
Ternary Adder IP Cores

Martin Kumm, Jens Willkomm

April 4, 2013

1 Introduction

This IP core provides resource efficient ternary adders, i. e., adders with three inputs
performing s = x+y+z, for the Altera and Xilinx platforms. Resource efficient means
that they need exactly the same resources on modern FPGAs as two-input adders,
but are slightly slower. The Xilinx core (ternary_adder_xilinx.vhd) is a low-level
implementation, following an US patent from Xilinx [SP06]. It directly uses the Xilinx
primitives (CARRY4, LUT6_2 and FDCE). It is suitable for all FPGAs providing 6-input
LUTs. Today, these are the Virtex 5-7, Spartan 6, Kintex 7 and Artix 7 families.
The Altera core (ternary_adder_altera.vhd) is a high-level implementation using
the ’+’ operator. However, the ternary subtract operations (x− y + z, x+ y− z and
x−y−z) are not supported by a high-level description; so this is realized by extending
the word size of the ternary adders and setting the lower bits to appropriate constant
values. They can be mapped very resource efficient for all Altera FPGAs providing
adaptive logic modules (ALMs), today, these are the Arria I,II,V and Stratix II-V
FPGAs.

2 Interface

The generics as well as the port are identical for the Altera and Xilinx implementation
and are described in Table 1 and Table 2, respectively.

3 Implementation

Both implementations uses a carry save adder (CSA) tree with three inputs and a final
ripple carry adder as vector merging adder (VMA). One stage of full adders (FAs) is
used to realize a 3:2 compressor, i. e., the three input bit vectors are compressed to
two bit vectors which are obtained by the sum and carry outputs. A second stage of
FAs merges these two bit vectors to a single result.

For Altera, the 3:2 compressor can be directly mapped to the ALM LUT, realizing
the sum s′i = xi⊕ yi⊕ zi and carry c′i = xiyi +xizi + yizi. The full adders of the ALM
are used for the VMA. To include both stages in a single ALM stage, each ALM has
to be configured to the shared arithmetic mode [BLSY09] in which the output of one
LUT is connected to the FA input of the next higher bit. The resulting ternary adder
structure is shown in Figure 1(a).

1



Table 1: Description of the generics

Generic Type Default Description

input_word_size integer 10 Input word size of the inputs x,y and
z. The output word size is
automatically set to
input_word_size+2

subtract_y boolean false Input y is negated, realizing
s = x− y ± z

subtract_z boolean false Input z is negated, realizing
s = x± y − z

use_output_ff boolean true If true, the adder uses flip flops at the
output (without extra slice or ALM
resources)

Table 2: Description of the port

Generic Direction Type Word Size Description

clk_i in sl 1 Clock input (used when
use_output_ff=true)

rst_i in sl 1 Reset input (used when
use_output_ff=true)

x_i in slv input_word_size Input x

y_i in slv input_word_size Input y

z_i in slv input_word_size Input z

sum_o out slv input_word_size + 2 Sum output s

For Xilinx, the FA for the 3:2 compressor is also realized in the FPGA LUT [SP06].
In addition to that, one additional XOR gate has to be realized in the same LUT
to complete the fast carry chain resources to a ripple carry adder for the VMA. The
carry output of the first FA (realized in the LUT) must be routed to the next higher
FA input using the FPGA routing fabric. The resulting slice configuration is shown
in Figure 1(b).

4 Resource Consumption

For Altera, each ALM can compute two output bits. As the output word size is two
bits more than the input word size, there are

NALM,++ =

⌈
input word size + 2

2

⌉
(1)

2



FA

FAFAFA

FAFA ALM
LUT

FA

FA

(a)

0
1

Slice
LUT

FA

0
1

FA

0
1

FA

Carry
Logic

0
1

FA

(b)

Figure 1: Realization of ternary adders on (a) Altera Stratix II-V ALMs (b) Xilinx
Virtex 5-7 Slices

ALMs needed for a pure addition (s = x + y + z). If one input is subtracted (setting
one of subtract_y or subtract_y to true), the word length has to be extended by
one bit leading to:

NALM,+− =

⌈
input word size + 3

2

⌉
(2)

Finally, if two inputs are subtracted, the word length has to be further increased
leading to:

NALM,−− =

⌈
input word size + 4

2

⌉
(3)

For Xilinx, four output bits can be computed in each slice. Thus, the number of
slices is given by:

NSlices =

⌈
input word size + 2

4

⌉
(4)

The slice usage is independent of the operation performed. If a slice is not fully
utilized, the remaining LUTs can still be used for other functionallities.

3



5 Performance

To estimate the performance, the maximum clock frequencies (fmax) were obtained
by synthesis experiments for Altera Stratix IV (EP4SGX230KF40C2) using Quartus-
II 10.1 and Xilinx Virtex 6 (XC6VLX75T-2FF484) using ISE 13.4, both after place
& route. The resulting clock frequencies with output word sizes from 16 up to 64 bit
are shown in Table 3.

Table 3: Performance of the IP Cores

output word size fmax Stratix IV [MHz] fmax Virtex 6 [MHz]

16 708 450

32 565 379

48 479 312

64 423 292

6 Simulation & Test

The simulation and automated tests were performed using Modelsim. For that, a
testbench (tb_ternary_adder.vhd) was created which uses a random number gener-
ator together with assert statements to verify the designs. To automate the different
FPGA targets the do-file batch_sim.do was created which compiles the designs and
applies the tests for each target as specified in the do-file sim_single_inst.do. These
tests include different word sizes, subtractions and the output flip flop functionality.
All tests can be started from command line using vsim -c -do ’do batch_sim.do’

(as defined in modelsim_batch_sim.sh).

References

[BLSY09] Gregg Baeckler, Martin Langhammer, James Schleicher, and Richard
Yuan. Logic Cell Supporting Addition of Three Binary Words. US Patent
No 7565388, Altera Coop., 2009.

[SP06] James M Simkins and Brian D Philofsky. Structures and Methods for Im-
plementing Ternary Adders/Subtractors in Programmable Logic Devices.
US Patent No 7274211, Xilinx Inc., March 2006.

4


	Introduction
	Interface
	Implementation
	Resource Consumption
	Performance
	Simulation & Test
	References

