Perl file
for this, try2.pl, is:

use Perlilog;
init;

test

flipflop

test

flipflop

Figure 3: Instantiation tree (left) and module illustration (right)

A Guide to PERLILOG 25

Eli Billauer elib@flextronics.co.il

$test = template->new(name => ’test’,
tfile => ’mytest.pt’);

$ff = template->new(name => ’flipflop’,
tfile => ’myff.pt’,
parent => $test);

interface($ff->getport(’ffport’), $test->getport(’testport’));

execute;

silos->new(name => ’silos_configfile_creator’)->makesilosfile;

Note that we also changed the order in which the two object are created, so when the
flip-flop object is generated, we have $test as a handle to use as the parent.

Running this script, flipflop.v remains the same, but we don’t get a top.v file, and
test.v will look as follows:

‘timescale 1ns / 10ps

module test;

reg clk;
reg rst;
wire q;
wire d;

always #5 clk = ~clk;

assign d = ~q;

initial
begin

clk = 0; rst = 0;

#1; rst = 1;
#1; rst = 0;

repeat (100) @(posedge clk);
$stop;

end

flipflop flipflop_ins(.clock(clk), .reset(rst), .data(d),
.register(q));

A Guide to PERLILOG 26

Eli Billauer elib@flextronics.co.il

endmodule

Which is the natural way to do it. Note that the input/output declarations that appear
in myff.pt have vanished, and we have only registers and wires.

This variation shows how simple it is to move the place where a module is instantiated.
It remains this simple even if the modules are placed in the most obscure manners:
PERLILOG will draw vias as needed to fulfill the requested port connection.

2.4 Other examples: Wishbone connections

2.4.1 Purpose

We now move on to see how PERLILOG makes connecting Wishbone-compliant IP
cores easily. The focus is not on the Wishbone standard itself, but rather on bus
connection in general. Therefore, we are going to work with the simplest possible
Wishbone interface standards, in order to minimize the amount of Wishbone-related
details.

The Wishbone-related example files are kept in the examples/ex2 directory.

2.4.2 A simple master-slave connection

Connecting a Wishbone master and slave involves, surprisingly enough, three ele-
ments: We have one module functioning as a master, one as a slave, and one module
which supplies the clock and reset signals – both the master and the slave accept
these signals as input, according to the Wishbone spec.

In this example, the slave will be a simple ROM, and the master will be a test-bench
like module which reads from the ROM and displays the read data.

We begin with looking at the template file for the ROM, simple_rom.pt:

port wbport wbs clk_i:wb_clk_i, rst_i:wb_rst_i, cyc_i:wb_cyc_i,
stb_i:wb_stb_i, we_i:wb_we_i, ack_o:wb_ack_o,
adr_i:wb_adr_i, dat_i:wb_dat_i, dat_o:wb_dat_o;

module rom(wb_clk_i, wb_rst_i, rst_i, wb_adr_i, wb_dat_i, wb_dat_o,
wb_we_i, wb_stb_i, wb_cyc_i, wb_ack_o);

input wb_clk_i, wb_rst_i, wb_we_i, wb_stb_i, wb_cyc_i;
input [:] wb_adr_i;
input [:] wb_dat_i;
output [:] wb_dat_o;
reg [:] wb_dat_o;

A Guide to PERLILOG 27

Eli Billauer elib@flextronics.co.il

output wb_ack_o;

assign wb_ack_o = wb_cyc_i && wb_stb_i; // Always single clock cycles

always @(wb_adr_i)
case (wb_adr_i)

3’d0: wb_dat_o = 8’d69;
3’d1: wb_dat_o = 8’d108;
3’d2: wb_dat_o = 8’d105;
3’d3: wb_dat_o = 8’d10;
default: wb_dat_o = 8’d0;

endcase
endmodule

We see in the port declaration that this port is of type wbs, Wishbone Slave. The well-
known Wishbone signals are given in the label list, and are associated with Verilog
variables.

Some of the variables are declared with no bit range. For example, wb_dat_i has
a non-Verilog declaration of [:] where a Verilog compiler would expect something
like [7:0]. The [:] declaration tells PERLILOG to choose the bit range according
to context. More precisely, PERLILOG will copy the bitrange from the Verilog variable
which wb_dat_i will be connected with.

This trick makes use of the fact that PERLILOG copies bit ranges between Verilog
variables when they are connected with each other. We mention as a side remark,
that when PERLILOG connects two Verilog variables as part of some port interfacing,
the variables must have the same bit range, or an error is reported.

The logics which implement the ROM is not in our scope, and is quite trivial anyhow.
So we skip that part.

Next, we have a partial look on the Wishbone master, wb_master.pt:

port wbport wbm clk_i:clk, rst_i:rst, cyc_o:cyc, stb_o:stb,
we_o:we, ack_i:ack, adr_o:adr, dat_i:din, dat_o:dout;

module wb_master(clk, rst, adr, din, dout,
we, stb, cyc, ack);

input [7:0] din;
input ack, clk, rst;
output cyc, stb, we;
output [7:0] adr, dout;

reg [7:0] adr, dout;
reg cyc, stb;
reg we;

A Guide to PERLILOG 28

Eli Billauer elib@flextronics.co.il

reg [7:0] q;

integer i;

[... module body omitted ...]

endmodule

The port declared is a Wishbone master (wbm). Note that the labels are those of
a Wishbone master, and as expected, they are stringwise slightly different than the
slave’s. Unlike the vars ports, the labels are mated by their meaning and not by being
identical.

As we can see, the bit ranges here are defined explicitly. After all, they have to be
defined somewhere...

And now the top-level module’s template file, top.tp:

module top;

reg clk;
reg rst;
port clkrst vars clk:clk, rst:rst;

always #5 clk = ~clk;

initial
begin

// initial values
clk = 0;

// reset system
rst = 1’b0; // negate reset
#2;
rst = 1’b1; // assert reset
repeat(4) @(posedge clk);
rst = 1’b0; // negate reset

end
endmodule

The only essence about this module is that it generates the clock and reset. The port
declaration is not in the beginning of the file, but somewhere in the middle – it doesn’t
matter to PERLILOG .

The port is of type vars. We shall see how this port is used in the script. For now, we
note that this port has two labels, clk and rst.

And now we go to the main script, trywb1.pl:

A Guide to PERLILOG 29

Eli Billauer elib@flextronics.co.il

use Perlilog;
init;

$top = template->new(name => ’top’,
tfile => ’top.pt’);

$test = template->new(name => ’test’,
tfile => ’wb_master.pt’,
parent => $top);

$rom = template->new(name => ’rom’,
tfile => ’simple_rom.pt’,
parent => $top);

interface($rom->getport(’wbport’), $test->getport(’wbport’),
$top->getport(’clkrst’));

execute;

silos->new(name => ’silos_configfile_creator’)->makesilosfile;

Here the top module is taken from a template file, and not an empty Verilog object as
before. Besides from that, there are few new things about this script: Three objects
are generated. The first one, top is the parent of the two others, and hence these two
are intantiated in top.

The interface() here involves the two Wishbone ports and the vars port, which is
how it should be done: The clock and reset for the Wishbone bus are donated by
some vars port, which is expected to have labels named clk and rst, with obvious
meanings. As we can see, these two signals are explicitly chosen (they are not global
in any way).

It is recommended to run trywb1.pl and view the results. The resulting Verilog mod-
ules are quite long and are more or less what one should expect, so we shall not go
over them here. Still, seeing it working is worth the effort.

2.4.3 Connecting three Wishbone ports

By the nature of the Wishbone bus (like other SoC buses), connecting a master and
slave is significantly easier than connecting two slaves to one master. We shall now
see how this is done in PERLILOG , and how the dirty work is done for us.

There is another file in the directory, named simple_rom2.pt, which is almost identical
with simple_rom.pt, except that the values of the ROM have been changed, so that
the we can see which ROM is accessed as we run the test.

The following script, which is kept in trywb2.pl shows how two Wishbone slaves,

A Guide to PERLILOG 30

Eli Billauer elib@flextronics.co.il

ROMs in this case, are connected to a single bus:

use Perlilog;
init;

$top = template->new(name => ’top’,
tfile => ’top.pt’);

$test = template->new(name => ’test’,
tfile => ’wb_master.pt’,
parent => $top);

$rom1 = template->new(name => ’rom1’,
tfile => ’simple_rom.pt’,
parent => $top);

$rom1->getport(’wbport’)->const(’wb_adr_bits’, 2);
$rom1->getport(’wbport’)->const(’wb_adr_select’, 0);

$rom2 = template->new(name => ’rom2’,
tfile => ’simple_rom2.pt’,
parent => $top);

$rom2->getport(’wbport’)->const(’wb_adr_bits’, 2);
$rom2->getport(’wbport’)->const(’wb_adr_select’, 1);

interface($rom1->getport(’wbport’), $rom2->getport(’wbport’),
$test->getport(’wbport’), $top->getport(’clkrst’));

execute;

silos->new(name => ’silos_configfile_creator’)->makesilosfile;

This script is very much like the previous one, except for one important difference: We
assign values to two properties of each of the Wishbone slaves.

Before explaining those properties, we recall that our Wishbone master has 8 bits in
adr_o. This is the entire address space, which is now shared between two slaves.

This sharing is implemented by a simple bus controller, which is generated automati-
cally. It is responsible for activating the right slave according to the address. And once
a slave is activated, there are a number of bits, taken from the LSB and up, which
are passed to both slaves, to give each slave some address space. We tell the bus
controller how to split the address space with these properties, as follows.

The wb_adr_bits property is set to the number of bits that we want the slave’s adr_i
to have. We chose 2 bits, so we have an address space of 4 cells. This was done

A Guide to PERLILOG 31

Eli Billauer elib@flextronics.co.il

equally for both ports.

Now we have the bits [7:2] of the master’s adr_o which don’t reach the slaves, but are
used to determine which of the slaves should be active. The wb_adr_select property
tells the bus controller to activate the respective port, when the value of these bits
equals the value of this property.

The setting of the ports’ properties makes the two ROMs cover the addresses 0-7, in
two non-overlapping segments 0-3 and 4-7.

When running the script in trywb2.pl, we get an extra module, that we didn’t define
explicitly, saved in single_master_wb_controller.v. This module contains the bus
controller.

We may now see the advantage in not setting the bit range of wb_adr_i explicitly in
either of the ROM modules (simple_rom.pt and simple_rom2.pt): When the ROM
module was connected to the master directly in a one-on-one connection, all 8 bits of
the master’s adr_o went to the slaves, and hence the slave’s address input was 8 bits
wide as well.

But when a bus controller got involved, it needed to share the address space between
two slaves, and the number of bits of the address input went down to 2. Indeed, if we
view the Verilog files of the ROMs, we’ll see that the input is declared differently, as
needed by the environment.

And again, it is recommended to run the script and view the resulting files.

2.4.4 Multiple instances of the same module

One of the advantages of scripted Verilog generation, is that multiple instances of the
same module are easily created.

In PERLILOG every instance of a module is backed up by a distinct object. By default,
each object creates a Verilog file of its own, so each Verilog module is instantiated
once. This is good as long as we don’t have the same module repeating itself too
many times. But in cases where the exactly same module is needed many times, the
single instantiation model becomes cumbersome.

The philosophy of PERLILOG for this is: If exactly the same Verilog file is going to
be written twice (except for the module’s name), let’s write the module file once, and
instantiate it twice.

Let’s take a quick example. We have another example script, trymulti.pl, which
differs from trywb2.pl by the following added lines:

$rom3 = template->new(name => ’rom3’,
tfile => ’simple_rom2.pt’,
parent => $top);

$rom3->getport(’wbport’)->const(’wb_adr_bits’, 2);

A Guide to PERLILOG 32

Eli Billauer elib@flextronics.co.il

$rom3->getport(’wbport’)->const(’wb_adr_select’, 2);

$rom3->equivalent($rom2);

interface($rom1->getport(’wbport’), $rom2->getport(’wbport’),
$rom3->getport(’wbport’),
$test->getport(’wbport’), $top->getport(’clkrst’));

where the interface() command has replaced the previous one.

What this extra snippet does, is adding another object, rom3 to the system. The
special thing here is the $rom3->equivalent($rom2) command. It tells the system,
that $rom3 shouldn’t create a file, since its Verilog code would be identical to $rom2’s
anyhow. The system will trust this, and make an instantiation of $rom2’s module,
instead of $rom3.

The system will also verify that the Verilog that $rom2 generates is indeed identical to
$rom3’s and issue a loud warning if this is not the case. Should such a warning be
ignored, the Verilog code bundle may be buggy or may not even compile.

The equivalence dependency is central: If several objects are mutually equal, all
equivalence declaration must be with respect to a single object (as opposite to chain-
ing the dependency). An error message will be issued otherwise.

2.4.5 Mapping a non-Wishbone port to the bus

Many times we want to connect simple peripherals to the bus, and find ourselves
dealing with the bus interface more than with the specific logic that we need.

We shall now see two examples of how a vars port can be mapped to a bus. The first
one will be an interesting implementation of the ROM. This is fake_rom2.pt:

port fakeport vars r0:zero, r1:one, r2:two, r3:three;

module fake_rom(zero, one, two, three);

output [:] zero, one, two, three;

assign zero = 8’d65;
assign one = 8’d66;
assign two = 8’d67;
assign three = 8’d10;

endmodule

As a Verilog module, what we have here is weird. This module has four outputs only,
whose bit range is unknown. All four outputs have constant values.

A Guide to PERLILOG 33

Eli Billauer elib@flextronics.co.il

The interesting thing here is that we can connect fakeport to a Wishbone bus, even
though the port itself is a plain vars port. The label r0 means that the Verilog variable
it’s associated with should be mapped on the bus for read-only at address 0. r1, r2
and r3 work in a similar way for mapping to higher addresses. We may thus use the
following script, trywb3.pl, which differs from trywb2.pl in only two respects:

• simple_rom2.pt is replaced with fake_rom2.pt.

• wbport is replaced with fakeport.

So in effect we’re using fake_rom2.pt exactly like we used simple_rom2.pt. The
trywb3.pl is listed here only for the sceptics among us (feel free to skip it):

use Perlilog;
init;

$top = template->new(name => ’top’,
tfile => ’top.pt’);

$test = template->new(name => ’test’,
tfile => ’wb_master.pt’,
parent => $top);

$rom1 = template->new(name => ’rom1’,
tfile => ’simple_rom.pt’,
parent => $top);

$rom1->getport(’wbport’)->const(’wb_adr_bits’, 2);
$rom1->getport(’wbport’)->const(’wb_adr_select’, 0);

$rom2 = template->new(name => ’rom2’,
tfile => ’fake_rom2.pt’,
parent => $top);

$rom2->getport(’fakeport’)->const(’wb_adr_bits’, 2);
$rom2->getport(’fakeport’)->const(’wb_adr_select’, 1);

interface($rom1->getport(’wbport’), $rom2->getport(’fakeport’),
$test->getport(’wbport’), $top->getport(’clkrst’));

execute;

silos->new(name => ’silos_configfile_creator’)->makesilosfile;

What is more interesting to see, is how rom2.v turned out:

A Guide to PERLILOG 34

Eli Billauer elib@flextronics.co.il

‘timescale 1ns / 10ps

module rom2(wb_clk_i, wb_rst_i, wb_adr_i, wb_dat_i, wb_dat_o, wb_we_i,
wb_stb_i, wb_cyc_i, wb_ack_o);

input wb_clk_i;
input wb_rst_i;
input [1:0] wb_adr_i;
input [7:0] wb_dat_i;
input wb_we_i;
input wb_stb_i;
input wb_cyc_i;
output [7:0] wb_dat_o;
output wb_ack_o;
reg [7:0] wb_dat_o;
wire [7:0] zero;
wire [7:0] one;
wire [7:0] two;
wire [7:0] three;

assign zero = 8’d65;
assign one = 8’d66;
assign two = 8’d67;
assign three = 8’d10;

assign wb_ack_o = wb_cyc_i && wb_stb_i;
always @(wb_adr_i or zero or one or two or three)
case (wb_adr_i)
0: wb_dat_o = zero;
1: wb_dat_o = one;
2: wb_dat_o = two;
3: wb_dat_o = three;
default: wb_dat_o = 0;

endcase

endmodule

The only piece that remained from the original fake_rom2.pt in this module, is the
four assignments to zero, one, two and three. All the rest was automatically added
because the fakeport was interfaced with an Wishbone bus. The inputs and output
has changed to conform to Wishbone spec, and some logic has been added as well.

We don’t explain this module in detail, because there is a similar example just coming
up, and we are going to be quite detailed about that one.

For now, The most important point about all this, is that fake_rom2.pt is truly portable.
It presents only the essence of logic (in this case – none), without any dependency on

A Guide to PERLILOG 35

Eli Billauer elib@flextronics.co.il

the bus it is going to be connected to.

So far we only dealt with reading on the bus. We now move on to an example of
similar vars port connection to the bus, for read and write.

2.4.6 Non-Wishbone port: A nicer example

For the following example, we work with the files at examples/ex3. The toplevel file,
top.pt remains the same, and the Wishbone master file, wb_master.pt has been
altered to perform write cycles as well.

We look at adder.pt:

port theport vars rw0:data1, rw1:data2, r2:sum, r3:diff;

input [:] data1, data2;
output [:] sum, diff;

assign sum = data1 + data2;
assign diff = data1 - data2;

This is a complete template file. You may have wondered what function the module
header (beginning with the Verilog keyword module) had in the previous examples.
The answer is that it has no function at all – both the module name and the variable
list are simply ignored.

To be honest, the module header is not completely ignored: Its position in the file is
noted, and two module headers are not allowed in a single template file. But otherwise
the template file parser simply wipes the module header and footer (endmodule) away.

So when writing a template file from scratch, there is no reason to have a module
header, as in adder.pt. The support of module headers is there to allow easy adap-
tion of Verilog files. And the previous examples included module headers merely to
make Verilog programmers feel at home.

Once mapped on a bus, you can write a value on address 0, another on address 1,
and read their sum on address 2 and their difference on address 3. The values that
were written to addresses 0 and 1 can be read back. This was assured by using a rw
label for data1 and data2, rather than a w label (e.g. rw0 and not w0).

The main script, trywb4.pl is very similar to the previous ones we’ve seen. Only
names have changed:

use Perlilog;
init;

$top = template->new(name => ’top’,
tfile => ’top.pt’);

A Guide to PERLILOG 36

Eli Billauer elib@flextronics.co.il

$test = template->new(name => ’test’,
tfile => ’wb_master.pt’,
parent => $top);

$unit1 = template->new(name => ’adder’,
tfile => ’adder.pt’,
parent => $top);

$unit1->getport(’theport’)->const(’wb_adr_bits’, 2);
$unit1->getport(’theport’)->const(’wb_adr_select’, 0);

$unit2 = template->new(name => ’logic’,
tfile => ’logic.pt’,
parent => $top);

$unit2->getport(’theport’)->const(’wb_adr_bits’, 2);
$unit2->getport(’theport’)->const(’wb_adr_select’, 1);

interface($unit1->getport(’theport’), $unit2->getport(’theport’),
$test->getport(’wbport’), $top->getport(’clkrst’));

execute;

silos->new(name => ’silos_configfile_creator’)->makesilosfile;

The template file logic.pt is more or less the same as adder.pt, so we won’t deal
with it here.

The Verilog module adder.v, which unfolds from adder.pt is a bit long, so we shall
take it piece by piece. It begins like any Wishbone slave:

‘timescale 1ns / 10ps

module adder(wb_clk_i, wb_rst_i, wb_adr_i, wb_dat_i, wb_dat_o, wb_we_i,
wb_stb_i, wb_cyc_i, wb_ack_o);

input wb_clk_i;
input wb_rst_i;
input [1:0] wb_adr_i;
input [7:0] wb_dat_i;
input wb_we_i;
input wb_stb_i;
input wb_cyc_i;
output [7:0] wb_dat_o;
output wb_ack_o;

A Guide to PERLILOG 37

Eli Billauer elib@flextronics.co.il

reg [7:0] wb_dat_o;

Next, we have have some application-specific variables declared.

reg [7:0] data1_reg;
reg [7:0] data2_reg;
wire [7:0] data1;
wire [7:0] data2;
wire [7:0] sum;
wire [7:0] diff;

Note that two registers, data1_reg and data2_reg are declared. These are necessary
to hold the values which are written to the module from the bus.

And here come a couple of lines that are familiar from the template file (this is what
the module is doing, after all...):

assign sum = data1 + data2;
assign diff = data1 - data2;

The acknowledge is set up to respond for single-clock cycles:

assign wb_ack_o = wb_cyc_i && wb_stb_i;

Next the module allows reading by assigning a value to wb_dat_o according to the
address:

always @(wb_adr_i or data1_reg or data2_reg or sum or diff)
case (wb_adr_i)
0: wb_dat_o = data1_reg;
1: wb_dat_o = data2_reg;
2: wb_dat_o = sum;
3: wb_dat_o = diff;
default: wb_dat_o = 0;

endcase

Note that addresses 0 and 1 are readable, and give the value that was written to the
same address.

Our next task is to respond correctly to bus writes. In our case, it’s writing to our
internal registers:

always @(posedge wb_clk_i or posedge wb_rst_i)
if (wb_rst_i)
begin
data1_reg <= #1 0;

A Guide to PERLILOG 38

Eli Billauer elib@flextronics.co.il

data2_reg <= #1 0;
end

else if (wb_cyc_i && wb_stb_i && wb_we_i)
case (wb_adr_i)
0: data1_reg <= #1 wb_dat_i;
1: data2_reg <= #1 wb_dat_i;

endcase

Some may not like the fact that the bus’ reset functions as the module’s reset. But
simplicity governs in these examples.

Finally, we make the connection between the registers and the variables that they are
supposed to be there for:

assign data1 = data1_reg;
assign data2 = data2_reg;

2.5 Last example: Embedded Perl code

Our last example demonstrates how Perl code can be embedded into template files.
A small script will write some of the Verilog code, which allows the module to be
configured via its properties as an object, and not with “defines”. It is hard to find a
short example of when this is truly useful, because the main disadvantage of using
“defines” is when the module is very complex, and the different configurations have
several implications of the implementation of the module.

Instead, we shall see how our ROM module’s data values can be set up from the main
script. Those who know the powers of Perl will easily see how this can be extended
to solve real-life problems.

2.5.1 The main script

We go back to the examples/ex2 directory. There we find the trywb5.pl script, which
is identical to trywb2.pl, except:

• Both ROMs are created from a single template file, perl_rom.pt, rather than
simple_rom.pt and simple_rom2.pt.

• The romdata property is set for both objects upon creation.

Here is the script itself:

use Perlilog;
init;

A Guide to PERLILOG 39

Eli Billauer elib@flextronics.co.il

$top = template->new(name => ’top’,
tfile => ’top.pt’);

$test = template->new(name => ’test’,
tfile => ’wb_master.pt’,
parent => $top);

$rom1 = template->new(name => ’rom1’,
tfile => ’perl_rom.pt’,
parent => $top,
romdata => [69, 108, 105, 10]);

$rom1->getport(’wbport’)->const(’wb_adr_bits’, 2);
$rom1->getport(’wbport’)->const(’wb_adr_select’, 0);

$rom2 = template->new(name => ’rom2’,
tfile => ’perl_rom.pt’,
parent => $top,
romdata => [65, 66, 67, 10]);

$rom2->getport(’wbport’)->const(’wb_adr_bits’, 2);
$rom2->getport(’wbport’)->const(’wb_adr_select’, 1);

interface($rom1->getport(’wbport’), $rom2->getport(’wbport’),
$test->getport(’wbport’), $top->getport(’clkrst’));

execute;

silos->new(name => ’silos_configfile_creator’)->makesilosfile;

What happens here, is that two almost identical objects are generated. They differ in
their names and in the romdata property. As one can guess, romdata is the ROM’s
data, so we can set the data as required from the main script.

2.5.2 The template file

We move on to view the template file perl_rom.pt:

port wbport wbs clk_i:wb_clk_i, rst_i:wb_rst_i, cyc_i:wb_cyc_i,
stb_i:wb_stb_i, we_i:wb_we_i, ack_o:wb_ack_o,
adr_i:wb_adr_i, dat_i:wb_dat_i, dat_o:wb_dat_o;

module rom(wb_clk_i, wb_rst_i, rst_i, wb_adr_i, wb_dat_i, wb_dat_o,
wb_we_i, wb_stb_i, wb_cyc_i, wb_ack_o);

A Guide to PERLILOG 40

Eli Billauer elib@flextronics.co.il

input wb_clk_i, wb_rst_i, wb_we_i, wb_stb_i, wb_cyc_i;
input [:] wb_adr_i; // lower address bits
input [:] wb_dat_i;
output [:] wb_dat_o;
reg [:] wb_dat_o;

output wb_ack_o;

assign wb_ack_o = wb_cyc_i && wb_stb_i; // Always single clock cycles

always @(wb_adr_i)
case (wb_adr_i)

CASES
default: wb_dat_o = 0;

endcase
endmodule

perl
$c = 0;
$cases = "";

foreach ($self->get(’romdata’)) {
$val = $_ + 0;
$cases.=" $c: wb_dat_o = $val;\n";
$c++;

}
chomp $cases;
$code = $self->get(’verilog’);
$code =~ s/CASES/$cases/;
$self->set(’verilog’, $code);

endperl

It differs from from simple_rom.pt from section 2.4.2 only in the two following re-
spects:

• The Verilog case clause has been emptied from its cases, and the string CASES
has been put insted.

• Some Perl code has been added in a clause surrounded by the keywords perl
and endperl.

Quite expectedly, what happens here is that the Perl code generates the heart of the
case clause, and replaces the CASES string with something meaningful.

These are the steps taken by the Perl snippet:

A Guide to PERLILOG 41

Eli Billauer elib@flextronics.co.il

1. The romdata property is read and a foreach loop is engaged on its items.

2. The relevant Verilog line is appended to $cases for each item looped upon.

3. The object’s verilog property is read into $code. Its value is the Verilog code
that we would find in the Verilog file, if it wasn’t for this script snippet.

4. By using a classic Perl substitute command, we wipe the CASES away, and put
the value of $cases instead. All this happens on the string kept in $code.

5. $code is written back to the object’s verilog property.

The beauty about this is that the module is configured via the object’s property, and
it’s a Perl script that interprets its meaning, and takes action. This is a powerful tool,
which makes it possible to configure the module with intuitive parameters, and not
necessarily those that were needed to make the “ifdefs” work.

A Guide to PERLILOG 42

Eli Billauer elib@flextronics.co.il

3 Template objects

3.1 About this section

The examples in section 2 demostrated some of things that can be done with template
objects. With good common sense (which most Perl programmers have) it’s possible
to make some use of template objects quite successfully. Except for a few features
(which will be presented in this section), trial and error is enough to get the most out
of this specific tool.

But template objects are also a gateway to start learning the concepts of PERLILOG

. Starting to work with template objects in the spirit of the environment, is a good
preparation for more advanced use of the system.

Also, it’s nice to know what we’re doing. This section gives some insight to things that
were slightly neglected previously.

This section will contain a lot of forward references. These references are not neces-
sary to understand this section in a basic level, but they should encourage to gradually
get to know the entire environment. Even though template objects is the simplest level
of using PERLILOG , it offers access to most of the advanced features via its embed-
ded scripting capabilities. Knowing the environment well is therefore rewarding in
terms of what you can do with PERLILOG , even if you stick to template objects.

3.2 How it works

When a template object is created with new(), the template file is read and parsed.
The parsing mechanism is not very sophisticated, and it’s definitely not covering the
complete Verilog syntax. The parser’s main mission is to recognize the parts that
should be interpreted by the template object, and to set up the internal data structures
accordingly. This includes:

• Verilog variables (wires, registers, inputs and outputs) declarations

• Port declarations

• Embedded perl clauses

• The module header and footer

A Guide to PERLILOG 43

Eli Billauer elib@flextronics.co.il

The module header and footer are ignored. Only their position within the read file is
marked. The rest of the elements are handled by the template object, and do not
appear in the final Verilog file.

Anything that isn’t included in the categories mentioned above, or couldn’t be parsed
for some reason, is stored to be written directly to the final Verilog file.

Another way to look at the first stage, is that the parser eliminates, or filters away any
part that it is able to parse in the way from the input template file to the output Verilog
file.

It may come as a surprise that the variables are eliminated as well, as they are needed
in the Verilog file. They are indeed eliminated, but they are also written back, possibly
in a modified format, at some later stage in the PERLILOG execution. Altering the
variable’s attributes is one of the most important features of PERLILOG , and it’s done
quite easily, thanks to the way they are stored, during execution cycle of PERLILOG .

After the file has been parsed there is a rather complicated chain of events, part of
which is described in this guide. Little of this is specific to template objects, so we
may summarize it all with the fact that the standard Verilog headers are added to the
module, along with the variables, and that the Verilog file is written.

3.3 What to expect from template objects

The purpose of template objects is to allow the Verilog programmer to concentrate on
writing productive logic as much as possible, and hassle with anything else as little as
possible.

The programmer is required to write some pseudo-Verilog code, which supplies some
basic variable definitions, port declarations and the core Verilog code. Embedded Perl
is allowed to make life even nicer.

As an extra feature, the template class was written to function as a simple importer for
prewritten Verilog modules. This makes it possible to take some Verilog module, add
some port declarations, and use it as a template file. If this works nice, it allows all the
features of a “normal” template file.

It should be pointed out, that this is not the only solution to import prewritten Verilog
modules. The static objects reads a Verilog module from a file and leaves it un-
touched. This is a safer, but yet less powerful way to import modules. See section
6.9.

Some precautions to take when importing an existing module with the template class
are mentioned in section 3.8.

A Guide to PERLILOG 44

Eli Billauer elib@flextronics.co.il

3.4 A template object as an object

After seeing template -> new(...) several times in the examples, it should be no
surprise that PERLILOG is highly object-oriented. Section 5 goes into the issue of
how to use objects in PERLILOG in detail, and until we reach that, common sense will
be the best tool to follow things.

In the first main script (section 2.3.2) we had:

$ff = template->new(name => ’flipflop’,
tfile => ’myff.pt’,
parent => $top);

Just to have it cleared out, we explain the meaning of this again:

This creates a new object of class template, and puts its reference in $ff. The object
is initialized with three properties, name, tfile and parent.

The name property is the name of the to-be Verilog module and also the name of the
file to be written (appended with a .v suffix). It’s also considered to be the object’s
name.

All objects in PERLILOG must have this property initialized upon creation (except
for interface objects). The object’s name is a unique identifier. For this reason, two
objects must not have the same name (use suggestname() in case of doubt, see
section 9.1.11).

The tfile property is a complete path (from the current directory) to the file which
functions a template file for this object.

Last, parent is the reference of the “parent object”, which is the object in which the
resulting module will be instantiated. If this property is left undefined, the module will
not be instantiated, which is the right thing to do on the top-level module.

Additional properties may be set up and read by embedded Perl scripts, as was shown
in section 2.5.

3.5 Variable declarations

3.5.1 Same syntax, different meaning

In the examples we’ve seen that Verilog varibles (wires, registers, inputs and outputs)
were declared as in regular Verilog (in fact, we only saw inputs and outputs).

The template file’s syntax looks the same, but the underlying meaning is somewhat
different. Variable declarations in a template file are not going to appear as they are in
the final Verilog file, but they should be seen as declarations to the template objects.
In some cases, this declaration will end up as a very similar line in the final Verilog file,
so it won’t make any difference.

A Guide to PERLILOG 45

Eli Billauer elib@flextronics.co.il

But the variable declaration can change dramatically, for example if a Verilog wire is
connected outside the module, which can make it change to an output. PERLILOG

takes the freedom to make such changes as a normal action.

The variable declaration in template files is Verilog compatible, but the syntax is
slightly extended, as we shall see next.

3.5.2 Undeclared bit range [:]

As we saw in the example of section 2.4.2, variables may be declared without speci-
fying the bit range, as in

input [:] wb_dat_i;
output [:] wb_dat_o;
reg [:] wb_dat_o;

Syntactically speaking, the empty bit range specifier, [:], takes the exact place of its
classic Verilog sibling, which looks something like [15:0].

The empty bit range specifier means that the bit range is yet unknown, and should be
taken from the context. It does not imply that the final bit range should be of some
indexed format. In other words, a single bit, which is declared by not putting a bit
range specifier, may be chosen by the system as the final bit range, instead of [:].

3.5.3 Verilog input and output

Even though the declaration of Verilog input and output variables is legal in a tem-
plate file, it may be misleading: A variable will appear as input or output as needed by
connections with other modules, which is determined by the main script. The key fac-
tors here, are which port was connected to which, and the parental relations between
the objects, both factors being unknown in the context of the template file.

Thus, variables that appear as input in the template file may be transformed into wire
in the final Verilog file. output may be turned into wire or reg. Functionally there is
nothing wrong with that, but it may be somewhat confusing.

In section 6.7.3 (and on) the issue of variable driving is discussed. For future refer-
ence, we only state here that Verilog input variables are interpreted as “driven” vari-
ables, and are assigned the type in (and not input). Verilog output are considered
“driving” variables, and they are of type out or reg (and not output).

In essence this means that PERLILOG responds to the input and output keywords
in the template file as an indication whether the value of these variables are assigned
in the Verilog logic part. If the a variable was chosen to be output by the Verilog
programmer, its value was surely assigned, otherwise it would be floating. And the
opposite goes for input: If this was chosen, then the value is only read in the module,

A Guide to PERLILOG 46

Eli Billauer elib@flextronics.co.il

surely it’s not assigned a value. And this happens to be exactly as much information
as the PERLILOG environment needs to have from the template file.

3.5.4 wire and iwire

For those who want to use template files without confusing themselves, there are two
synonyms for input and output, which are iwire and wire. These synonyms can be
used interchangably.

Variables that are declared as reg don’t need another wire declaration, but it’s not an
error to have one.

3.5.5 Variable rules summary

It all boils down to the following list of rules:

• Write your Verilog module normally. If you want to write the module header and
endmodule footer, fine, just keep in mind that they will be ignored.

• Declared reg and wire variables just as you would do in Verilog.

• If you don’t assign the value of some variable within the module, because it
should come from “the outside world”, use iwire. This is the parallel to declaring
the variable as an input in Verilog, or binding the variable to another modules
output as part of an instantiation.

• If you want the variable’s bit range to be flexible, use [:] where you would
normally put the bit range. Just make sure that the bit range is defined explicitly
on some of the variables to be connected.

We begin with looking at the template file for the ROM, simple_rom.pt:

3.5.6 simple rom.pt revisited

We return to simple_rom.pt of section 2.4.2, with a few technical changes. This is
merely a slight clean-up of the previous version, but it shows how a template file,
which was written originally as a template file will look like:

port wbport wbs clk_i:wb_clk, rst_i:wb_rst, cyc_i:wb_cyc,
stb_i:wb_stb, we_i:wb_we, ack_o:wb_ack,
adr_i:wb_adr, dat_i:wb_dat_i, dat_o:wb_dat_o;

iwire wb_clk, wb_rst, wb_we, wb_stb, wb_cyc;
iwire [:] wb_adr;

A Guide to PERLILOG 47

Eli Billauer elib@flextronics.co.il

iwire [:] wb_dat_i;
reg [:] wb_dat_o;

wire wb_ack;

assign wb_ack = wb_cyc && wb_stb; // Always single clock cycles

always @(wb_adr)
case (wb_adr)

3’d0: wb_dat_o = 8’d69;
3’d1: wb_dat_o = 8’d108;
3’d2: wb_dat_o = 8’d105;
3’d3: wb_dat_o = 8’d10;
default: wb_dat_o = 8’d0;

endcase

Functionally, this template is identical to simple_rom.pt.

3.6 Declaring ports

The port declaration within template files is just a convenient way to generate a port
object, and make the current template object its parent.

The deeper discussion of ports can be found in section 7.1. For now, we rely on the
examples to give an impression of what ports are and what can be done with them.
But keep in mind that the concept of ports goes far beyond this.

A port declaration has always the from of:

port port-name class assignments;

It may go on for several lines, and is always terminated by a semicolon.

For example, we shall go back to port declaration we saw in section 2.3.4:

port ffport vars clk:clock, rst:reset, d:data, q:register;

The port is a special template file keyword. It is followed by the port’s name. It’s
important to note that this name is not the port’s name as an object, but rather a local
name, which is used with getport(). Unlike object names, the local name is known
only within the the object who owns the port, so the uniqueness needs not to be kept
beyond the single object. This allows a template file to be used to create more than
one object, since object names must be unique in a global context.

The class is the name of the PERLILOG class, which should generate this port. In
this example we chose vars.

A Guide to PERLILOG 48

Eli Billauer elib@flextronics.co.il

Then we have a list of assignments, which are separated by commas. There are two
types of assignments:

• property=value assignments. Each assignment sets a property of the port object
as a constant. The value is a scalar, even though PERLILOG supports lists as
properties (the template class goes for simplicity).

• label:variable binding. This makes the variable known by a label name. In fact,
all the label declarations end up as a single property in the object, labels.

The order of the assignments has no significance.

At the time of writing these lines, the ports that are supported are no more than those
presented in section 2. For real-life application it’s probably desired to extend the set
of ports.

This task is quite easy, once the PERLILOG structure is well understood. Unfortu-
nately, reaching that stage takes some effort, but the reward makes it worth. Section
7 is dedicated to explaining how to extend the set of ports, but it’s based on everything
until that point.

3.7 Embedded Perl

3.7.1 How it works

The idea behind embedded Perl is that since we have a Perl interpreter running any-
how, why not let it run some Perl snippets inside the template file?

The template file parser recognizes two kind of clauses:

• perl to endperl

• perlonload to endperl

Both clauses contain normal Perl code. They differ in the timing of the execution.

• perl clauses are executed as late as possible. Namely, as the last task of the
implementation of the epilogue method (this method is explained in section
6.5). When these clauses run, the system is just before flushing to Verilog files.

• perlonload clauses are executed as the last thing done in the new() method
of the template class, which is rather early. This means that when they run, the
file has been parsed completely, all ports that are declared are set up, and the
varibles are set up in the internal property structure. But the Verilog code, as
well as the object’s properties probably have a long way to go.

As we can see, neither is executed immediately on parsing, but the code is stored and
executed at well-defined times. If there are several clauses of the same kind, they are
executed in the same order as they appear in the template file (top-to-bottom).

A Guide to PERLILOG 49

Eli Billauer elib@flextronics.co.il

3.7.2 perl or perlonload?

The choice between perl or perlonload depends on the operation we want to per-
form. In section 2.5 we saw how embedded Perl was used to implant a piece of Verilog
code into the verilog property.

The choice of doing it late (perl clause) is preferred, because the Verilog content
may be split up into three properties, prehead, extrahead and verilog itself during
the early stages. This split-up is necessary to support the issue described in section
3.8.2. At any rate, when a perl clause is executed, verilog is just about to become
a Verilog file, so it’s complete with all headers and instantiations. So stringwise brush-
ups are done best late.

But sometimes it’s better to be early. For example if we want to set up some variable’s
bit range according to some property, it has to be done early, because the system
needs this information before wrapping up the Verilogs. In general, setting up attribute-
like properties should be done early.

A nice example is if we want to copy some properties from the object itself to its port:

perlonload
$port = $self->getport(’wbport’);
$port->const(’wb_adr_bits’, $self->get(’wb_adr_bits’));
$port->const(’wb_adr_select’, $self->get(’wb_adr_select’));

endperl

With a template file including this code, we don’t need to set the port’s wb_adr_bits
and wb_adr_select directly, but we set the properties on the object’s property space.

3.7.3 Rules for writing embedded scripts

In general, the embedded scripts are just like any Perl script, which runs in a separate
namespace (actually, a separate package).

This means that the embedded scripts may generate Perl variables freely, without
worrying about name collisions.

The namespace is initialized with two variables. Neither of these should be written to.

• $self is the handle (reference) of the current object. It’s useful to run methods
with (like get(), set() and const() to access properties).

• $errorcrawl is a system variable which should not be touched. It controls the
way some errors are reported.

Besides, there are some basic restrictions to follow:

A Guide to PERLILOG 50

Eli Billauer elib@flextronics.co.il

• Predefined, system global variables should not be changed. This includes %ENV,
%SIG and friends, as well as $[-like variables. If you must change them, use
local to avoid environmental pollution.

• If the namespace is changed (with Perl’s package), or $Foo::Bar-like access to
variables is used, the reasonable precautions should be taken, as always when
visiting your neighbour’s namespace.

• The main script runs under package main. Don’t trust any other package name
to remain in place. The package names may change unexpectedly.

All of the embedded Perl clauses (perl and perlonload) are executed in the same
namespace, but different object’s Perl clauses run in different namespaces. This al-
lows passing information among the clauses simply by putting it in a Perl variable,
including from a perlonload clause to a perl clause.

As for errors and warnings, use warn() and die() like you would in a normal script1.

3.8 Importing prewritten modules

3.8.1 Verilog compatability

The template class can be used as an importer for prewritten Verilog modules. Since
covering all possible tricks in Verilog would mean writing a complete Verilog compiler,
obviously there are restrictions of what the template class can accept.

We shall now review how the template class handles various possible elements in
classic Verilog code.

3.8.2 The Verilog module declaration

When the parser reaches the Verilog module declaration, the following happens:

• The parser scans through the file until it reaches a semicolon (;), which signifies
the end of the module declaration. The module header, that was just scanned,
is ignored and its data is trashed.

• The parser verifies that this is the first time that a module declaration is encoun-
tered, and issues an error otherwise.

• Any lines that were meant to be sent to the final Verilog file until this point is
moved to the prehead property. This chunk is considered “what came before
the header”, and as such it will be put before the header of the final Verilog file
as well. This is merely intended to put comments in the right place relative to
the header.

1Obvious, right? Well, it won’t be this obvious in code generating classes... Been at section 6.10 yet?

A Guide to PERLILOG 51

Eli Billauer elib@flextronics.co.il

endmodule is simply ignored.

3.8.3 Unhandled Verilog variables

In general, lines that begin with one of the “keywords” reg, wire, iwire, input,
output, inout, parameter, integer, real or time are considered to be variable dec-
larations.

Variables that can fit into some internal PERLILOG representation will be kept as such,
and the respective declaration will not be passed on to the final Verilog output (it will
reappear at a later stage of the PERLILOG execution, possibly somewhat altered).

Otherwise, the declaration is passed on, and will appear as is in the Verilog output file.
In the latter case, the parser will at least save the names of the variables involved, so
that the PERLILOG environment will not create another variable with the same name,
in the same module. Saving the names will happen grossly in the following cases:

• If the variables is of type parameter, integer, real or time.

• If the variable is a multi-dimensional array and it’s not an input, output nor
inout.

• If the variable has a bit range which consist of anything else than plain numbers,
and it’s not an input, output nor inout.

• If the variable is initialized upon declaration with a “=” sign.

Finally, there are some situations, where the variable names will not be saved. A
warning will then be issued. The reasons are more or less as follows:

• If the variable is a multi-dimensional array and is an input, output or inout.

• If the variable has a bit range which consist of anything else than plain numbers,
and is an input, output or inout.

• If the parser got messed up with the syntax for some reason.

3.8.4 Verilog task and function

The template class handles task and function by simply flushing to the final Verilog
output until endtask or endfunction is reached. Functions and tasks must not be
nested in any way.

This bypass is helpful when importing test benches, which often make use of these.

A Guide to PERLILOG 52

Eli Billauer elib@flextronics.co.il

3.8.5 Comments in Verilog

Multi-line comments with /* and */ are not supported. This means that these tokens
will not be recognized as comments, so the lines inbetween will be taken in as usual. If
it’s plain text inbetween, it will probably not make any difference, but if there is anything
there to confuse the parser, it will.

Another thing to note, is that one-line // comments are accepted, so

reg myregister, // This is my register
hisregister;

will be parsed just nicely, but

reg myregister, /* This is not good */
hisregister;

will make the comment appear to be some kind of variable.

A Guide to PERLILOG 53

Eli Billauer elib@flextronics.co.il

4 Writing main scripts

4.1 Introduction

The “main script” is the script that is named in the command line which runs Perl. Its
purpose is to choose the relevant objects, to configure them and to connect them.
The main script is the part of PERLILOG which is closest to classic scripting.

Main scripts feel like regular Perl scripts: In particular, they are by default run under a
no strict mode (unlike PERLILOG classes).

There is little to say about the main scripts, because most of the issues are covered
elsewhere: How to get a main script together can be understood from the examples,
and advanced use requires some knowledge about the object environment.

So we shall look at two issues: What happens during the init() call, and how to write
add-ons to it. Then we’ll present a nice debugiing tool, which dumps the objects in a
readable format.

4.2 The init() call

In all the script examples, we had a call to init(). This call must be made after
new classes have been added to the system by the main script, but before it starts to
create objects. Why is explained in section 6.4.2.

When init() is called, PERLILOG reads the site_init.pl file in the sysclasses
directory. It may seem paradoxal that this file is in this directory, but there are technical
reasons for this.

The file is expected to have one single subroutine, init(), which is called. This
routine performs the following tasks:

• Declaring the template, static and silos classes.

• Declaring the wbm, wbs and vars classes (ports).

• Declaring the vars2vars, wbsimple and vars2wbm and wbsingmaster classes
as interface classes (section 7 deals with ports and interface classes).

• The global object is generated (explained in section 5.4.5).

• The system object is generated.

A Guide to PERLILOG 54

Eli Billauer elib@flextronics.co.il

• If an init.pl file exists in the main script’s current directory, it is executed.

The really interesting part about this is that a per-project initialization file can be gen-
erated, since the user’s init.pl is looked for in the project home directory (unless the
home directory is changed by the main script prior to init()).

Both site_init.pl and init.pl are executed by a call to init(), which must be
written in a PERLILOG class style. How to write classes is widely explained in section
6.4, but the following rules should be enough to get a descent init.pl file:

• The initialization script is written in a subroutine named init().

• All variables that are defined in the subroutine must be localized with my2. The
subroutine (unlike the main script) is run in a use strict mode.

• Calls to PERLILOG -specific routines must be done with explicit package name,
as in

&Perlilog::inherit(’myclass’, "myclass.pl", ’interface’);
&Perlilog::interfaceclass(’myclass’);

4.3 The object dumper

A nice method of the root class, is the object dumper, which is intended for debugging.
When called, it prints human-readable information about all or some of the objects.
This information consists of the object’s name, a brief description, its class and most
important, all it properties. The data is presented in a format that is practical for human
reading, so information is truncated occasionally where it would take too much space.

See section 9.1.10 for a complete description of this method. But trying

globalobj->objdump();

at the end of some main script should make things clear.

2If you have to, use complete $Foo::Bar-like identifiers for global variables

A Guide to PERLILOG 55

Eli Billauer elib@flextronics.co.il

5 PERL ILOG objects

5.1 Background

Even though the plain Perl environment supports objects as a natural part of its core,
the syntax for using objects in Perl is quite cumbersome. This is probably a result of
not wanting to make objects a special creature in Perl, but a natural follower of pack-
ages, references and hashes. The result is a very powerful and flexible mechanism
that supports all the goodies that you could expect from object-oriented programming,
and a few more tricks that are beyond the tradition. On the other hand, the path to
object-oriented programming includes learning a few advanced topics in Perl, which
is probably the reason why few scripts actually incorporate objects in Perl for real-life
applications.

PERLILOG includes an environment for object-oriented programming which is, in fact,
a wrapper of the native environment. It makes use of the powerful features that Perl
gives in this field to create a very simple syntax to define classes, generate objects,
call methods and access properties. Some features were added to support function-
alities special for PERLILOG .

The PERLILOG object environment frees the programmer from awareness to refer-
ences and blessed such in particular, packages and the need to know how to write
Perl modules. The knowledge needed to use PERLILOG classes, as well as gener-
ating them, includes only plain Perl programming and the acquaintance with some
additional functions, that are described in the sequel. Knowledge of general object-
oriented programming techniques and concepts are needed as well, of course.

5.2 An example

Before getting into the complicated explanations, let’s consider a simple example,
which shows the basics of using objects in PERLILOG .

Let’s assume that we have a file named myclass.pl which is:

sub sayit {
my $self = shift;
my $what = shift;
print "I was told to say $what\n";

}

A Guide to PERLILOG 56

Eli Billauer elib@flextronics.co.il

This file is used to declare a class that is used in the following script:

use Perlilog;

inherit(’myclass’,’myclass.pl’,’root’);
init;

$object = myclass->new(name => ’MyObject’);
$object->sayit(’hello’);

We now explain this script briefly, only to give the general picture:

The first line in the script, use Perlilog;, makes Perl load the PERLILOG environ-
ment.

Then we have an inherit command. This tells the PERLILOG environment, that
a new class, with the name myclass should be declared, the methods are defined
in myclass.pl (listed just above), and that the class should be derived from the
PERLILOG basic class, root.

We may now view myclass.pl, and see that it consists exactly of a subroutine def-
inition, in well-known Perl syntax. In effect, this subroutine will become the method
sayit in the myclass class. Note that the subroutine’s first argument goes to a vari-
able named $self, which is a handle to the called object. The argument that is given
by the caller will reach the variable $what.

We now return to the main script. After the inherit declaration, PERLILOG is called
with init. As this function implies, it causes the PERLILOG environment to initialize.

Having done this, we generate a new object of class myclass, give it the name
MyObject, and put its handle (actually reference) in $object.

Finally, we call this object’s method sayit, with the argument ’hello’. As a result,
the text I was told to say hello will be printed.

5.3 Properties

5.3.1 The basics

The properties in PERLILOG are divided into two types: Settable and constant. Set-
table properties are just like any variable: They can be assigned a value at any time,
and the value can be changed as often as desired.

Constant properties, as the name implies, are assigned a value only once. Any at-
tempt to change their value will result in a fatal error. This restriction is useful whenever
changing the property’s value will violate some basic assumption. For example, the
name property is constant for good reasons: It is the object’s identifier, and as a such,
the connection between the name and the object’s handle (reference) is recorded in
the system.

A Guide to PERLILOG 57

Eli Billauer elib@flextronics.co.il

The properties are accessed mainly with three basic methods (defined in the root
class): get for retrieving properties’ values, set for setting the values of settable prop-
erties, and const to assign values to constant properties. It goes something like:

$object->set(’property’, ’value’);
$value = $object->get(’property’);

Properties are also assigned values (as constants) when creating a new object using
new. See section 5.4 for more about this.

The properties in PERLILOG are in general lists. Scalars are considered as a list with
one item. get behaves in such a way, that you’ll get back exactly what you gave set
or const, no matter if it was a list or a scalar.

Or a bit more detailed: If a property is assigned a scalar, and get is called in list
context, you simply get back a list with one element, which is the value assigned. But
if a property is assigned a list, and get is called in scalar context, only the first element
is returned.

A detailed example is shown in section 9.1.3.

5.3.2 Property names

Property names behave like (and are, in fact) hash keys: They are case-sensitive, and
all characters are allowed. It is recommended not to have newlines (\n) in the names,
since these have a special meaning in the internal structure, and may cause strange
property collisions.

For normal, practical purposes, case-sensitive alphanumeric names is the right thing
to do. Don’t make the names too long either, only as a matter of convenience.

See section 5.3.6 regarding the directory-like structure, in which the properties can be
organized.

5.3.3 Undefs and empty lists

Sometimes a property is not set, and sometimes we want to set its value to “nothing”.
The PERLILOG API attempts to return a sensible value, depending on the situation
and the context.

If a property has not been set (or has been removed), get will return an undefined
value (a.k.a. undef) if it is called in scalar context, and an empty list if it’s called in list
context. It is perfectly proper (no warnings) to call get on an undefined value.

For example, if we assume that the property ’property’ was not defined when the
following code snipped was run,

$scalar = $test -> get(’property’);

A Guide to PERLILOG 58

Eli Billauer elib@flextronics.co.il

@list = $test -> get(’property’);

$elementscount = $#list + 1;
print "Was not defined and had $elementscount elements\n"
unless (defined $scalar);

it will print “Was not defined and had 0 elements”.

We may also remove a property by assigning it with either an undef value, an empty
list, or a list containing only one undef value. The property will be removed, and will for
all purposes behave as if it was never assigned a value. Naturally, a constant property
can’t be removed, but using const with an undefined value on an undefined property,
will simply have no effect.

Here are a few examples:

$test -> set(’property’, ()); # Will remove ’property’
$test -> set(’property’, undef); # Will remove ’property’
$test -> set(’property’); # Will remove ’property’
$test -> set(’property’, (undef)); # Will remove ’property’

$test -> set(’property’, (undef, undef)); # ’property’ is set to a value!

5.3.4 More about constant properties

Constant properties differ from settable properties in two respects:

• Constant properties can’t be changed after they are set

• A callback subroutine may be triggered when the constant is assigned a value.

The second issue of callbacks is described in the next section (sec. 5.3.5). We now
focus on the issue of the exact meaning of the value being “constant”.

If a property is not assigned a value, there is, of course, no problem with assigning a
such. If the property has been assigned a value with const, PERLILOG allows const
to be called again for the same property, only if the value to assign the property is
“the same”. We shall see what “the same” means below. It may not seem much of
a privilege to be allowed to call const more than once with the same value, but this
turns out to be useful in callback routines.

We now define what we mean with “the same”: We recall that scalars are considered
by the system as a list with one item, so we may reduce the entire discussion to lists.
Two lists are “the same” if (and only if) they have the same number of elements, and
each of the elements in the first list is Perl eq with the corresponding element in the
second.

A Guide to PERLILOG 59

Eli Billauer elib@flextronics.co.il

The choice of eq may not fit all properties. For some properties, a different criterion
may be in place, in spirit of what means “the same” for that certain property. In that
case, the seteq method (see section 9.1.13 for a description and example) may be
used to substitute eq comparison with some other criterion.

When const is called for an already assigned property, it will never affect the existing
value, and no magic callbacks will occur, even if the new and existing value are differ-
ent (this statement is relevant when seteq was used to soften the criterions for “the
same”).

5.3.5 “Magic” callbacks

“Magic” callbacks are possible only on constant properies. The motivation behind this
mechanism is to force some properties to have the same value. These properties may
belong to the same object, or to different objects.

Suppose that we want property A and B to have the same value. One way of doing
this is to look for all places in the script where A and B are set, and make sure that if
one of the properties is set, so is the other one.

Another, safer and more elegant way to accomplish this, is to tell the environment,
that we want some piece of script to be executed, as soon as A is assigned a value.
This script will then copy the value of A to B. Then we do the opposite thing with B, so
that the value of B is copied to A.

A “magic” callback request (done with the addmagic() method), is precisely asking
PERLILOG to run some codepiece, as soon as some constant property is assigned
a value. Naturally, if the property already has a value, the callback will be fired off
immediately.

The technical details of this mechanism are widely described in section 9.1.12.

A few noteworthy points about “magic” callbacks:

• “Magic” callbacks are never executed more than once, due to the nature of con-
stant properties.

• When using “magic” callbacks for its original purpose, the callback script get’s
the value of A and const’s B with that value. And vice versa.

• Usually, a callback will be set for both A and B, so that they are mutually de-
pendent. So if A is assigned a value, B will be assigned a value by virtue of
a callback. As a result, B’s callback script will be fired off, resulting in A being
const’ed again. If all is done properly, A will be re-const’ed with the same value,
so nothing will actually happen on this second callback.

• If property A and B are tied equal with a pair of callbacks, and B and C are tied
in the same way, all three are, in fact, forced to have the same value: As soon
as one of them is assigned a value, it will spread to all three by a chain effect.

A Guide to PERLILOG 60

Eli Billauer elib@flextronics.co.il

• “Magic” callbacks may be used to force relations between properties, that are
not necessarily equality. Complex relations between values of properties may
be forced by writing the script snippets to maintain these relations.

• “Magic” callbacks are not necessarily used to force values on other properties,
but can be used whenever we want a notification about some property’s assign-
ment.

5.3.6 The property path

Similar to paths of directories and subdirectories in filesystems, there are paths to the
properties in PERLILOG . When referring to a property by a string (like in $object ->
get(’property’)), we relate to a property at root level. We may access properties
at a deeper level by something like $object -> get([’my things’, ’property’]).
In this example, ’my things’ functions as a “directory”, and ’property’ is a property
within that directory.

Property paths may be used in all places, where a property name is expected.

There is nothing special about putting properties into deeper paths, except that it
lessens the chances to collide property names. There is no method to get a list of
properties within a path3. You’re supposed to know what you’re doing.

In fact, the entire path structure can be viewed as a multidimensional array, in which
the key consist of a number of scalars rather than one. A property is recognized by
the exact sequence in the list, which defines its “name”. Viewing this structure as
directory-like is merely a recommendation to have the properties organized better.

We may thus conclude the following facts:

• $object -> get(’property’) and $object -> get([’property’]) are ex-
actly the same thing.

• It is OK to have a property with the name of what appears to be a “directory”. We
may thus call $object -> set(’like dir’, $value1) and after that $object
-> set([’like dir’, ’like node’], $value2) and get two distinct and legal
properties. This may be a confusing, but yet legal setting.

Some Perl programmers recognize that the squared brackets, [and], create a ref-
erence to a list, so the \@-type of reference can also be used, but this is usually not
needed – it is enough to know that the path is a list of nodes to walk in the tree,
with square brackets instead of round brackets. This list can be arbitrarily long, and
it always begins from the root, and describes the nodes on the way to the desired
property.

As with simple properties, it’s proper to get undefined properties in unknown paths.
An undef or empty list is returned, and no more fuss is made about that.

3except for the objdump() method, which is a debugging tool. See section 4.3

A Guide to PERLILOG 61

Eli Billauer elib@flextronics.co.il

5.3.7 Methods for lists

Since the properties are considered as lists, there are four methods in the root class,
which allows some easier access to the values: pshift, punshift, ppush and ppop.
These methods are described in sections 9.1.15–9.1.18. In general, they behave very
similar to their plain-Perl siblings. It is worth to mention, that these methods can’t be
used on constant properties, since they change the property’s value.

5.4 Creating and using objects

5.4.1 The formalilties

Objects are created by a call of the format:
class -> new(Initial properties);
Such a call returns a handle (if you care, a blessed reference to a hash), which is
usually kept in a scalar variable for future calls to the object.

When creating a new object in PERLILOG , the name property must always be set, or
a fatal error will be issued. The object’s name property is its identifier in the system,
and must therefore be case-insensitively unique (the suggestname method is useful to
create unique names, see section 9.1.11).

The initial properties are set by passing a hash, where the keys are the property
names, and the values are their values. If we want to set a property to a list, the value
of the relevant key in the passed hash should be a reference to a list, containing these
values (possibly an anonymous list).

Note that properties that are assigned values with new are constant properties. See
section 5.3 for more about constant properties and properties in general.

In PERLILOG as in common Perl, there is nothing really special about the word new,
except that it happens to be the name of a method, that creates new objects. All
classes in the system should create their objects by inheriting the new method from
the root class. Extensions are allowed by using the SUPER:: prefix on overriding
methods of new (see section 6.4.5).

5.4.2 An example

While the rules above may appear complicated, this is how it really is:

$object = root->new(name => ’MyObject’,
theKey => ’TheValue’,
myList => [’One’, ’Two’, ’Three’],
Five => 5);

A Guide to PERLILOG 62

Eli Billauer elib@flextronics.co.il

In this example, we create a new object of the root class, and we set four properties:
name, theKey, myList and Five. It is important to note that the name of the properties
don’t need quotation mark (even though they are allowed), but the properties’ values
are indeed quoted, or given as any literal value in Perl. Moreover, note the square
brackets in giving the value of myList. This property will assigned a plain list with the
elements given, not a reference to a list.

For sake of clarity, if we continued this section’s example with:

print $object->get(’theKey’)."\n";
@list=$object->get(’myList’);
print join(’,’, @list)."\n";

We would get:

TheValue
One,Two,Three

5.4.3 Property paths in new

In section 5.3.6 we mentioned a directory-like structure of properties. It is possible to
initialize properties deeper than the root level with new by using references to hashes.
Some Perl programmers may recall, that an anonymous reference to a hash can be
created by using curly brackets, { and }, so the following example should make it
clear:

$object = myclass->new(name => ’MyObject’,
MyDir => {MyKey => ’TheValue’,

MyOther => ’TheOther’}
);

In this case, $object -> get([’MyDir’, ’MyKey’]) returns TheValue.

The rule is that if the value is a reference to a hash, then the key becomes a “directory”,
and the hash is interpreted as pairs of property names and their values, within that
“directory”. This may be recursively repeated to achieve unlimited depth in the path.

5.4.4 Common object types

We may divide the objects in PERLILOG into the following categories:

• Verilog objects – As their name implies, these object’s purpose is to generate
Verilog code. In most of the cases, these objects are associated with a Verilog
file, to which the resulting Verilog code is written.

A Guide to PERLILOG 63

Eli Billauer elib@flextronics.co.il

• Port objects – These objects are there more for their properties than their meth-
ods. A port in PERLILOG has a feeling of a connector (as in real-life cables).
The port objects hold the information regarding what kind of port (“connector”)
it is, and what wires (Verilog variables in effect) it is connecting. See section 7.1
for more. At any rate, they have a very basic method set, and don’t generate
any Verilog of themselves.

• Interface objects – These objects are created automatically by the system, as
a result of connecting ports. These objects are responsible for making the con-
nection come true, in terms of declaring the connection of Verilog inputs and
outputs and adding Verilog code snippets to modules as necessary to make
the interfaces match. The interface objects are transparent to the main script
programmer, except sometimes, when they generate independent Verilog files.

• The Global Object – This one and only object is generated by the system, and
serves as a container for “global variables”. In addition, it performs some tasks
in the code generation process that need to be done once in the entire system.

• Other objects – PERLILOG doesn’t restrict the classes or objects to fit into the
categories mentioned above. In particular, classes that are derived from the
root class can readily be used for general purposes.

5.4.5 The global object

The global object is useful when:

• We want to keep global information somewhere – the global object’s property
table is easily accessed.

• We want to run some basic method, but we don’t have an object at hand. The
global object is derived from the global class, which is derived from the codegen
class, so it supports quite a few methods.

There is a special function to get its handle from the main script, globalobj. Within
method declarations, $self -> globalobj should be used instead. See section 4.3
for an example of using the global object to reach a method.

The Global Object’s properties function as the system’s global variables. Different
classes may add properties as necessary to this object. Care should be taken to avoid
name collisions between property names: Use class-specific and unique names in the
Global Object.

For example, if objects of some class need to be aware of each other, a property in
the Global Object may be a list of handles to objects of that certain class. To do this,
each object of that certain class will need to add itself to the list when it’s created.

A Guide to PERLILOG 64

Eli Billauer elib@flextronics.co.il

6 Creating code-generating classes

6.1 How this section is organized

The purpose of this section is to supply the knowledge which is necessary to write
code generating classes, and set the basis for writing interface classes.

We begin with a general overview of what code generating classes are, and what they
are good for. We then go on with showing the Perl code of a simple code generating
class. The purpose of the example is to give an idea of what the code looks like, and
the reader is defenitely not expected to understand it at once.

Section 6.4 is a long and rather tedious, but nevertheless important tutorial on writing
PERLILOG classes in general. It is a continuation of section 5, which described how
to use classes to create objects, and how to use the objects. Now we learn how
classes should be written. Section 6.4 deals with any kind of class, so the information
is useful for extending basic classes as well.

Section 6.5 deals with how the code generating classes fit into the environment. It
details when and how the various possible methods of the classes are called.

Then we have a mini-section 6.6, which tips off regarding methods that are useful
when writing a class.

We then reach the conceptually most important part in code generating classes, and
especially in interface classes: The PERLILOG variables. Section 6.7 attempts to
explain the relation between the Verilog variables (wires, registers, inputs, outputs)
and the way they are represented within PERLILOG . When writing interface classes,
the understanding of this issue is the true difference between an endless frustration
and a piece of cake. Worth the time.

We spend a few words about how Verilog modules are instantiated in section 6.8. This
issue is rather unimportant, unless we insist on generating instantiations explicitly in
Verilog code.

Section 6.9 is a slight diversion from the main subject, as it deals with static objects,
with a small discussion of classes. This piece would better fit into section 5, but
little could be understood from it at that stage. Static objects is a significant tool for
importing Verilog modules as-is.

Finally, section 6.10 presents how errors should be reported in from within a class. In
a complex system, this may help the user to get a clue of what really went wrong.

A very short section 6.11 offers a checklist summary of the main things to keep in

A Guide to PERLILOG 65

Eli Billauer elib@flextronics.co.il

mind when writing a class.

6.2 Overview

6.2.1 What’s a code generating class?

Until this point, we’ve only seen two types of classes: The template class, which was
used to parse template files and generate Verilog code from them, and the verilog
class, which was used once to generate an empty top-level module. The template
class is derived from the verilog class, and verilog is derived from codegen.

Technically speaking, any class which is derived (directly or indirectly) from the
codegen class, is a code generating class.

Less formally, these are classes whose objects have the capabilities to serve the
PERLILOG environment in creating Verilog code. In section 6.5 we shall see exactly
what this means in terms of supported methods.

But to give a definition to bite on: Code generating classes are there to generate
Verilog code. Most of them also create an independent file with Verilog in it.

6.2.2 Why bother learning this

With the template class at hand, it may seem useless to learn writing code generating
classes. And indeed it may be the case. The template class is a powerful tool that
allows embedded scripting, so what good will it make to write a new class?

There are a few motivations:

• Interface classes happen to be code generating classes. If you want to teach the
system how to interface between port X and Y, you may get away with hacking an
existing class. But odds are that you’ll need to know what you’re doing. Knowing
how to write a code generating class is an essential step.

• Many of the techniques we shall see in the context of code generating classes
can be used in template files, as embedded Perl. These are advanced, but yet
useful tools, which broaden the possibilities of the template objects significantly.

• Some basic functional modules, such as memories, timers and counters are
better implemented as code generating classes. By using this tool wisely, it’s
possible to create classes which adapt both their Verilog code and their config-
uration files to the target architecture. For example, a class for memories may
be required to create an object which presents some certain amount of RAM
space. The main script programmer will not need to consider how this memory
should be allocated in the specific FPGA or ASIC: It will all be handled by the
class.

A Guide to PERLILOG 66

Eli Billauer elib@flextronics.co.il

6.2.3 PERL ILOG objects and Verilog code

The Code generating object has a property, verilog, in which the to-be Verilog code is
kept as a single scalar string. This property’s value changes through the process, and
is typically generated from the inside out: It usually starts with the object’s essence
code, put there by the object itself. Interface object may then add code snippets
in order to make a correct matching of ports. When all is done, instantiations and
headers are added. It is also possible to make some last-minute touch-ups after this
stage.

As can be understood from this, the Verilog object itself is by far not the only one to
access and modify its own Verilog code, but it creates the core of it. Other objects
affect it as well.

A code generating object may or may not generate a Verilog file. See section 7.11.3
for more about this.

6.2.4 Instantiation and the object tree

For sake of simplicity, each Verilog module (that is, a Verilog file) is instantiated once
only. To be more accurate, each Verilog object has a parent property, whose value
is the handle of its parent object. This relationship means, that the parent object’s
Verilog code will include the instantiation of the child’s Verilog module. Since each
Verilog object can have only one parent, it can be instantiated only once (This is a
waste of files where the same module could have been instantiated many times, as is
currenly not allowed in PERLILOG . But this will be fixed in the future).

All this results in an object tree, which represents the relations of instantiation between
Verilog modules. The root of the tree holds the modules which is not instantiated
anywhere.

6.3 An example

We shall now see yet another way to implement the ROM module, which we saw a lot
of in the beginning of this document.

This time we’ll create a special class called rom, rather than using the template class
on a template file.

We start this example with presenting our main script tryclass.pl, which can be
found at examples/ex4. It resembles trywb5.pl, which was presented in section 2.5.

use Perlilog;
inherit(’rom’, ’rom.pl’, ’verilog’);
init;

A Guide to PERLILOG 67

Eli Billauer elib@flextronics.co.il

$top = template->new(name => ’top’,
tfile => ’top.pt’);

$test = template->new(name => ’test’,
tfile => ’wb_master.pt’,
parent => $top);

$rom1 = rom->new(name => ’rom1’,
parent => $top,
romdata => [69, 108, 105, 10]);

$rom1->getport(’wbport’)->const(’wb_adr_bits’, 2);
$rom1->getport(’wbport’)->const(’wb_adr_select’, 0);

$rom2 = rom->new(name => ’rom2’,
parent => $top,
romdata => [65, 66, 67, 10]);

$rom2->getport(’wbport’)->const(’wb_adr_bits’, 2);
$rom2->getport(’wbport’)->const(’wb_adr_select’, 1);

interface($rom1->getport(’wbport’), $rom2->getport(’wbport’),
$test->getport(’wbport’), $top->getport(’clkrst’));

execute;

silos->new(name => ’silos_configfile_creator’)->makesilosfile;

These are the differences between the script above and trywb5.pl:

• The rom class is declared with an inherit() statement. This tells the
PERLILOG environment that the rom class should be read from rom.pl, and
that methods should be inherited from the the verilog class. More about this
issue in section 6.4.1.

• The two ROM objects are generated with the rom class, and not template. This
is evident by calling rom -> new() instead of template -> new().

• The tfile property is not assigned here, since there is no template file involved.

Basically, we use the rom class like we used the template class with the template file
perl_rom.pt. The differences in the script above reflect exactly this.

So we move on now to see what we have in our class script, rom.pl. If viewed just
as a normal Perl script, it appears to consist only of two declarations of subroutines,

A Guide to PERLILOG 68

Eli Billauer elib@flextronics.co.il

with nothing beyond this. So if this file is executed directly with Perl, no errors will be
reported4, but nothing else will happen either – the subroutines are never called.

These subroutines are in fact method declarations, and there are two methods de-
clared in this class: new() and generate().

We shall now view rom.pl in pieces, in the order that they appear in the file. This
will allow brief explanations in the middle, which are intended to give no more than a
general picture. You may not understand the code now as you read it, but things will
become clearer until the end of this section.

The file begins a sub declaration and a call to the inherited new() method, which
generates a new object, and returns its reference, which is kept in $self.

sub new {
my $this = shift;
my $self = $this->SUPER::new(@_);

Then we continue with declaring some Verilog variables, which should exist in the final
Verilog code:

$self->addvar(’wb_clk_i’, ’wire’, ’in’);
$self->addvar(’wb_rst_i’, ’wire’, ’in’);
$self->addvar(’wb_adr_i’, ’wire’, ’in’);
$self->addvar(’wb_dat_i’, ’wire’, ’in’);
$self->addvar(’wb_dat_o’, ’reg’, ’out’);
$self->addvar(’wb_we_i’, ’wire’, ’in’);
$self->addvar(’wb_stb_i’, ’wire’, ’in’);
$self->addvar(’wb_cyc_i’, ’wire’, ’in’);
$self->addvar(’wb_ack_o’, ’wire’, ’out’);

This makes the PERLILOG environment recognize the variables, and assures that
they will be declared in the Verilog code. More about this in section 6.7.

The next step is to create the object’s Wishbone slave port.

my $port = wbs->new(name => $self->suggestname(’Wishbone_slave_port’),
parent => $self,
labels => [clk_i => ’wb_clk_i’,

rst_i => ’wb_rst_i’,
cyc_i => ’wb_cyc_i’,
stb_i => ’wb_stb_i’,
we_i => ’wb_we_i’,
ack_o => ’wb_ack_o’,
adr_i => ’wb_adr_i’,
dat_i => ’wb_dat_i’,

4If Perl is run with -w, an unquoted bareword warning will is issued

A Guide to PERLILOG 69

Eli Billauer elib@flextronics.co.il

dat_o => ’wb_dat_o’]
);

Note that the ports name property is not the name we use in the main script to find
it. Also we can see that the parent property is set to the ROM object, since a port’s
parent is actually its “owner”. Finally, the labels are set up in a similar way to what we
saw in the template files.

The name we used in the main script’s getport() is given now:

$self->const([’user_port_names’, ’wbport’], $port);

After this, we may find this port as wbport by calling getport() on the ROM object.

Finally, we make sure that the romdata property is set up. Just to be safe:

wrong("The \’romdata\’ property is not defined on ".
$self->who()."\n")

unless (defined $self->get(’romdata’));

return $self;
}

And we return a reference to ourselves ($self), as should any new() method.

So far with the new() method. We now go on to generate(). It starts in the typical
way:

sub generate {
my $self = shift;

Then, a pseudo-Verilog code snippet is stored in $code:

my $code = <<’ENDOFCODE’;
assign wb_ack_o = wb_cyc_i && wb_stb_i; // Always single clock cycles

always @(wb_adr_i)
case (wb_adr_i)

CASES
default: wb_dat_o = 0;

endcase
ENDOFCODE

This reminds of the template file shown in section 2.5. It is the heart of the Verilog
code, with the string CASES put where the the case lines should be.

It is then no surprise that the following Perl code looks quite the same as the one that
was embedded in section 2.5:

A Guide to PERLILOG 70

Eli Billauer elib@flextronics.co.il

my $c = 0;
my $cases = "";
my $val = 0;
foreach ($self->get(’romdata’)) {
$val = $_ + 0;
$cases.=" $c: wb_dat_o = $val;\n";
$c++;

}
chomp $cases;
$code =~ s/CASES/$cases/;
$self->append($code);

}

There is only one main difference between this code and the one that was embedded,
and that is how $code is initialized and written to the verilog property.

In the embedded version, the verilog property was read into $code, altered, and then
written back to the property. Here, $code is initialized with a constant string, altered,
and then appended to the existing verilog property using the append() method. The
verilog property may well be an empty string at this stage, but we can’t know for sure
in an environment where the classes’ relationships are so dynamic.

We summarize this example as follows: We had two methods, new() and generate().
new() called the “original” new(), after which it made some initializations of its own:
Verilog variables and the object’s port was created and initialized.

generate() actually generated some Verilog code and appended it to the verilog
property.

6.4 Classes and inheritance

6.4.1 Source files and classes

In PERLILOG , a class is defined by telling the system to read a file, and to consider
the subroutine definitions in it as the methods of the named class. In the example,
inherit(’myclass’, ’myclass.pl’,’root’) means to read the source file named
myclass.pl, and create a new class, myclass. Methods are inherited from the root
class, as specified by the third argument.

Note that there is no necessary connection between the name of the file and the
name of the class. Even more important, it is not specified in the file from what class
myclass should inherit methods. The file is only a list of subroutine (in fact, method)
declarations, whose object-oriented context is given by the script.

As is seen in the example, the word myclass may then be used as myclass ->
new(...) in order to generate a new object.

It’s possible to declare a class tree in one command, rather than a single class.

A Guide to PERLILOG 71

Eli Billauer elib@flextronics.co.il

This is done with inheritdir, which is described in section 8.1.3. The trick about
inheritdir is that the directory tree of files reflects the inheritance tree of classes.

An even more important feature of this special class definition scheme, is the possi-
bility to enrich an existing class with new methods, without changing its name. This is
done with the override function. This function can be used with either two or three ar-
guments. In the two-argument case, we have something like override (’myclass’,
’otherfile.pl’), assuming that we have already declared the myclass class with
inherit. As a result of calling override, the given file (otherfile.pl in this exam-
ple) will be read. If new methods are encountered, they are simply added to the class.
If methods that collide with existing methods are found, those in the given file will
override those that were defined before.

Any class in the system, including the root class may be enriched with override,
which opens the ability make changes in the basic classes, without needing to “tell”
the other classes, and still have our new code executed by them.

In some cases, the class we want to override may not exist. Since the purpose of
overriding an existing class is merely to make sure that some specific methods are
supported in this class, it makes sense to create a new class with the same name if
the class doesn’t exist already. This is the purpose of the three-argument format of
override: If override is called with three arguments, and the class mentioned doesn’t
exist, override behaves exactly like inherit with the same arguments. Hence, it
declares a new class, with the third argument as the class to inherit from.

If override is called with only two arguments, and the overridden class isn’t defined,
an error is issued.

As can be expected from a proper object-oriented environment, overriding doesn’t
necessarily mean cancelling out the previous functionality of the overridden method.
By using the SUPER:: prefix, we call the original method, if it exists (this syntax is the
common Perl way to reach the overridden method). See section 6.4.3.

See sections 8.1.2 and 8.1.4 for specific information about these two functions, as
well as examples of using them. Also see 6.4.7 for a graphic depiction of the class
relations of the built-in classes.

A third function underride works opposite to override. Its purpose is to catch calls
to methods that are not already defined in the class, or calls via the SUPER:: prefix
within the class. As the name of this function implies, all existing methods in the class
will override those that appear in the file given by underride.

6.4.2 The phases of the object system

The inheritance relations between classes are set during the execution, and is not pre-
defined in the classes themselves. Setting up the class tree during run-time makes
the definition of classes more flexible, but altering the class definition for existing ob-
jects could also be an opening for exotic bugs. Because of this (and also due to the
way the classes are loaded), there is a clear distinction between three phases in the

A Guide to PERLILOG 72

Eli Billauer elib@flextronics.co.il

main script:

• Declaration of classes and their relationships. During this phase, inherit and
override are called in order to set up the class tree. No objects should be
generated during this phase.

• A call to init. Some internal variables are set up during the execution of this
function, and the Global Object is generated.

• Creation and use of objects – during this phase, anything except attempt to alter
the class tree is allowed.

In essence, this means that the classes and their position in the inheritance tree are
declared before any of them is used. This is enough freedom to allow the system to
choose one set of classes over another, or fine-tune the functionality of some meth-
ods, depending on run-time parameters. A PERLILOG script might thus build a dif-
ferent class structure depending on the target device, the synthesis tool or whether
some other external tools should be used.

But these manipulations can be done until the first object is created, which happens
when init is called.

Even though it is possible to stretch these limits a bit without getting error messages,
it is highly recommended to comply with this phase structure.

6.4.3 Class definition

All PERLILOG classes, including the “built-in” classes, are defined by source files, in
which the class’ methods are defined. These files are perfectly readable as plain Perl
files, but special rules apply to make them useful method declarations.

The most strongest rule, is that all variables inside the subroutines must be declared
“locally”, that is, using Perl’s my. The source files are read in a “use strict” context, so
if a variable is mentioned without being explicitly my’ed, a fatal error will be issued at
the loading of the class.

This is more than a technical rule for programming: It is strongly recommended not to
have any global variables other than properties of the Global Object. Even though a
global variable in the source file (the package, actually) might be a tempting shortcut,
it may cause strange bugs as the PERLILOG environment plays freely with names-
paces. A conservative “local variable” approach ensures steady functionality.

In short, a class defintions consists of method definitions, one after the other, where
each method definition is a subroutine definition with no use of Perl global variables.

We now divide the method definitions to two groups: “Normal” methods and methods
overriding new. Their distinction is in the fact that “normal” methods are called in
association with an exisiting object, while methods that override new are called in
order to create one, so there isn’t necessarily any associated object.

A Guide to PERLILOG 73

Eli Billauer elib@flextronics.co.il

6.4.4 “Normal” methods

In the example in section 5.2, a method called say was declared and used within an
object. The general format of a method declaration is as follows:
sub name of method {
my $self = shift;
Your code here...

}
Writing a method is very much like writing a regular subroutine. The main difference
is that a handle (reference) to the called objects is given as the first argument. It is
customary to put this handle in the scalar $self, usually with $self = shift. There
is nothing special about the name $self, except that it’s easier to read the code when
it follows this convention. After this shift operation, @_ is the list of arguments, so the
rest of the code can be written exactly like a normal subroutine. There are plenty of
examples in this guide.

One important choice we have to make for each method we write, is if we want our
method to override the functionality of a possibly inherited method, or if it should
extend it. In PERLILOG as in plain Perl, defining a method means that it comes
instead of an already defined, possibly inherited method, if it existed. If we want the
method to do more than it possibly did before, we call the inherited method with a
SUPER:: prefix.

To demonstrate this, assume that we want the donothing method to be defined (in
order to avoid an undefined method error), but we don’t want to make any changes
if it was already defined in the class we inherit methods from. The following method
declaration will do the job:

sub donothing {
my $self = shift;
$self -> SUPER::donothing(@_);

}

Note that we explicitly call the inherited method. As opposed to normal method calls,
a SUPER call does not generate any error if it doesn’t exist (that is, if we actually didn’t
override any method, but declared it for the first time).

It is very important to be careful about the arguments that we pass in the SUPER call.
We must always shift away the first argument, and thus make the inherited method
see exactly the same arguments as ours (the “self” handle will be added again by Perl
due to the call). On the other hand, we must be sure not to alter @_ before making this
call, or make a copy of the argument list before changing it (it is very popular to read
arguments by using shift, which changes @_). All this is true, of course, if we don’t
want to intentionally change the argument list before passing it on.

Since we control the stage in which the inherited method is called, we may perform
this call either before or after doing some functionality of our own method. Where it
doesn’t seem to matter, it is highly recommended to call the inherited method as soon

A Guide to PERLILOG 74

Eli Billauer elib@flextronics.co.il

as possible (immeditately after $self = shift). This will minimize the chances to
generate odd bugs as a result of mistakenly changing @_.

See section 8.1.2 for a more extensive example of SUPER calls.

A last remark about writing methods, which goes for any object-oriented programming:
In places where you would write a subroutine in normal Perl, write another method in
the class, and use it as a method by calling it via the $self object. Don’t be paranoid
about someone else changing the way your class will work. It’s a good feature, and
there are plenty of ways to screw things up anyhow.

6.4.5 Methods overriding new

The root class supplies a new method, which creates a new object of a given class.
This method must never be overridden with any other method, but it may be extended.
This is useful to add special properties to any new object, or any other operation that
is needed whenever a new object comes to life.

This is done by having a piece of code as follows in the respective class source file:
sub new {
my $this = shift;
my $self = $this->SUPER::new(@_);
Your code here...
return $self;

}

Note, that unlike the “normal” methods, we don’t get $self by shift’ing @_, but rather
by calling the inherited new, which generates a new object for us. With this $self at
hand, we may use it exactly like in any other method. @_ is also exactly like in a normal
method after shift’ing off $this, but it will be useless in many cases, since it consists
of the initial properties, which will be initialized by root’s new method.

A word about $this: In almost all cases, $this will hold the name of the class. This
is true when new is called in the class -> new(...) format. But it is also allowed to
call new from an existing object, which will result in a new object of the same class.

For this reason, don’t use $this as the class’ name, but rather ref($self). If
you want to know the class’ name before calling new, use $class = ref($this) ||
$this

The new() method usually returns $self, so except for in rare cases, this should be
done by the extension as well.

In an interface class, the new() method must be written with special care. See section
7.10 for more about this.

A Guide to PERLILOG 75

Eli Billauer elib@flextronics.co.il

6.4.6 The autoloading mechanism

The PERLILOG environment attempts to read source files as late as possible. In
effect, each source file is read when an object, whose methods are based on the
class, is created. The source file is read once, when it is needed for the first time.

This mechanism allows the declaration of more classes than are needed for execution,
with minimal overhead for unused classes.

The autoload mechanism is transparent to the programmer. The only thing that needs
to be taken into consideration, is that a source file may contain bugs or syntax errors,
that will not be detected until the class is actually used. If a PERLILOG script is
executed successfully, it does not indicate that all source files are free from syntax
errors, but only those who were used.

6.4.7 The built-in class tree

A drawing of the built-in class tree is shown in figure 4. It includes the following

root

codegen port

verilog global

statictemplateinterface

Figure 4: The built-in class tree

A Guide to PERLILOG 76

Eli Billauer elib@flextronics.co.il

classes:

• The root class is the grandfather of all classes. It includes mainly general-
purpose methods for handling properties and other system functionalities.

• The codegen class (Code Generating class) includes methods that are needed
by any object that might deal with Verilog code. Despite its name, the Code
Generating class is not intended to create Verilog code, but rather deal with
other objects that do. It inherits methods directly from the root class.

• The verilog class is intended to actively generate Verilog code, either by creat-
ing its own file, or by adding code to another file. It supplies methods that deal
with variables and other Verilog elements and functionalities. It inherits methods
from the codegen class.

• The interface class inherits methods from the verilog class, and overrides a
few methods, that make the class behave like an interface object.

• The port class overrides a few methods of those it inherits from the root class.
Port objects are not supposed to execute much themselves, but rather hold prop-
erties, which is the reason why this object type has a very basic method set.

• The global class is derived from the codegen class. This class is used by the
system to generate the global object. Hence this class should never be used by
a script. It includes a few methods that are suitable for its position as the one
and only global object.

The capabilities and relationships between classes reflect the situation before any
add-ons by calls to inherit and override.

6.4.8 PERL ILOG objects vs. plain Perl objects

If you happen to know object programming in plain Perl, then you have more knowl-
edge than is actually needed, and you may possibly make some mistakes because of
that. This section is here to help you avoid them.

Otherwise, you may skip this section with no worries.

The class source files are not read directly by the Perl interpreter. Rather, their content
is eval()’ed after adding a header (this is done in memory, while the source file is left
untouched). This header includes the well-known declarations for a proper Perl class
(the Perl package pragma, and setting @ISA, if you care). These are transparent to
both class writers and users. In particular, the package name may be different from
the class name (even though the class name is used in the common way to generate
new objects of the class).

The PERLILOG object environment is merely a wrapper for the common Perl objects,
so the behavior is very similar. The main pitfall for experienced Perl object program-

A Guide to PERLILOG 77

Eli Billauer elib@flextronics.co.il

mers, is to manipulate variables that the system assumes that the user is not aware
of.

In general, the class source files should be as plain as possible: A list of subroutines,
nothing else in the file. Every diversion from this is an opening to strange behaviours,
and that shouldn’t be needed except for rare cases.

So here are a few don’t:

• Do not use the package pragma, or attempt to access a package by its name, us-
ing the package::name format. PERLILOG feels free to change package names
without any notice, so you don’t know what package name your class source file
will get, even if you access the methods with a known class name. If is forgiv-
able to access the Perlilog or PLerror namespaces directly, but this should be
avoided, even at the cost of slower execution.

• Never access an object’s properties directly. In other words, never make use of
the fact that an object is actually a reference to a hash. It’s not only that the way
the data is stored may change without notice in future versions, but you may
also corrupt the data structure.

• Never use bless. The objects that PERLILOG creates are properly blessed, and
there should be no reason to rebless them. It is heavily assumed that all objects
in the system were generated by the root class’ new or one of its derivatives.
Don’t make a new of your own.

• Don’t declare global variables within the package (that is, your class source file).
It will work nicely at first, but will mess up things quite soon.

• Don’t hassle with @ISA, @EXPORT and friends. These are global variables, so the
previous “don’t” should have been enough, but playing with these is even worse.

• Avoid use statements (except for use Perlilog once in the main script). Specif-
ically, use should not be used as a pragma (like use warnings), while reading
modules with use should be done very carefully.

6.5 The execution stages

6.5.1 The concept

In the example of section 6.3 we saw, that the ROM class merely consist of two meth-
ods, that both do relevant things, but we still have the missing piece of how and who
calls the methods of the class.

PERLILOG was designed to be modular. That means that pieces of software can
be added to existing classes, that may have been written by someone else, without
compromising the intergrity of the code. One of the means for reaching this goal, was

A Guide to PERLILOG 78

Eli Billauer elib@flextronics.co.il

to divide the process, which starts with the creation of an object and ends with the
writing of Verilog files, into stages.

The technique is as follows: When a code generating object is created with
new() it is listed in an internal system variable. This registration is done with the
registerobject() method, which is called as part of the code generating object’s
new() implementation (see section 9.1.14 for more about this method).

When execute is called from the main script, the PERLILOG environment invokes the
multi-stage execution. There is a preknown list of methods, which every registered
object is called with. We shall go through this list soon, and explain each of them.

The order of the method calls is kept stricly: All registered objects are called with the
same method before going to the next one. The order of the method calls is fixed,
of course. As for the order, in which the objects are called, the rule of thumb is that
the objects are called in the order they were registered, which is the order they were
created. There are exceptions for this, as registerobject() allows to register an
object for early or late execution. This is used by system objects, so simple objects
should and do stick to this rule.

What we get is all objects progressing in parallel, which is helpful when one object’s
task depends on the progress of another’s.

It is important to keep in mind, that objects that are registered during the multi-stage
execution will not be included in the list of objects that are currently called. In other
words, in order to have an object called to as a code generating object, it must be
created before calling execute, and definitely not in the implementation of one of the
multi-stage methods.

To the programmer of code generating classes, this means that the functional tasks
should be written as methods, so that the method’s spirit is kept in the implementation.
This makes it easier to create later add-ons, which can rely on some maturity of the
generation process.

6.5.2 The methods called

These are the methods that each of the code generating objects are called during the
multi-stage execution, in this order:

1. complete() – This method is intended to give each object a chance to complete
any missing information. This may involve reading some other object’s property
table, and copy pieces of information as needed.

2. sanity() – This method allows the object to run a sanity check on itself or other
objects. This is useful for creating informative error messages when things will
go wrong anyhow, only the error message is about to weird.

3. generate() – The mother of PERLILOG methods. The implementation of this
method is expected to the smart work and create some Verilog code. Upon re-

A Guide to PERLILOG 79

Eli Billauer elib@flextronics.co.il

turn from this method, the verilog property should have something substantial
in it, but defenitely it’s not the final thing to write to a file.

4. instantiate() – This method is intended to be executed by the system’s im-
plementation and should rarely be touched at all. At most, it can be extended.
During this call, the objects are instantiated in their parent’s Verilog code.

5. headers() – This shouldn’t be tampered with too much either. The system’s im-
plementation creates module headers and Verilog variable declarations. When
this method returns, the verilog property will look like a complete Verilog file.
But it’s still soon to save it to a file...

6. epilogue() – This method is there to allow things to be done just before saving
the verilog property to a file. It may contain final brush-ups or anything that
should be done in the last minute.

7. files() – Another method, which is meant for the system to handle. This is
merely saving the contents of the verilog property to a file.

The method that wasn’t mentioned in this list is new(), because it is called when the
object is created, and not within the multi-stage execution. It’s implementation should
include anything that can’t wait until the multi-stage implementation. For example,
if some object creates other code generating objects, this must be done during the
implementation of new(), because doing this during any of the multi-stage calls will be
too late.

A final word: Despite the variety of methods, it may probably be enough to implement
only the generate() method, and possible extend new(). Methods that are not over-
ridden nor extended need not to be mentioned in the class file, so it can be really
compact.

6.6 Useful methods

There is a comprehensive listing of methods at the end of this manual. What follows is
merely a tip-off regarding methods that is good to know about, and weren’t mentioned
yet.

• The who() and safewho() methods are good to get a short and concise string
that describes the current object in a way that humans understand. This is useful
when creating error messages. Also, when writing a class, consider to override
this method with something that will describe the objects better, but be sure
to make something similar to the existing who() methods (overriding who() is
enough). See sections 9.1.6 and 9.1.7 for more about this.

• The globalobj() method is useful to find the global object of the system. It is
useful within method-defining code, since the common globalobj() command
doesn’t exist in the relevant namespace. Thus, a self-call to this method is the
solution. See section 9.1.5.

A Guide to PERLILOG 80

Eli Billauer elib@flextronics.co.il

• The isobject() method can be used to verify if some scalar is a handle to an
object. This verification should be done if there is any doubt about this, before
attempting to call a method of the alleged object. Otherwise an ugly Perl error
may occur as a result of trying to use a non-object item as an object. See section
9.1.8.

6.7 PERL ILOG variables and Verilog variables

6.7.1 Introduction

There is no way to understand PERLILOG variables without realizing how differently
they are viewed, compared with Verilog.

In Verilog, a variable is a wire, register, input, output or some other creature, whose
definition is closely related to its function within the module it lives in. The variable’s
definitions and the logics that come afterwards are one integral piece, which is called
a Verilog module.

In PERLILOG , variable definitions and the logic code are two different worlds. Code
generating classes write the logic code directly to the verilog property, but the vari-
able definitions is the territory of the PERLILOG system. If we want to have a variable
(say, a Verilog wire) in some module, we ask the PERLILOG environment to create
it for us. The environment will then be responsible for creating the necessary wire
statement in the Verilog file.

There are two reasons why every Verilog variable must at least be known to the
PERLILOG environment:

• This allows the PERLILOG environment to make connections of modules, and
make various manipulations on the variables.

• In order to avoid name collisions between existing variables, and those that
PERLILOG may generate, all variable names must be known to the system.

All this fuss about variables has the purpose of allowing a set of useful features re-
garding the variable’s attributes and connection. Easy connection between variables,
easy Verilog inplanting of logic code into an foreign object and the ability to equalize
bit ranges between variables are some of the advantages that we get.

6.7.2 Identifying a variable in PERL ILOG

In PERLILOG there are two ways to say which variable we are talking about:

• The object which owns it, and the name of the variable in that object. Or, equiv-
alently, the Verilog module in which is defined, and the name to use in Verilog

A Guide to PERLILOG 81

Eli Billauer elib@flextronics.co.il

for the variable. This uniqueness is assured simply because Verilog considers
modules as separate name spaces.

• A number, called the variable’s ID. The ID is unique per Perl execution, and in
particular, there is no context of Verilog module to access a variable via its ID.

There are various built-in methods in PERLILOG that deal with varibles. Some use the
first type of identification, some use the second. The rationale is that if all variables
involved live in the same Verilog mode (or equivalently, in the same object), they are
conveniently accessed by their name in the module. On the other hand, when the
operation may involve variables from different objects, the variable’s ID is in place.

Note that by using variable IDs, we break the borders between the modules. We
relate to the variable regardless of in which module it lives, which is very useful when
connecting variables.

Two methods exist for change from one way of identification to another:

• ($obj, $var) = $self -> IDvar($ID) converts a variable ID in $ID into a the
object owning the variable (given in $obj) and the Verilog name of the variable
(in $var). In scalar context we have $var = $self -> IDvar($ID), and only
the variable’s name is returned. $self can be any code generating object, it
doesn’t affect the returned value (the ID is beyond objects). More in section
7.5.8.

• $ID = $obj -> getID($var) does the opposite. It returns the ID of the variable
named $var in the object $obj. Note that it does matter which object we use to
call the getID() with. More in section 10.1.4.

6.7.3 Variable drive and connection

Suppose that we wrote, in plain Verilog, something like:

assign driven = driving;

where driven is a Verilog wire, and both variables are of same size.

For most practical purposes, driven becomes an alias of driving: The value that we
get from driven is always the same as the one of driving.

Let’s try to look at this in terms of plain electronics: driving can be seen as some
point on say, an electronic board. Just a wire or some test point where the voltage
or logic level is set by some circuit’s output. The assign statement above can then
be seen as if we took a piece of wire, and connected the driving point to another
point on the electronic board, that we chose to call driven. Disregarding impedance
or fan-out issues, this is the electronic parallel to a Verilog assign.

But what if we now wrote:

A Guide to PERLILOG 82

Eli Billauer elib@flextronics.co.il

assign subdriven = driven;

This is like taking another piece of wire, and connecting the point we called driven to
another one, that we called subdriven. If we again disregard impedances and other
real-life imperfections, we’ve just copied the voltage which originated in driving to
subdriven. In other words, writing

assign subdriven = driving;

would be the same.

In a nutshell, this is the entire philosophy behind connecting variables in PERLILOG

. Connection of variables in PERLILOG means creating groups of variables that have
the same value all the time. One variable is actually getting its value from some Verilog
expression, and that variable is the driving variable. All other variables (possibly one)
passively get their value from the driving variable, and are called driven variables.

Or, equivalently: If a variable gets its value due to a connection with some other
variable, by using the PERLILOG connection mechanism, it’s a driven variable. Driven
variables can be recognized by the simple rule, that they will be “floating” if we don’t
connect them with attach() properly (attach() is discussed in section 6.7.4).

On the other hand, if the variable is assigned a value in some Verilog statement, it’s a
driving variable. And to be accurate, here we refer to Verilog code which appears in
the verilog property at the end of the generate method call, which does not, at that
stage, include the module’s inputs and outputs, nor instantiations that are generated
by PERLILOG .

In the example of section 6.3, only wb_dat_o and wb_ack_o are driving variables. The
rest are driven. If we look at the Verilog snippet, we see that only these two get their
values in Verilog.

Register variables (Verilog reg) are always driving variables, by convention. The rea-
son is that if we bothered to make them registers, then we probably want to assign
them a value in the core Verilog code.

6.7.4 Connecting variables with attach()

The attach() method is an embodiment of the idea just presented: It works like
a piece of wire connecting between two points in a circuit5. It’s typically used in a
statement like:

$self->attach($first, $second);

$first and $second are the variable IDs of the two variables we wish to connect.
$self is a reference to any code generating object – it doesn’t matter which. Neither

5In fact, the words “connect” or “bind” suit this method’s name better than “attach”, only the two former
words are names of plain Perl functions...

A Guide to PERLILOG 83

Eli Billauer elib@flextronics.co.il

does it matter if we swap the order of $first and $second in the call.

Neither $first nor $second needs to be the ID of a driving variable. The attach()
method forces them to have the same value, and exactly as with the electronic board,
both may take their value from some third variable, which drives them both. In fact,
attach() merges groups of variables, and forces them to have the same value. The
statement above actually means to force the same value on all variables that belong
to the same group as $first and those who belong to the group of $second. It may
sound complicated, but it’s exactly what we do when connecting two points on an
electronic board with a piece of wire: We force the same voltage on all points that
were connected to either of the two points.

There is only one rule to keep strictly: In the end (actually, before the instantiate()
execution stage is reached) each group of variables that have been merged with
attach() must have one and only one driving variable.

If there is no driving variable in the group, we have a group of floating variables. If
there are two or more, this is a collision. Both cases cause a fatal error during the
instantiate() execution stage.

The only exception to this rule, is variables which have not been connected at all. In
other words, a group of variables which consist of one variable is always legal.

There is no restriction at all regarding which objects the two variables belong to. The
PERLILOG environment will make the necessary add-ons to the Verilog code to im-
plement the grouping in an optimized manner. This includes:

• Converting Verilog wires and registers into inputs and outputs as necessary to
connect them across modules

• Connecting instantiated modules’ variables as necessary

• Adding Verilog assign statements when two or more variables of one group
belong to one module.

In short, attach() simply means that the two variables are forced to have the same
value, with no need to worry about how it is done. The PERLILOG system handles all
this, including the verification of consistency, early during the instantiate() execu-
tion stage.

The attach() method is further described in section 10.1.2.

6.7.5 The variable’s attributes

Each variable has three attributes. These are simply properties in the owning object’s
property tree (see section 11.2.1 for how to access them directly). The three attributes
are:

A Guide to PERLILOG 84

Eli Billauer elib@flextronics.co.il

• type – The variable’s type, which is how the variable will be declared in the
Verilog file (wire, register, output, output and register, input). More about this
below.

• drive – either in, which means driven variable, or out, which means driving
variable.

• dim – The dimension, or bitrange, of the variable. It’s the dimension is a that
will be given in the variable declaration in Verilog. Therefore, it has the format of
[3:0], or an empty string for a single-bit variable.

The drive attribute must be set when a new variable is created, and it can’t be
changed afterwards. The dim attribute may not be set until as late as the end of
the generate() execution stage, but if it is assigned a value, it can’t be changed
afterwards (it’s a const).

The type attribute must be set on new variables, but it may change. Even so, changing
this attribute shouldn’t be needed except for by the system during the instantiate()
execution stage.

The variable type can be one of the following:

• wire – This is a Verilog wire. It may be either of drive in or out.

• reg – This is a Verilog register (reg). This format does not imply whether it is
going to be used to generate a flip-flop or not during synthesis. The drive must
me out.

• input – This is a Verilog input, and must be of drive in. Setting the type
to input should be done only by the system,6 converting a wire to input as
appropriate when connecting it with a driving variable.

• output – This is a Verilog output, and must be of drive out. Setting the type
to output should be done only by the system, converting a wire to output as
appropriate when connecting it with a driven variable.

• outreg – Like output, only this is what we get when the system converts a
Verilog register into an output. Always of type out.

We may conclude that to the code generating class programmers, there are only two
possible values for the type attribute: wire and reg. If we chose reg, then the drive
is always out. If we chose wire, then we’ll choose the drive according to the simple
question, of whether this variable will be floating if we don’t attach() it at all. If the
answer is yes, we go for drive in, otherwise we choose out.

6except static classes, which we shall discuss in 6.9

A Guide to PERLILOG 85

Eli Billauer elib@flextronics.co.il

6.7.6 attach() and the dim property

An important side effect of the attach() method is that whenever two variables are
connected with it, magic callbacks are set up mutually on the dim attribute (See section
5.3.5 for more about magic callbacks). In effect this means, that the dim attributes of
both variables are forced to be equal. As soon as one has the attribute set (be it
immediately), it is copied to the other variable.

The total effect of this is, that all variables that are grouped together (electronically
“wired”), are also forced to have the same dim attribute. Any attempt, at any time, to
give some variable another dim attribute will end up with a violation of the constant
nature of the property, which holds this attribute. This is in fact the mechanism which
filled in the unspecified [:] dimensions in the template file shown in section 2.4.2.

6.7.7 Creating new variables

There are three methods defined in the verilog class, which are relevant to gener-
ating new variables: addvar(), suggestvar() and namevar(). Both addvar() and
namevar() create new variables. The variable’s initial attributes are passed to these
methods as arguments.

There is a small thing to be careful about when generating new variables: The vari-
able’s name must not collide with an existing name in the object (and hence the Verilog
module). There are three ways of avoiding this:

• When we add variables of an object that we just generated, just keep track of
the names. In this case we use addvar(). See section 11.1.2.

• The suggestname() method returns a name that is unique in the object it is
called on. The name is based upon a suggestion that is given as argument,
usually with a counting suffix when necessary. (See section 9.1.11. We then
take the returned value, and use it as the name in addvar().

• namevar() is the two-in-one solution: It calls suggestname() with the name it
got, creates a new variable with addvar(), and returns both the name and the
variable ID of the new variable (as opposed to addvar(), which returns only the
ID). See section 11.1.3.

In some cases, we want to create Verilog code that uses some variable to read its
value from (“read-only access”). If we have that variable’s ID, copyvar() is useful,
because it will create a new variable in the relevant object and attach() the new
variable with the existing one, only if that is necessary. This is demonstrated in section
7.5.9.

Another special case is when a variable does not fit into any of the categories known to
PERLILOG . For example, we may have Verilog integer variables, which PERLILOG

doesn’t know how to handle. Still, we must create a variable in order to prevent

A Guide to PERLILOG 86

Eli Billauer elib@flextronics.co.il

PERLILOG from accidently creating another variable with the same name, in the same
module.

This is done with a name-reserving addvar(): The method is called with only one
argument, which is the variable’s name. For example, $obj -> addvar(’i’) will allow
us to use the variable i in our Verilog code without having PERLILOG messing things
up (isn’t i the variable we choose for loops?).

6.8 Automatic vs. explicit instantiation

6.8.1 Instantiation in general

The normal way in PERLILOG , is that modules are instantiated by the environment,
according to their parent property. This happens automatically for all code generating
objects, which have this property defined.

In some cases we need to perform an instantiation of either a module (see section 6.9)
or some Verilog primitive elements such as gates, switches, or user-defined primitives
(UDPs). This is called an explicit instantiation, because it is written directly to the
verilog property either by some script, or it appeared in the template file.

6.8.2 Explicit instantiation

After getting used to PERLILOG doing all the instantiations for us, one may get the
feeling that instantiation in general is the system’s territory. But in fact, as long as we
don’t explicitly instantiate modules, which are going to be instantiated by the system
(because they have the parent property defined), it’s quite easy to stay out of trouble.

The only thing that really needs to be taken into account, is that the names of the
instances must be unique. Instance names share the same namespace with plain
Verilog variables (a separate namespace for each module).

There are two methods in the Verilog class, which help us keep track of the names:
addins() and suggestins(), which are very similar to addvar() and suggestvar().
In fact, for this version of PERLILOG they do exactly the same, but addins() and
suggestins() must be used for future compatability.

The following example shows how a Verilog primitive nor is instantiated:

my $ins = $obj->suggestins(’nor_ins’);
$obj->addins($ins, ’detached’);
$obj->append(" nor $ins($out, $in1, $in2, $in3);\n");

Note that the suggestins() is used to avoid name clashes. addins() is called with a
second argument (see section 11.1.6), which is mandatory on explicit instantiations.

A Guide to PERLILOG 87

Eli Billauer elib@flextronics.co.il

If explicit instantiations appear in template files, exotic names are recommended. The
current version of the template file parser doesn’t reserve names of instances, so
name collisions need to be avoided. It’s not so clever to reserve the names with
an embedded script either, since some future version of the parser may recognize
instances and reserve the names.

6.9 Static objects

6.9.1 What it is

As we’ve seen (and will see more), the PERLILOG tampers with the Verilog code quite
a lot. This is a blessing in most cases, but there are times when we want to know that
the Verilog code will remain untouched. The straightforward example is when we use
some prewritten module, which we want into the system ASCII-wise identical to what
we got.

Static objects are intended for this exactly. These objects’ verilog property isn’t
changed by any system routine, and in fact it’s advisable to use the const method to
write the desired Verilog module into it.

The formal definition of a static object, is a code generating object, whose static
property is defined and has a value which Perl considers “true”. As we shall see in the
example of section 6.9.4, there is a static class, which loads a Verilog file, makes its
content the static verilog property. It is advisable to base other classes, which need
to be static, on this class.

Static objects are respected by many functions within the system, not only in the
sense of not writing to the verilog property, but also by making it possible to use it
as a normal object in many ways. The most important aspect is that variables can
be defined, and ports can be attached to static objects, and then be interfaced in a
normal manner. If the interfacing of some port would normally cause Verilog snippets
to be injected into the verilog property, this will almost always be solved in an elegant
way. In summary, static objects can be used like any other object, as long as we don’t
insist on changing its Verilog code.

6.9.2 How to instantiate static objects

There are two very different ways of handling static objects. The difference lies in
whether the relevant module (or modules) is instantiated automatically by the system
or not:

• A static object, whose parent property remains undefined, will not be instanti-
ated by the PERLILOG environment. In fact, this holds true for any object, but
it’s useless for any object except static objects and the top-level object of the
design. Uninstantiated static objects are useful when we want to write the in-

A Guide to PERLILOG 88

Eli Billauer elib@flextronics.co.il

stantiation statement explicitly in some Verilog code. This could be done in the
template file, some other static file, or possibly by some script, which appends
the explicit instantiation to the Verilog code. The motivation of doing this may be
that we have a completely written module, which we don’t want to tamper with.
If the module includes instantiations, it’s easier to leave it as is, and incorporate
the modules that are instantiated as static object. See section 6.8.2 for more
about explicit instantiations.

• If the parent property is defined, the object will be instantiated automatically.
In this case, the inputs and outputs of the module need to be declared to the
PERLILOG environment, so that they can been connected like any other vari-
ables.

Note that if we want to instantiate the module of a static object more than once, we
have to use explicit instantiation. The reason, among others, is that an object can’t
have more than one parent.

But from this point, we focus on static objects that are instantiated automatically.

6.9.3 Variables of static objects

Dealing with variables is a bit different with static objects. There are a couple of special
rules:

• Unlike non-static objects, there is no need for PERLILOG to know about all vari-
ables that are defined in the Verilog module. Since PERLILOG is not going to
add any variables of its own, there is no risk of name collisions. Accordingly, it’s
reasonable to call addvar() on the Verilog module’s inputs and outputs only.

• On static objects, we define variables’ type attribute exactly as it is in the Verilog
module. For practical purposes, the input and output types are the only ones
needed: For static objects it doesn’t matter if the variable is of type output or
outreg, and if it’s a wire or reg, why bother telling PERLILOG about it anyway?
Note that if we choose wire or reg for a variable that we use as an module I/O,
PERLILOG will attempt to modify its type to the appropriate I/O type, fail, and
report that failure to convert types.

6.9.4 Example of using a static object

We now demonstrate how the good old ROM can be created with a static Verilog
object. The files are in the examples/ex5 directory. In this directory, all .pt files are
taken from the ex2 and are identical to the original. Two files, that we shall show next,
were added.

We begin with therom.v, which is a complete and legal Verilog file – nothing needs or
should be changed:

A Guide to PERLILOG 89

Eli Billauer elib@flextronics.co.il

‘timescale 1ns / 10ps

module rom2(zero, one, two, three);

output [7:0] zero, one, two, three;

assign zero = 8’d65;
assign one = 8’d66;
assign two = 8’d67;
assign three = 8’d10;

endmodule

Next we see the trystatic.pl script, which is very much like trywb2.pl (see section
2.4.3).

The beginning of the file, which handles the top, test and rom1 objects is identical to
trywb2.pl, so we don’t deal with it here.

The rom2 object is going to be static. Note that the Verilog module already has the
name rom2, because the PERLILOG environment can’t change it to fit the module’s
name.

In the script we have:

$rom2 = static->new(name => ’rom2’,
source => ’therom.v’,
parent => $top);

Which creates a static object (by using the class static). The source property is the
file to read the Verilog from.

Our next step is to make PERLILOG aware of the module’s four outputs. We add the
four variables to the object:

foreach $name (’zero’, ’one’, ’two’, ’three’) {
$rom2->addvar($name, ’output’, ’out’, ’[7:0]’);

}

Note that the type attribute is output, and keep in mind that this would be a bad
choice, hadn’t this been a static object.

We now create a port of type vars, and associate the variables in the labels property:

$romport = vars->new(name => ’JustSomeName’,
parent => $rom2,
labels => [r0 => ’zero’,

r1 => ’one’,
r2 => ’two’,
r3 => ’three’]);

A Guide to PERLILOG 90

Eli Billauer elib@flextronics.co.il

The port’s name, JustSomeName, only needs to be unique. We won’t use it anyway,
since we access the port with getport() and not with its name as an object.

But in order to make getport() work, we have to set a property:

$rom2->const([’user_port_names’, ’wbport’], $romport);

The rest of the code is the same as in trywb2.pl. Actually we could have used
$romport whenever we had $rom2 -> getport(’wbport’) in trywb2.pl, but this is
merely a slight optimization.

It is really interesting to view the resulting Verilog files. In the original trywb2.pl,
example, the rom2.v module had an entire Wishbone interface inplanted. This couldn’t
be the case of this example, since rom2.v comes from a static object. What we’ll see,
is that the interfacing code has moved to the bus controller module instead – it has to
be somewhere.

6.9.5 Making a static ROM class

It makes sense to wrap all the extra code into a special rom2 class. This has been done
in the files at examples/ex6. We shall not go over them here, but it’s recommended to
look at the files if the subject is of interest.

In general, the code presented in section 6.9.4 took the form of an extension of the
new() method. The rom2 class suggested consist, in fact, only of this entension.

When reading the main script, note inherit(’rom2’, ’rom2.pl’, ’static’), which
makes rom2 a static class with expansions.

6.10 Error reporting

6.10.1 Some philosophy

In a perfect world, errors tell the user or programmer what should be fixed. In the
world where programmers rule, error messages don’t exist at all, or they say what
went wrong, which doesn’t necessarily say anything about what should be fixed.

PERLILOG is intended to be an environment in which the code of many different peo-
ple runs together. For this reason, it is important to supply the programmer with a
variety of options to report that something is wrong, in a way that reflects the severe-
ness of the error and also gives the reader of the error as much help as possible.

To begin with: die and warn should never be used within PERLILOG . Instead, other
functions are supplied as follows. These functions can be used exactly in the way that
die and warn would be used, both in the “main script” and in class definitions.

In particular: Unless the error message ends with a newline (\n), the line number on
which the function was called will be appended to the error message.

A Guide to PERLILOG 91

Eli Billauer elib@flextronics.co.il

The debug interface will hopefully develop way beyond this. But while writing both
scripts and classes, it’s compulsory to use the following functions for diagnostic re-
porting.

6.10.2 The list of functions

• blow() – This is similar to die(), and should be used when the scripts seem
to be OK, but some unrecoverble error occured (such as failing to open a file).
The error message should make sense to a user knowing nothing about the
internals.

• puke() – This will work like blow(), but will also present a hopefully concise call
stack dump. The ugly name of this function reflects what the output looks like
and how graceful it is. To be used in reporting errors that occur only as a result
of a bug. When the system puke()s on you, the error comes from the guts of
the system. Accordingly, whoever will read the error message is expected to be
either disgusted or having a good knowledge of the internals.

• wiz() – Use this function to throw warnings that will most probably not be un-
derstood by anyone else than yourself and a handfull of people. Use this mainly
for testing your own class. These warning will be ignored in normal runs.

• wizreport() – This function should be used to detect conditions that you don’t
expect to happen, even after your class is in common use. Running this function
will dump a call stack trace into a report file, and ask the user to send it to you.
It still functions as a warning, so if execution must be stopped as a result of this
condition, a call to blow() should take place after this one.

• fishy() – Generates a warning like the one you’d expect to get during the Sanity
Check stage, but it may become before or after that stage. The contents of the
warning text should be clear to a non-Perl user.

• wrong() – Like fishy(), but will set a flag to abort code generation, or abort
immediately if in the middle of it. This is a way to report fatal conditions, and
give other objects a chance to file their complaints before halting.

• say() – This is for general logging. This is basically reporting what you’re doing,
if you think it can interest someone.

• hint() – Like say(), but meant for more verbose information. The intention is to
include information that may help debugging. It’s plausable that these messages
will be ignores unless the system is run in some verbose mode.

• wink() – This message is reserved for all of us who usually debug by putting
meaningless prints in our code to mark that some milestone has been crossed.
The messages will appear immeditely and visibly.

A Guide to PERLILOG 92

Eli Billauer elib@flextronics.co.il

6.10.3 “Hidden” classes

Some of the error-reporting classes mentioned above make a call stack dump. There
are cases, when we want to hide our class or package from this dump, in order to
avoid confusing data from appearing. This applies mainly for system packages, and
should not be used on “real” classes. If we want a class to be hidden from stack
dumps, we define a global variable with our $errorcrawl=’skip’, usually at the top
of the file. This is a summary of possible values for $errorcrawl:

• skip – Causes the current package (or class) to be invisible in stack dumps.
This was originally intended for the error-reporting package itself, so it wouldn’t
report its own internal calls.

• halt – Like skip, but applies also for any calls that the current class performed.
In other words, the current class, and any calls it made are invisible.

• system – This causes the error message to be shortened slightly, by omitting
the file name and line number, and saying “by System” instead. This is a slightly
arrogant way to tell the reader of the error message, that the call was indeed
performed, but it’s useless to try find the error there.

Note that cleaning the error trace is nice as long as the information isn’t needed,
but it’s very annoying if the error had to do with your code. Therefore, it is warmly
recommended to avoid this kind of tricks unless you’re absolutely confident about
your code, and if it really fits the category of “system code”.

6.11 Summary: How to write classes properly

This is a short checklist of things to keep in mind while writing a class in PERLILOG .
There is nothing here that isn’t mentioned elsewhere in this manual in detail.

• A class file should look like a clean list of subroutines. There should be nothing
outside the subroutine blocks.

• Declare all variables with my. Don’t use global variables.

• Use the global object where there is need for global variables.

• Always consider using the SUPER:: prefix to call the overridden method. Make
sure that all parameters are passed as is, unless intentionally doing otherwise.
Make sure that the name of the SUPER’ed method is the same as your own.

• Use blow(), puke() and wrong() as appropriate instead of die(). Use fishy()
and wiz() instead of warn(). In the error message, use $self -> who() to in-
dentify your own object, and $self -> safewho($other) for some other object.

A Guide to PERLILOG 93

Eli Billauer elib@flextronics.co.il

• Don’t use direct subroutine calls, but method calls with as in $self ->
method().

• Access properties only with the standard methods (get, set, const and the built-
in methods for list) or methods that make use of these. Never attempt to use the
object as a hash.

• Be strict about the PERLILOG conventions. Always assume that your class must
be able to work with other people’s classes. Make no shortcuts.

A Guide to PERLILOG 94

Eli Billauer elib@flextronics.co.il

7 Ports and creating interface classes

7.1 PERL ILOG ports

7.1.1 An overview of ports

A crucial stage in understanding PERLILOG ports, it to realize that they have no formal
definition, that describes what they actually are. They are what we want them to be –
usually something to connect modules with.

Let’s be more accurate: The formal definition of a port is an object, which is of some
class that is derived from the port class, which is a very close relative to the root
class. It is an object, which isn’t originally intended to do more than to hold some
properties. The port is there so we’ll have something to connect, but actually it does
nothing by itself. Its only purpose is to hold the information about its meaning, so that
when we’re running interface() on some ports it should be fairly clear what we want
to happen.

There are two ways in which the port’s information is held: One is the class it’s made
of as an object, and the rest is kept in the object’s properties. Ports of different classes
may be identical in their methods – the use of classes is merely to make strong dis-
tinctions between very different kinds of ports.

But in our minds a port should be “the thing that we connect”. In section 2.3.4 the ports
were compared with plugs in a computer, that we connect to the keyboard, the screen
and so on. The feeling of a port should be something you connect to something, and
whoops, it all works. It’s much more important that a port will reflect something intuitive
and straightforward, than represent the real down-to-earth action that connecting this
port involves.

Another way to describe the idea of ports, is to imagine that we’ve just drawn a
schematic diagram of our system to show to our boss. It’s probably a few rectan-
gles and arrows, that represent some flow of data or connection of signals. Now, let’s
see... Usually, we don’t draw anything at the endpoints of these arrows, because we
don’t have anything interesting to write there. But if we have a set of PERLILOG ports,
which fit in exactly into the end points of those arrows, then it’s probably done right.

Naturally, the real-life meaning of connecting ports will end up to be some connection
of Verilog modules via their inputs and outputs. While this will be true most of the time,
there is no necessary connection between ports and Verilog wirework: Ports can be
used for any purpose that means connection intuitively, and even more important,
ports are not necessary to connect variables in Verilog. If all we wanted to do, is

A Guide to PERLILOG 95

Eli Billauer elib@flextronics.co.il

to connect this variable in this module with some other variable in the other module,
we’re better of by using the attach() or copyvar() methods (see section 6.7 for an
insight on the variable level).

In summary: PERLILOG ports are there to make the connection of modules an intu-
itive task. To make us, as humans, make these connections like we naturally think
about them, and not necessarily like a computer likes it chewed down.

7.1.2 What ports must be

There are only a few rules that a port must keep in order to be OK with the system.
These are:

• Ports must be generated from a class, which is derived from the port class
(even indirectly).

• Ports must be proper PERLILOG objects, simply because they are objects. In
particular, the existence and uniqueness of the name property must be kept as
with any object7.

• Ports must have the parent property set to the reference of the object which
owns it upon creation.

Aside from this, ports can be set up as desired. It makes sense to keep attributes
regarding the connection of the ports as the port’s properties, but this is really a matter
of implementation. In particular, ports may have properties which are not relevant to
the port itself, but rather to the counterparts we intend to interface them with. For
example, we saw in section 2.4.5 that a vars port was assigned the Wishbone-related
properties wb_adr_bits and wb_adr_select, which were intended for the Wishbone
bus controller.

7.1.3 The labels property

A port object is perfectly OK without the labels property set. On the other hand, this
property is a comfortable way to point out the functional meanings of Verilog variables,
as has been shown in the examples.

We have seen that the template class allows an easy set-up of this property via the
port declaration. There are other advantages of using the convention of the labels
property, such as methods in the basic interface class, which access this property
easily.

The labels property is therefore a recommended way to map which variables are
related to the port and how, but if it doesn’t make sense to use it, there is no need to.

7We didn’t say that the name property always exists. See section 7.10 on why port objects are often
created in a special, transient way

A Guide to PERLILOG 96

Eli Billauer elib@flextronics.co.il

So let’s get to the details. The labels property is a list property. In particular, it can
be read into a hash, and written from a hash, so

%mylabels = $port->get(’labels’);
$mylabels{’thelabel’} = ’TheVariable’;
$port->set(’labels’, %mylabels);

is a perfectly sensible way to give TheVariable a meaning in the port $port, assum-
ing, of course, that the labels property wasn’t set up with const().

When using a hash to read labels with, the keys of the hash are the labels, and the
values are the variables. If the variables are numbers, they are the variable ID of the
variable. Otherwise, its the name of the variable’s name, as it appears in the port’s
owner’s Verilog code.

Note that by using variable IDs, it’s possible to refer to any variable in the system, and
it’s perfectly proper to take advantage of this. In section 7.3.5 we meet the labelID()
method, which is a quick way to access the labels property, and get the data orga-
nized in variable IDs. This will prove useful.

7.1.4 New ports classes

If we want to add a new port type (in fact, a port class) to the system, there are two
things to do:

• Making the port’s class available

• Writing interface classes to support the port

There is a huge difference in the difficulty of these two tasks. The first task is a quick,
formal thing to do. How to do this is explained in the paragraph to follow. To support
the port with interface classes is a bit more of an artwork, but fortunately, the artistic
side of doing this is to make it minimalistic. The good news are that it may be enough
to write one or two not-so-complicated interface classes to get the port connected with
any other port in the system. How to do that is shown in the rest of this section.

As for adding a new port class: Let’s assume that we want a new class, named
myportclass. First, we create a new file, which is the source file. It can actually
be empty, but it’s recommended to at least put a line of comment there. Ports are not
supposed to do much, so there is no reason to add methods.

So we can create a file named myportclass.pl, which is exactly

This is the myportclass -- no methods.

And then we must declare the class to the PERLILOG environment. We inherit from
the port class, so we need the following statement to be executed before init:

A Guide to PERLILOG 97

Eli Billauer elib@flextronics.co.il

inherit(’myportclass’, "myportclass.pl", ’port’);

That’s it. This was really easy. But now we go on to how to make interface() know
what to do with this port class...

7.2 Interface classes overview

7.2.1 General

Interface objects perform whatever makes sense from the request to connect between
a list of ports. In some cases, this merely means to attach() a few variables, as in
the connection of two vars ports. In other cases, some interface code will also be
added to the Verilog modules involved, like when a vars port was connected to a
Wishbone bus. An independent Verilog module (such as a bus controller) may also
be created when necessary. The definition of what interface modules do is as open
as the definition of the ports they connect: It should make sense, that’s all. In most
cases, we expect some “wirework”, though.

7.2.2 Approaching interface objects

Interface classes is probably the trickiest part is PERLILOG programming. It requires
a good understanding of the interface object’s place in the system, and also some
good coding practice.

Many Perl programmers know that the quickest way to get good Perl code is copying
someone else’s code, and modifying it as necessary. This is probably true for the
task of writing an interface class. For this reason, we shall start with seeing the Perl
code of some interface classes. But unlike common Perl code, there are a few issues,
which an interface class writer should be aware of, or terrible things happen when the
classes are used. These issues are dealt with as they appear in the examples, so it’s
important to read them all. Then we approach some nevertheless important general
issues, in the sections after the examples.

The general guidelines begin at section 7.8.

7.2.3 Assumptions to start with

Interface classes are plug-in-like creatures, which are never called by the main script
directly. Rather, the main scripts requests a list of ports to be interfaced. As a re-
sult, the PERLILOG environment queries a list of classes for their willingness to take
responsibility of the task. The query mechanism is described in section 7.9, but it
is probably easier to grasp the entire picture by first looking closely at the interface
classes themselves, and then see how they fit into the system.

In order to give the examples below any context, we make the following assumptions.

A Guide to PERLILOG 98

Eli Billauer elib@flextronics.co.il

• The PERLILOG environment can call a method called attempt(), giving the
method all the ports to be interfaced as arguments. The method will respond if
the class, to which the method belongs, is ready to take responsibility of inter-
facing the given ports. In this case, it should create an object of its own class,
and return its handle (reference).

• If a class agrees to take responsibility of interfacing, the PERLILOG environment
may choose it to perform the task.

• In that case, the object that was created will function as a code generating object
in the PERLILOG environment.

• Just like with any code generating object, will the PERLILOG environment call
the generate() method in due time.

These assumptions are not accurate, and are only to start with – the exact picture will
clear up as we go.

7.2.4 The Perl snippets presented

We shall now look on a few interface classes’ Perl code. They are shown in snippets
with explanations inbetween. Unless otherwise said, putting these snippets together,
in the order that they appear here makes the respective class exactly (give or take
remarks). Even when we view only parts of the Perl code, the pieces are shown in the
same order in which they appear in the Perl files.

7.3 The vars2vars class in detail

We now look on the vars2vars.pl file, which is the simplest interface class. It nor-
mally resides in the Perlilog/siteclasses directory.

This class makes the interfacing between ports of type vars, by connecting variables
with the same labels (as given in the labels property).

7.3.1 Example revisited

In section 2.3 we saw a simple connection between two vars ports. The outline of the
interfacing is drawn in figure 5.

The top object is omitted from this drawing, because it isn’t involved in the interfacing
anyhow.

The box with dashed lines, which is marked vars2vars, represents the interface ob-
ject, that was generated to interface between the two vars ports. The yellow-shaded
area covers the ports, that this object interfaces.

A Guide to PERLILOG 99

Eli Billauer elib@flextronics.co.il

Note that lines are drawn between the ports and their owners, but no lines are asso-
ciated with the interfacing. This choice of notation will make sense as the drawings
become complicated.

7.3.2 The attempt() method

The vars2vars class consists of two methods, attempt() and generate(). The first
method is mandatory for interface objects:

sub attempt {
my $this = shift;

return undef
if (grep {ref ne ’vars’} @_);

my $self = $this->new(nick => ’vars_connection’);
return $self;

}

The purpose of this method is to check up if the current class has the ability to interface
between the given ports. Note that it is similar to new() methods, in the sense that
it’s called before the object exists. In practice this means that the first argument is
not the self reference (there is no object yet), but a string consisting of the class, or a
reference to an object of the same class. In real life, only the first case apply.

This class considers itself competent to interface ports if and only if all of the ports are
of type vars. The expression grep {ref ne ’vars’} @_ searches for ports whose
class is not vars, and if there are any, the method asserts the class to be inadequate.
Note that in that case, no object was created at all.

Otherwise, an object is created of the current class, and its reference is returned. This
is how the class signals that it agrees to make the interfacing.

vars

ffport

vars2vars vars

testport

test flipflop

Figure 5: Outline of interfacing two vars ports

A Guide to PERLILOG 100

Eli Billauer elib@flextronics.co.il

7.3.3 The nick property

Note that the property nick is assigned, instead of name. The reason is that objects
that are created as part of an attempt() call are considered “transient” by the system.
Unlike any other case of object generation, these objects exist as Perl objects, but they
are not recognized otherwise by the system, until a later stage, if at all.

If the object will be accepted by the system (“sustained”), the name property will be
assigned with whatever the suggestname method will return, when called with nick
as an argument. In other words, the object will end up with the name property set to a
value equal to or similar to nick.

Note that using nick instead of name is only allowed with transient objects, and hence
this should be used only in interface classes.

The issue of transient objects is widely discussed in section 7.10.

7.3.4 The generate method

The generate method is called upon just like any code generating object in the sys-
tem. In this class, it begins with:

sub generate {
my $self = shift;

Get the ports to connect...
my @ports = $self->get(’perlilog-ports-to-connect’);

The opening line, my $self = shift is as usual – getting the self reference. Then
a list of reference to the ports to connect is stored in @ports. The property
perlilog-ports-to-connect is in fact set by the system to be an exact copy of the
arguments (@_, the self-reference excluded) that were given to the attempt() method.

7.3.5 The labelID() method

Even though the labels property isn’t mandatory on port objects, it’s the recom-
mended way to associate the names of variables within an object with their functional
meaning. When writing an interface class, we are not interested in the variables’
names, but their IDs. The labelID() method, defined in the code-generating class,
does the work for us: We give it a reference to a port as an argument, it reads the
labels property from the port object and resolves the variables’ IDs. It then returns a
hash, whose keys are the labels, and the values are ID’s of the variables. (see section
10.1.7 for more about this).

The next lines of generate():

A Guide to PERLILOG 101

Eli Billauer elib@flextronics.co.il

my %conn = ();
foreach my $port (@ports) {
my %h = $self->labelID($port);
foreach my $label (sort keys %h) {
$conn{$label} = join(’,’, (split(’,’, $conn{$label}), $h{$label}));

}
}

The purpose of this code snippet, is to group all the variable IDs that are associated
with each label. This is done by setting up a hash, %conn, whose keys are labels,
and the values are the variable ID’s attached to each label, as one string of comma-
separated items.

7.3.6 Doing the actual work

Until this stage, we’ve played with our own internal variables. We now reach the stage
where the class does some useful work. In our case, it is going through each of the
labels, and attach() the variables in the group.

foreach my $label (sort keys %conn) {
my @IDs = split(’,’, $conn{$label});
my $first = shift(@IDs);
fishy("The label \’$label\’ has no counterpart while".

" connecting the following ports:\n".
join("\n", map {$self->safewho($_); } @ports)."\n")

unless @IDs;
foreach my $second (@IDs) {

$self->attach($first, $second);
}

}
}

In PERLILOG , the variables (wires) are attach’ed (connected) in pairs. In this exam-
ple, all variables are attach’ed to the first variable in the list. The way attach works,
it doesn’t matter what pairing we make, as long as they are “electronically intercon-
nected”.

Another thing worth mentioning, is that the keys of %conn are scanned in a sorted
manner (note the foreach declaration). Even though this may appear as a waste of
CPU time, this assures that the items will be handled in the same order, no matter
how Perl’s keys shuffles them (which is platform-dependent). Even in cases where it
appears not to make a difference, it’s recommended to use sort in foreach loops.

That’s it. Note that the complicated part about this class is actually related to the task
of the class, and not the interface with the system.

We now go on to another class.

A Guide to PERLILOG 102

Eli Billauer elib@flextronics.co.il

7.4 The wbsimple class

This class handles interfacing between a Wishbone master and slave. In essence it’s
very similar to the vars2vars class, only that it is sensitive to the meanings of the
labels.

In section 2.4.2 we saw a connection between a Wishbone master and slave pair,
along with a reset/clock port. The drawing, in terms of interfacing, is given in figure 6.

rom1

top

test

Wishbone
simplevars

wbs

wbm

clkrst

wbport_1

wbport

Figure 6: Outline of simple Wishbone interfacing

As before, we shade the involved ports with yellow, rather than drawing lines.

It is warmly recommended to read the code of this class. We only look at one little
snippet here, taken from the generate() method:

$prevconn = $wbs->get(’wishbone-connection-marker’);
wrong("Attempt to connect ".$wbs->who." to ".$wbm->who.

" when already connected to ".$self->safewho($prevconn)."\n")
if (defined $prevconn);

$prevconn = $wbm->get(’wishbone-connection-marker’);
wrong("Attempt to connect ".$wbm->who." to ".$wbs->who.

" when already connected to ".$self->safewho($prevconn)."\n")
if (defined $prevconn);

$wbs->const(’wishbone-connection-marker’, $wbm);
$wbm->const(’wishbone-connection-marker’, $wbs);

A Guide to PERLILOG 103

Eli Billauer elib@flextronics.co.il

where $wbm and $wbs are references to the Wishbone master and slave ports to be
connected, respectively. They are assigned values in order to mark that the port has
Wishbone ports have been connected, so that another attempt to connect the same
port will fail with a meaningful error message.

This error check is actually not necessary to avoid double interfacing of a Wishbone
port. Without this check, double interfacing would succeed, but an error would be
issued at a later stage, because two variables would attempt to drive some node (for
example, the Wishbone dat_o). Such an error message would appear to be a system
bug, and its simple reason might not be easy to track.

7.5 The vars2wbm class

We saw in the example in section 2.4.5, that a port of type vars can be interfaced
directly with a Wishbone bus. We shall now focus on the vars2wbm class, which is
responsible for interfacing a single vars port with a Wishbone master port.

7.5.1 A more complex attempt()

We start with the attempt() method. It starts as:

sub attempt {
my $this = shift;

my @wbms = grep {ref eq ’wbm’} @_;
return undef unless ($#wbms == 0); # Single master, please

my @allvars = grep {ref eq ’vars’} @_;
return undef if ($#allvars == -1); # At least one ’vars’

return undef unless ($#_ == $#allvars+1); # Only ’vars’ and one ’wbm’

vars2wbm is more picky about the ports it is ready to interface: One master and the
rest must be vars.

Note that the most common reasons to give up are tested first: attempt() failures
should be declared as quickly as possible, since the method is expected to run a lot
of times on inadequate sets of ports.

Next, we need to verify that there is only one vars port to be mapped on the bus. We
expect at least one more vars port, which will supply the clock and reset.

This is done in the code as follows:

my @extras = ();
my $vars = undef;

A Guide to PERLILOG 104

Eli Billauer elib@flextronics.co.il

foreach (@allvars) {
my %l = $_->get(’labels’);
if (grep /^(r|w|rw|wr)\d+$/, keys %l) {
return "More than one address-mapped \’vars\’ port in bundle"
if (defined $vars);

$vars = $_;
} else {
push @extras, $_;

}
}

As can be seen, the port which have labels which fit the pattern of an address mapping
is considered as the port to be mapped, and its handle is stored in $vars. The rest of
the ports are held in @extras.

Note that if there is more than one “port to be mapped” among the ports to be inter-
faced, attempt() returns a string, which explains why this class didn’t interface the
ports. This is not an error message in the sense that the execution will halt. As we
shall see later on, the philosophy of interface classes is that if one class fails to in-
terface some ports, maybe some other class will succeed. Only if all classes fail to
interface the ports, will the system report an error. In this case, will the system print
out any hints it got while trying. More about this in section 7.9.

my $wbm = $wbms[0];

my $bits = $vars->get(’wb_adr_bits’);
my $select = $vars->get(’wb_adr_select’);

return ("Failed to find \’wb_adr_bits\’ and \’wb_adr_select\’ properties in ".
$vars->who." while attempting to interface it with ".$wbm->who."\n")

unless ((defined $bits) && (defined $select));

To begin with, we put the reference to out Wishbone master in a variable – $wbm.

Then we make sure that the mapped port has two essential properties set:
wb_adr_bits and wb_adr_select. Note that if this condition isn’t met, the routine
merely returns with a hint. The class declares itself unwilling to interface, but maybe
some other class will take the mission, even though this certain condition looks hope-
less.

7.5.2 A call to intobjects()

At this stage things start to look promising. Hold tight, because strange things are just
about to happen:

A Guide to PERLILOG 105

Eli Billauer elib@flextronics.co.il

my $self = $this->new(nick => ’vars_to_wishbone’);

my $mywbs = wbs->new(nick => ’vars2wbm_wbs_port’,
parent => $self);

$mywbs->const(’wb_adr_bits’, $bits);
$mywbs->const(’wb_adr_select’, $select);

Two objects are created: One interface object of our own class, and a port object of
class wbs – a Wishbone slave. Yes, we start to behave a bit like a main script over
here.

The port is given a nick so its name will say something about its origin. Our own inter-
face object is the owner of the port (parent => $self). In addition, the wb_adr_bits
and wb_adr_select are passed on to the just generated Wishbone slave: That prop-
erty is needed to interface the slave to a master.

The method ends as

my @objs = $self->intobjects($wbm, $mywbs, @extras);
return "Failed to match ".$self->safewho(@wbms).
" with a vars-adapting Wishbone slave\n"
unless (@objs);

return ($self, $mywbs, @objs);
}

The call to intobjects() is a request to interface between the Wishbone master, the
slave just generated and the other vars ports that are kept in @extras. In essence,
this is like calling the interface() subroutine, but the latter mustn’t be called during
the handling of an attempt() request. Instead, we have the intobjects() method.
The differences are discussed in section 7.9.3.

And yes again, this really looks like if we wrote a small main script. Interfacing??

Calling intobjects() has a recursive smell about it, because this call will cause sev-
eral calls to attempt() methods to various classes. Even though it’s plausible that
the wbsimple class will respond positively to this specific request to interface, we can’t
count on that when writing the vars2wbm class.

At any rate, intobjects() returns a list of all objects that were generated during the
interfacing, if it was successful, or an empty list if it failed (this holds true even when
the involved attempt() methods returned hints in strings).

If intobjects claimed success, our attempt() returns the two objects that it created
itself, plus those returned from intobjects(). This sums up to all of the objects that
were generated during the attempt() call. It is important that the items in the returned
list are given in the order that they were created, and that the $self object is at the top
of the list . This is assured by returning $self first, $mywbs after that, and the objects

A Guide to PERLILOG 106

Eli Billauer elib@flextronics.co.il

returned from intobjects() last – this is the order in which they were created in this
specific method. intobjects() always returns the objects in the requested order.

If intobjects fails, our attempt() fails as well, and we leave a hint behind us. This
failure happens after we’ve generated two objects, that are not going to be used any
more. These objects were automatically generated as transient, so they will be de-
stroyed by Perl as soon as the attempt() calls terminates, and they left no traces
otherwise in the PERLILOG environment. More about transient objects in section
7.10.

7.5.3 Whose port is this anyway?

We now move on to the generate() method of this class. It starts as:

sub generate {
my $self = shift;

my @ports = $self->get(’ports’);
my ($wbs) = grep {ref eq ’wbs’} @ports;
my @allvars = grep {ref eq ’vars’}

$self->get(’perlilog-ports-to-connect’);

In this class, we have two kinds of ports involved: The ports that were given to the
class to interface, and the port which was generated by the class itself.

As with any (sustained) code generating object, the list of ports that belong to the
object, is put in the ports property. We put this list in @ports and search this list for
the single port of type wbs. In fact, in this special case the relevant port is the only
one that belongs to the object, so my ($wbs) = $self->get(’ports’); would have
worked the same. The grep search is there for demonstration of the technique.

Note that the value of $wbs in the generate() method is the same as the one in
attempt(). It is important not to be tempted to store this value in a special property
in the attempt() method implementation, since the object, which $wbs refers to, was
created after the interface object. Therefore, the value in $wbs must not be stored as
a property during the attempt() call.

And as in any interface object, the objects that were given as arguments to the
attempt() call are kept in the perlilog-ports-to-connect property.

It’s important to note the difference between the ports and
perlilog-ports-to-connect properties: While ports are ports that belong to
the object itself, perlilog-ports-to-connect belongs to other objects, and our
object is going to interface between them.

A Guide to PERLILOG 107

Eli Billauer elib@flextronics.co.il

7.5.4 The whereto() method

We now focus on the line that comes afterwards:

my $obj = $self->whereto;

The whereto() method returns a reference to an object, to which the Verilog code
should be written.

We’ve seen in the example of section 2.4.5, that some Verilog code was generated
in order to interface the vars port to a Wishbone bus, and that the code was put
with another object’s Verilog file, rather than in a file of its own. This was possible
thanks to the call to whereto(), which is part of the code generating class. Its return
value, $obj, is used in the rest of the method instead of $self where Verilog code is
regarded, which results in the Verilog code put in another object.

When using whereto() care should be taken to assure that functional results will be
achieved, no matter which object whereto() chooses for us. For a bit more about how
whereto() works, and how we can affect which object it chooses, see section 7.5.10.

7.5.5 Creating new variables

At this stage we generate several variables at the hosting object:

my %wbsNames = ();
my %wbsIDs = ();

my ($clk, $rst, $adr_i, $dat_i, $dat_o, $we_i, $stb_i, $cyc_i, $ack_o);

($clk, $wbsIDs{’clk_i’}) = $obj->namevar(’wb_clk_i’, ’wire’, ’in’);
($rst, $wbsIDs{’rst_i’}) = $obj->namevar(’wb_rst_i’, ’wire’, ’in’);
($adr_i, $wbsIDs{’adr_i’}) = $obj->namevar(’wb_adr_i’, ’wire’, ’in’);
($dat_i, $wbsIDs{’dat_i’}) = $obj->namevar(’wb_dat_i’, ’wire’, ’in’);
($dat_o, $wbsIDs{’dat_o’}) = $obj->namevar(’wb_dat_o’, ’wire’, ’out’);
($we_i, $wbsIDs{’we_i’}) = $obj->namevar(’wb_we_i’, ’wire’, ’in’);
($stb_i, $wbsIDs{’stb_i’}) = $obj->namevar(’wb_stb_i’, ’wire’, ’in’);
($cyc_i, $wbsIDs{’cyc_i’}) = $obj->namevar(’wb_cyc_i’, ’wire’, ’in’);
($ack_o, $wbsIDs{’ack_o’}) = $obj->namevar(’wb_ack_o’, ’wire’, ’out’);

We use namevar() to generate new variables. The method returns the actual variable
name (which may be slightly different from the suggested one) and the variable ID.
These are kept, and are used later on.

Note that we call the namevar() method on the $obj object, rather than on $self,
since the variables need to be defined in the hosting object’s namespace.

A Guide to PERLILOG 108

Eli Billauer elib@flextronics.co.il

7.5.6 Setting up the labels property

Then we set up our Wishbone slave’s labels property.

$wbs->const(’labels’, %wbsIDs);

There is surprisingly much to say about this innocent-looking single line of code:

To begin with, this short-hand format of setting up the property is useful. If a hash,
which binds between labels and their variables is at hand, it is this simple to set up
the property (it goes the other way too: the labels property can be read into a hash).

Another issue, is that it’s important to use IDs to describe the variables in the labels
property, rather than their names. The reason is that if names are used, PERLILOG

assumes that the variable names exist in the object to which the port belongs. In our
case, the owner of the port is the $self object, but the variables are defined in the
object referenced to by $obj. The may happen to be the same object, but it may also
not be the case.

In other words, the labels property may consist of variables that are defined in an-
other object than the one who owns the port, so using variable IDs is the only way on
this port.

It may seem peculiar that the labels property of an port can refer to variables on
another object. As a matter of fact, this feature is essential: The port had to be
generated with a known owner during the attempt() call, because the port was used
in the intobjects() call. On the other hand, we couldn’t call whereto() during the
attempt() stage, because the implementation of whereto() needs to know which
port is connected to which – and that topology may not be set up at that stage. So
the only way out, is to allow any variable ID to appear in the labels property. If an
interface class is written properly, this fact doesn’t make any difference in the difficulty
of implementation.

Finally, it’s worth to note that we’ve set up the labels property only during the
generate() stage. This may be in the last minute, but not too late: Interface objects
shouldn’t assume that the labels property, of the ports they get to interface, is set un-
til they are called with the generate method. Now, since interface objects are called in
the order that they were created, we know that any interface object that knows about
the port must be called after the current object, simply because the current object
created the port.

7.5.7 The rest of the class

The code that follows deals with setting up internal data structures and generating
Verilog code. Even though it’s recommended to read the class in its entity, there are
too many irrelevant details to go on with it here. We shall therefore look only on a few
highlights. The interesting points about this class will be covered in the example of
the wbsingmaster class.

A Guide to PERLILOG 109

Eli Billauer elib@flextronics.co.il

7.5.8 The IDvar() method

Somewhere in the generate() method we have:

my $smartname = $self->IDvar($wireID);
($regname, $regID) = $obj->namevar($smartname.’_reg’, ’reg’, ’out’);

in which we retreive a variable’s name from its ID, using IDvar(). The whole idea here
is to create a new variable, and give it a name that will help humans understand that
it has something to do with another specific variable. We call IDvar() with the $self
object, and not $obj merely to show that it makes no difference (IDvar()’s ignores
which object it runs from).

See section 6.7.2 for more about this.

7.5.9 The copyvar() method

Later on, we have something like: (irrelevant parts omitted)

foreach (sort {$a <=> $b} keys %reads) {
my $localname = $obj->copyvar($reads{$_});
$readclause .= " $_: $dat_o = $localname;\n";
$obj->samedim($dat_o, $localname);

}

When this part of the method is reached, %reads is a hash containing the mapping of
read operations on the bus: The keys are addresses from which variables are to be
read on the bus, and the values are the IDs of the respective variables. The name of
the Verilog variable which functions as Wishbone’s dat_o is kept in $dat_o.

The purpose of the loop is to generate the heart of the Verilog case statement, which
switches between the values of dat_o, depending on the address.

Note that we make a call to samedim(). This is explained in section 7.7.9.

Now, here’s the tricky part: we don’t know to which object the Verilog code goes, but
we need a variable name to put on the right side of the Verilog assignment. The brute
force way to do this is to generate a new variable in the $obj object, and attach() the
new variable to the one we have the ID of in %reads. But if the variable we wanted hap-
pens to be in the $obj object, we could have used its name instead, rather than gen-
erating a new one. And even though PERLILOG is responsible for a Verilog assign()
statement to connect the two variables, it’s still ugly code.

The solution is the copyvar(). This method accepts the ID of a variable whose value
we want to use in Verilog (only to read), and returns the name of the variable to be
used for this, on the object on which the method was called. So by calling $obj ->
copyvar(...) we know that we have a variable name that we can use in the Verilog
code of $obj.

A Guide to PERLILOG 110

Eli Billauer elib@flextronics.co.il

This method will create a new variable, and attach() it with the desired one if neces-
sary. But before doing that, it will check up if the variable isn’t defined in the desired
object, or if there isn’t a variable which hold its value as a result of some attach().

Because copyvar can take advantage of previous attach()’es, it’s best to use it af-
ter completing all the attach() calls in the method. Otherwise more variables than
necessary may be generated. Either way, the resulting Verilog code will be perfectly
functional.

7.5.10 codetargets() and whereto()

As we saw in section 7.5.4, whereto() gives a good choice of an object, to which
interface Verilog code should be written. This choice is, among others, based upon
calls to codetargets().

It works like this: When whereto() is called, it calls the codetargets method of the
“self” object. This method is expected to return a list of objects that are better than
the “self” object to put the Verilog code in. Let’s look at the codetargets() method for
vars2wbm:

sub codetargets {
my $self = shift;

Get the ports to connect...
my @ports = $self->get(’perlilog-ports-to-connect’);
my ($wbm) = grep {ref eq ’wbm’} @ports;
my @allvars = grep {ref eq ’vars’} @ports;

Find our one mapped vars port.
my $vars;
my %l;
foreach (@allvars) {
%l = $_->get(’labels’);
if (grep /^(r|w|rw|wr)\d+$/, keys %l) {
$vars = $_;
last;

}
}
Now we recommend these ports parents...

return ($vars->get(’parent’), $wbm->get(’parent’));
}

This method looks for the vars-type port that is mapped on the bus, and the Wishbone
master port to interface it with. These port’s owners are given as recommendations to
hold the Verilog code, in this order (the vars port is preferred).

A Guide to PERLILOG 111

Eli Billauer elib@flextronics.co.il

Note that the method does not return itself as a candidate, since the “self” object
is always assumed as a last resort. The “self” object should never appear in the
recommended list.

Also note that the default codetargets() method returns an empty list, so any class
which hasn’t overridden this method will create objects that will volunteer to accept its
own and other object’s Verilog code (if an object is static, whereto() will not take it
anyhow).

Another thing about the codetargets() method listed above, is that it doesn’t check
up whether the objects it recommends are static objects. In other words, it may rec-
ommend objects that are incapable of accepting the Verilog code. We conclude that
codetargets() only gives some vague directions of where to go. The real decision is
done by whereto(), which will obviously not pick a static object.

The answer given by whereto() is cached in the perlilog-whereto-answer property
of the same object. For this reason, there is no need to make codetargets() efficient,
since it’s called only once.

An interesting case is when interface objects are chained, and each of them recom-
mends ith neighbours. This may be the case, when it takes more than one vars2wbm-
like objects to bridge between two port types. We would then like to put all the interface
Verilog code in one place, rather than scattering it in various objects. What whereto()
does, is to travel around making whereto() queries (recursively). The idea is that if
some object X recommended Y, then we want to put the code whereever Y would put
its own code. So the whereto() call to X will cause a whereto() call to Y. The fact
that whereto() return values are cached, and that infinite recursion is avoided actually
frees us from really needing to be aware of this mechanism, neither create such a one
of our own. It comes down to writing a simple codetargets method, which recom-
mends the next object to go, knowing that this recommendation may not be followed
for various reasons.

7.6 Two examples revisited

Before diving into all the details of the next class, we shall stop and look at the general
picture again. We now reexamine the result of interfacing two Wishbone slaves with
one master, as was done in the example of section 2.4.3.

The outline of the interfacing is drawn in figure 7.

We can see from the drawing, that the central interface object, which was created as
a direct result of interfacing the four ports, has three Wishbone ports of its own. These
ports are mated with the ports of rom1, rom2 and test using other interface objects,
of class wbsimple.

Note that the notation of the wbsimple objects is sloppy in the drawing: We have not
made another shading area to mark which ports they mate. The main reason is that
each of the three matings involve the clkrst port as well, so it would mess the entire

A Guide to PERLILOG 112

Eli Billauer elib@flextronics.co.il

drawing.

The yellow-shaded area in this drawing shows the involvement of the four ports with
respect to the central interface object.

It is important to note, that the fact that the central object has ports of its own, has
nothing to do with the fact that it also creates a Verilog file of its own. It could very well
put its Verilog code in some other object, if that was desired.

Just to make things even more complicated, we move on to the example shown in
section 2.4.5. In that example, rom2 was replaced with a similar object, only that
the new one had a vars port instead of a Wishbone port. This forced PERLILOG to
squeeze in a vars2wbm interface object, as is shown in figure 8.

rom1

rom2

top testWishbone
simple

Wishbone
simple

Wishbone
simple

Wishbone controller
for single master
(wbsingmaster)

wbs

wbm

vars

wbm

wbs

wbs wbm

clkrst

wbport_1

wbport_2

wbport

Figure 7: Outline of interfacing three Wishbone ports

What we can see in the second drawing, is that we have shaded the area which is
covered by vars2wbm: From the vars port to the central interface object’s Wishbone

A Guide to PERLILOG 113

Eli Billauer elib@flextronics.co.il

rom1

rom2

top testWishbone
simple

Wishbone
simple

Wishbone
simple

vars to
Wishbone

Wishbone controller
for single master
(wbsingmaster)

wbs

wbm

vars

wbm

vars

wbs

wbs wbm

clkrst

wbport_1

fakeport

wbport

Figure 8: Outline of interfacing Wishbone ports with vars port

A Guide to PERLILOG 114

Eli Billauer elib@flextronics.co.il

master.

The vars2wbm object is a bit strange with only one port (Wishbone), and no port to
face the vars port. Strange or not, this was the natural way to implement it, and if we
return to section 7.5, we can see that the class indeed creates only one port.

Hoping that the drawings gave some picture of what this is all about, we shall now go
on to the wbsingmaster class.

7.7 The wbsingmaster class

This class creates a very simple Wishbone bus controller. It interfaces one Wishbone
master with several Wishbone slaves, or any other port which can interface with a
Wishbone master. This bus controller is not very useful for practical purposes, but it
demonstrates the principles behind designing a real-life controller.

7.7.1 The attempt() method

At its first stage, this method only requires that the number of Wishbone masters in
the port list will be exactly one. The next step is to list up the ports to be mapped
on the bus in @others. Port of type vars are a special case, because they may be
used to supply clock and reset to the bus, but they can also be mapped. Those of the
first kind are kept in @extras, and the others are put in @others. The two kinds are
distinguished by viewing the labels property of the vars ports:

sub attempt {
my $this = shift;

my @wbms = grep {ref eq ’wbm’} @_;

return undef unless ($#wbms == 0); # Single master, please

my @vars = grep {ref eq ’vars’} @_;
my @extras = ();

my @others = grep {((ref ne ’vars’) && (ref ne ’wbm’)) } @_;

foreach (@vars) {
my %l = $_->get(’labels’);
if (grep /^(r|w|rw|wr)\d+$/, keys %l) {
push @others, $_;

} else {
push @extras, $_;

}
}

A Guide to PERLILOG 115

Eli Billauer elib@flextronics.co.il

return "Nothing to connect the master with"
unless (@others);

At this stage we create an object of ourselves:

my $self = $this->new(nick => ’single_master_wb_controller’);

Next, we verify that all of the ports that we intend to map on the bus have the two
necessary properties, wb_adr_bits and wb_adr_select, set up reasonably. Again,
note that if this is not the case, we don’t create an error, but rather refuse politely to
do the job – and explain why.

my ($bits, $select);

foreach my $mate (@others) {
my $bits = $mate->get(’wb_adr_bits’);
return "Missing \’wb_adr_bits\’ property on ".$self->safewho($mate)
unless (defined $bits);

return "’wb_adr_bits\’ should be a decimal number and not ".
$self->prettyval($bits)." on ".$self->safewho($mate)
unless ($bits =~ /^\d+$/);

my $select = $mate->get(’wb_adr_select’);
return "Missing \’wb_adr_select\’ property on ".$self->safewho($mate)
unless (defined $select);

return "’wb_adr_select\’ should be a decimal number and not ".
$self->prettyval($select)." on ".$self->safewho($mate)
unless ($select =~ /^\d+$/);

}

The prettyval() method is used to create a human-readable string from its argu-
ment. It’s described in section 9.1.20.

Next we create one Wishbone slave to match with the Wishbone master, and call
intobjects() to interface between the two. There is no reason why this should fail,
but we check anyhow.

my $myport = wbs->new(nick => ’wb_bus_controller_slave_port’,
parent => $self);

my @objs = $self->intobjects(@wbms, $myport, @extras);
return "Failed to match ".$self->safewho(@wbms).
" with the Wishbone given by the single-master bus controller generator\n"
unless (@objs);

A Guide to PERLILOG 116

Eli Billauer elib@flextronics.co.il

The following step is to go through each of the ports we want to map on the bus,
create a Wishbone master to match with each, and call intobjects() for each pair.
We are going to accumulate quite a few objects, so we start by making a list of what
we’ve already got,

my @bunch = ($self, $myport, @objs);

and now we go for the loop:

foreach (@others) {
$myport = wbm->new(nick => ’wb_bus_controller_master_port’,

parent => $self);

@objs = $self->intobjects($_, $myport, @extras);
return "Failed to adapt ".$self->safewho($_).
" to a Wishbone master, that was generated".
"by the single-master bus controller generator\n"
unless (@objs);

push @bunch, $myport, @objs;
}

Note that all of the ports have the same nick. There is no problem with that, since the
ports will get distinct names, if they’ll reach the stage of being sustained objects.

Keep in mind that in the call to intobjects() we attempt to interface a Wishbone
master with just any port type. The success of this call depends on the existence of
adequate interface classes. For example, if we attempt to interface a vars port here,
we expect to get three objects in return: The vars2wbm object, the port it created and
the wbsimple object that was generated at the call to intobjects() by vars2wbm.

After each successful interfacing, the objects involved are listed up on @bunch. Note
that the order of the elements of @bunch remains the order of the objects’ creation
(this is a must).

As usual, if the interfacing of one of the port fails, wbsingmaster gives up.

Finally, if the loop finished normally, we can happily announce a successful interfacing,
and return a list of objects that were generated:

return @bunch;
}

This is a nice point to remind ourselves that all this was the attempt() method: The
smart work of mating ports, with all recursive calls involved, was done as part of giving
an answer on if this class will or won’t do the interfacing.

A Guide to PERLILOG 117

Eli Billauer elib@flextronics.co.il

7.7.2 The generate() method

It may come as a surprise, that the implementation of the generate() method of this
class is not significantly longer than the attempt() part. As we shall see, it is also
less system-oriented and more into generating Verilog code which is, in fact, quite OK
for the generate() method. As before, we break the code in pieces.

We start with the code’s opening:

sub generate {
my $self = shift;

my @ports = $self->get(’ports’);
my ($wbs) = grep {ref eq ’wbs’} @ports;
my @wbms = grep {ref eq ’wbm’} @ports;

Here we pick up the ports that were generated during the attempt() method call. And
then,

my $obj = $self->whereto;

Note that unlike vars2wbm, there is no codetargets() method in this class. As a re-
sult, whereto() will return a value equal to $self. The use of $obj in the sequel allows
to put the Verilog code in another object by extending the class with a codetargets()
method, but as things are right now, the Verilog code will be written to the object’s own
verilog property.

7.7.3 Setting up the slave port

We now set up the labels property of the slave port. It’s quite similar to what we had
in the vars2wbm class (see sections 7.5.5 and 7.5.6).

my %wbsNames = ();
my %wbsIDs = ();

($wbsNames{’clk_i’}, $wbsIDs{’clk_i’}) =
$obj->namevar(’m_wb_clk_i’, ’wire’, ’in’);

($wbsNames{’rst_i’}, $wbsIDs{’rst_i’}) =
$obj->namevar(’m_wb_rst_i’, ’wire’, ’in’);

($wbsNames{’adr_i’}, $wbsIDs{’adr_i’}) =
$obj->namevar(’m_wb_adr_o’, ’wire’, ’in’);

($wbsNames{’dat_i’}, $wbsIDs{’dat_i’}) =
$obj->namevar(’m_wb_dat_o’, ’wire’, ’in’);

($wbsNames{’dat_o’}, $wbsIDs{’dat_o’}) =
$obj->namevar(’m_wb_dat_i’, ’wire’, ’out’);

A Guide to PERLILOG 118

Eli Billauer elib@flextronics.co.il

($wbsNames{’we_i’}, $wbsIDs{’we_i’}) =
$obj->namevar(’m_wb_we_o’, ’wire’, ’in’);

($wbsNames{’stb_i’}, $wbsIDs{’stb_i’}) =
$obj->namevar(’m_wb_stb_o’, ’wire’, ’in’);

($wbsNames{’cyc_i’}, $wbsIDs{’cyc_i’}) =
$obj->namevar(’m_wb_cyc_o’, ’wire’, ’in’);

($wbsNames{’ack_o’}, $wbsIDs{’ack_o’}) =
$obj->namevar(’m_wb_ack_i’, ’wire’, ’out’);

$wbs->const(’labels’, %wbsIDs); # Set up the labels for the port.

Note that the variable’s name is somewhat confusing, with the _i and _o suffices re-
versed to the actual direction. While confusing to read this in the Perl code, it makes
sense in the resulting Verilog code. For example, the label adr_i is the Wishbone
slave’s address input, but it’s in fact the Wishbone master’s output. The variable
name m_wb_adr_o emphasizes that the variable is the Wishbone master’s output,
which makes it easier to understand when reading the Verilog code.

7.7.4 Retrieving bit range

In most cases, where we want the bit range of variables to be flexible, we use the fact,
that when two variables are attached, their dim property is mutually copied. Some-
times this simple mechanism is insufficient, as in the current case: We need to make
operations on some bits of the variable, so we need its bit range.

my ($realmaster) = grep {ref eq ’wbm’}
$self->get(’perlilog-ports-to-connect’);

my %master_IDs = $self->labelID($realmaster);
my ($hi, $lo) = $self->bitrange($master_IDs{’adr_o’});

wrong("Expected hi-to-low bit range on adr_o of ".
$realmaster->who()."\n") if ($lo > $hi);

wrong("Expected lowest bit in bit range on adr_o of ".
$realmaster->who()." to be zero\n") unless ($lo == 0);

We start with looking up the (one) Wishbone master port, which is listed somewhere
in perlilog-ports-to-connect. Following that, we create a hash of labels and IDs
for that variable, and put it in %master_IDs. We then use the bitrange() method to
get the values of the dim range. This method is a accepts a variable ID, looks up the
variable’s dim property, and returns the two numbers. For example, if dim was [7:0],
$hi would be set to 7, and $lo to 0.

And we only accept descending bit order, with the bottom at zero,, which is why the
method complains otherwise.

A Guide to PERLILOG 119

Eli Billauer elib@flextronics.co.il

Note that we needed to look up the Wishbone master’s variable, although we’ve inter-
faced that master with our own slave. This interfacing assures that the master’s adr_o
will eventually have the same dimensions as the mated slave’s adr_i, which happens
to be referenced by $wbs. It may seem much simpler to get $hi and $lo from this
slave. This wouldn’t work, though: The equality of dimensions happens due to the
attach() of these variables, which takes place only during the generate() call of the
interface object, which mates the master and the slave. Now, since that interface ob-
ject was generated after the current interface object, the attach() call hasn’t taken
place yet.

7.7.5 Some initializations

We now reach the actual implementation of the bus controller. We begin with setting
up the %shorts hash, which connects between names of signals in the common slave
(connected to our only master) and each of our masters. There are five such signals,
that go directly with no logic inbetween:

my %shorts = (clk_i => ’clk_i’,
rst_i => ’rst_i’,
stb_o => ’stb_i’,
we_o => ’we_i’,
dat_o => ’dat_i’);

Using this hash, we set up the first keys of the %mlabels hash, which will eventually
be stored in all of our master ports as labels. For now, we set up the entries that
are common to all of these ports. Note that by setting the entries in labels to the
respective variable IDs, we actually make the connection. Or to be more precise, the
connection will be done when each of our masters will be mated with the slaves.

my %mlabels = ();
foreach (keys %shorts) {
$mlabels{$_} = $wbsIDs{$shorts{$_}};

}

Next, initialize a few Perl variables,

my ($bits, $select, $mate, $selcode);
my @acks = ();
my @dats = ();

my $main_ack = $wbsNames{’ack_o’};
my $main_dat = $wbsNames{’dat_o’};
my $main_cyc = $wbsNames{’cyc_i’};
my $main_adr = $wbsNames{’adr_i’};

A Guide to PERLILOG 120

Eli Billauer elib@flextronics.co.il

and get on to the main loop.

7.7.6 The main loop

We go through each of our master ports:

foreach my $port (@wbms) {

7.7.7 The mates property

For each of these ports, we scan through the other ports it was mated with, to find the
one with the wb_adr_bits and wb_adr_select properties set. Actually, we’re not so
interested in anything else about this mating port, except if we need to write an error
message telling which one is badly set up. Otherwise, it’s really only these properties
we’re after right now: The rest of the job is taken care of by some interface object.

MATE: foreach $mate ($port->get(’mates’)) {
next MATE if (ref($mate) eq ’vars’);
$bits = $mate->get(’wb_adr_bits’);
$select = $mate->get(’wb_adr_select’);
last MATE if (defined $bits);

}

We use the mates property, which is set by the PERLILOG environment after a suc-
cessful interfacing (see section 13.1.2). This is a list of all ports (except the port to
which the property belongs) that were given during the interfacing request. The order
of this list is arbitrary.

Note that our $mate is not necessarily a Wishbone slave. Since our own class’ call
to intobjects() involved one of the ports that we were given during the call to our
attempt() method, it could be of any type, as long as the interfacing with a master
succeeded. The Wishbone slave, that maybe was squeezed in, will not appear in our
mates list.

After finishing off this loop, we check up what we got, and complain if necessary. Note
that here we create real errors, not polite return strings. This is generate(), not
attempt().

wrong("Failed to find \’wb_adr_bits\’ property on any of ".
join(’, ’, map {$_->who} $port->get(’mates’))."\n")

unless (defined $bits);

wrong("Found \’wb_adr_bits\’ property, but not \’wb_adr_select\’ on ".
$mate->who()."\n")

unless (defined $select);

A Guide to PERLILOG 121

Eli Billauer elib@flextronics.co.il

wrong("Faulty \’wb_adr_bits\’ property ".$self->prettyval($bits).
" on ".$mate->who()."\n")

unless ($bits =~ /^\d+$/);

7.7.8 Creating the slave selector

By now, $bits contains the number of address bits that our slave needs. The lowest
bit to use compare with wb_adr_select is therefore $bits. We can now generate a
snippet of Verilog code, which defines the condition, on which the current port should
be selected:

wrong("Range exceeds dimensions, because \’wb_adr_bits\’ on ".
$mate->who()." was too large\n")

if (($hi + 1) < $bits);

if ($hi < $bits) {
$selcode = "1";

} else {
$selcode = $wbsNames{’adr_i’}.’[’.$hi.’:’.$bits.’] == ’.$select;

}

If the wb_adr_bits demanded all address bits, our port is always selected, and 1 is
the correct logic expression. Note that we’ve already checked that $hi is not smaller
than $bits by more than one, so if it is smaller, it’s exactly by one, and thus it’s exactly
the case of a port wanting all address bits.

7.7.9 Variables and samedim()

At this stage we create variables to bring to our Wishbone master port. We start with
the address lines.

my $adrhi = ($bits==0) ? $hi : ($bits - 1);
my ($adrvar, $adrID) =
$obj->namevar(’wb_slave_adr’, ’wire’, ’out’, "[$adrhi:0]");

$mlabels{’adr_o’} = $adrID;

The variable labeled adr_o will have $adrhi, plus one, bits. If $bits is zero, the
address is not interesting – the slave is enabled with control lines only. In this case,
we pass the complete address to the port, just to make it look nice (it makes no
difference anyhow).

Note that we store the variable’s ID in the hash, and not its name.

We now create two other variables, and save map their IDs in %mlabels.

A Guide to PERLILOG 122

Eli Billauer elib@flextronics.co.il

my ($cycvar, $cycID) = $obj->namevar(’wb_slave_cyc’, ’wire’, ’out’);
$mlabels{’cyc_o’} = $cycID;

$obj->samedim($cycvar, $main_cyc);

my ($ackvar, $ackID) = $obj->namevar(’wb_slave_ack’, ’wire’, ’in’);
$mlabels{’ack_i’} = $ackID;
push @acks, $ackvar;

$obj->samedim($ackvar, $main_ack);

Note that we pushed our $ackvar into the @ack list. It will be used later.

The samedim() is like attach(), only it doesn’t connect between the variables. What
is does, is to assure that the variables have the same dimension property, as if they
were attach()’ed.

Calling samedim() is highly recommended every time we make assignments in in-
jected Verilog, whether it’s with Verilog’s assign or with procedural assignments. This
holds true when we implicitly mean that the variables involved should have the same
dimensions, as in this case (see below).

Whenever the relations between the dimensions of a couple of variables are not equal-
ity, it’s recommended to take the time to formulate the exact magic callbacks needed
to set these relations.

7.7.10 Slave-specific Verilog code

Here we generate some Verilog code, which is specific for this certain port. Note that
even though assign allows the variables to be of different dimensions, we’ve used
samedim() to eliminate many possibilities to do stupid things (not all, though).

my $selvar = $obj->namevar(’wb_slave_active’, ’wire’, ’out’, ’’);
$obj->append(" assign $selvar = $selcode;\n".

" assign $cycvar = $main_cyc & $selvar;\n".
" assign $adrvar = $main_adr".’[’.$adrhi.":0];\n");

Also note that everything is done in the context of $obj: For example, $selvar is
a name of the variable created by namevar() which was called from $obj, and this
variable is used in Verilog code that is planted into the same object’s Verilog code. Its
important to keep track of these things, because otherwise everything will work fine
until the choice of hosting object changes suddenly.

We go on with creating a dat_i variable for our master, which is soon to be connected
to the slave’s dat_o. Now, all of these are going to be “wire-ORed” to the main master’s
dat_i, so we create an expression which equals dat_i when our slave is selected,
zero otherwise. And push it into @dats, to be used soon. Note the samedim().

A Guide to PERLILOG 123

Eli Billauer elib@flextronics.co.il

my ($datvar, $datID) = $obj->namevar(’wb_slave_dat’, ’wire’, ’in’);
$mlabels{’dat_i’} = $datID;
push @dats, "($selvar ? $datvar : 0)";

$obj->samedim($datvar, $main_dat);

7.7.11 Setting up labels

We finish the handling of each port by setting the port’s labels property with the data
in the %mlabels hash. Note that some of the labels were set for all ports before the
loop, and others are changed during the loop to point to the port’s own variables. This
is not a problem, since we pass the hash’ content (and not a reference).

$port->const(’labels’, %mlabels); # Set up the labels for the port.
}

7.7.12 Grand finale

Outside the loop, there are a few final things to do before finishing the method. We
create a common acknowledge signal, which is all acknowledges ORed. The main
master’s dat_i variable is given as the OR of some previously created expressions.

my $allacks = join(’ | ’, @acks);
my $alldats = join(’ | ’, @dats);

$obj->append(" assign $main_ack = $allacks;\n".
" assign $main_dat = $alldats;\n");

}

7.7.13 What we didn’t have in this class

There are two things that some of us may find missing in this class:

• Note that we don’t verify whether the slaves are mapped correctly on the bus.
If one or more slaves are mapped on the same addresses, corrupted code will
be generated, and no warning will be given about that. There is no excuse for
being this sloppy, other than that this is merely a demonstration class. In real-life
bus controllers a sanity check, at least at the end of operation is a must. A nice
memory map, as a text file, is a nice add-on.

• There is no codetargets() method defined in this class. This is perfectly OK,
and will cause the class to generate an independent file. Just in case someone
wondered why it isn’t there.

A Guide to PERLILOG 124

Eli Billauer elib@flextronics.co.il

7.8 The elements of an interface class

OK, enough examples. We can now summarize the general guidelines of writing an
interface class.

7.8.1 The common methods

Usually, an interface class supplies two or three methods:

• attempt() – The system queries the class by calling this method. The class
responds whether it can interface between a list of ports.

• generate() – This method functions is the same way as any code generating
class: It’s the execution of the object’s purpose. Unlike regular code generating
objects, the interface object may put its Verilog code in other object’s verilog
property, and thus not generate a file of its own.

• codetargets() – This method is highly optional, and should be implemented
when the Verilog code is intended to be written to other objects. The purpose
of this method is to recommend to which object the Verilog should be written to.
The codetargets() is explained in section 7.5.10.

Apart from these methods, any other methods that make sense to a code generating
object may be extended or overridden.

If the new() method is extended in an interface objects, the guidelines given in section
7.10 should be followed.

7.8.2 The elements of the attempt() method

The common guideline for the attempt() method is to do the minimum necessary to
be able to give a reliable yes or no regarding if the current class is ready to interface
between the given set of ports.

The recommended order of things will usually be some of the following steps:

1. Check up the port types with ref, and see if they are of the right kind and
number. If we fail here, return undef – it was probably meant for another class
to take care of.

2. Make additional checkups to see if the ports are adequate – usually this means
verifying that the ports’ properties are set up as necessary. If not, return a string
describing what seems to be wrong.

3. Create a “self” object, by calling new() on the current class.

4. Create new ports that belong to the “self” object.

A Guide to PERLILOG 125

Eli Billauer elib@flextronics.co.il

5. Interfacing those ports with other ports, most probably to those given to
attempt() as arguments in a manner that makes sense.

Depending on the nature of the interface class, only some of the steps above will be
relevant. The order in which the steps are presented is recommended, though.

There a few important rules for writing attempt() method that are derived from the
fact that this method is called during “transient mode”. These are given in section
7.10.

7.8.3 The elements of the generate() method

The generate() method is the essence of the class, and it’s executed when there is
no question regarding the choice or willingness of the current object. The guidelines
are therefore looser. This method usually comprises of some or all of the following
items, not necessarily in this order:

• A call to whereto() to determine which object will host the Verilog code and its
extra variables.

• Resolving the IDs from the ports’ labels properties, preferably using labelID().

• “Connecting” variables (as with copper wires) using attach() as adequate.

• Generating new variables with addvar(), or more comfortably namevar().
These variables are used in the Verilog code to be generated and/or appear
in the labels property of some ports.

• Creating read-only copies of a variable using copyvar(). This is useful when
we want the variable’s value in a Verilog expression, and no other manipulation
is necessary.

• Updating or setting up labels properties of the ports that we created during the
attempt() call.

• Appending Verilog code to the hosting object. Possibly using samedim() in con-
junction with assignments.

Note that generating new objects (including ports) during the generate() method
call is highly unrecommended, and should be done during the attempt() call. Even
better, if the objects are not needed to complete the attempt() method, they should
be generated as part of the extension of the sustain() method (see section 7.10.4
for more about this).

A Guide to PERLILOG 126

Eli Billauer elib@flextronics.co.il

7.9 How PERL ILOG uses interface classes

Until now we’ve studied the interface classes, but said very little about how they fit into
the system. We shall now see how the PERLILOG environment uses the interface
classes.

7.9.1 Registration of interface classes

The PERLILOG recognizes a class as an interface class as a result of a call to
interfaceclass(). The argument to this system subroutine must be the name of
a registered class. The intended way to do this is something like this: (code taken
from the system’s init file, see section 4.2 for more about init files)

&Perlilog::inherit(’vars2vars’, "${home}vars2vars.pl", ’interface’);
&Perlilog::interfaceclass(’vars2vars’);
&Perlilog::inherit(’wbsimple’, "${home}wbsimple.pl", ’interface’);
&Perlilog::interfaceclass(’wbsimple’);
&Perlilog::inherit(’vars2wbm’, "${home}vars2wbm.pl", ’interface’);
&Perlilog::interfaceclass(’vars2wbm’);
&Perlilog::inherit(’wbsingmaster’, "${home}wbsingmaster.pl", ’interface’);
&Perlilog::interfaceclass(’wbsingmaster’);

The variable $home is the path to where these classes files reside. As for the explicit
package declaration (the &Perlilog:: prefix), it can be omitted when calling these
routines from the main script, but not from within a method (the init script is given as
a method named init()).

7.9.2 Quering order of interface classes

The order in which the classes are registered with interfaceclass() is the order
the classes are attempt()-queried. There is no rigid definition on what the quering
algorithm should do when some interface class responds positively: It may go on
asking other classes for their bids, or stop and choose the first positive answer. The
algorithm may be changed to fit different needs and logic architechtures. For simple
outlines, picking the first positive answer will usually be enough.

The order in which the classes are registered is crucial. Vast differences in the effi-
ciency of the resulting Verilog code may be the result of changes in either the class
register ordering or the algorithm. Even so, choosing the order of registering wisely
is probably enough to achieve best results, even for the most complex set of classes.
And when done unwisely, the results will be ugly enough to draw necessary attention.

The aim is to make the process of choosing the interface class quick and fruitful. This
is achieved by following the following guidelines, which in essence say that a simple
class should be tried before going for complex ones:

A Guide to PERLILOG 127

Eli Billauer elib@flextronics.co.il

• Register simple, one-on-one interface classes first (such as vars2vars and
wbsimple). Classes that connect pairs or ports reject inadequate attempts very
quickly, and if they respond positively, they will usually supply the obvious solu-
tion.

• All classes, which don’t use intobjects(), should be registered before those
who do.

• Register “bridges” or “adapters” only after all classes that make a simple one-
on-one connection. For example, vars2wbm is registered after vars2vars and
wbsimple. Otherwise, we can get a back-and-forth adaption of ports, where a
simple connection was possible.

• “Controllers” and any interface class which is intended to interconnect several
ports should be registered last.

7.9.3 interface() vs. intobjects()

As we’ve seen, the interface() function and the intobjects() method have been
used to do basically the same thing: Request to interface a list of ports. Calls to
interface() appeared in main scripts, while intobjects() was used in implementa-
tions of attempt(). In a nutshell, this is the difference between them: How and when
they are used.

As a result, we have the following differences:

• Return value: interface() returns the top-level interface object, intobjects()
returns a list of objects involved in the interfacing.

• If the interfacing fails: interface() issues a fatal error, while intobjects()
returns an empty list. It’s considered normal that intobjects() fails.

• Recursivity: interface() must not be called while handling an interface request
(which boils down to not calling interface() from an attempt() implementa-
tion). intobjects(), on the other hand, is intended to be used from within
attempt() methods.

The interface() routine can be seen as a wrapper of intobjects(): interface()
invokes transient mode (see section 7.10), calls intobjects() and views the return
value. If intobjects() returned a list of objects, it calls sustain() on all these ob-
jects, and returns the first object in the list (which is the top-level interface object).
Otherwise, a long error message is generated and issued.

7.9.4 intobjects() and recursive calls

As we’ve seen, intobjects() can be used within an attempt() method, which is a
request to interface ports within a handler of such a request. This causes a hazard of

A Guide to PERLILOG 128

Eli Billauer elib@flextronics.co.il

getting caught in infinite recursion, especially if the classes are queried in the wrong
order or a critical class is missing. For example, if wbsimple is not registered as an
interface class, no other class will agree to interface a Wishbone master and slave pair.
As a result, the wbsingmaster bus controller class will eventually be queried. But this
class will create a master and a slave, and attempt to interface each of these with the
given two ports. So we’re back with a request to the PERLILOG environment, but now
we have two master-slave pairs to interface, and still all classes answer negatively,
except wbsingmaster, which will try again...

Fortunately, in this specific case there is no risk for infinite recursion, because just
a master and slave pair don’t have the necessary properties to be accepted by the
wbsingmaster class, so the recursion will stop quite soon, and an error message will
be issued.

Besides, there is a PERLILOG mechanism to avoid infinite recursions: The recursion
depth is kept track of, and it will not exceed the limit given in the MAX_INTERFACE_REC
property of the global object, which defaults to 5. If this recursion level is reached,
intobjects() fails promptly, and a warning message is displayed. Note that this level
may be reached in very complex interface structures, but if the warning message is
displayed, something is probably wrong with the interface classes.

7.10 Transient objects

7.10.1 Why transient objects

We’ve seen that attempt() methods may create several objects, which may turn out
to be useless as a result of a failure to interface ports (even though the overall effort to
interface the ports succeeded). As a result, the PERLILOG needs a means of getting
rid of these objects, without leaving any traces.

The problem is that when normal objects are created, their references are kept in a
few data structures to make them easier to access, and to make them callable during
the execution process. This is not desirable for a lot of objects that are part of a failed
attempt to interface some ports.

This has been solved by the concept of transient objects. In order to clarify what they
are, we need to know a bit about what objects in general are in Perl.

A PERLILOG object is in fact normal Perl object, which in turn is a reference to a
“blessed” hash. The issue of blessing is not important here, but rather the fact that
the actual creation of an object is more or less creating an empty hash, and starting
to use the reference to it. The “blessing” is what makes it related to a class, so with
normal Perl objects, this reference to the hash is a full-powered object with methods
and properties and all the goodies.

The PERLILOG environment extends this Perl mechanism in several ways. Among
these extensions, we have a the registration of new object in some PERLILOG data
structures.

A Guide to PERLILOG 129

Eli Billauer elib@flextronics.co.il

The trick about transient objects, are that they become normal PERLILOG objects in
two stages: The first stage is their creation (using new()) during which a common-Perl
object is generated, and some basic properties are set. Then, if we want to keep the
object in the system, the object’s sustain() method is called, which turns it into a
perfectly normal PERLILOG object.

Should we want to discard the object between the two stages, all we need to do
is to forget about it. More formally put, we should make the object unreachable by
not keeping the value of its reference anywhere. This happens naturally when the
reference is only kept in a my-localized Perl variable within a method, and the method
returns. The variable goes out of scope, and the object is destroyed by the Perl
garbage collector.

7.10.2 How it works

When interface() is called, the PERLILOG environment invokes a special “transient
mode” until a decision has been made regarding which objects are going to do the
interfacing. In other words, transient mode is invoked just before interface() calls
intobjects() end exited after intobjects() returns.

During this mode, any object that is created with new() will be considered “transient”
until the object’s sustain() method is called. Transient object, as their name implies,
may have a very short lifecycle, and they are therefore not registered to be recognized
by the system until sustain() is called, if at all. Effectively this means that transient
objects are not called to during the multi-stage execution process. Neither do they
have a name registered, so if the object’s reference isn’t explicitly kept in some vari-
able, the object becomes unaccessible (and should therefore be destroyed by the Perl
garbage collector).

The differences of calling new() during transient mode are as follows:

• A transient object is generated, rather than a regular one.

• The nick property must be set during the creation, and name must not be set. If
the object is sustained, the property name will be set automatically by the system.
nick will be used as an argument to suggestname so its value doesn’t need to
be unique in any way (as opposed to name). Several objects may be created
with the same nick. Note that if the object is sustained, its name may be slightly
different from nick.

• If the object’s parent property is assigned, the parental relations will not be set
up until the object is sustained. In other words, the object will not be added to
the parent’s list of children (or ports) until sustain().

• The object is not registered to be called to during the execution stages, until it’s
sustained.

• The perlilog-transient property is set to ’transient’, to be changed to
’sustained’ if the object is sustained.

A Guide to PERLILOG 130

Eli Billauer elib@flextronics.co.il

This transient mode is implemented in the root class’ methods new() and sustain().
There is no need to implement those methods explicitly. In particular, if the new()
method is extended (overridden and called with SUPER::), the restrictions mentioned
below for attempt() apply to the extension.

The interface() function sustains some objects, and discards the rest, before exiting
the transient mode (“discarding” here means that the objects will be unreachable,
unless their references have been stored, which is against the guidelines below). We
may thus conclude, that transient objects effectively exist only while the system is in
transient mode.

After an object has been sustained, it behaves exactly like a normal object. Thus,
when implementing methods to be called during the multi-stage execution, there is no
need to take the issue of transient objects into consideration.

7.10.3 Guidelines for correct code

The following guidelines apply when writing code which runs prior to sustain() (usu-
ally attempt() or extension of new):

• The code should run quickly, since it may be called several times due to the
recursive nature of the interface class finding mechanism.

• Assume that the object will be discarded immediately upon return from the
method written. Accordingly, minimal traces should be left in data structures
beyond the object’s own property table.

• If the object creates other objects during transient mode (in particular in the
attempt() method), their references must not be stored in the object’s property
structure nor in any other place in the system. Generally, an object’s property
structure must not contain references to objects that were created after the ob-
ject itself. The same applies for the self-reference (commonly stored in $self),
which mustn’t be stored in any way that is accessible after the method call ter-
minates.

This ensures that Perl’s garbage-collection mechanism will work properly on
discarded objects.

7.10.4 The sustain() method

Exactly as the built-in new() method is written to support transient object, so is
sustain() written to perform the necessary actions to make a transient object per-
manent. Usually there is no need to extend the new() method, and by the same logic,
the sustain() method can be left as is.

But if some actions need to be performed during the very early stages of an object,
extending new() and/or sustain() is possible. The extension of new() is the same

A Guide to PERLILOG 131

Eli Billauer elib@flextronics.co.il

as any object. Extending sustain() is like any method on an existing object (unlike
new() which is called before the object exists).

The choice of which of these method to extend depends on how early we need our
task to take place. Whenever possible, extending sustain() is preferred, since it
frees us from restrictions related to the transient state of the object. new() should be
extended only when sustain() isn’t early enough.

At any rate, extending or overriding one of the execution stage’s method is always
better, when possible. The fact that the surrounding objects may not have set up all
their properties should be taken into consideration, and therefore a late execution may
be preferred.

7.11 Advanced issues

7.11.1 Dispatch classes

As we’ve seen, the normal way things work with interface classes, is that each class
responds for itself, and generates an object of itself. Each of the classes looks at the
ports, and makes its own decision during the attempt() call. The idea behind this
scheme is to keep the system modular.

But there may be cases, where it is much easier to look at the ports once, and decide
which class should take the job, rather than letting each class accept or decline on its
own behalf. This is expected to be more and more the case, as the number of ports
types grows, and the number of possibilities grow accordingly: The decision of how
to adapt between different port types may be easier formulate as a single decision,
taken at a single call to attempt().

This can be done in PERLILOG by having a special “dispatch class”. A dispatch
class is a class which never generates objects of its own, but only has an attempt()
method. Upon success, will the attempt() method generate an interface object of
some other class or classes. It may thus wisely choose the classes to take action
according to the situation with the port types. This is useful when having a bundle of
interface objects that we want to manage in a central manner.

In the examples we’ve had, the interface object generated as in my $self = $this
-> new(nick => ’TheNick’), but there is no reason why the interface object we gen-
erate in the attempt() method shouldn’t be of any other class. The only thing to be
careful about, is that the object we create is indeed adequate for the job.

For example, we could create a single class to take care of all interface classes which
involves Wishbone ports. This class would choose which class takes the job out of
the four presented.

Now, If an interface class is created (with all desired functionalities) by a dispatch
class, we don’t want it to be queried with attempt(). In that case, it should not be
registered with interfaceclass(), and there is no need to write a attempt() method

A Guide to PERLILOG 132

Eli Billauer elib@flextronics.co.il

for it, since it will never be called. Naturally, the dispatch class must be registered
instead.

Note that a dispatch class is merely a way to concentrate several attempt() calls
into one. If there are cases, in which the dispatch class doesn’t offer an interfacing
solution, it’s perfectly OK to register other classes (usually after it), which take care of
these cases. Dispatch classes do not restrict expandability.

7.11.2 Static objects in interface objects

Sometimes, we want the interface object to generate several modules. For example, a
complex bus controller may already be written in several modules of plain Verilog. The
easiest way to adapt this bus controller to PERLILOG may be to generate only one
module by a script, and incorporate the rest as static objects. This has the following
advantages:

• The effort is minimal: Most of the Verilog code remains completely untouched.

• The number of Verilog files is reduced if more than one interface object (of the
same kind) is generated, since the interface objects use the same modules.

There is a small catch with creating static objects in interface classes: Since we can’t
touch static object’s Verilog code, we can’t change the module’s name in any way. In
order to avoid name collisions in the bundle, we have to make sure that every Verilog
module appears only once.

In main scripts, this is quite easy to ensure this, simply by generating a single static
object for the Verilog code. With interface objects, it’s a bit more tricky, because the
system creates as many as needed of them. So obviously we need some mechanism
to recognize that a similar static object has already been generated.

The straightforward way of doing this, is by using the global object, as follows:

sub sustain {
my $self = shift;
$self->SUPER::sustain(@_); # Don’t forget this!

my $global = $self->globalobj();

unless ($global->get([’static-done’, ’jumper’])) {
my $jumper = static->new(name => $self->suggestname(’jumper’),

source => ’jumper.v’);
$global->const([’’static-done’, ’jumper’], $jumper);

}
}

The heart of this little routine, is where we check up if the jumper routine exists under
the path static-done in the global object’s property tree.

A Guide to PERLILOG 133

Eli Billauer elib@flextronics.co.il

Aside from that, there are several points to note here:

• We couldn’t create the static object during the new() method, because the object
was transient at the time. Hence, it would be a mistake to write to the global
object’s property table.

• The static object had to be generated before the call to execute() by the main
script, so we couldn’t do this in one of the execution methods.

• The conclusion is that the only way to generate static objects (or any other ob-
ject that we want globally once for an interface class) is to implement it in the
sustain() method.

• We can’t allow automatic instantiation, because the module may be instantiated
more than once.

• There is nothing system-special about the name static-done, or the path to
that property. These names just lessen the chance of name clashes between
properties.

• Calling the inherited method with SUPER:: is very important. Failing to do so will
cause an error message which is unrelated to the real problem.

And then, somewhere in the implementation of generate(), we may have, once or
more, something like:

my $insname = $obj->suggestins();
$obj->addins($insname, ’detached’);
$obj->append(" jumper $insname(.one($one), .two($two));\n");

There is more about static object in section 6.9.

7.11.3 Objects that don’t generate files

A verilog file will be created if one or more of the following conditions are met on the
code generating object:

• It has at least one variable declared (in the vars property tree branch).

• It is the parent of at least one object

• It is static

Interestingly enough, it doesn’t matter if the object’s verilog property has something
in it or not. The logic is like this: If it isn’t static, then we know what happens with it.
So if it has no variables, it will have no inputs or outputs. So if it doesn’t instaintiate
anything, what use does it have?

A Guide to PERLILOG 134

Eli Billauer elib@flextronics.co.il

Usually, the only code generating objects that don’t have a Verilog file are interface
objects that either generated no Verilog at all, or put their Verilog code in some other
object’s verilog property.

The fact that files are not always generated can make PERLILOG appear as if it was
buggy, especially in small test scripts: If a Verilog object is generated, and its verilog
property is set, it will still not generate a file if nothing useful was done with it.

See section 11.2.7 regarding how to check up if a file is going to be generated.

A Guide to PERLILOG 135

Eli Billauer elib@flextronics.co.il

8 PERL ILOG main script API

8.1 Exported subroutines

8.1.1 The exported subroutine init()

Synopsis:
init;

Syntax:
init;

Description:
init must be executed before objects are created, and after the class tree is defined
by using inherit, override and underride.
The routine sets up the global object and other environmental items.

Return value:
Not to be used

Example:
See the example in section 8.1.2

8.1.2 The exported subroutine inherit()

Synopsis:
inherit(’myclass’, ’myclass.pl’, ’root’);

Syntax:
inherit(name of new class, Perl file, class to inherit);

Description:
The inherit routine registers a new class into the class tree. This registration includes
giving the name of the new class, the Perl file which includes the class’ methods, and
the class from which methods will be inherited.
The Perl file is not read during the execution of inherit, nor is there need for the class
to inherit to be declared when the call to inherit is performed. inherit only verifies
that the class that is declared doesn’t exist already, and that the third argument is

A Guide to PERLILOG 136

Eli Billauer elib@flextronics.co.il

given.
A detailed description of class declaration is given in section 6.4.1.

Return value:
Always returns 1

Example:

use Perlilog;

inherit(’class_a’, ’myclass_a.pl’, ’root’);
inherit(’class_b’, ’myclass_b.pl’, ’class_a’);

init;

print "--- Now playing with object A --\n";
$objA = class_a -> new(name => ’AObject’);
$objA -> Asayhello();
$objA -> benice();

print "--- Now playing with object B --\n";
$objB = class_b -> new(name => ’BObject’);
$objB -> Asayhello();
$objB -> Bsayhello();
$objB -> benice();

We assume that the file myclass a.pl is:

sub Asayhello {
my $self = shift;
print "This is class A as ".$self->who()." saying hello\n";

}

sub benice {
my $self = shift;
$self -> SUPER::benice(@_);
print "This is class A saying hello after being nice\n";

}

and myclass b.pl is

sub Bsayhello {
my $self = shift;
print "This is class B as ".$self->who()." saying hello\n";

}

sub benice {

A Guide to PERLILOG 137

Eli Billauer elib@flextronics.co.il

my $self = shift;
$self -> SUPER::benice(@_);
print "This is class B saying hello after being nice\n";

}

The script will thus print out:

--- Now playing with object A --
This is class A as object ’AObject’ saying hello
This is class A saying hello after being nice
--- Now playing with object B --
This is class A as object ’BObject’ saying hello
This is class B as object ’BObject’ saying hello
This is class A saying hello after being nice
This is class B saying hello after being nice

We note that since class B inherited methods from class A, we could call both
Asayhello() and Bsayhello() on object B. Furthermore, when calling the method
benice() on object B, class A’s benice() was called as well by virtue of $self ->
SUPER::benice(@).

8.1.3 The exported subroutine inheritdir()

Synopsis:
inheritdir(’classdir’, ’root’);

Syntax:
inheritdir(path to class directory, root class to inherit from);

Description:
inheritdir is a means of loading a library of classes, with predefined relations of
inheritance between them. inheritdir scans the given directory for files with .pl
extension, and executes inherit on each of these files. The file name, without the
.pl extension, is taken as the new class’ name for each file.

inheritdir’s second argument is the class to inherit methods from.

If directories are found among the scanned class files, each directory is scanned as
well. The name of the directory is then the class from which all classes will inherit
methods.

For example, we could get the same class structure as in the example of section 8.1.2
by having a directory named classdir. This directory would contain the myclass a.pl
file and another directory, named myclass a. Now, the myclass a directory would
contain one file, myclass b.pl.

A Guide to PERLILOG 138

Eli Billauer elib@flextronics.co.il

We then run inheritdir(’classdir’, ’root’), myclass a.pl is read and creates
the myclass a class. The myclass a directory is found, and myclass b.pl within it.
Now, since the directory is named myclass a, the myclass b class inherits methods
from myclass a.

Note that if we have a directory named foo, then a class file foo.pl and the directory
foo must be in the same (parent) directory. This structure resembles the way sub-
modules are organized in plain Perl, and it forces the directory tree to reflect the class
tree.

Also note that all file names and directory names are translated to lowercase, resulting
in only lowercase class names.

Return value:
Always returns 1

8.1.4 The exported subroutine override()

Synopsis:
override(’theclass’, ’myclass.pl’);
override(’theclass’, ’myclass.pl’, ’root’);

Syntax:
override(name of class, Perl file[, class to inherit]);

Description:
override causes the given Perl file’s method declarations to override those of the
already declared class. Note that unlike common practice in object-oriented program-
ming, this allows to override particular methods without changing the class’ name,
despite the fact that strictly speaking, this operation generates a new class.
If the class, which is named in the first argument doesn’t exist, override behaves
exactly like inherit, and thus a third argument is needed. This third argument is
optional, and functions as a “backup” in case the desired class does not exist, and
hence needs to be generated with inherit.
A detailed description of class declaration is given in section 6.4.1.

Return value:
Always returns 1

Example:

use Perlilog;

inherit(’class_a’, ’myclass_a.pl’, ’root’);
override(’root’, ’myclass_b.pl’);

init;

A Guide to PERLILOG 139

Eli Billauer elib@flextronics.co.il

$objA = class_a -> new(name => ’AObject’);
$objA -> Asayhello();
$objA -> Bsayhello();
$objA -> benice();

We assume that the files myclass a.pl and myclass b.pl are the same as in the
example for inherit in section 8.1.2. This will print out:

This is class A as object ’AObject’ saying hello
This is class B as object ’AObject’ saying hello
This is class B saying hello after being nice
This is class A saying hello after being nice

This example shows an override of the root class, which will affect all classes in the
system. It’s usually not necessary to go that deep down.
Note that the root class was overridden after the declaration of class a, and still
class a inherited the methods from myclass b.pl via the inheritence from the root
class.

8.1.5 The exported subroutine underride()

Synopsis:
underride(’theclass’, ’myclass.pl’);

Syntax:
underride(name of class, Perl file);

Description:
underride works like override, only in the opposite way: It will give the Perl file’s
method the lowest predecense in the inheritence chain. In other words, the class tree
will be set up like it would if the current Perl file was the one that generated the class,
and all other declarations of the same class came afterwards as override()s.
If another underride() is called twice on the same class, the second one will be
closer to the root class.
This routine is merely intended for debugging purposes, and is not recommended for
standard use.
A detailed description of class declaration is given in section 6.4.1.

Return value:
Always returns 1

A Guide to PERLILOG 140

Eli Billauer elib@flextronics.co.il

8.1.6 The exported subroutine definedclass()

Synopsis:
$status = definedclass(’class’);

Syntax:
class status = definedclass(class name);

Description:
definedclass accepts a class name as argument, and returns a value that reflects
the class’ status.
A detailed description of class declaration is given in section 6.4.

Return value:
definedclass returns 0 if the class has not been defined. 1 is returned if the class is
defined, but its Perl code has not been loaded. 2 is returned if the class is defined,
and the Perl code has been loaded.

Example:

use Perlilog;

print "In the beginning, the status was ".definedclass(’class_a’)."\n";

inherit(’class_a’, ’myclass_a.pl’, ’root’);
print "Afterwards, the status was ".definedclass(’class_a’)."\n";

init;
print "After init the status was ".definedclass(’class_a’)."\n";

$obj = class_a -> new(name => ’TheObject’);
print "After usage the status was ".definedclass(’class_a’)."\n";

This will print:

In the beginning, the status was 0
Afterwards, the status was 1
After init the status was 1
After usage the status was 2

Note that the status remained 1 even after init: The class’ Perl code was read only
when an object was generated from the class.

A Guide to PERLILOG 141

Eli Billauer elib@flextronics.co.il

8.1.7 The exported subroutine globalobj()

Synopsis:
$GlobObj = globalobj;

Syntax:
object reference = globalobj;

Description:
globalobj returns an object reference to the global object. It must not be called before
init(), since the global object doesn’t exist before that.
More information about the global object is given in section 5.4.5.

Return value:
A reference to the global object.

8.1.8 The exported subroutine execute()

Synopsis:
execute();

Syntax:
execute();

Description:
This routine calls the execute method of the global object. This will kick off the code
generation process. See section 6.5.

Return value:
Not to be used

8.1.9 The exported subroutine interfaceclass()

Synopsis:
interfaceclass(’myclass’);

Syntax:
interfaceclass(name of interface class);

Description:
interfaceclass() registers some class as an interface class. The class must have
been declared with inherit(), override() or underride prior to registration with

A Guide to PERLILOG 142

Eli Billauer elib@flextronics.co.il

interfaceclass(). See section 7.9 for more about this.

8.2 The global variables

8.2.1 The variable $VERSION

Description:
The variable $VERSION is the version number. It is declared as is commonly done in
Perl modules. Note that it can be used as a number.

Example:

use Perlilog;

if ($Perlilog::VERSION < 1.00) {
print "We are running on a pre-release version!\n";

}

8.2.2 The variable $globalobject

Description:
A reference to the global object is stored in $Perlilog::globalobject. The value of
this variable is returned when calling the globalobj() routine.

8.2.3 The variable %classes

Description:
This hash’s keys are names of classes. To be more accurate, these are the names
of the Perl packages that will be generated during the loading of class Perl files. The
values are either references to lists, or the scalar value 1. The latter signifies that the
class has been loaded (definedclass would return 2).
When the value is a reference to a list, it is a list of three items: The first item is the
name of the Perl file associated with the class. The second is the class which the
current class should be derived from (in other words, the value of this class’ @ISA).
The last item is the class name that was used when creating this class. It may be
different from the package name due to class override.

8.2.4 The variable %objects

Description:
This hash links between object names and their references. The keys are names of
objects, and the values are their references.

A Guide to PERLILOG 143

Eli Billauer elib@flextronics.co.il

The integrity of this hash may be verified by calling the treestudy method (see section
9.1.22.

8.2.5 The variable @VARS

Description:
@VARS is a list of references to variable pointers, which are lists consisting of two items:
The first item is a reference to the object holding the variable, and the second is the
variable’s name.
The variable’s ID is the index to the variable’s entry in @VARS.
The first to items of @VARS are undef as a measure of avoiding the indeces 0 and 1 to
acciendly point to variables.

8.2.6 The variable @EQVARS

Description:
@EQVARS is a list of references to equivalence lists. An equivalence list is a list of
variable ID’s, whose respective variables are equivalent in such a way that they are
connected in the Verilog sense.

8.2.7 The variable @interface classes

Description:
This is a list of interface classes that were registered with interfaceclass(), in the
order that they were registered. See section 7.9 for more about this.

8.2.8 The variable $interface rec

Description:
If $interface rec is defined, the system is in transient mode (see section 7.10), and
its value is a number, which is the number of recursive calls to intobjects() calls
that the system is ready to get deeper into recursion.

When the system is not in the middle of handling some call to interface(), this
$interface rec is undefined. In order to keep the system sane, this variable, should
be only read from (except for the core of PERLILOG).

A Guide to PERLILOG 144

Eli Billauer elib@flextronics.co.il

9 The root class API

9.1 Methods

9.1.1 The method new()

Synopsis:
$theobj = theclass -> new(name=>’thename’);

Syntax:
class -> new(property hash);

Description:
The new method creates a new object of a given class. Its initial properties are passed
as a hash.
The new method must be called with at least one property, the name property set.
The value of name property must be different from that of any other previously created
object, even when making case-insensitive comparison.
If the parent property is set in the property hash, addchild will be called in order to
set the correct relations.

Return value:
A reference (“handle”) to the new object.

Example:

use Perlilog;
init;
$obj1=root->new(name=>’theObject’);
$obj2=root->new(name=>’anotherObject’,

parent=>$obj1);

Note that that parent is assigned $obj1, and not the parent’s name.

9.1.2 The method set()

Synopsis:
$obj->set($property, $scalar);
$obj->set($property, @list);

A Guide to PERLILOG 145

Eli Billauer elib@flextronics.co.il

$obj->set(\@path, $scalar);
$obj->set(\@path, @list);

Syntax:
object -> set(property, new value);

Description:
The set method sets the value of a property. If property needs not to exist prior to
calling set, but it must not have been created by const (see section 9.1.4).
The value is in general a list. Scalars are handled as lists with a single item. Even so,
the set and get pair can be used with scalars in a straightforward way, as is shown in
the example of section 9.1.3.
To delete a property, set it to undef.
If the property name is a reference to a list, this is considered as the property’s path.
Note that paths are easily expressed with square brackets, [and] (see example).
Paths and their rules are described in section 5.3.6.

Return value:
Always returns 1

Example:
See the example in section 9.1.3

9.1.3 The method get()

Synopsis:
$scalar=$obj->get($property);
@list=$obj->get($property);
$scalar=$obj->get(\@path);
@list=$obj->get(\@path);

Syntax:
object -> get(property);

Description:
The get method looks for the required property, and returns its value if it exists.
If the property name is a reference to a list, this is considered as the property’s path.
Note that paths are easily expressed with square brackets, [and] (see example).
Paths and their rules are described in section 5.3.6.
The get property is suitable for reading properties defined by set and const.
The set and get pair are coordinated in such a way, that the programmer can assign a
list, a scalar or a hash to a property, and get the value later on in the easiest possible
way. This is best explained in the example that follows, but the formal rules are hereby
described for the sake of formality:
In scalar context: The first element in the list is returned. If a scalar was used to set

A Guide to PERLILOG 146

Eli Billauer elib@flextronics.co.il

the property, this arrangement makes sure that get returns what set (or const) got.
If the property wasn’t defined, undef is returned.
In list context: A list is returned. If the property wasn’t defined, it’s an empty list.
Note that if the property contains a list, and get is evaluated in a scalar context, it
does NOT return the number of elements, like some Perl programmers would expect.

Return value:
The value of the requested property.

Example:
use Perlilog;
init;
$object=root->new(name=>’theObject’,

foo => ’bar’);
print "My name is ".$object->get(’name’)."\n";
print "Foo is ".$object->get(’foo’)."\n";

$object->set(’myscalar’, ’scalarvalue’);
$value = $object->get(’myscalar’);
print "My scalar is $value\n";
print "My scalar as a list: ".join(",", $object->get(’myscalar’))."\n";

$object->set(’mylist’, ’listitem1’, ’listitem2’, ’listitem3’);
@listvalue=$object->get(’mylist’);
print "My list is ".join(",", @listvalue)."\n";
print "My list (scalar context!): ".$object->get(’mylist’)."\n";

@thelist=(1, 2, 3);
$object->set(’one_two_three’, @thelist);
print "Let’s count: ".join(",", $object->get(’one_two_three’))."\n";

$object->set([’my’, ’node’], "This is my node");
$object->set([’my’, ’other’], "This is another node");
print "My node: ".$object->get([’my’, ’node’])."\n";
print "My other: ".$object->get([’my’, ’other’])."\n";

This script prints out the following:

My name is theObject
Foo is bar
My scalar is scalarvalue
My scalar as a list: scalarvalue
My list is listitem1,listitem2,listitem3
My list (scalar context!): listitem1
Let’s count: 1,2,3
My node: This is my node
My other: This is another node

A Guide to PERLILOG 147

Eli Billauer elib@flextronics.co.il

9.1.4 The method const()

Synopsis:
$obj->const($property, $scalar);
$obj->const($property, @list);
$obj->const(\@path, $scalar);
$obj->const(\@path, @list);

Syntax:
object -> const(property, scalar value);

Description:
The const method is exactly like set (see section 9.1.2), only it sets the value of a
property as a constant. If the property already exists, the new value value must be
equal (stringwise, in the Perl eq sense) to the value that the property already has. The
sense of equality may be changed from stringwise eq to any arbitrary sense by using
the seteq method detailed in section 9.1.13.
When dealing with lists, equality means equality in the number of element in the list
and that each element is stringwise equal (or as chosen with seteq).
Either way, the previous value, if assigned, must have been set by const (and not
set).
If the above conditions are not met, a fatal error occurs.
Setting a constant value may trigger off a callback mechanism. See section 9.1.12.
For more information about the constant property, see section 5.3.4.
If the property name is a reference to a list, this is considered as the property’s path.
Note that paths are easily expressed with square brackets, [and] (see example).
Paths and their rules are described in section 5.3.6.

Return value:
Not to be used.

Example:
use Perlilog;
init;
$object=root->new(name=>’theObject’);

$object->const(’myconstant’, ’Stay Forever’);
$value = $object->get(’myconstant’);
print "I say $value\n";

$object->const(’myconstant’, ’Stay Forever’); # This is OK
$object->set(’myconstant’, ’Stay Forever’); # This is an error
$object->const(’myconstant’, ’Change!’); # This is an error

$object->set(’myscalar’, ’I am not a constant’);
$object->const(’myscalar’, ’I am not a constant’); # Error again!

A Guide to PERLILOG 148

Eli Billauer elib@flextronics.co.il

This will result in

I say Stay Forever

and then an error will be reported, because of the attempt to use set on a constant
value (it doesn’t matter that the value would be the same).
The example shows other possible mistakes: Trying to change the value of
myconstant, or using const on a property that is already assigned with set.

9.1.5 The method globalobj()

Synopsis:
$theglobal = $anyobject -> globalobj();

Syntax:
object -> globalobj();

Description:
The globalobj method returns a handle to the global object of the system. The
return value is identical for any object that is an instantiation of a class derived from
root, without having this method overrides. In simple words, it doesn’t matter which
object you run this method on, as long as it’s supported.
The purpose of this method is to allow an easy access to the global object from within
subroutines that define methods. From the main script, simply use the globalobj()
routine.
See section 5.4.5 for details about the global object.

Return value:
A reference (“handle”) to the global object

Example:

use Perlilog;
init;
$object=root->new(name=>’theObject’);

$theglobal = $object->globalobj();
print "The object’s name is ".$theglobal->get(’name’)."\n";

$shortcut = globalobj();

Note that $shortcut will have the same value as $theglobal. This shorter format is
only possible because of use Perlilog, and hence it can’t be used in class declara-
tions.

A Guide to PERLILOG 149

Eli Billauer elib@flextronics.co.il

9.1.6 The method who()

Synopsis:
print "This is ".$object->who."\n";

Syntax:
object -> who();

Description:
The who method returns a short and concise identification of the object, so it is readily
recognized by humans. It is commonly used in error messages and alike.
Classes that are derived from root often override this method to give a better descrip-
tion. The object’s name is always mentioned somehow by convention.
Note that by using who, we ask the object for some information, so we assume that
$object (in the synopsis) is a proper object reference. This is assumption should
be avoided, especially when handling error messages, due the unexpected nature of
errors. See safewho in section 9.1.7 for a solution.

Return value:
A short identifier of the object, helpful for humans.

Example:

use Perlilog;
init;
$object = root->new(name=>’theObject’);

print "This is ".$object->who."\n";

Running this:

This is object ’theObject’

9.1.7 The method safewho()

Synopsis:
print "This is ".$safeobject->safewho($object)."\n";

Syntax:
object -> who(object in question);

Description:
safewho calls who on the object that is passed as an argument, after verifying (using
isobject) that the object reference is proper.
This is especially useful in code that define methods, since we know for sure that the

A Guide to PERLILOG 150

Eli Billauer elib@flextronics.co.il

object’s self reference is proper. We may thus call ourself with the safewho method,
when attempting to identify another object.

Return value:
Same as who if the argument is a proper object. Otherwise, the string ’(non-object
item)’ is returned.

Example:

use Perlilog;
init;
$object = root->new(name=>’theObject’);
$safeobject = root->new(name=>’ImSafe’);
$junk = "Hello";

print "This is ".$safeobject->safewho($object)."\n";
print "What is this??? ".$safeobject->safewho($junk)."\n";

Running this:

This is object ’theObject’
What is this??? (non-object item)

Note that trying $junk->who would cause a Perl error, that would be quite unhelpful.

9.1.8 The method isobject()

Synopsis:
if (isobject($obj)) { ... }

Syntax:
object -> isobject(scalar);

Description:
isobject identifies if its scalar argument is a PERLILOG object. This method is use-
ful before attempting to call an object’s method with an arrow notation (“->”). The
method’s result does not depend on whose object it is a method of. Only scalar in the
argument matters (unless the method has been overridden, which it shouldn’t).
Note that if an object has been created outside the PERLILOG mechanism, isobject
will return false even though it’s OK to use the argument as an object.

Return value:
True (1) or undefined value (undef).

Example:

use Perlilog;

A Guide to PERLILOG 151

Eli Billauer elib@flextronics.co.il

init;
$object = root->new(name=>’theObject’);

print "Is the handle an object? ".globalobj()->isobject($object)."\n";
print "Is the name an object? ".globalobj()->isobject(’theObject’)."\n";
print "Can I check myself? ".$object->isobject($object)."\n";

Note that we use globalobj() just to get some object to call isobject on.
Running this we get:

Is the handle an object? 1
Is the name an object? 0
Can I check myself? 1

Also note that we got 0 when passing the object’s name as an argument. The method
will always return 0 to any string it gets.

9.1.9 The method objbyname()

Synopsis:
$obj -> objbyname(’theObject’);

Syntax:
object -> objbyname(name of object);

Description:
objbyname() returns the handle (reference) to the object whose name is given as an
argument. If no such object exists, undef is returned.

Return value:
A reference to an object or undef.

Example:

use Perlilog;
init;
$object = root->new(name=>’theObject’);

$same = globalobj->objbyname(’theObject’);

print("The same object!\n")
if ($object == $same);

Description:
In this example, we create a new object, and puts its handle in $object. Then we get
the same value by using objbyname() on the object’s name, and put it in $same (which

A Guide to PERLILOG 152

Eli Billauer elib@flextronics.co.il

is useless for practical reasons, since we’ve already have the reference of the objects
handy). Note that we use the global object, like we would if we had no other reference
to an object handy.

When running this script, the print is executed.

9.1.10 The method objdump()

Synopsis:
$obj -> objdump;
$obj -> objdump(’theObject’);
$obj -> objdump($objref);

Syntax:
object -> objbyname();
object -> objbyname(list of names or references of objects);

Description:
objdump() is intended for debugging. It prints out information (to the standard output)
about either a specific object, or all the objects that are defined in the system.

If a list of objects is given (this includes one object) as argument, these objects’ infor-
mation is printed out, which includes the properties.

The objects may be identified by their name or reference interchangably.

If objdump() is called with no arguments, all objects in the system are showed in the
order that they were created.

The output format is intended for human reading, and is thus presented in what seems
to be an easy way to read, with less emphasis on formal rules.

Return value:
Not to be used.

Example:

use Perlilog;
init;
$object = root->new(name=>’theObject’);

globalobj->objdump($object); # Will show ’theObject’
globalobj->objdump(’theObject’); # ’theObject’ again
$object->objdump(globalobj); # Will show global object!
globalobj->objdump(); # Will show them all

A Guide to PERLILOG 153

Eli Billauer elib@flextronics.co.il

9.1.11 The method suggestname()

Synopsis:
$safename = $obj->suggestname($IWantThis);
$obj = AnyClass->new(name => $safename);

Syntax:
object -> suggestname(desired name)

Description:
suggestname() will check the given string against the names of already existing ob-
jects. If the name is OK for a new object, it will simply return the string. If a new object
can’t be named with the given string, it is altered lightly (see example). Either way,
the returned string is a legal name for a new object, which will be close enough to the
original.
Note, that suggestname may suggest the same name more than once, if it isn’t used
to create a new object – it checks uniqueness against existing objects, not its own
suggestions.

Return value:
A string with a name for a new object.

Example:

use Perlilog;
init;
$global = globalobj();
$name1 = $global -> suggestname(’theObject’);
$object = root->new(name => $name1);
print "The first object was called $name1\n";

$name2 = $global -> suggestname(’THEOBJECT’);
$object = root->new(name => $name2);
print "The next object was called $name2\n";

$name3 = $global -> suggestname(’theobject’);
print "Now we were suggested the name $name3\n";
$name4 = $global -> suggestname(’theobject’);
print "We didn’t use it, so we got $name4 again\n";

$name5 = $global -> suggestname(’theobjects’);
print "We added one ’s’, and got $name5 -- it’s unique\n";

We run this:

The first object was called theObject
The next object was called THEOBJECT_1

A Guide to PERLILOG 154

Eli Billauer elib@flextronics.co.il

Now we were suggested the name theobject_2
We didn’t use it, so we got theobject_2 again
We added one ’s’, and got theobjects -- it’s unique

9.1.12 The method addmagic()

Synopsis:
$object->addmagic($property, \&callback);
$object->addmagic($property, sub { ... });
$object->addmagic(\@path, \&callback);
$object->addmagic(\@path, sub { ... });

Syntax:
object -> addmagic(property, subroutine reference);

Description:
The addmagic method queues a callback subroutine, which will be called upon when
the respective property is assigned a value by using const. If The property’s value is
already set, the subroutine will be called immediately.
If the property name is a reference to a list, this is considered as the property’s path.
Paths and their rules are described in section 5.3.6.
addmagic is loop-safe: The callback mechanism assures that infinite callback loops
will not occur. This is done by removing each callback entry from the queue before
performing the callback itself, so each callback entry is run at most once. In particular,
the callback subroutine may include a call to the const of another object, which may
trigger off another callback. In fact, this is the intended use of addmagic (see exam-
ples).
Using addmagic and callback subroutines requires an understanding of the scope un-
der which the subroutines are run (that is, when variables are evaluated, and what
variable space is applied). A lack of such understanding may lead to strange bugs.
We shall address a few of the issues in the examples below.

Return value:
Not to be used.

Example:

use Perlilog;
init;
$object1 = root->new(name=>’First’);
$object2 = root->new(name=>’Second’);

$copy1to2 = sub {
print "Callback to copy1to2\n";
my $val = $object1 -> get(’TheProperty’);
$object2 -> const(’TheProperty’, $val);

A Guide to PERLILOG 155

Eli Billauer elib@flextronics.co.il

};

$copy2to1 = sub {
print "Callback to copy2to1\n";
my $val = $object2 -> get(’TheProperty’);
$object1 -> const(’TheProperty’, $val);

};

$object1->addmagic(’TheProperty’, $copy1to2);
$object2->addmagic(’TheProperty’, $copy2to1);

$object1->const(’TheProperty’, ’TheValue’);
print "The value is ".$object2->get(’TheProperty’)."\n";

And when running this, we get:

Callback to copy1to2
Callback to copy2to1
The value is TheValue

The heart of this example is that we ran const on $object1, but read the property of
$object2. This demonstrates how one object can “learn” the value of another one as
soon as it is set.
We see that by calling const on $object1 triggered off the callback to copy1to2. In
copy1to2 there’s const is called on $object2, and thus copy2to1 is triggered off. In
copy2to1 we call const on $object1 again, on a constant property that already has a
value. This is OK, since we attempt to assign the same value that the property already
has.
No more callbacks take place, since we’ve exhausted the queues. Note that each of
the two objects watch the other. We could have ran const on $object2, and read it
from $object1 as well. In fact, this callback setup assures that both object’s properties
will be equal, both by copying the value, and by not allowing unequal values to be set.
In the example above, the subroutines could have been defined as sub copy1to2
{ ... } (and not $copy1to2 = sub { ... }), achieving the same results for this
specific example. (In this case \©1to2 would be given to addmagic, rather than
$copy1to2). Even so, it’s still higly recommended to follow the example’s subroutine
definition format, in order to assure the correct scoping. This is especially important if
the subroutines are defined as part of some method routine.
We now see another example, which demonstrates a variable scoping issue. Suppose
that we want 10 objects, whose property X is equal on all:

use Perlilog;
init;
@l=();
for ($i=0; $i<10; $i++) {
$l[$i]=root->new(name=>’MyName’.$i);

A Guide to PERLILOG 156

Eli Billauer elib@flextronics.co.il

my $j=$i;
if ($l[$j+1]) {
$l[$j]->addmagic(’X’,

sub { $l[$j+1]->const(’X’, $l[$j]->get(’X’)); });
}
if ($l[$j-1]) {
$l[$j]->addmagic(’X’,

sub { $l[$j-1]->const(’X’, $l[$j]->get(’X’)); });
}

}

print "Before, the value is ’".$l[3]->get(’X’)."’\n";
$l[8]->const(’X’, ’what we want’);
print "After, the value is ’".$l[3]->get(’X’)."’\n";

Running this, we get:

Before, the value is ’’
After, the value is ’what we want’

In this example, we pass an anonymous subroutine (sub {...}) to addmagic. It is
important to note, that even though the loop index is $i, we create a copy of it, my
$j=$i; and use it within the callback.
The reason for this, is that the variables in the subroutine are evaluated only upon
execution, but the values are those that the variables have at the moment of execution.
Thus, we couldn’t use $i in the callback subroutine, because it would have the value
10 (the final value) for all subroutines. By making a “local copy” with my, within a Perl
block, we get the right $j for each callback.
This example may be confusing, but it shown the importance of knowing the scoping
issue well.

9.1.13 The method seteq()

Synopsis:
$object->seteq($property, \&compare);
$object->seteq($property, sub { ... });
$object->seteq(\@path, \&compare);
$object->seteq(\@path, sub { ... });

Syntax:
object -> seteq(property, subroutine reference);

Description:

A Guide to PERLILOG 157

Eli Billauer elib@flextronics.co.il

seteq changes the meaning of equalilty for a certain property. This meaning is
effective when const is used on a property that already has a value, which is when
const verifies that the new value and the old one are “the same”. The exact meaning
of being “the same” is given by the argument to seteq, which is a reference to a
comparing subroutine.
The comparing subroutine shall accept two arguments, and return 1 if the arguments
are “the same” in the relevant sense, 0 otherwise.
const does not update the propery nor run callbacks when executed on a property
that has a value, even if it is considered equal. If the property needs to be updated,
the use of constant properties should be reconsidered.
By default, stringwise eq is used to compare the value given to const, as if
seteq($property, sub {return shift eq shift;}) had been run on every prop-
erty.
If the property name is a reference to a list, this is considered as the property’s path.
Paths and their rules are described in section 5.3.6.

Return value:
Not to be used.

Example:

use Perlilog;
init;
$object = root->new(name=>’theObject’);

$object -> seteq(’theProperty’, \&ignorecase);

$object -> const(’theProperty’, ’THEVALUE’);

#The next line would cause an error if it wasn’t for seteq above
$object -> const(’theProperty’, ’thevalue’);

print "The value is ".$object->get(’theProperty’)."\n";

sub ignorecase {
my ($a, $b) = @_;
return (lc($a) eq lc($b));

}

Running, this:

The value is THEVALUE

In this example, we make the comparison case-insensitive by applying the subroutine
ignorecase on seteq. Unlike addmagic (see section 9.1.12), it’s proper to use named
subroutines (defined as sub ignorecase { ... }), since the result of the subroutine

A Guide to PERLILOG 158

Eli Billauer elib@flextronics.co.il

depends only on its arguments, and hence scoping issues are irrelevant.
We can see that the value of the property did not change, but no error was reported.

9.1.14 The method registerobject()

Synopsis:
$object -> registerobject($phase);

Syntax:
object -> registerobject(phase);

Description:
registerobject registers the object in the PERLILOG environment. This registration
assures that the object will be called upon during the execution phase (see section
6.5 for more details).
The phase argument can be one of begin, end or noreg. begin and end mean that the
object should be called as early or late as possible, for each method. noreg means
causes the method to return without any action.
Objects that are inherited from the codegen class (including verilog) are registered
upon creation, so there is almost never any reason to use this method explicitly.

Return value:
Not to be used.

9.1.15 The method pshift()

Synopsis:
$scalar=$obj->pshift($property);
$scalar=$obj->pshift(\@path);

Syntax:
object -> pshift(property);

Description:
pshift treats the given property as a list, and performs a Perl shift operation on
that list: It removes the first item of the list, and returns its value. If the property is
undefined, or it’s an empty list, undef is returned.
The property must not have been defined with const.
If the property name is a reference to a list, this is considered as the property’s path.
Paths and their rules are described in section 5.3.6.

Return value:
Same as Perl’s shift on a list.

A Guide to PERLILOG 159

Eli Billauer elib@flextronics.co.il

Example:
See the example in section 9.1.18

9.1.16 The method ppop()

Synopsis:
$scalar=$obj->ppop($property);
$scalar=$obj->ppop(\@path);

Syntax:
object -> ppop(property);

Description:
ppop treats the given property as a list, and performs a Perl pop operation on that list:
It removes the last item of the list, and returns its value. If the property is undefined,
or it’s an empty list, undef is returned.
The property must not have been defined with const.
If the property name is a reference to a list, this is considered as the property’s path.
Paths and their rules are described in section 5.3.6.

Return value:
Same as Perl’s pop on a list.

Example:
See the example in section 9.1.18

9.1.17 The method punshift()

Synopsis:
$obj->punshift($property, $scalar);
$obj->punshift($property, @list);
$obj->punshift(\@path, $scalar);
$obj->punshift(\@path, @list);

Syntax:
object -> punshift(property, list items);

Description:
punshift treats the given property as a list, and performs a Perl unshift operation on
that list: It adds the given items at the beginning of the list. If the property is undefined,
it is created with set.
The property must not have been defined with const.
If the property name is a reference to a list, this is considered as the property’s path.
Paths and their rules are described in section 5.3.6.

A Guide to PERLILOG 160

Eli Billauer elib@flextronics.co.il

Return value:
Not to be used.

Example:
See the example in section 9.1.18

9.1.18 The method ppush()

Synopsis:
$obj->ppush($property, $scalar);
$obj->ppush($property, @list);
$obj->ppush(\@path, $scalar);
$obj->ppush(\@path, @list);

Syntax:
object -> ppush(property, list items);

Description:
ppush treats the given property as a list, and performs a Perl push operation on that
list: It adds the given items at the end of the list. If the property is undefined, it is
created with set.
The property must not have been defined with const.
If the property name is a reference to a list, this is considered as the property’s path.
Paths and their rules are described in section 5.3.6.

Return value:
Not to be used.

Example:

use Perlilog;
init;
$object = root->new(name=>’theObject’);

$object -> set(’myList’, 5, 6, 7, 8);

print "This is five: ".$object -> pshift(’myList’)."\n";
print "This is eight: ".$object -> ppop(’myList’)."\n";

$object -> punshift(’myList’, 1, 2);
$object -> ppush(’myList’, ’Finito!’);

print "My list is ".join(’, ’, $object -> get(’myList’))."\n";

Which prints when runned:

This is five: 5

A Guide to PERLILOG 161

Eli Billauer elib@flextronics.co.il

This is eight: 8
My list is 1, 2, 6, 7, Finito!

9.1.19 The method addchild()

Synopsis:
$child -> setparent($parent);

Syntax:
child object -> setparent -> (parent object);

Description:
setparent registers the object passed as an argument as a parent of the object, on
which the methon is executed on.
In effect this sets the parent property of the child to a reference to the parent object,
and adds a reference to the child object to the list of children, which the children
property consists of.

Return value:
Not to be used.

9.1.20 The method prettyval()

Synopsis:
print "I have ".$self->prettyval(@things)."\n";

Syntax:
object -> prettyval(list);

Description:
prettyval() accepts items in a list, and returns a string with the items presented in
a way that humans understand. This should be used in error messages and similar
cases, when we want to present the value in a message.

prettyval() handles lists by printing a few of the first elements in parantheses. What
appears to be non-numerical strings is enclosed with quote marks. Object references
are translated into their who() representation, enclosed in curled brackets.

This method may be used in conjunction with linebreak() in order to handle long
lines.

Return value:
A well-formatted string

Example:

A Guide to PERLILOG 162

Eli Billauer elib@flextronics.co.il

See the example in section 9.1.21

9.1.21 The method linebreak()

Synopsis:
print $self->linebreak($A long string);
print $self->linebreak($A long string, ’ ’);

Syntax:
object -> linebreak(string[, indent string]);

Description:
The linebreak() method searches the string for lines that are over 80 characters in
length (newline to newline), and attempts to cut them wisely by adding newlines.

If a second argument is given, that string will be put after each newline that is inserted.
If the string is a few whitespaces, this will turn out to be the indentation of each line
break that the method creates.

With “newline” we mean a Perl \n.

Return value:
A (hopefully) better formatted string

Example:

use Perlilog;
init;
$object = root->new(name=>’theObject’);

@thelist = (’Foo’, 5, $object, globalobj(), ’Bar’, ’FooBar’);

print globalobj->linebreak("I don’t know what to do with ".
globalobj->prettyval(@thelist)."\n");

This will print out:

I don’t know what to do with (’Foo’, 5, {object ’theObject’},
{The Global Object}, ...)

Note that the line break before the forth element is a result of the linebreak()
method. We can also see that only the first four elements were actually displayed.
The rest are chopped out.

A Guide to PERLILOG 163

Eli Billauer elib@flextronics.co.il

9.1.22 The method treestudy()

Synopsis:
$object -> treestudy();

Syntax:
object -> treestudy();

Description:
treestudy performs a scan of all objects that belong to the same object tree as the
the object, on which the method was called (not including port objects). Section 6.2.4
describes the object tree. The treepath property is updated for each of these objects
(treepath is described in section 9.2.6).
treestudy can thus be called from any object in the relevant tree.
As a side effect, treestudy also verifies that the tree is well built: That there are no
loops, and that objects point at each other as child-parent pairs properly. In addition,
it is also verified that all objects in the tree can be resolved by their name by looking
them up in the the %Perlilog::objects hash.
A fatal error will be produced if any of these verifications fails, so the tree’s integrity is
assured immediately after a return from this method.

Return value:
A reference to the tree’s root object (the object that has no parent).

9.2 Properties

9.2.1 The property name

Description:
The name property is a unique ASCII identifier of the object. It must be set when
creating a new object.
The first character of the property string must be an underscore or a letter (upper case
or lower case). The rest of the string must match \w* (as a Perl regular expression).
MyName, Hello 9, and underscored are legal names. 2good, -myname, %Name and
/slash are illegal.
The name property must be unique in a case-insenstive sense.
See 9.1.1 and 9.1.11 for more details.

9.2.2 The property parent

Description:
parent is a reference to the parent object. The property is of constant type, and is
hence a scalar. For the same reason, an object can have only one parent, and it can’t

A Guide to PERLILOG 164

Eli Billauer elib@flextronics.co.il

be changed once set.

Example:
use Perlilog;
init;
$object = root->new(name=>’BigPapa’);
$son = root->new(name=>’Boy’,

parent=>$object);

print "The parent is ".$son->safewho($son->get(’parent’))."\n";

Which prints out;

The parent is object ’BigPapa’

Note that we use safewho, because an object may in general not have a parent, so
get(’parent’) could return undef.

9.2.3 The property children

Description:
This property is a list of the object’s children. The property changes as new children
are registered.

Example:
use Perlilog;
init;
$object = root->new(name=>’BigPapa’);
$son = root->new(name=>’Boy’,

parent=>$object);
$daughter = root->new(name=>’Girl’,

parent=>$object);

foreach ($object->get(’children’)) {
print "I’m the parent of ".$_->who."\n";

}

Which prints out:

I’m the parent of object ’Boy’
I’m the parent of object ’Girl’

9.2.4 The property nick

Description:
The nick property must be initialized when creating a new object with new(), if this

A Guide to PERLILOG 165

Eli Billauer elib@flextronics.co.il

call occurs during transient mode (in other words, as part of an attempt() method of
an interface class). It is otherwise irrelevant.

The property will be used a suggestion when determining the name of the object in
case it becomes sustained. An explanation of this is given in section 7.10.2.

An example of this can be seen in section 7.3.2.

9.2.5 The property perlilog-transient

Description:
This property is relevant to object that were created during transient mode. Thus, it
should not be defined on any object except those which were part of an attempt to
interface between some ports.

It set by the system to one of two values, if at all: transient or sustained. If the
value is sustained, it means that the object was created as a transient object, but
was sustained, and is therefore a normal object now. The value transient may be
encountered by methods of interface classes, and means that the object is currently
transient, and may vanish very soon.

More about transient objects in section 7.10.

9.2.6 The property treepath

Description:
In essence, treepath is a property which helps climbing along the object tree in order
to reach a certain object. Each object’s treepath tells where to go on on the one
next step. Note that the destination object is requested by its name, and not by its
reference.
The treepath property is set as a result of a call to the treestudy method (see section
9.1.22). It is a reference to a hash, whose keys are the names of the objects, that can
be reached from the object, by climbing on the object tree. The value of each entry is
a reference to another object, which is the next object to climb to, if we want to reach
the object whose name is the key. The value is always a reference to the object’s
parent or one of its children.
By convention, the path from one object to itself is one step to the parent, and one
step back. If the object has no parent (root object), the hash will not be set for the
object itself (no path).

Example:

use Perlilog;
init;
$object = root->new(name=>’BigPapa’);
$son = root->new(name=>’Boy’,

parent=>$object);

A Guide to PERLILOG 166

Eli Billauer elib@flextronics.co.il

$daughter = root->new(name=>’Girl’,
parent=>$object);

$object->treestudy();
%path = %{$son->get(’treepath’)};

foreach $key (sort keys %path) {
print $key."->".$path{$key}->who."\n";

}

Which prints out:

BigPapa->object ’BigPapa’
Boy->object ’BigPapa’
Girl->object ’BigPapa’

In this simple case, all entries in the hash points to BigPapa, including the path to the
object itself. A more complex tree would give more interesting results.

A Guide to PERLILOG 167

Eli Billauer elib@flextronics.co.il

10 The code generating class API

10.1 Methods

10.1.1 The method varwho()

Synopsis:
$object->varwho($varID);

Syntax:
object -> varwho(variable ID);

Description:
varwho returns human-helpful information on a variable, in a similar way to the way
safewho works on objects (see section 9.1.7 about safewho).
The issue of variables in PERLILOG is documented in section 6.7.

Return value:
A string consisting of a human-understandable identification of the variable.

Example:
See the example in section 11.1.2

10.1.2 The method attach()

Synopsis:
$object->attach($varID1, $varID2, $comment);

Syntax:
object -> attach(variable ID 1, variable ID 2, comment);

Description:
The attach method makes the two variables “electrically connected”, or connected as
in Verilog’s assign. The variables are identified by their ID’s.
Both variables must have the same value in their dim property, or, alternatively, the
property may not be defined. addmagic is used within the method routine to make
each of the variables take after the other’s dim property, even if it is assigned in the
future. (see section 9.1.12).

A Guide to PERLILOG 168

Eli Billauer elib@flextronics.co.il

The third argument, the comment, should be a short note for human reading, which
makes clear what caused the call to attach. This information should be useful in
tracing mistakes which cause errors that lead the wrong wires to be connected.
The behavior of attach does not depend on the object that it’s called on, unless the
method has been overridden. It is OK to attach a variable to itself, but this makes
attach to return doing nothing.
The issue of variables in PERLILOG is documented in section 6.7.

Example:
See the example in section 11.1.2

10.1.3 The method IDvar()

Synopsis:
($obj, $var) = $self->IDvar($ID);
$var = $self->IDvar($ID);

Syntax:
list or scalar lvalue = object -> IDvar(variable ID);

Description:
IDvar() is given a variable’s ID, and returns the varible’s name in Verilog, and possibly
a reference to the object it belongs to (depending on if it was called in scalar or list
context).

The behaviour of IDvar() does not depend on which object it was executed on (unless
the method has been overridden).

For more, see section 6.7.2.

Return value:
When called in list context, it returns a list of two items. The first item is a reference to
the object, to which the variable belong. The second item is the variable’s name.

When called in scalar context, only the variable’s name is returned.

10.1.4 The method getID()

Synopsis:
$ID = $obj->getID(’myVar’);

Syntax:
list = object -> getID(list of variable names);
scalar = object -> getID(variable name);

A Guide to PERLILOG 169

Eli Billauer elib@flextronics.co.il

Description:
getID looks up a each variable in the list according to its name, and returns the re-
spective list of IDs. The variables must belong to the object, on which the method is
called.

A fatal error is issued if some variable does not exist.

Example:
See the example in section 11.1.3

10.1.5 The method samedim()

Synopsis:
$obj -> samedim(’data1’, ’data2’);

Syntax:
object -> samedim(list of variable names);

Description:
samedim() forces all the variables, whose names are given in the list, to have the
same dim property. This is done with magic callbacks, so the variables will affect each
other whenever they are assigned values.

Unlike attach(), this method accepts any number of variables, and the variables are
given by their names, and not by their IDs. All variables must belong to the same
object, which is the object on which the method is called.

Using this method is highly recommended when making procedural or continous as-
signments in Verilog between two variables, wherever it makes sense to force the two
variables to be of the same dimension. See section 7.7.9.

Return value:
Not to be used

10.1.6 The method getport()

Synopsis:
interface($one->getport(’myport’), $two->getport(’hisport’));

Syntax:
object -> getport(definition name of port);

Description:
getport() should be used in conjunction with template objects or with other objects
which set up the object’s port list in a similar manner.

A Guide to PERLILOG 170

Eli Billauer elib@flextronics.co.il

This method looks up the port by the name that was used in its declaration, in the
template file. Note that this name may not be the same as the port object’s name
property.

If there is no such port, a fatal error is issued.

Formally speaking, this method returns the value of a self-call to
get([’user port names’, $name]), but getport() is much more elegant in
main scripts, and may be extended in future versions, so it recommended to stick to
it.

There are plently of examples of using this method in section 2.3.2 and on, and some
background can be found in 3.6.

Return value:
A reference to the requested port.

10.1.7 The method labelID()

Synopsis:
%hash = $self->labelID($port);

Syntax:
hash = object -> labelID(port object);

Description:
labelID() is tailored for use in interface classes. Its purpose is to supply the relevant
variable IDs with as little fuss as possible.

The method accepts a reference to some port, on which it looks up the labels prop-
erty. It returns a hash (actually, a list that becomes a hash easily) whose keys are the
labels in the labels property, and the values are the relevant variable IDs.

The IDs are resolved as follows: If the value of some entry in the labels property is
a decimal number (matches /^\d+$/), it is considered as the ID itself. Otherwise, the
ID looked up among the variables of the port’s owner (its parent): The value’s string
should be equal to some variable’s name.

It doesn’t matter on which object the method is called, unless some very basic meth-
ods have been overridden.

See section 7.3.5 for an example of using this method.

Return value:
A hash, whose keys are labels, and values are variable IDs.

A Guide to PERLILOG 171

Eli Billauer elib@flextronics.co.il

10.1.8 The method whereto()

Synopsis:
$obj = $self->whereto;

Syntax:
target object = object -> whereto();

Description:
whereto() looks for an object which is the best one to receive the called object’s
Verilog code. It returns a reference to that object.

The chosen object is verified to be adequate, in the sense that it’s not static. The
lookup may thus fail, in which case an undef is returned instead of an object.

The return value of whereto() is cached, so within a single Perl run, it will always
answer with the same reference. For the same reason, the return value may depend
on what may seem as irrelevant factors.

whereto() is intended for use by interface objects, for which it’s desired not to gener-
ate a Verilog file of their own.

See sections 7.5.4 and 7.5.10 for more about this method.

Return value:
A reference to an object, to which Verilog code should be appended, or undef if no
relevant object could be found.

A Guide to PERLILOG 172

Eli Billauer elib@flextronics.co.il

11 The Verilog class API

11.1 Methods

11.1.1 The method suggestvar()

Synopsis:
$safename = $obj->suggestvar($IWantThis);

Syntax:
object -> suggestvar(desired name)

Description:
suggestvar will check the given string against the names of already existing variables
on the certain object. If the name is OK for a new variable, it will simply return the
string. If a new variable can’t be named with the given string, it is altered lightly
(suggestvar creates new names like suggestname). Either way, the returned string is
a legal name for a new variable, which will be close enough to the original.
Note, that suggestvar may suggest the same name more than once, if it isn’t used
to create a new variable – it checks uniqueness against existing variables, not its own
suggestions.

Return value:
A string with a name for a new variable.

Example:
See the example in section 11.1.2

11.1.2 The method addvar()

Synopsis:
$object->addvar($name, ’wire’, ’in’, ’[7:0]’);

Synopsis:
$object->addvar($name);

Syntax:
object -> addvar(variable name, type [,drive [,dimension]]);

A Guide to PERLILOG 173

Eli Billauer elib@flextronics.co.il

Description:
The addvar adds a variable to the object, and registers the attributes given. The
variable’s name is compared in a case-insensitive manner against the other variables
of the object, and an error occurs if the name is not unique. (In order to avoid errors,
suggestvar may be used).
The name of the variable is the same that will appear in the Verilog file.
The other attributes are not checked up by addvar, but improper setting will generate
errors at later stages of execution.
The drive and dimension attributes are optional, and may be omitted, or equivalently,
given as undef.
The variable type should be one of wire, reg, input, output, inout, or outreg, but
this is not verified by addvar. The variable type may be changed by the system as a
result of attachment with other variables.
The dimension attribute is the signal vector size (such as [7:0]), in Verilog format.
For single-bit variables, it should be set to ’’ (empty string, not undef).
If addvar is called with only the $name argument, it’s a name reservation only.
Variables are described in section 6.7.

Return value:
Not to be used.

Example:

use Perlilog;
init;
$object = verilog->new(name => ’TheObject’);

$name1 = $object->suggestvar(’First’);
$var1 = $object->addvar($name1, ’wire’, ’in’, ’[7:0]’);

$name2 = $object->suggestvar(’Second’);
$var2 = $object->addvar($name2, ’reg’, ’out’);

$object->attach($var1, $var2);

print "Variable #2 is ".$object->varwho($var2)."\n";
print "Variable #2’s dim is ".$object->get([’vars’, $name2, ’dim’])."\n";

Which will print out:

Variable #2 is ’Second’ in module ’TheObject’
Variable #2’s dim is [7:0]

There are a few things to note about this example: First, suggestvar is used here
merely as a template: As the script is written, suggestvar will never offer another
name.

A Guide to PERLILOG 174

Eli Billauer elib@flextronics.co.il

We also note that the variable Second is created without the dim property set, but it is
copied from the variable First due to the attachment between them.
It’s also worth to mention, that in this example, we attached two variables within the
same object. While this is perfectly legal, and usually yields a Verilog assign inside the
resulting Verilog module, we usually attach different objects to achieve a connection.

11.1.3 The method namevar()

Synopsis:
$name = $obj->namevar(’myVar’, ’wire’, ’in’);
($name, $ID) = $obj->namevar(’myVar’, ’wire’, ’in’);

Syntax:
scalar = object -> namevar(variable name, type [,drive [,dimension]]);
list = object -> namevar(variable name, type [,drive [,dimension]]);

Description:
namevar() is a combination between suggestvar() and addvar(). It works like
addvar(), except that the variable name that is given to namevar() is treated as a
suggestion, and not as the final variable name.

When called in scalar context, namevar() returns the name that the variable actually
got. In list context, both the name and the ID are returned.

Some background about this method is given in section 6.7.7, and a proper example
can be found in section 7.5.5.

Return value:
In scalar context: The name of the variable created. In list context: A list, whose first
item is the name of the variable actually created, and the second item is the ID of the
variable.

Example:

use Perlilog;
init;
$obj = verilog->new(name=>’theObject’);

($name1, $ID1) = $obj->namevar(’myVar’, ’wire’, ’in’);
($name2, $ID2) = $obj->namevar(’myVar’, ’reg’, ’out’);

$IDagain = $obj->getID(’myVar’);

print "name1=$name1, name2=$name2\n";
print "ID1=$ID1, ID2=$ID2, IDagain=$IDagain\n";

Note that two variables were generated with myVar as a suggestion. This script will

A Guide to PERLILOG 175

Eli Billauer elib@flextronics.co.il

print out:

name1=myVar, name2=myVar_1
ID1=2, ID2=3, IDagain=2

We can see that the second variable got the name myVar 1, and that IDagain got the
ID of the first variable, 2.

11.1.4 The method copyvar()

Synopsis:
$localname = $obj->copyvar($ID);
($localname, $theID) = $obj->copyvar($ID);

Syntax:
scalar = object -> copyvar(variable ID);
list = object -> copyvar(variable ID);

Description:
This method makes sure that some variable’s value is accessible in the object it was
called on. In practice this means returning some variable name in the specific object,
which can be used in the Verilog.

If the requested variable happens to be in the relevant object, or there’s already an-
other variable in the object, which is attached to it, copyvar() will point out the variable
which already exists. Otherwise, a new variable will be created attach’ed to the re-
quested one.

Either way, only the Verilog code that the system itself generated will and is allowed
to assign a value (in a Verilog statement) to the variable.

This method is explained futher in section 7.5.9.

Return value:
If called in a scalar context: The name of the variable, as it appears in the called
object. In list context: A list of two items, first of which is the name of the variable. The
second item is the ID of the variable that is known to be in the called object (it may be
the same as the one given to the method).

11.1.5 The method suggestins()

Synopsis:
$safename = $obj->suggestins($IWantThis);
$safename = $obj->suggestins;

A Guide to PERLILOG 176

Eli Billauer elib@flextronics.co.il

Syntax:
object -> suggestins(desired name);
object -> suggestins();

Description:
When given a string as an argument, suggestins() will check the it against the names
of already existing variables and instances (they share the same name space in Ver-
ilog). If the name is OK for a new instance, it will simply return the string. If a new
instance can’t be named with the given string, it is altered lightly, as in addvar().
Note, that suggestins may suggest the same name more than once, if it isn’t used to
create a new instance – it checks uniqueness against existing instances, not its own
suggestions.
With no arguments, suggestins() will make up name according to the object’s name
property. Note that this will create a counterintuitive name, because the instance
name will be based upon the name of the object containing the instantiation, and not
the name of the object instantiated, as one would expect.

Return value:
A string with a name for a new instance.

11.1.6 The method addins()

Synopsis:
$object->addins($name);
$object->addins($name, ’detached’);

Syntax:
object -> addins(instance name [,detach]);

Description:
The addins method registers a new instance name to the system. When an instance
of a real module is desired, the one-argument format should be used.
When instantiating external units, such as Verilog tran, tranif1 or tranif0, the sec-
ond argument should be anything evaluated TRUE (the string ’detached’ is a good
choice).
The instance’s name is compared in a case-insensitive manner against the other
names in the object’s common namespace of variables and instances. If that name is
already taken, an error is issued.
In fact, addins() is currently implemented as a call to addvar(), but it may make use
of the additional second argument in the future. For this reason addvar() should not
be used instead.

Return value:
Not to be used.

A Guide to PERLILOG 177

Eli Billauer elib@flextronics.co.il

11.1.7 The method equivalent()

Synopsis:
$object->equivalent($twin);

Syntax:
object -> addins(equivalent object);

Description:
equivalent() should be used to avoid duplicate Verilog files with exactly the same
content. This is commonly the case when identical objects are generated to fulfill the
very same functionality and connectivity.
If several objects are mutually equivalent, one should be used as the $twin argument
in the synopsis above, all other objects taking the function of $object. Chained equiv-
alence declarations will cause a fatal error.
See section 2.4.4 for an example of using this method.

Return value:
Always returns 1.

11.1.8 The method ontop()

Synopsis:
$success = $object->ontop($verilog code);
$success = $object->ontop(@verilog code segments);

Syntax:
object -> ontop(list or scalar);

Description:
ontop is used to add Verilog code to the verilog property by putting it before exist-
ing code. In general, this method accepts a list of segments of Verilog code. Each
segment is appened with a newline (\n) if doesn’t end with one. All segments are
stringwise concatenated, and put at the beginning of the verilog property (the first
item in the list will appear first in the code).
ontop should be used only to put variable declarations in the verilog property, and
not logic-generating Verilog.
The simplest way to use this method, is to put the desired Verilog code in a single
string, and call the method on it.
A call to ontop will fail if the object is “static”: Some objects don’t allow the Verilog
code to change (see section 6.9).

Return value:
1 on success, 0 on failure.

A Guide to PERLILOG 178

Eli Billauer elib@flextronics.co.il

11.1.9 The method append()

Synopsis:
$success = $object->append($verilog code);
$success = $object->append(@verilog code segments);

Syntax:
object -> append(list or scalar);

Description:
append is used to add Verilog code to the verilog property by putting it after exist-
ing code. In general, this method accepts a list of segments of Verilog code. Each
segment is appened with a newline (\n) if doesn’t end with one. All segments are
stringwise concatenated, and put at the end of the verilog property (the last item in
the list will appear last in the code).
append should be used to add Verilog that generates logic, and not variable declara-
tions.
The simplest way to use this method, is to put the desired Verilog code in a single
string, and call the method on it.
A call to append will fail if the object is “static”: Some objects don’t allow the Verilog
code to change (see section 6.9).

Return value:
1 on success, 0 on failure.

11.2 Properties

11.2.1 The property vars

Synopsis:
$object->set([’vars’, $var, ’type’],$type);
$object->const([’vars’, $var, ’dim’],$dim);
$object->const([’vars’, $var, ’drive’],$drive);
$object->const([’vars’, $var, ’ID’], $ID);
$type = $object->get([’vars’, $var, ’type’]);
$dim = $object->get([’vars’, $var, ’dim’]);
$drive = $object->get([’vars’, $var, ’drive’]);
$ID = $object->get([’vars’, $var, ’ID’]);

Description:
vars is not a property by itself, but rather a branch in the property tree.
$obj->get(’vars’) will generate a fatal error. The correct format to access the actual
properties is given in the synopsis.
A new variable must be created with addvar. Attempting to register a new variable

A Guide to PERLILOG 179

Eli Billauer elib@flextronics.co.il

by setting the properties above in any other way will generate an inconsistency in the
PERLILOG system. In particular, the subproperty ID must be set only by calling the
addvar method.
Note that in the synopsis, $var is the variable name string, as it appears in the Verilog
file (and not some referece format).

Example:
See the example in section 11.1.2

11.2.2 The property varslist

Description:
varslist is a list of variable and instance names of the specific object. This property
should be altered only by the system.

11.2.3 The property verilog

Synopsis:
$code = $obj->get(’verilog’);
wrong(...) if (defined $obj->get(’static’));
$obj->set(’verilog’, $code);

Description:
The verilog property is a scalar strings, consisting of the Verilog code that is pro-
duced by the object. This property’s value is written into the file given in vfile in the
system files stage.
The manipulation of this property should be done with ontop and append whenever
possible. When more sophisticated manipulations are needed, using set to change
the property’s value is fine. In this case, the static property must be verified to be
undefined to assure that altering this property is indeed allowed. A fatal error may
occur otherwise.

Description:
The static property signals that the verilog property is set by const and must not
be changed. Any defined value of this property means that verilog should not be
set.
This is useful when importing Verilog files that are already complete, and tampering
with them is not allowed.

11.2.4 The property vfile

Description:
The vfile property is the name of the Verilog file which will be created out of the
specific object. vfile is given as a complete directory path, either from the current

A Guide to PERLILOG 180

Eli Billauer elib@flextronics.co.il

working directory, or from root.
If the property is not set when reaching the system complete stage, it will be consted
to the name of the object, followed by a .v suffix. The path will be taken as the
filesdir property of the global object.

11.2.5 The property static

Description:
When this property is true (has a value that evaluates true in Perl), the object is static.
See section 6.9 about static objects.

11.2.6 The property viasource

Description:
This property contains a list of objects, from which variable’s names should be copied,
whenever a via-named variable would be generated.
By default, whenever a wire is created by the system in order to let a signal go via the
Verilog module, the variable’s name is chosen by the system, and it is marked as a
via wire with the via suffix.
If the viasource property contains a list of objects, these objects are searched for a
variable that is “electrically equivalent” to the to-be via wire. If such variable is found,
the via variable will have the same name as the the variable found. The objects are
scanned in their order of appearance in the property.
If none of the objects contains a suitable candidate to copy its name from, the default
mechanism is used.
This is useful to assure that top-level modules have variables with meaningful names.
See section 2.3.5 for more about this.

Example:

$tb = template->new(name => ’tb’,
tfile => ’tb.pt’);

$top = template->new(name => ’top’,
tfile => ’top.pt’,
parent => $tb);

$top->set(’viasource’, $tb); # A single object in this case

11.2.7 The property perlilog-no-file

Description:
This property will be assigned the value 1 (with const()) by the system during the
instantiate() execution stage if it turns out that the current object should not gen-
erate a file. It’s highly discouraged to write to this property otherwise.

See section 7.11.3 for more about objects that don’t generate files.

A Guide to PERLILOG 181

Eli Billauer elib@flextronics.co.il

12 The global object’s API

12.1 Methods

12.1.1 The method execute()

Synopsis:
globalobj->execute;

Syntax:
The global object -> execute;

Description:
The execute method kicks off the execution stage of the PERLILOG environment. A
call to this method is usually performed at the end of the main script.
See section 6.5 for a detailed description of this topic.

12.2 Properties

12.2.1 The property filesdir

Description:
filesdir is a scalar property whose value is the default path for the Verilog files. It is
used during the complete stage while setting the complete file names for Verilog files
whose vfile property has not been set until that stage.
This property is set (and may be altered later) to ’./PLverilog’ at PERLILOG initial-
ization.

12.2.2 The property vfiles

Description:
vfiles is a list of the Verilog file names registered, or in other words, a list of the
values of vfile of Verilog objects and its derivatives.
vfiles is created during the complete execution stage during the calls to the different
objects.

A Guide to PERLILOG 182

Eli Billauer elib@flextronics.co.il

12.2.3 The property system

Description:
The system is a reference to the system object, which is a second global object, whose
main purpose is to hold some system-sensitive properties.

12.2.4 The property MAX INTERFACE REC

Description:
The maximal recursion depth of intobject() calls. See section 7.9.4

A Guide to PERLILOG 183

Eli Billauer elib@flextronics.co.il

13 Port and interface object’s properties

13.1 Port object properties

13.1.1 The property labels

Description:
The labels property is a recommended way of pointing out which variables play roles
in some certain port. It is explained in section 7.1.3.

13.1.2 The property mates

Description:
This property is a list of all ports, that the current port was mated with during a suc-
cessful interfacing. The list does not include the port that holds the property.

If the same port was used several times in a recursive interfacing attempt chain, which
was successful, mates will contain the ports that were mated during the innermost call
to intobjects(). In other words, the ports that will appear in the list will be those that
were involved in the most direct port mating, and will reflect the most trivial connection.

See section 7.7.7.

13.2 Interface object properties

13.2.1 The property perlilog-ports-to-connect

Description:
When an interface object is sustained, the list of ports that its attempt() method was
called with, is stored by the system in perlilog-ports-to-connect. This makes it
easy to access this list of ports in successive routines.

But more important, it frees the attempt() method from storing the list of ports it was
called with (which it isn’t allowed to do, anyhow).

For more about this, see section 7.5.3.

A Guide to PERLILOG 184

Eli Billauer elib@flextronics.co.il

A GNU FDL license

GNU Free Documentation License
Version 1.2, November 2002

Copyright (C) 2000,2001,2002 Free Software Foundation, Inc. 59 Temple Place, Suite
330, Boston, MA 02111-1307 USA

Everyone is permitted to copy and distribute verbatim copies of this license document,
but changing it is not allowed.

A.0 PREAMBLE

The purpose of this License is to make a manual, textbook, or other functional and
useful document ”free” in the sense of freedom: to assure everyone the effective free-
dom to copy and redistribute it, with or without modifying it, either commercially or
noncommercially. Secondarily, this License preserves for the author and publisher a
way to get credit for their work, while not being considered responsible for modifica-
tions made by others.

This License is a kind of ”copyleft”, which means that derivative works of the document
must themselves be free in the same sense. It complements the GNU General Public
License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because
free software needs free documentation: a free program should come with manuals
providing the same freedoms that the software does. But this License is not limited to
software manuals; it can be used for any textual work, regardless of subject matter or
whether it is published as a printed book. We recommend this License principally for
works whose purpose is instruction or reference.

A.1 APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a
notice placed by the copyright holder saying it can be distributed under the terms
of this License. Such a notice grants a world-wide, royalty-free license, unlimited in
duration, to use that work under the conditions stated herein. The ”Document”, below,
refers to any such manual or work. Any member of the public is a licensee, and is

A Guide to PERLILOG 185

Eli Billauer elib@flextronics.co.il

addressed as ”you”. You accept the license if you copy, modify or distribute the work
in a way requiring permission under copyright law.

A ”Modified Version” of the Document means any work containing the Document or
a portion of it, either copied verbatim, or with modifications and/or translated into
another language.

A ”Secondary Section” is a named appendix or a front-matter section of the Document
that deals exclusively with the relationship of the publishers or authors of the Docu-
ment to the Document’s overall subject (or to related matters) and contains nothing
that could fall directly within that overall subject. (Thus, if the Document is in part
a textbook of mathematics, a Secondary Section may not explain any mathematics.)
The relationship could be a matter of historical connection with the subject or with
related matters, or of legal, commercial, philosophical, ethical or political position re-
garding them.

The ”Invariant Sections” are certain Secondary Sections whose titles are designated,
as being those of Invariant Sections, in the notice that says that the Document is
released under this License. If a section does not fit the above definition of Secondary
then it is not allowed to be designated as Invariant. The Document may contain zero
Invariant Sections. If the Document does not identify any Invariant Sections then there
are none.

The ”Cover Texts” are certain short passages of text that are listed, as Front-Cover
Texts or Back-Cover Texts, in the notice that says that the Document is released under
this License. A Front-Cover Text may be at most 5 words, and a Back-Cover Text may
be at most 25 words.

A ”Transparent” copy of the Document means a machine-readable copy, represented
in a format whose specification is available to the general public, that is suitable for
revising the document straightforwardly with generic text editors or (for images com-
posed of pixels) generic paint programs or (for drawings) some widely available draw-
ing editor, and that is suitable for input to text formatters or for automatic translation to
a variety of formats suitable for input to text formatters. A copy made in an otherwise
Transparent file format whose markup, or absence of markup, has been arranged to
thwart or discourage subsequent modification by readers is not Transparent. An im-
age format is not Transparent if used for any substantial amount of text. A copy that is
not ”Transparent” is called ”Opaque”.

Examples of suitable formats for Transparent copies include plain ASCII without
markup, Texinfo input format, LaTeX input format, SGML or XML using a publicly
available DTD, and standard-conforming simple HTML, PostScript or PDF designed
for human modification. Examples of transparent image formats include PNG, XCF
and JPG. Opaque formats include proprietary formats that can be read and edited only
by proprietary word processors, SGML or XML for which the DTD and/or processing
tools are not generally available, and the machine-generated HTML, PostScript or
PDF produced by some word processors for output purposes only.

The ”Title Page” means, for a printed book, the title page itself, plus such following

A Guide to PERLILOG 186

Eli Billauer elib@flextronics.co.il

pages as are needed to hold, legibly, the material this License requires to appear
in the title page. For works in formats which do not have any title page as such,
”Title Page” means the text near the most prominent appearance of the work’s title,
preceding the beginning of the body of the text.

A section ”Entitled XYZ” means a named subunit of the Document whose title either is
precisely XYZ or contains XYZ in parentheses following text that translates XYZ in an-
other language. (Here XYZ stands for a specific section name mentioned below, such
as ”Acknowledgements”, ”Dedications”, ”Endorsements”, or ”History”.) To ”Preserve
the Title” of such a section when you modify the Document means that it remains a
section ”Entitled XYZ” according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that
this License applies to the Document. These Warranty Disclaimers are considered to
be included by reference in this License, but only as regards disclaiming warranties:
any other implication that these Warranty Disclaimers may have is void and has no
effect on the meaning of this License.

A.2 VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or
noncommercially, provided that this License, the copyright notices, and the license
notice saying this License applies to the Document are reproduced in all copies, and
that you add no other conditions whatsoever to those of this License. You may not
use technical measures to obstruct or control the reading or further copying of the
copies you make or distribute. However, you may accept compensation in exchange
for copies. If you distribute a large enough number of copies you must also follow the
conditions in section A.3.

You may also lend copies, under the same conditions stated above, and you may
publicly display copies.

A.3 COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of
the Document, numbering more than 100, and the Document’s license notice requires
Cover Texts, you must enclose the copies in covers that carry, clearly and legibly, all
these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on the
back cover. Both covers must also clearly and legibly identify you as the publisher
of these copies. The front cover must present the full title with all words of the title
equally prominent and visible. You may add other material on the covers in addition.
Copying with changes limited to the covers, as long as they preserve the title of the
Document and satisfy these conditions, can be treated as verbatim copying in other
respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the

A Guide to PERLILOG 187

Eli Billauer elib@flextronics.co.il

first ones listed (as many as fit reasonably) on the actual cover, and continue the rest
onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than
100, you must either include a machine-readable Transparent copy along with each
Opaque copy, or state in or with each Opaque copy a computer-network location from
which the general network-using public has access to download using public-standard
network protocols a complete Transparent copy of the Document, free of added ma-
terial. If you use the latter option, you must take reasonably prudent steps, when you
begin distribution of Opaque copies in quantity, to ensure that this Transparent copy
will remain thus accessible at the stated location until at least one year after the last
time you distribute an Opaque copy (directly or through your agents or retailers) of
that edition to the public.

It is requested, but not required, that you contact the authors of the Document well
before redistributing any large number of copies, to give them a chance to provide you
with an updated version of the Document.

A.4 MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions
of sections A.2 and A.3 above, provided that you release the Modified Version under
precisely this License, with the Modified Version filling the role of the Document, thus
licensing distribution and modification of the Modified Version to whoever possesses
a copy of it. In addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the
Document, and from those of previous versions (which should, if there were any,
be listed in the History section of the Document). You may use the same title as a
previous version if the original publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for
authorship of the modifications in the Modified Version, together with at least five
of the principal authors of the Document (all of its principal authors, if it has fewer
than five), unless they release you from this requirement.

C. State on the Title page the name of the publisher of the Modified Version, as the
publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the other
copyright notices.

F. Include, immediately after the copyright notices, a license notice giving the public
permission to use the Modified Version under the terms of this License, in the form
shown in the Addendum below.

A Guide to PERLILOG 188

Eli Billauer elib@flextronics.co.il

G. Preserve in that license notice the full lists of Invariant Sections and required Cover
Texts given in the Document’s license notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled ”History”, Preserve its Title, and add to it an item
stating at least the title, year, new authors, and publisher of the Modified Version
as given on the Title Page. If there is no section Entitled ”History” in the Document,
create one stating the title, year, authors, and publisher of the Document as given
on its Title Page, then add an item describing the Modified Version as stated in the
previous sentence.

J. Preserve the network location, if any, given in the Document for public access to
a Transparent copy of the Document, and likewise the network locations given in
the Document for previous versions it was based on. These may be placed in the
”History” section. You may omit a network location for a work that was published
at least four years before the Document itself, or if the original publisher of the
version it refers to gives permission.

K. For any section Entitled ”Acknowledgements” or ”Dedications”, Preserve the Title
of the section, and preserve in the section all the substance and tone of each of
the contributor acknowledgements and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and
in their titles. Section numbers or the equivalent are not considered part of the
section titles.

M. Delete any section Entitled ”Endorsements”. Such a section may not be included
in the Modified Version.

N. Do not retitle any existing section to be Entitled ”Endorsements” or to conflict in
title with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify
as Secondary Sections and contain no material copied from the Document, you may
at your option designate some or all of these sections as invariant. To do this, add their
titles to the list of Invariant Sections in the Modified Version’s license notice. These
titles must be distinct from any other section titles.

You may add a section Entitled ”Endorsements”, provided it contains nothing but en-
dorsements of your Modified Version by various parties–for example, statements of
peer review or that the text has been approved by an organization as the authoritative
definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up
to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified
Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be
added by (or through arrangements made by) any one entity. If the Document already

A Guide to PERLILOG 189

Eli Billauer elib@flextronics.co.il

includes a cover text for the same cover, previously added by you or by arrangement
made by the same entity you are acting on behalf of, you may not add another; but
you may replace the old one, on explicit permission from the previous publisher that
added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission
to use their names for publicity for or to assert or imply endorsement of any Modified
Version.

A.5 COMBINING DOCUMENTS

You may combine the Document with other documents released under this License,
under the terms defined in section A.4 above for modified versions, provided that you
include in the combination all of the Invariant Sections of all of the original documents,
unmodified, and list them all as Invariant Sections of your combined work in its license
notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical
Invariant Sections may be replaced with a single copy. If there are multiple Invariant
Sections with the same name but different contents, make the title of each such sec-
tion unique by adding at the end of it, in parentheses, the name of the original author
or publisher of that section if known, or else a unique number. Make the same ad-
justment to the section titles in the list of Invariant Sections in the license notice of the
combined work.

In the combination, you must combine any sections Entitled ”History” in the various
original documents, forming one section Entitled ”History”; likewise combine any sec-
tions Entitled ”Acknowledgements”, and any sections Entitled ”Dedications”. You must
delete all sections Entitled ”Endorsements”.

A.6 COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released
under this License, and replace the individual copies of this License in the various
documents with a single copy that is included in the collection, provided that you
follow the rules of this License for verbatim copying of each of the documents in all
other respects.

You may extract a single document from such a collection, and distribute it individually
under this License, provided you insert a copy of this License into the extracted doc-
ument, and follow this License in all other respects regarding verbatim copying of that
document.

A Guide to PERLILOG 190

Eli Billauer elib@flextronics.co.il

A.7 AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent
documents or works, in or on a volume of a storage or distribution medium, is called
an ”aggregate” if the copyright resulting from the compilation is not used to limit the
legal rights of the compilation’s users beyond what the individual works permit. When
the Document is included an aggregate, this License does not apply to the other works
in the aggregate which are not themselves derivative works of the Document.

If the Cover Text requirement of section A.3 is applicable to these copies of the Doc-
ument, then if the Document is less than one half of the entire aggregate, the Doc-
ument’s Cover Texts may be placed on covers that bracket the Document within the
aggregate, or the electronic equivalent of covers if the Document is in electronic form.
Otherwise they must appear on printed covers that bracket the whole aggregate.

A.8 TRANSLATION

Translation is considered a kind of modification, so you may distribute translations
of the Document under the terms of section A.4. Replacing Invariant Sections with
translations requires special permission from their copyright holders, but you may
include translations of some or all Invariant Sections in addition to the original versions
of these Invariant Sections. You may include a translation of this License, and all the
license notices in the Document, and any Warrany Disclaimers, provided that you also
include the original English version of this License and the original versions of those
notices and disclaimers. In case of a disagreement between the translation and the
original version of this License or a notice or disclaimer, the original version will prevail.

If a section in the Document is Entitled ”Acknowledgements”, ”Dedications”, or ”His-
tory”, the requirement (section A.4) to Preserve its Title (section 1) will typically require
changing the actual title.

A.9 TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly
provided for under this License. Any other attempt to copy, modify, sublicense or
distribute the Document is void, and will automatically terminate your rights under this
License. However, parties who have received copies, or rights, from you under this
License will not have their licenses terminated so long as such parties remain in full
compliance.

A Guide to PERLILOG 191

Eli Billauer elib@flextronics.co.il

A.10 FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free
Documentation License from time to time. Such new versions will be similar in spirit
to the present version, but may differ in detail to address new problems or concerns.
See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Docu-
ment specifies that a particular numbered version of this License ”or any later version”
applies to it, you have the option of following the terms and conditions either of that
specified version or of any later version that has been published (not as a draft) by
the Free Software Foundation. If the Document does not specify a version number of
this License, you may choose any version ever published (not as a draft) by the Free
Software Foundation.

A Guide to PERLILOG 192

http://www.gnu.org/copyleft/

Eli Billauer elib@flextronics.co.il

B To Do

This section includes issues that are still to be done.

B.1 Core issues

B.1.1 File generation condition

As things stand now, a file is generated only if an object has variables and/or instanti-
ates another object. This spares needless files of empty interface objects.

This should be changed, so that every Verilog object that is generated at the main
script will generate a file. See the instantiate method in PLverilog.pl.

B.1.2 AUTOLOAD caching

Change the AUTOLOAD mechanism, so it puts a subroutine in the namespace of
the caller for standard routines (error reporting and such). Then, enrich the group of
subroutines that are supported from anywhere (“exported”).

B.2 Complete the half-made

B.2.1 The error messages

Make the different error messages (puke, wiz, hint and so on) actually generate
some different things. Make wrong actually set flags and/or stop in time.

B.2.2 Nicks and names

Change the root method, so that either nicks or names are defined (especially, make
sure that transient objects are not generated with names).

A Guide to PERLILOG 193

Eli Billauer elib@flextronics.co.il

B.2.3 Instance names in template objects

Recognize instantiations in template files, and reserve the instance name, so it won’t
be used as a variable name.

B.3 System management

B.3.1 Run options

A means for defining the execution options (target device, debug modes and so on),
as well as holding it comfortably in the system is needed.

B.4 User Interface

B.4.1 Deleting files

As things are now, the entire PLverilog directory is deleted before starting. A more
selective delete (only certain file extentions?) is better, possibly after verifying that the
files haven’t been altered since they were written to.

B.4.2 GUI tool

Develop a GUI tool to wrap the PERLILOG system. This will probably include a
method interface to allow the GUI to retrieve the name and format of the desired
properties to be set.

B.4.3 Self-doc

Define methods which return some self-explanatory documentation.

B.5 Debug tools

B.5.1 Error trace

Due to the complexity of the system, it is hard to give a concise error message. The
error may be detected an reported, but it says nothing about the reason for it. For
example, if a constant property gets a new value, it’s obviously an error, but it reported
at the attempt to change it, without saying anything about when and where the first
value got there.

A Guide to PERLILOG 194

Eli Billauer elib@flextronics.co.il

This should be remedied as follows: The system should be able to run in a error-trace
mode, in which every call to distinguished methods (or all?) is logged, along with the
stack trace. This can be done by automatically overriding all or some of the classes
with envelope classes, which log every call and exit from methods. This can be helpful
for human reading, but even better, it can help to resolve what happened, and who
was trying to do what.

This error-trace mode will be slower, but it allows a rerun when something goes wrong
(which could be done automatically by a wrapper such as a GUI tool).

B.5.2 All class loader

This general function is useful to verify that all declared classes are indeed OK. This
would mean “load classes now”.

A Guide to PERLILOG 195

	Introduction
	PERLilog in a nutshell
	What is PERLilog ?
	Bye bye Verilog?
	Status of the project
	Other usability

	What's PERLilog ? A broader look
	How PERLilog is used
	The key features of PERLilog
	About the project
	About the author
	Acknowledgements
	This guide's outline

	A jump into the water
	A jump into what?
	Installing and running PERLilog
	Automatic installation
	Manual installation

	First example: A simple connection
	The template files
	The Perl script
	The output Verilog files
	Ports and interface
	``via'' wires
	The Silos project file output
	Two files instead of three

	Other examples: Wishbone connections
	Purpose
	A simple master-slave connection
	Connecting three Wishbone ports
	Multiple instances of the same module
	Mapping a non-Wishbone port to the bus
	Non-Wishbone port: A nicer example

	Last example: Embedded Perl code
	The main script
	The template file

	Template objects
	About this section
	How it works
	What to expect from template objects
	A template object as an object
	Variable declarations
	Same syntax, different meaning
	Undeclared bit range [:]
	Verilog input and output
	wire and iwire
	Variable rules summary
	simple_rom.pt revisited

	Declaring ports
	Embedded Perl
	How it works
	perl or perlonload?
	Rules for writing embedded scripts

	Importing prewritten modules
	Verilog compatability
	The Verilog module declaration
	Unhandled Verilog variables
	Verilog task and function
	Comments in Verilog

	Writing main scripts
	Introduction
	The init() call
	The object dumper

	PERLilog objects
	Background
	An example
	Properties
	The basics
	Property names
	Undefs and empty lists
	More about constant properties
	``Magic'' callbacks
	The property path
	Methods for lists

	Creating and using objects
	The formalilties
	An example
	Property paths in new
	Common object types
	The global object

	Creating code-generating classes
	How this section is organized
	Overview
	What's a code generating class?
	Why bother learning this
	PERLilog objects and Verilog code
	Instantiation and the object tree

	An example
	Classes and inheritance
	Source files and classes
	The phases of the object system
	Class definition
	``Normal'' methods
	Methods overriding new
	The autoloading mechanism
	The built-in class tree
	PERLilog objects vs. plain Perl objects

	The execution stages
	The concept
	The methods called

	Useful methods
	PERLilog variables and Verilog variables
	Introduction
	Identifying a variable in PERLilog
	Variable drive and connection
	Connecting variables with attach()
	The variable's attributes
	attach() and the dim property
	Creating new variables

	Automatic vs. explicit instantiation
	Instantiation in general
	Explicit instantiation

	Static objects
	What it is
	How to instantiate static objects
	Variables of static objects
	Example of using a static object
	Making a static ROM class

	Error reporting
	Some philosophy
	The list of functions
	``Hidden'' classes

	Summary: How to write classes properly

	Ports and creating interface classes
	PERLilog ports
	An overview of ports
	What ports must be
	The labels property
	New ports classes

	Interface classes overview
	General
	Approaching interface objects
	Assumptions to start with
	The Perl snippets presented

	The vars2vars class in detail
	Example revisited
	The attempt() method
	The nick property
	The generate method
	The labelID() method
	Doing the actual work

	The wbsimple class
	The vars2wbm class
	A more complex attempt()
	A call to intobjects()
	Whose port is this anyway?
	The whereto() method
	Creating new variables
	Setting up the labels property
	The rest of the class
	The IDvar() method
	The copyvar() method
	codetargets() and whereto()

	Two examples revisited
	The wbsingmaster class
	The attempt() method
	The generate() method
	Setting up the slave port
	Retrieving bit range
	Some initializations
	The main loop
	The mates property
	Creating the slave selector
	Variables and samedim()
	Slave-specific Verilog code
	Setting up labels
	Grand finale
	What we didn't have in this class

	The elements of an interface class
	The common methods
	The elements of the attempt() method
	The elements of the generate() method

	How PERLilog uses interface classes
	Registration of interface classes
	Quering order of interface classes
	interface() vs. intobjects()
	intobjects() and recursive calls

	Transient objects
	Why transient objects
	How it works
	Guidelines for correct code
	The sustain() method

	Advanced issues
	Dispatch classes
	Static objects in interface objects
	Objects that don't generate files

	PERLilog main script API
	Exported subroutines
	The exported subroutine init()
	The exported subroutine inherit()
	The exported subroutine inheritdir()
	The exported subroutine override()
	The exported subroutine underride()
	The exported subroutine definedclass()
	The exported subroutine globalobj()
	The exported subroutine execute()
	The exported subroutine interfaceclass()

	The global variables
	The variable $VERSION
	The variable $globalobject
	The variable %classes
	The variable %objects
	The variable @VARS
	The variable @EQVARS
	The variable @interface_classes
	The variable $interface_rec

	The root class API
	Methods
	The method new()
	The method set()
	The method get()
	The method const()
	The method globalobj()
	The method who()
	The method safewho()
	The method isobject()
	The method objbyname()
	The method objdump()
	The method suggestname()
	The method addmagic()
	The method seteq()
	The method registerobject()
	The method pshift()
	The method ppop()
	The method punshift()
	The method ppush()
	The method addchild()
	The method prettyval()
	The method linebreak()
	The method treestudy()

	Properties
	The property name
	The property parent
	The property children
	The property nick
	The property perlilog-transient
	The property treepath

	The code generating class API
	Methods
	The method varwho()
	The method attach()
	The method IDvar()
	The method getID()
	The method samedim()
	The method getport()
	The method labelID()
	The method whereto()

	The Verilog class API
	Methods
	The method suggestvar()
	The method addvar()
	The method namevar()
	The method copyvar()
	The method suggestins()
	The method addins()
	The method equivalent()
	The method ontop()
	The method append()

	Properties
	The property vars
	The property varslist
	The property verilog
	The property vfile
	The property static
	The property viasource
	The property perlilog-no-file

	The global object's API
	Methods
	The method execute()

	Properties
	The property filesdir
	The property vfiles
	The property system
	The property MAX_INTERFACE_REC

	Port and interface object's properties
	Port object properties
	The property labels
	The property mates

	Interface object properties
	The property perlilog-ports-to-connect

	GNU FDL license
	PREAMBLE
	APPLICABILITY AND DEFINITIONS
	VERBATIM COPYING
	COPYING IN QUANTITY
	MODIFICATIONS
	COMBINING DOCUMENTS
	COLLECTIONS OF DOCUMENTS
	AGGREGATION WITH INDEPENDENT WORKS
	TRANSLATION
	TERMINATION
	FUTURE REVISIONS OF THIS LICENSE

	To Do
	Core issues
	File generation condition
	AUTOLOAD caching

	Complete the half-made
	The error messages
	Nicks and names
	Instance names in template objects

	System management
	Run options

	User Interface
	Deleting files
	GUI tool
	Self-doc

	Debug tools
	Error trace
	All class loader

