
SD/eMMC/MMC card host

SD Host Pack : VHDL synthesizable
cores Technical Reference Manual

Written by:

June 26, 2017

John Clayton
Klugwhallah FPGA design team

SD Host Pack

1 List of Acronymns

FPGA Field Programmable Gate Array

JTAG Joint Test Access Group

MMC Multi-Media Card

SD Secure Digital

VHDL VHSIC Hardware Description Language

VHSIC Very High Speed Integrated Circuit

2 Introduction
This document provides a description of the interface signals, internal structure and registers present
in the synthesizable cores within the VHDL package file named “sd_host_pack.vhd” Some of the
cores are intended for use at lower levels of a design, in hierarchical fashion. All cores in the
VHDL package are synthesizable and have been tested via simulation and in hardware using a
Xilinx “ARTY” Artix 7 FPGA development board.

3 Description of Cores

3.1 Background
The “sd_host_pack.vhd” VHDL package includes three entities, two of which are used inside the
third. Specifically, there is a command host (“sd_cmd_host”) and a data host (“sd_data_8bit_host”)
which are each instantiated inside the higher level entity “sd_controller_8bit_bram,” which is an
SD/MMC controller core. The use of the term SD, and the absence of the term MMC, in the
naming of signals within this set of cores is not meant to imply that MMC cards are not supported.
It is merely a result of the origins of this set of VHDL entities. These entities have their roots in
some modules written in Verilog, by Marek Czerski, and posted at www.opencores.org. After
contacting Marek via email, John Clayton was added as a project maintainer of the
sd_card_controller project, and it was concluded that John Clayton would work to proofread and
correct the project documentation, as well as complete a translation of the original Verilog code into
VHDL. This work of translation was done prior to the beginning of work on these cores for a
commercial project, but no testing had been done. Since the original project was focused on SD
cards only, effect of the original naming conventions is still manifest. Nevertheless, the cores in this
VHDL package file were expanded to include support for 8-bit wide data bus, thereby enabling
MMC support as well. And they have now been simulated and tested. The other two related VHDL

2

http://www.opencores.org/

SD Host Pack

packages, “sd_card_pack” and “mmc_test_pack” were created “from scratch” entirely by John
Clayton, and no Verilog versions of those entities has yet been created. The main specification
document used during development was the JEDEC document JESD84-A44 titled “Embedded
MultiMediaCard(e•MMC)” (MMCA, 4.4) version.

3.2 Summary of Cores In Package
The cores present in the package file “sd_host_pack.vhd” are shown in Table 1. The controller core
was written specifically to enable hardware testing of an MMC emulator core from “sd_card_pack.”
The controller uses one instance of each of the other two cores.

Name Description

sd_cmd_host SD/MMC Card command transceiver

sd_data_8bit_host SD/MMC Card data packet transceiver

sd_controller_8bit_bram SD/MMC Card host with port for BRAM storage

Table 1: SD Host Pack Cores

In addition to the cores listed in Table 1, the “sd_host_pack.vhd” file also defines some constants at
the VHDL package level. These constants determine the bit-width of the counters used for keeping
track of data sectors, and also there are constants which define different interrupts. The interrupts
are useful when interfacing the sd_controller_8bit_bram to a processor, or when writing a software
driver for that purpose.

3.3 sd_cmd_host
This core combines what was originally the “sd_cmd_master” and the “sd_cmd_serial_host” from
the opencores.org VHDL code, in order to simplify by reducing the total number of different cores.
The reason for combining them is that eight interface signals were shared only between those two
modules when they were instantiated, and the constituent modules are not needed individually. This
core runs entirely within the sd_clk_i clock domain.

The sd_cmd_host internal structure is shown in this block diagram:

3

SD Host Pack

When start_i is pulsed high, the 16 bit timeout_i value is latched. Also, the 6 bit interrupt_status_o,
the 128 bit response register, the 16 bit watchdog and the CRC-7 are all cleared. The Finite State
Machines begin operating, sending out the requested command, and then looking for the expected
reply. For cmd_index_i of 2, 9 or 10, the expected response is set to 128 bits. All others set the
expected response length to 40 bits. The upper two bits of the 40 bit command register are set to
“10”, meaning a command from the host to a card. The next six bits are the cmd_index_i value, and
the 32 least significant bits are set to the argument_i value. Once all 40 bits of the cmd PISO shift
register are sent out, the mux switches so that the CRC-7 value is sent out, followed by a ‘1’ stop
bit. Then, receive operations begin.

4

cmd_index_i

40 bit
PISO
shift

register

CMD and Serial
Finite State
Machines

argument_i

CRC-7

ti
m

eo
ut

_r
eg

sd_cmd_o

int_status_o

response_0_o
response_1_o
response_2_o
response_3_o

128 bit
SIPO
shift

register

 MUX

w
at

ch
do

g
timeout_i

sd_cmd_i

Int_status_regint_reset_i

start_i

busy_i

sd_cmd_oe_o

SD Host Pack

There are two separate state machines, the “CMD” FSM and the “Serial” FSM. The state transition
diagram for the CMD FSM is very simple:

During the CMD FSM’s EXECUTE state is when all of the Serial FSM action occurs:

During the CMD FSM state “EXECUTE” or “BUSY_WAIT” states, various interrupt flags can be
set, as determined by the exit conditions. The bit positions are shown in Illustration 1, and the
conditions are listed in Table 2.

5

IDLE EXECUTE BUSY_WAIT

start_i=’1’ serial_state=FINISH_WR

watchdog T.O.

busy_i=’0’

WRITE

4 Clocks

INIT IDLE SETUP_CRC

READ_WAITREADFINISH_WR

start_i=’1’ (Next Clock)

Bits sent,
response is
expected

Start bit
detectedResponse Fully

Received

(Next Clock)
Bits sent, no
response expected

SD Host Pack

Condition Value Result

start_i=’1’ 00000b All bits cleared

Command Timeout 00110b Error Indicator + CMD timeout Error bit, response set to
0x55555555555555555555555555555555

Response has CRC error 01011b Error Indicator + CMD CRC Error bit + CMD Complete

Response index does not
match command index

10011b Error Indicator + CMD Index Error bit + CMD Complete

No Error 00001b CMD Complete

Table 2: CMD host interrupt status conditions

3.4 sd_data_8bit_host
This core handles data transfers from the host perspective. That is to say, it executes commands to
read or write blocks of data on the SD/MMC data bus, checking and populating the CRC-16 field
for each lane or data line used on the data bus, as needed. The size of the block, in bytes, is
configurable by the input blksize_i. As a point of reference, the customary block size for SD/MMC
is 512 bytes, although the blksize_i input is 12 bits wide, to accommodate blocks of up to 4096
bytes. The number of blocks to be transferred in sequence is specified by the blkcnt_i input, which
is 16 bits wide, allowing for up to 65535 blocks to be treated in one single command. Setting
blkcnt_i greater than 1 will cause multiple blocks to be transferred. However, setting it to zero will
not prevent the transfer of a block, and is exactly the same as setting it to one.

The internal structure of sd_data_8bit_host is shown in the following block diagram.

6

 I
N

T
_C

M
D

_C
IE

 I
N

T
_C

M
D

_C
C

R
C

E

 I
N

T
_C

M
D

_C
T

E

 I
N

T
_C

M
D

_E
I

 I
N

T
_C

M
D

_C
C

0 0 0 0 0
4 0

Illustration 1:
sd_cmd_host
interrupt status bits

SD Host Pack

The settings and request types for this core are listed in Table 3 and Table 5, respectively.

Signal Name Width Purpose

blksize_i 12 bits Sets size of data block (512 bytes is common)

bus_size_i 2 bits Sets width of SD/MMC data transfers

blkcnt_o 16 bits Sets number of blocks to transfer per read/write request

Table 3: sd_data_8bit_host setting inputs

This core works as part of a larger core, called “sd_controller_8bit_bram,” which handles all the
handshaking and assertions of request inputs to this core. Because the higher level entity performs
all the handshaking, and this core is not intended to be instantiated without that higher level entity,
the details of how requests are made and how transfers are stopped are best seen by inspecting the
state machine of the sd_controller_8bit_bram core that instantiates this one.

7

Finite
State

Machine

rx_dat_o
dat_ regsd_dat_i

(8 bits)

tx_dat_i

rx_dat_we_o

sd_dat_o

CRC-16

Eight CRC-16
Generators

CRC-16
CRC-16

CRC-16CRC-16CRC-16
CRC-16

CRC-16

last_din

sd_clk_i

transf_cnt

blkcnt_reg

bus_size_reg

bustest_0

bustest_1

data_index

tx_dat_rd_o

sd_dat

sd_dat_oe_o

sd_dat_siz_o

(settings)

(requests)

bustest_res_o

sd_dat_busy_o

fsm_busy_o

crc_ok_o

rx_dat

SD Host Pack

 One important task handled by the sd_data_8bit_host, is sizing the data to fit the currently selected
width of SD/MMC data bus being used. For SD cards, the bus can only be one bit wide, or four bits
wide. For MMC, a full eight bit width is added into the mix. The number of cycles needed to
transfer a given block over the bus is also inversely related to the size of the bus, and the
calculations for it are handled automatically by this core. The bus size setting is selected via the
two bit bus_size_i input, with settings as shown in Table 4. The setting of “11” is technically
reserved, but it produces behavior just the same as “00”

bus_size_i Bus Size Selection Transfers for 512 byte block

00b One bit per transfer 2048

01b Four bits per transfer 1024

10b Eight bits per transfer 512

11b One bit per transfer 2048

Table 4: Data transfer bus size selections

The sd_data_8bit_host core has five different discrete command request inputs, which are handled
whenever the unit is in the IDLE state. When already processing a command, the command request
inputs are ignored, and no internal latching, buffering or queueing of requests is done. The
command request inputs are summarized in Table 5.

Name Function

d_stop_i Aborts read or write

d_read_i Read data

d_write_i Write data

bustest_w_i Write Bustest Pattern

bustest_r_i Read Bustest Reply

Table 5: Command Request Signals

Note that the d_stop_i only aborts an active read or write transaction. If the d_stop_i input is
asserted at the same time as d_read_i, for example, the unit will begin a read sequence. If the
d_stop_i input continues to be asserted, then the read sequence will be aborted instantly. The
d_stop_i input has no effect on bustest operations in progress, only on reads or writes.

8

SD Host Pack

It is instructive to note that this unit is purely a “slave” to the controller core. Only one transfer can
occur at any given time over the SD/MMC data bus. This data host core handles splitting apart
bytes being written to an SD/MMC bus which is less than eight bits, and joining together bit-slices
from a bus less than eight bits. Incidental to that task, the sd_data_8bit_host keeps track of the
number of cycles left, the CRC to be checked or appended, the number of bytes remaining in the
current block, and the number of blocks to be transferred before the task is finished. There are also
bus test patterns that can be issued and/or checked by this unit. The purpose of the bus test is to
determine how many data bits are in use on the SD/MMC bus. The maximum number of data bits
for SD is four, but for MMC it is eight.

The logic within this core runs entirely inside the sd_clk clock domain. The controller implements
measures to allow the data to cross between the sd_clk domain and a different clock domain.

3.5 sd_controller_8bit_bram
This core is memory mapped onto a parallel “wishbone” type bus, and provides the capability to
send SD/MMC commands and receive the responses. The unit coordinates the transfer of data to
and from an SD/MMC bus as part of the commanded operations. It also provides a direct interface
to an area of storage RAM used for holding send/receive data. In addition to the register based
interface, two interrupt outputs are provided, one for command and one for data. This core can be
used by a software driver to implement an SD/MMC interface, or it can be part of a hardware based
tester, such as the “mmc_tester” core in the mmc_test_pack.vhd package.

The structure of this core is shown in the following block diagram:

9

SD Host Pack

For simplicity, the register connections, and the edge detectors used for generating interrupts are not
shown in this block diagram. There are two main clock domains in this core. The first is the
SD/MMC cardbus clock domain, which is used by the “data master” finite state machine, the
sd_cmd_host and the sd_data_8bit_host. The second clock domain is the Wishbone bus clock
domain, used for the DDS and for register writes.

A state transition diagram of the “data master” finite state machine helps as an aid to understanding
how it works:

10

Finite State
Machine

int_data_o
Registers

Wishbone Bus
Interface

(8 signals)

int_cmd_o

sd_cmd_host

direct digital
synthesizer

sd_clk_o_pad

sd_data_8bit_host

SD/MMC Bus
(7 signals)BRAM

Interface
(6 signals)

BUSTEST_W
START

Reset

DATA_RX

IDLE BUSTEST_ACTIVE

DATA_TX_STARTDATA_TX

WAIT_FOR
CMD_INT

CMD14 (Next Clock)

CMD19
Complete

xfer complete

(Any State)

CMD w/
read data

Xfer
complete

(Next Clock)

CMD
Complete

Xfer
complete

CMD w/
write data

SD Host Pack

The sd_controller_8bit_bram registers are all summarized in Table 6. These registers are further
explained using diagrams inside this document.

4-bit
address

Name Function

0x0 blk_size_reg Set the size of data blocks, in bytes

0x1 blk_count_reg Set the number of data blocks to transfer

0x2 cmd_index_reg Set which command to use

0x3 argument_reg Set the payload contents of the command

0x4 resp_0_reg Response bytes [3..0]

0x5 resp_1_reg Response bytes [7..4]

0x6 resp_2_reg Response bytes [11..8]

0x7 resp_3_reg Response bytes [15..12]

0x8 settings Set bus size, data reset, stop, timeout

0x9 sd_freq_reg Set the SD/MMC clock frequency

0xA cmd_int_status Status of command interrupt bit

0xB cmd_int_enable Enable command interrupt

0xC data_int_status Status of data interrupt bit

0xD data_int_enable Enable data interrupt

0xE dma_adr_reg Starting address for BRAM read/write

0xF (RESERVED) (RESERVED)

Table 6: mmc_tester memory map full register list

For each of the registers implemented, further explanation and a register diagram are given. Note
that in this core, the parallel system bus is a 4-bit address bus selecting 32-bit registers on a 32-bit
data bus, with a select line being used to activate the block of 16 register addresses. Addresses in
the system are 32-bit “double word” addresses, meaning that each address selects a specific 32-bit
data word location, and there are no byte-enables or other byte addressing constructs. the address
given for each register is the relative offset from the base address used to generate the 16-register
block select signal.

11

SD Host Pack

Register 0x0 : Block Size Register

This register allows setting the size, in bytes, of a block of data to be transferred. Sometimes this
quantity is also referred to as the “sector size.” In most SD/MMC situations, the block size is 512
bytes, so that is the value in this register by default.

Register 0x1 : Block Count Register

Address 0x1 is the block count register. This register sets the number of blocks of data, each
containing the block size bytes (Register 0x0), which are to be transferred in a given transaction.
This register has been sized so that up to 65535 sectors or “blocks” of data can be included in a
single transfer operation.

Register 0x2 : Command Index Register

This register contains the command number to be sent out when writing register 0x3 to request a
command start. See the SD/MMC specification for the complete listing of commands. Some more

12

Addr: 0x0 Access: Read/Write

blk_size_reg
0 1 0 0 0 0 0 0 0 0 0
31 0

Addr: 0x1 Access: Read/Write

blk_count_reg
0 1
31 0

Addr: 0x2 Access: Read/Write

cmd_index_reg
0 0
31 0

SD Host Pack

commonly used commands are: CMD0, CMD1, CMD3, CMD6, CMD7, CMD12, CMD13,
CMD17, CMD18, CMD25.

Register 0x3 : Argument Register

Each command sent out on the SD/MMC command line has an associated 32-bit “argument” that,
for many commands, further defines what the command is intended to do. This register holds the
argument for the next command to be issued. Morevoer, writing the argument into this register has
the effect of actually requesting the hardware to start sending the command. This was chosen to
make it easy to send a given command. All that needs to be done is to program the command index
and the argument, and “voila” the command goes out.

Register 0x4 – 0x7 : Response Registers

These registers are read only, containing the most recently received response from the addressed
SD/MMC device. There are five types of responses, known as R1, R2, R3, R4 and R5. Except for
R2, all responses are 48 bits long, including a 32-bit “payload” after all the headers and CRC are
stripped away. Therefore all reponses, except R2, are presented in the first register. For the R2
responses, the payload part of the message is 128 bits long, so that four complete 32-bit registers are
occupied by it.

The first, and most commonly used, response register:

The second reponse register:

13

Addr: 0x3 Access: Read/Write

argument_reg
0 0
31 0

Addr: 0x4 Access: Read Only

resp_0_reg
0 0
31 0

Addr: 0x5 Access: Read Only

resp_1_reg
0 0
31 0

SD Host Pack

The third response register:

The fourth response register:

Register 0x8 : Control and Status Register

This register contains several fields, described here.

Bits [1..0] = bus_siz_reg This field selects which setting to use for the width of the SD/MMC data
bus. Using the 8-bit width is an MMC function, and is not allowed for SD cards, since SD cards
only have four data bits present. The settings for this field are described in Table 7.

14

Addr: 0x6 Access: Read Only

resp_2_reg
0 0
31 0

Addr: 0x7 Access: Read Only

resp_3_reg
0 0
31 0

Addr: 0x8 Access: Read/Write (*Fields are read only)

bu
st

es
t_

re
s*

sw
_r

st
_r

eg

bu
s_

si
z_

re
g

timeout_reg
0 0 0 0 0 0 1 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
31 0

SD Host Pack

bus_siz_reg Meaning

0x0 One bit data bus used.

0x1 Four bit data bus used.

0x2 Eight bit data bus used.

0x3 One bit data bus used.

Table 7: Control register - bus size field

Bits [3..2] = “00” (Reserved)

Bit [4] = sw_rst_reg. Setting this bit causes all internal logic and state machines, outside of the
register block itself, to be held in reset. The bit must be explicitly cleared for the SD controller to
emerge from reset.

Bits [7..5] = "000" (Reserved)

Bits [10..8] = Bus test result. This field is read-only, and it provides indication of the most recent
bus test read operation. The interpretation of this register field is given in Table 8.

bustest_res Meaning

0x0 Bus test has not been run.

0x1 One bit data bus detected.

0x2 Four bit data bus detected.

0x3 Eight bit data bus detected.

0x4 Unexpected result. (Should not happen.)

Table 8: Control register - bus test result field

Bits [15..11] = “00000” (Reserved)

Bits [31..16] = Command timeout field. The number in this register field is the number of clock
cycles allowed for sending a command, and receiving back the complete response, including
waiting for the card to come out of “busy” indication. The default value for this field is 1000 clock
cycles of the SD/MMC clock. If a timeout occurs while waiting for a response from the SD/MMC
device, the response registers are all set to contain 0x55555555, and the “command timeout error”
(INT_CMD_CTE) and “error indicator” (INT_CMD_EI) interrupt bits are set. If, on the other
hand, a timeout occurs after the response is fully received, such as when an SD/MMC device enters
an extended “busy” state, then the response registers are left alone with their response contents
intact, and the “command timeout error” (INT_CMD_CTE) and “error indicator” (INT_CMD_EI)

15

SD Host Pack

interrupt bits are set.

Register 0x9 : SD/MMC clock frequency register

This register provides a way to set the SD/MMC clock frequency being generated by this core. A
direct digital squarewave generator is used to create the clock signal. The generated clock can be
set to any desired frequency, at any time, according to the following formula:

Frequency = (sd_freq_reg/Fsys_clk) * 2^32

The default value of sd_freq_reg, 0x010624DE is set for an SD/MMC clock frequency of 400 kHz,
using a system clock frequency of 100 MHz.

Register 0xA : Command interrupt status register

This register shows the current status of interrupts related to the last SD/MMC command operation.
The presence of a condition is indicated by the associated bit being set.

16

Addr: 0x9 Access: Read/Write

sd_freq_reg
0 0 0 0 0 0 0 1 0 0 0 0 0 1 1 0 0 0 1 0 0 1 0 0 1 1 0 1 1 1 0 1
31 0

Addr: 0xA Access: Readable, Write clears all
IN

T
_C

M
D

_C
IE

IN
T

_C
M

D
_C

C
R

C
E

IN
T

_C
M

D
_C

T
E

IN
T

_C
M

D
_E

I
IN

T
_C

M
D

_C
C

0 0
31 0

SD Host Pack

Bit Name Meaning

0 INT_CMD_CC The command is completed.

1 INT_CMD_EI An Exception is Indicated.

2 INT_CMD_CTE Command Timeout Exception.

3 INT_CMD_CCRCE Command CRC Exception.

4 INT_CMD_CIE Command Index Exception.

Table 9: Command interrupt status bits

In each case, if an exception occurs, two bits are set: One is the INT_CMD_EI, and the other is the
particular event or exception that occurred. Writing this register clears all of the bits.

Register 0xB : Command interrupt enable register

The bits in this register match exactly with the bits in register 0xA. The purpose of this register is to
provide a capability to enable interrupts to be observed. In other words, setting this register to
11111b enables all the interrupts to be reported, setting it to 00000b disables all interrupts from
being reported. Note: the operation of this interrupt enable register does not prevent the interrupt
occurrences from being latched internally, it merely acts as an “AND” function with the internally
latched interrupt bits. This means that it is possible for an interrupt to have occurred in the past, but
to have been disabled, and to suddenly appear if the enable bit is set without first clearing the
interrupts by writing to register 0xA.

17

Addr: 0xB Access: Read/Write

IN
T

_C
M

D
_C

IE

IN
T

_C
M

D
_C

C
R

C
E

IN
T

_C
M

D
_C

T
E

IN
T

_C
M

D
_E

I
IN

T
_C

M
D

_C
C

0 0
31 0

SD Host Pack

Register 0xC : Data interrupt status register

This register shows the current status of interrupts related to the last SD/MMC data operation. The
presence of a condition is indicated by the associated bit being set.

Bit Name Meaning

0 INT_DATA_CC The data transfer is completed.

1 INT_DATA_CCRCE Data CRC exception.

2 INT_DATA_CFE Vestigial data exception (not implemented).

Table 10: Data interrupt status bits

The bit labeled INT_DATA_CFE is not implemented, and its meaning is not clear. It is vestigial in
the sense that it was carried over into this VHDL code from the work of the original authors.
Writing this register clears all of the bits.

Register 0xD : Data interrupt enable register

18

Addr: 0xC Access: Readable, Write clears all

IN
T

_D
A

TA
_C

T
E

IN
T

_D
A

TA
_C

C
R

C
E

IN
T

_D
A

TA
_C

C

0 0
31 0

Addr: 0xD Access: Read/Write

IN
T

_D
A

TA
_C

T
E

IN
T

_D
A

TA
_C

C
R

C
E

IN
T

_D
A

TA
_C

C

0 0
31 0

SD Host Pack

The bits in this register match exactly with the bits in register 0xC. The purpose of this register is to
provide a capability to enable interrupts to be observed. In other words, setting this register to 111b
enables all the interrupts to be reported, setting it to 000b disables all interrupts from being reported.
Note: the operation of this interrupt enable register does not prevent the interrupt occurrences from
being latched internally, it merely acts as an “AND” function with the internally latched interrupt
bits. This means that it is possible for an interrupt to have occurred in the past, but to have been
disabled, and to suddenly appear if the enable bit is set without first clearing the interrupts by
writing to register 0xC.

Register 0xD : DMA address register

The presence of the acronym “DMA” in the name of this register merely indicates a “Direct
Memory Access” in the simplest sense: It is an address used for reading data from and writing data
to memory, directly. In this sense it can be thought of as a read/write pointer or index register. Any
attached RAM is accessed starting at the address in this register. The address contained in this
register is added to an offset counter value, so that this register’s contents do not increment as the
RAM access progresses. The dma_addr_reg value is therefore a “base address” at which data
transfers originate. The data from an earlier transfer will be overwritten by later transfers if the
dma_addr_reg value is not changed in between transfers.

19

Addr: 0xE Access: Read/Write

dma_addr_reg
0 0
31 0

	June 26, 2017
	1 List of Acronymns
	2 Introduction
	3 Description of Cores
	3.1 Background
	3.2 Summary of Cores In Package
	3.3 sd_cmd_host
	3.4 sd_data_8bit_host
	3.5 sd_controller_8bit_bram
	Register 0x0 : Block Size Register
	Register 0x1 : Block Count Register
	Register 0x2 : Command Index Register
	Register 0x3 : Argument Register
	Register 0x4 – 0x7 : Response Registers
	Register 0x8 : Control and Status Register
	Register 0x9 : SD/MMC clock frequency register
	Register 0xA : Command interrupt status register
	Register 0xB : Command interrupt enable register
	Register 0xC : Data interrupt status register
	Register 0xD : Data interrupt enable register
	Register 0xD : DMA address register

