uart6551x12

© 2022 Robert Finch

Overview

A UART component (Universal Asynchronous Transmitter / Receiver) is used for the asynchronous transmission and reception of data. Asynchronous referring to the lack of a clock signal during transmission or reception.

uart6551x12 is a WDC6551 register compatible uart. The uart is a 12-bit peripheral device. It may be used as an eight-bit peripheral by connecting the high order 4-bit data input lines to ground.

Baud rate is controlled by clock divider which assumes a 40MHz baud reference clock input. If a different clock frequency is used, then the divider table will need to be updated. The baud rate may also be controlled via a clock divider register. This register is 24 bits so gives a minimum frequency of 11.92 Hz assuming a 200MHz clock. (200MHz / 2^24).

Special Features

- WDC6551 register compatibility

Register Description

There are fifteen registers in the design. The function of the low order eight bits of the registers matches the 6551 function.

Reg	Moniker	Description	
0	UART_TRB	Transmit and receive buffer. Data written is transmitted, on a read	
		data available is read.	
1	UART_STAT	Status Register. Returns status bits on a read, a write of any value	
		will cause a reset of some of the command register bits	
2	UART_CMD	Command register	
3	UART_CTRL	Control register	
4	UART_IRQS	IRQ status register	
5	UART_MS	modem status	
6	UART_LS	line status	
7	UART_CMD1	command register	
8	UART_CMD2	command register	
9	UART_CMD3	command register	
Α	UART_CTRL1	Control register	
В	UART_CTRL2	Control register	
C	UART_CTRL3	Control register	
D	UART_CLK1	clock divider value high order 12-bits	
E	UART_CLK2	clock divider value low order 12-bits	
F		reserved	

UART_TRB (0)

This register is 12-bits wide. All bits may be used to transmit or receive data by the uart. Data written to the register is transmitted. A register read returns data received by the uart. When the fifo's are enabled writing to this register writes to the transmit fifo. Reading this register reads the receive fifo.

UART_STAT (1)

Uart status register. Writing any value to the status register resets some of the uart's command bits.

Bit	Status	
0	Parity Error	1 = parity error occurred, $0 = $ no error
1	Framing Error	1 = framing error
2	Overrun	1 = overrun
3	Rx Full	1 = receiver data available
4	Tx Empty	1 = open slot in transmit fifo
5	DCD	0 = data carrier present
6	DSR	0 = data set ready
7	IRQ	1 = irq occurred
8 to 11		reserved

UART_CMD (2)

—		
Bit		
0	DTR	output $1 = low, 0 = high$
1	RxIe	receiver interrupt enable $0 =$ enabled, $1 =$ disabled
2,3	RTS Control	
	00	output RTS high
	01	output RTS low, enable transmit interrupt
	10	output RTS low,
	11	output RTS low, send a break signal
4	LLB	1 = local loopback (receiver echo)
5 to 7	Parity Control	
	000	no parity
	001	odd parity
	011	even parity
	101	transmit mark parity (parity error disabled)
	111	transmit space parity (parity error disabled)

UART_CTRL (3)

	,		
Bit			
0 to 3	Baud Ra	ate	
	0000	Use 16x external clock	This table is expanded using an extra control
	0001	50	bit #27.
	0010	75	
	0011	109.92	
	0100	134.58	
	0101	150	
	0110	300	
	0111	600	
	1000	1200	
	1001	1800	
	1010	2400	
	1011	3600	

	1100 4800 1101 7200 1110 9600 1111 19200	
4	Rx clock source	1 = external, $0 = $ baud rate generator
5,6	Word length 00 8 01 7 10 6 11 5	code for word length in bits
7	Stop Bit0111 if 8 bits and parity11.5 if 5 bits and no parity12 otherwise	

Selecting the clock divider register as the baud source allows any programmable baud rate.

UART_IRQS (4)

Uart irq status register.

Bit	Status	
	IRQ Status	
0,1	zero	these two bits are zero
2 to 4	IRQENC	encoded irq value (0 to 7)
5 to 7, 9	reserved	
to 10		
8,11	irq	IRQ is set

UART_MS (5)

Uart modem status register.

Bit	Status	
	Modem Status Byte	
0	CTS	1 = CTS line changed state
1	DSR	1 = DSR line changed state
2	RI	1 = RI line changed state
3	DCD	1 = DCD line changed state
4	CTS	CTS state
5	reserved	
6	RI	RI state
7	reserved	
8 to 11	reserved	

UART_LS (6)

Uart line status register.

Bit	Status	
	Line Status Byte	

0	reserved	
1	reserved	
2	reserved	
3	reserved	
4	Break received	1 if a break signal is received
5	Tx Full	1 = transmit fifo full
6	reserved	
7	G Rcv Err	1 = global receiver error (set if any error status is set)
8 to 11	reserved	

UART_CMD1 (7)

Bit		
0	LSIe	line status change interrupt enable $1 =$ enabled
1	MSIe	modem status change interrupt enable 1 = enabled
2	RxToIe	receiver timeout interrupt enable $1 =$ enabled
3 to 11	reserved	

UART_CMD2 (8)

Not used, reserved

UART_CMD3 (9)

Not used, reserved

UART_CTRL1 (10)

Not used, reserved

UART_CTRL2 (11) (Fifo Control)

0	Fifo enable	1 = fifo's enabled
1	Rx Fifo Clear	1 = clear receiver fifo
2	Tx Fifo Clear	1 = clear transmit fifo
3	reserved	
4,5	Transmit Threshold	Threshold for DMA signal activation
	0 1 byte	If the transit fifo count is less than the
	1 ¹ / ₄ full	threshold then a DMA transfer is triggered.
	2 ¹ / ₂ full	
	3 ³ ⁄ ₄ full	
6,7	Receive Threshold	Threshold for DMA signal activation. If the
	0 1 byte	receive fifo count is greater than the threshold
	1 ¹ / ₄ full	then a DMA transfer is triggered.
	2 ¹ / ₂ full	
	3 ³ ⁄ ₄ full	

UART_CTRL3 (12)

0	hwfc	1 = automatic hardware flow control
1	reserved	

2	dmaEnable	1 = dma enabled
3	Baud Rate bit 4	Extended baud rate selection bit, used in
	10000 38400	combination with bits 0 to 3.
	10001 57600	
	10010 115200	
	10011 230600	
	10100 460800	
	10101 921600	
	10110 reserved	
	10111 reserved	
	11xxx reserved	
4,5	reserved	
6	selDV	1 = use clock divider register, $0 =$ use baud
		table
7	reserved	

UART_CLK1 (13)

	Bit			
	0 to 11	CLKHI	clock divider bits 12 to 23	
Τ_	Γ_CLK2 (13)			
	Bit			
	0 to 11	CLKLO	clock divider bits 0 to 12	

UAR

<u>*</u> :	$1_CLI12(13)$				
	Bit				
	0 to 11	CLKLO	clock divider bits 0 to 12		

Ports

Signal	I/O	Wid	Purpose	
rst_i	Ι	1	reset	
clk_i	Ι	1	bus clock input	
cs_i	Ι	1	circuit/core select	
irq_o	0	1	interrupt request	
	WIS	HBON	NE SIGNALS	
cyc_i	Ι	1	bus cycle valid	
stb_i	Ι	1	data transfer strobe	
ack_o	0	1	data transfer acknowledge	
we_i	Ι	1	write enable	
adr_i	Ι	4	address bits 0 to 3 (selects register)	
dat_i	Ι	12	data input bus (ground bits 8 to 31 if using as an 8-bit peripheral)	
dat_o	0	12	data output bus	
	Mod	lem Co	ontrols	
cts_ni	Ι	1	clear to send input active low.	
rts_no	0	1	request to send output active low	
dsr_ni	Ι	1	data set ready active low	
dcd_ni	Ι	1	data carrier detect active low	
dtr_no	0	1	data terminal ready active low	
ri_ni	Ι	1	ring indicator active low	
rxd_i	Ι	1	serial data input (receive)	
txd_o	0	1	serial data output (transmit)	
data_present	0	1	data is present in the receiver	
rxDRQ_0	0	1	receiver DMA request	
txDRQ_0	0	1	transmitter DMA request	
xclk_i	Ι	1	external baud rate clock	
RxC_i	Ι	1	external receiver clock	