
AES-128 Core
June 12, 2002

Copyright VLSI Research Group 1

AES-128 / Rijndael

Author: ssarwono@ieee.org
 john@students.ee.itb.ac.id

 yusa@vlsi.itb.ac.id

Version 1.0
June 12, 2002

AES-128 Core
June 12, 2002

Copyright VLSI Research Group 2

1. Introduction
This is a simple AES/Rijndael Core. We have tried to create an

implementation of this standard that would fit in to a low cost FPGA, and still would
provide reasonably fast performance. This implementation is with a 128-bit key
expansion module only. This document will describe the complete design and
implementation of AES-128. It will not talk about the AES standard itself. We have
separated the encryption and the decryption block and also provided with figures to
make the design simpler and easier to understand. (Pictures can describe thousand
of words, hehehehe…………..)

2. Architecture
2.1 Encryption Block

By John Purba (john@students.ee.itb.ac.id)

The encryption block comprises 6 blocks:

- BlokInput, interface of input data and key
- KeyExpander, generator the round key
- Kontroler, controls each block
- Fungsi_Round, implements Rijndael algorithm (round calculations)
- BlokOutput, interface of output data

The encryption algorithm has been designed this way that the generation of round
key and the round calculations can be parallely executed. The advantage of this
design is the fact that we do not need to store the round key since they are currently
calculated. Interconnection of each block is depicted in figure 1.

data_in_i[31:0]
data_load_i
kunci_load_i

kunci_in_i[31:0]

data_out_o[31:0]

done_o

Kontroler

KeyExpander

BlokInput

Fungsi_Round BlokOutput

sig_dataload

sig_datain

sig
_k
un
cil
oa
d

sig
_k
un
ci

sig_kuncistart

sig_roundkunci

sig
_m
ixs
el

sig
_m
ux
sel sig_addsel

sig_rounddata

Figure 1

AES-128 Core
June 12, 2002

Copyright VLSI Research Group 3

a. BlokInput
 BlokInput is an interface for data or key input. The length of data or key
supported is 128 bits, so we can use the same design for data input and key input.
This block will take 32 bits data and shift them to next register. Four-clock cycle will
be needed to take a complete 128 bit data. A simple controller is used here to
identify that a complete of 128 bits data has been accepted. The State Diagram of
FsmInput and BlokInput are depicted in figure 2.

State Diagram of FsmInput

nop

busy

reset_i = '1'

load_i = '1'

counter <= 0
load_o <= '0'

counter <= counter + 1
IF counter = '4' THEN
 load_o <= '1';
ELSE
 load_o <= '0';

counter /= 4 and load_i = '1'

counter = 4

load_o

Reg32i

Reg32i

Reg32i

Reg32i

FsmInput

clock_i reset_i

clock_i reset_i

clock_i reset_i

clock_i reset_i

clock_i reset_i

32

32

32

32

1

en_i

data_i
32

128

Figure 2

AES-128 Core
June 12, 2002

Copyright VLSI Research Group 4

b. BlokOutput
 This block takes 128 bit block data to output. The first one block of 128 bits is
divided to 4 blocks of 32 bits and then each blocks of data is taken to output every
one-clock cycle. Data output register is depicted in figure 3.

Reg32o Reg32o Reg32o Reg32o

reset_i clock_i reset_i clock_i reset_i clock_i reset_i clock_i

data_i

load_i

data_i data_i data_i

load_o

data_o[31:0]

128 bit

31 dow nto 0 63 dow nto 32 95 dow nto 64 127 dow nto 96

Figure 3

c. Kontroler
 Kontroler block controls the KeyExpander and Fungsi_Round block. The
state diagram of Control block is depicted in figure 4.

nop

bus
y

reset_i = '1'

start_i = '1'

sig_round <= 0
mux_sel_o <= '0'
mix_sel_o <= '0'
add_sel_o <= '0'

sig_round <= sig_ro
IF sig_round < 10 T
 mux_sel_o <= '1;
 mix_sel_o <= '0';
 add_sel_o <= '0';
ELS

Esig_round /= 10

sig_round = 10

 mux_sel_o <= '1;
 mix_sel_o <= '1';
 add_sel_o <= '1';

Figure 4

AES-128 Core
June 12, 2002

Copyright VLSI Research Group 5

d. Key Expander
 Key Expander responsible to generate round key for every round from the
initial key. Based on the algorithm specification, if we use 128-bit key, 10 rounds will
be needed. Hence the Key Expander will generate 10 round keys. The Key Expander
is depicted in figure 5.

kunci_load_i

clock_i

Kontroler
Internal start_i ByteSub

Blok Alg
kunci

Bank_Reg

clock_i

reset_i

clock_i

kunci_round
_o

Figure 5

The Blok Alg implements the XOR operations and RotByte function (take a look again
FIPS-197). Kontroler Internal controls the Key Expander and its state diagram
illustrated in figure 6. The ByteSub block is the same as ByteSub for Rijndael Alg
Block.

State Diagram of Kontroler Internal

hold

kunci_expand

reset_i = '1'

round_step <= round_step + 1

start_i = '1'

done

start_i = '0'

start_i = '1'

round_step = 9

round_step /= 9

round_step <= 0
round_step <= 0

Figure 6

AES-128 Core
June 12, 2002

Copyright VLSI Research Group 6

e. Fungsi_Round
 The implementation of Fungsi_Round has been designed this way that it can
work as initial round, standard round, and final round. The Fungsi_Round module is
depicted in figure 7.

text
Mux2 Fungsi_Add Fungsi_Byte

Fungsi_Shift

Fungsi_Mix
data_i[127

data_o[127 done_

mux_sel round_kunci_i[12
add_sel

mix_sel

clock

sel_

din_

tmp

Figure 7

- Mux21
Mux21 is a simple multiplexer 2 to 1. The format of data (din_i) is changed in
this block, a block of 128 bits sequence to matrix 4x4 called State to make
easier in designing other blocks (AddRoundKey, ByteSub, ShiftRow.
MixColumn)

- Fungsi_Add
Implements AddRoundKey transformation, a simple XOR between State and
round key.

- Fungsi_Byte
Implements ByteSub transformation, contains 16 S-Box working in parallel.
Dual Port Block RAM will be used to implements 2 S-Box, which emulate the
ROM memory with configuration of 256x8 bits.

- Fungsi_Shift
Implements ShiftRow transformation. The position of bytes in State will
shifted cyclical by offsets. The first row is shifted by zero, the second row is
shifter by one, two shifts the third row, and the fourth row is shifted by three.
The implementation is realized by hardwiring and do not need gate resource.

- Fungsi_Mix
Implements MixColumn transformation. The columns of State are viewed as
the coefficients of polynomial over GF (28) of degree smaller than three. This
polynomial is multiplied by four terms fixed polynomial a(x), {03)x3 + {01}x2
+ {01}x + {02}, modulo the polynomial x4 + 1.The multiplication with four
terms fixed polynomial can be simplified by using the matrix form. The
implementation of this transformation can be realized as shift and XOR
operations.

AES-128 Core
June 12, 2002

Copyright VLSI Research Group 7

2.2 Decryption Block
By Made Yusadana (yusa@vlsi.itb.ac.id)

Encryption and decryption differ in key expansion and round calculations only.

We just modified the KeyExpander, Fungsi_Round, and Kontroler that depicted
in figure 1. Therefore, we can use the same output and input interfaces.

a. Kontroler
Kontroler block controls the KeyExpander and Fungsi_Round block. The

state diagram of Control block is depicted in figure 8.

Figure 8

AES-128 Core
June 12, 2002

Copyright VLSI Research Group 8

b. Fungsi_Round
Figure 9 depicted the Fungsi_Round for decryption block.

Figure 9

c. KeyExpander
The author wrote the behavioral code for this KeyExpander. He also wrote his

own ROM to implement to ByteSub transformation.

3. IOs

Name Width Direction Description

Encryption Block
clock_i 1 I Core clock
reset_i 1 I Active high

synchronous reset
data_in_i 32 I Input text block
data_load_i 1 I Input load
kunci_in_i 32 I Key
kunci_load_i 1 I Key load
data_out_o 32 O Output text block
done_o 1 O Output high : valid

Decryption Block
clock_i 1 I Core clock
reset_i 1 I Active high

synchronous reset
data_in 32 I Input text block
data_load 1 I Input load
key_in 32 I Key
key_load 1 I Key load
data_out 32 O Output text block
done 1 O Output high : valid

AES-128 Core
June 12, 2002

Copyright VLSI Research Group 9

4. Simulation
In this section, we will provide the simulation result for Encryption block.

Figure 10

5. Implementation Result
The encryption algorithm has been implemented to FPGA Xilinx Virtex

V300pq240. V300pq240 has 20 built-in Dual Port Block RAM so that we did not write
our own RAM/ROM to implement to ByteSub transformation (We personally suggest
you not to write your own ROM in FPGA implementation unless your FPGA do not has
built-in RAM).

The implementation parameters for encryption are:
- Speed

 The maximum frequency is 51 MHz. Hence; the throughput is 593.45 Mbps
(51x128/11).

- Area
 The required circuit area is 666 slices.

The implementation parameters for decryption are:
- Speed

 The maximum frequency is 23 MHz. Hence; the throughput is 267.63 Mbps
(23x128/11).

- Area
 The required circuit area is 666 slices.

