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Abstract: A high-throughput lossless data compression IP core built around a CAM-based
dictionary whose number of available entries and data word width adjust to the characteristics
of the incoming data stream is presented. These two features enhance model adaptation to the
input data, improving compression efficiency, and enable greater throughputs as a multiplicity
of bytes can be processed per cycle. A parsing mechanism adjusts the width of dictionary words
to natural words while the length of the dictionary grows from an initial empty state to a
maximum value defined as a run-time configuration parameter. The compressor/decompressor
architecture was prototyped on an FPGA-based PCI board. An ASIC hard-macro was subsequently
implemented and achieved a throughput of more than 1 gigabyte per second when clocking at
277 MHz on a high-performance, 0.13 mm, eight-layer copper CMOS process.

1 Introduction

Lossless data compression, in which the original data
are reconstructed precisely after decompression, is a tech-
nique that can bring significant benefits to a computing/
storage system. Its applications have been increasing in
number over recent years, fuelled by a combination of
demand for increased bandwidth along with the need to
improve storage capacity [1–5]. Lossless data compression
has been successfully deployed in storage systems (tapes,
hard disk drives, solid-state storage, file servers) and com-
munication networks (local area network (LAN), wide
area network (WAN), wireless). Many of these applications,
such as storage area networks (SAN), utilise fibre-channel
technology to interconnect high-capacity, high-speed disk
arrays and the requirements for throughput and low
latency directly influence the specification of any attached
data compression hardware. During the past few years,
our group has been developing a patented algorithm and
associated hardware architecture known as X-MatchPRO,
which enables the use of lossless data compression
in these high-speed applications [6]. This work presents
a very high throughput, ASIC (application-specific
integrated circuit) hard-macro implementation named
X-MatchPROVW, which now incorporates the capability
to adjust the width of the dictionary to a value ranging
from 2 to 4 bytes. The variable-geometry dictionary
improves model adaptation to byte-based alphabets and
enables the new internal run length coder to capture
repeating phrases formed by up to 16 bytes in a single-
output codeword. These enhancements called for a full

architectural redesign and resulted in approximately 20%
better compression ratios. In addition, the register transfer
level (RTL) description was re-architected so as to
include a configuration parameter for the generation of
dictionaries of varying size, thus trading silicon area for
compression performance. Finally, the newest architectural
addition was the introduction of run-time capability to limit
the maximum dictionary size from one up to the maximum
number of entries physically available in the device. This is
achieved via a special dictionary length configuration
register (DLCR). This feature guarantees that an implemen-
tation with higher complexity (larger dictionary size) can
decompress data generated with smaller dictionaries as
long as the DLCR register is set to the value corresponding
to the smaller dictionary. The dictionary starts empty with a
dynamically generated dictionary address determined by
the dictionary length and grows to the value set by the
DLCR register. This means that a large dictionary can
always emulate smaller dictionaries.

2 Background

Lossless data compression algorithms are typically classi-
fied as statistical-based or dictionary-based algorithms [7].
Research on statistical-based compression has focused on
pushing compression levels to the theoretical limit via
highly complex algorithms that, unfortunately, translate to
low compression processing speeds such as the prediction
by partial matching (PPM) class of algorithms [8–10]. In
addition, the algorithmic complexity itself has resulted
in only a few relatively simple hardware implementations
of statistical-based algorithms [11–16]. Conversely,
dictionary-based compression has concentrated on achiev-
ing high-throughput and good compression ratios and is
based primarily around the two very popular LZ1 and
LZ2 algorithms proposed in [17] and [18]. This is reflected
in commercial hardware with products implementing the
LZS (Lempel–Ziv Stac) [19], ALDC (adaptive lossless
data compression) [20, 21] and DCLZ (data compression
Lempel–Ziv) [22] algorithms. The LZS algorithm is a
dictionary-based compression derivative of the LZ1
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algorithm. It can sustain up to 300 Mbyte/s throughputs in
its latest hardware implementation named the 9630 [23]. It
offers good compression ratios that typically reduce to half
the original uncompressed size for multiple data types and it
has become a de facto standard in network compression
where a single data type cannot be identified. Popular
router manufactures such as Cisco and Intel support LZS
compression. Another successful lossless data compression
method is the ALDC variant of the LZ1 algorithm originally
developed by the IBM Corporation. A hardware implemen-
tation of the ALDC algorithm, developed by Advanced
Hardware Architectures Inc. (AHA) achieved 80 Mbyte/s,
while clocking at 80 MHz. The ALDC algorithm was
extended to a parallel implementation in the Memory
eXtension Technology (MXT) by IBM [24, 25]. MXT is
designed to double the main memory capacity of high-per-
formance servers and relies on an extra compressed level in
the memory hierarchy to hide the extra latency introduced
by the compression and decompression processes. The com-
pression part of MXT uses four ALDC-based cores working
in parallel in different data sections while sharing a common
dictionary. A shared dictionary improves compression
because more information is available to each core to
model the input data. On the other hand, this method does
not support incremental transmission (streaming) and
suffers from significantly higher latencies because the
outputs of all the cores have to be made available prior to
adding a header. The individual bitstreams are then conca-
tenated into a combined bitstream, ready for transmission.
Decompression has a similar limitation because the whole
compressed block must be received before the header can
be removed and decompression started. The DCLZ
algorithm is a variation on the LZ2 algorithm originally
developed by Hewlett-Packard and is today being commer-
cialised by AHA. The device clocks at up to 40 MHz for a
throughput of 40 Mbyte/s.
Other research in the area of high-throughput hardware-

based lossless data compression has focused on using a
number of simple processing elements, organised as a sys-
tolic array, to increase the throughput of the Lempel–Ziv
algorithm [26–29]. Systolic arrays offer high throughput,
because the simple processing elements can be clocked at
very high speeds, but the latency typically increases linearly
with the number of processing elements. Our own work is
based on the X-MatchPRO algorithm, which belongs to
the category of dictionary-based compressors that are not
LZ derivates. X-MatchPRO originated from the need for
very high throughput and low latency lossless data com-
pression. High throughput is achieved by processing mul-
tiple bytes per clock cycle, while low latency mandates a
pipelined microarchitecture of short length in which trans-
mission of a compressed symbol exiting the compressor
data path is performed immediately. The same requirements
apply to the decompression pipeline.

3 X-MatchPROVW overview

Figure 1 shows the complete X-MatchPROVW algorithm
pseudo-code. The use of a parallel architecture yields a
four-fold increment in compression throughput for the
same frequency. In addition, the adoption of a five-stage
pipeline keeps latencies to a minimum. Compared to
MXT, there is only one output stream, resulting in com-
pressed symbols being ready for transmission straight
after exiting the compression pipeline and without the
need for further assembling. The decompression architec-
ture mirrors this approach and supports incremental recep-
tion. Our experiments have shown that the compression

ratios achieved with X-MatchPRO are comparable to the
LZ algorithm when processing data in machine-readable
form (binary), but are significantly worse when the objec-
tive is to compress human-readable data (text, html). This
is because X-MatchPRO disarranges data that principally
exhibit 1-byte granularity rather than the 4-byte granularity
searched by the parallel engine. LZ derivatives that process
1 byte at a time can exploit this data feature to locate and
eliminate redundancy, thereby providing better com-
pression ratios. It is feasible, however, to exploit a second
level of granularity [30] at the natural word level where
the number of bytes varies from 1 to 7 bytes per natural
word. It is then possible to devise a variable width (VW)
dictionary that parses the input to natural words with differ-
ent lengths instead of a fixed 4-byte (tuple) length. The
typical parser for human readable data is the space
(ASCII code 32), which is the most common code in data
formats such as text or html. Its usage in binary data is
much less frequent and ASCII codes 0 and 255 are the
most common characters [7]. The VW method can still
achieve a high throughput because it processes multiple
bytes per cycle and it increases compression because the
likelihood of finding a match in the dictionary increases.
This technique combines with the adjustment of dictionary
length by using a phased binary code (PBC) [31] for
the match locations. This means that the geometry of the
dictionary varies in its two dimensions depending on the
input data. The variable-geometry dictionary works
together with the partial matching technique [32] of full
4-byte tuples to offer significant improvement in com-
pression ratios as shown in the following sections. Partial
matching is only applied to non-parsed 4-byte words (i.e
full words) because it requires at least 2 bytes to match,
and partial matches of partial words (i.e. a word with
fewer than 4 bytes) offer very limited compression benefits
but increase hardware complexity considerably. This means
that matches are considered valid when there is a full match
of a partial or full word or a partial match of a full word, but
never a partial match of a partial word.

4 X-MatchPROVW method

The parsing algorithm analyses four input bytes (tuples)
simultaneously and outputs a mask indicating the result of
the parsing operation together with the search data for the
dictionary. There are five different possible parsing
results: the first four cases are generated depending on
which byte contains the parser and the fifth case is used
when the parser is not found in the input tuple, so a full
4-byte word is generated. If the parser is found at the
MSB (most significant bit) of the input tuple, the length
of the natural word is 1 byte. This minimal natural word
is not searched for in the dictionary because the address
width is typically larger than 8 bits and data expansion
will take place. Instead, it is treated directly as a miss and
coded with a single bit set to 1 to indicate a miss plus a
Huffman code of only 1 bit. This alternative procedure effi-
ciently codes the ‘orphan’ space by replacing the 8-bit code
by a 2-bit code. The orphan space is not inserted in the
dictionary, so the minimum dictionary width is 2 bytes.
The other four possible parsing results are searched in the
dictionary and each will generate either a match or a miss.

A successful match produces an output where the search
data have been replaced by a pointer to the dictionary
location where the match was generated, preceded by a
single bit indicating that match. The dictionary location
pointer is coded using a PBC. The PBC is a technique
used to code the locations of a dictionary that starts empty
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and then grows as new data is processed. The advantage is
that a smaller dictionary uses fewer bits to code its positions
so there is a compression gain during the growing stage. A
match type code is used to signal which bytes were found in
the match location, whereas non-matching bytes are added
in literal form. The match types are coded using specially
generated Huffman codes [33, 34], which improve com-
pression by assigning fewer bits to the more popular types.
Table 1 shows the different possible match types and the

corresponding Huffman codes. This table was obtained after
extensive simulation using representative data sets [35]. For
example, match type ‘1110’ means that the three MSB were
found in the dictionary; this event would be the result of
matching the search word mask with the dictionary data
mask. The full match ‘1111’ is the most popular match
type, so a single-bit Huffman code is assigned to it. Less
popular matches are matches of non-consecutive bytes, so
the resulting Huffman codes are longer. Match types
‘1001’, ‘1010’ and ‘0101’ do not have Huffman codes
assigned to them because their chances of occurrence are

too low and will be coded as misses. The priority column
in Table 1 indicates which match type is more beneficial
from a compression point of view and it would be selected
first if a search generates a plurality of possible match types.

Fig. 1 X-MatchPROVW

Table 1: Valid match types

Match

type

Match description Priority Huffman

code

Code

length, bits

1111 full match 1 1 1

1110 3 MSB match 2 010 3

0111 3 LSB match 3 000 3

1101 any other 3 match 4 001111 6

1011 001110

1100 2 MSB match 5 0010 4

0110 any other 2 match 6 001101 6

0011 001100
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If the search operation fails to find a match in the dictionary,
a miss is generated. The format of the output is a miss type
code that signals the number of non-matching bytes follow-
ing in literal form, preceded by a single bit indicating a
miss. Table 2 shows the five possible miss types and associ-
ated Huffman codes. The most popular miss-type is the
‘orphan’ space, so it is given the shortest miss-type code
of a single bit. Natural words with more than 4 bytes and
phrases formed by more than one word are parsed over
several dictionary locations. The Move-To-Front (MTF)
[36] dictionary maintenance strategy, whereby a new
word is placed at the front of the dictionary and the rest
move down one position, maintains these long words and
phrases over several consecutive dictionary locations. The
overall effect is that multiple matches at the same dictionary
location occur when a phrase or long word already present
in the dictionary is received again. This event can be coded
in a single run-length code where a single dictionary
location code plus a number of repetitions are output. The
run-length coding technique detects and codes repetitions
of matches at any location. Match repetitions at location 0
are generated by the same data being received in the input
stream; for example, a stream of spaces in a text file or
constant background colour in an image file. Extensive
simulation shows that run-lengths at location 0 are the
longest ones and improved performance is obtained when
8 bits are assigned to code the number of repetitions. This
means that up to 255 repetitions can be coded together.
On the other hand, long words or phrases do not generate
more than four or five repetitions at locations higher than
0, so only 2 bits are assigned to code the number of
repetitions.
Figure 2 shows the format of the variable-length code-

words output by the compression method. All the match
codes indicate compression and the optimum compression
ratio can be obtained when the same data are continuously
repeated in the input data source such as when there is a
constant background in a picture or the space character in
a text file. The maximum compression ratio is then:
CR ¼ (1 bit for matchþ 1 bit for match locationþ 3 bits
for match typeþ 8 bits for run length)/(255 � 32 bits for
input data) ¼ 0.0016. Using an 8-bit value for the run-

length means that up to 255 repetitions can be coded in a
single run. This means that an input data source of 10 000
bytes will be coded in 16 bytes. All the miss codes expand
the original data source except for the code corresponding
to the orphan space, as discussed previously. Expansion
occurs if the compression ratio is larger than 1 with more
output bits being produced than input bits received. The
worst-case expansion can be measured as CR ¼ (1 bit for
missþ 3 bits for miss typeþ 32 bits for literal bytes)/(32
bits for literal bytes) ¼ 1.094. This means that an input
data source of 10 000 bytes will be coded in 10 940 bytes.
Expansion can only be avoided by buffering the compressed
data before transmission so the uncompressed version can be
sent if expansion has taken place.

5 X-MatchPROVW example

Figure 3 compares the search mechanism and dictionary
maintenance for a non-parsed and a parsed dictionary
with 4-byte-wide locations. In both cases the dictionary is
shown in cycle 1 as having already processed the sentence
‘it is your choice to’. Spaces are represented with the sym-
bol ‘_’ to facilitate the understanding of the example. The
crossed byte locations indicate empty locations in the
parsed dictionary. The sentence takes seven dictionary
locations in the parsed version and five dictionary locations
in the non-parsed version. The example assumes that the
sentence ‘choice to’ is received as the new data to be pro-
cessed. The non-parsed version searches in cycle 1 for
‘choi’ and in cycle 2 for ‘ce t’. The searched data, although
present in the dictionary, are not located in the right pos-
itions and two consecutive misses are generated that will
result in data expansion. For example ‘c’ and ‘h’ should
be at byte position 3 and 2 in the same dictionary location
of the dictionary, but they have been stored at byte positions
0 and 3 at dictionary locations 1 and 3. The MTF dictionary
maintenance policy adds the missed data at the top of the
dictionary and the rest of the data move down by one
location each cycle. On the other hand, the parsing
version arranges the data in a way that two consecutive
full matches are generated with search data ‘choi’ and
‘ce’. The MTF maintenance policy moves the data from
the match location to the top of the dictionary. This
means that the match location in cycles 1 and 2 is the
same (location 2) and this fact can be readily exploited by
generating a single codeword with a run-length at position
2 with the appropriate length. Additionally, the data
searched in cycle 3 ‘to’ (not shown in Fig. 2) will further
extend the run-length at location 3 and further improve
compression.

6 Hardware architecture

The architecture of the core consists of three major com-
ponents: the modelling unit, the coding/decoding unit and
the packing/unpacking unit. The packing unit function is
to pack the variable-length code result of the compression
operation into fixed-length codes that depend on the width
of the compressed output bus. The unpacking unit performs
the inverse operation. The next sections describe the model-
ling, coding/decoding and packing/unpacking units in more
detail based on a dictionary with a maximum length of 16
locations as prototyped on the FPGA board as proof-of-
concept. Larger dictionaries are required to obtain LZ-
equivalent compression levels and the optimal length from
a compression point of view is 1024 entries.

Table 2: Valid miss types

Data

type

Data length,

bits

Huffman

code

Code length,

bits

_ 8 1 1

a_ 16 001 3

ab_ 24 0001 4

abc_ 32 0000 4

abcd 32 01 2

Fig. 2 Codeword format in VW
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6.1 Modelling architecture

6.1.1 Compressor: Figure 4 shows the architecture of
the modelling unit of the compressor. An input buffer
is used, because, due to the nature of the VW algorithm,
fewer than 32 bits of data may be processed per cycle.
The parsing unit detects the presence of the parser character
in the 32-bit input data bus and generates the appropriate
mask bits for the rest of the pipeline. The modelling unit
is based on a CAM dictionary of size 32�max dictionary
length, in which the data are stored. The CAM unit is
able to perform search and adaptation operations in a
single cycle for optimal speed. The columns in the CAM
array can be configured as shift registers to implement the
MTF maintenance policy described previously.
The VW method uses a mask associated with each

dictionary location that tags those bytes in the word that
are valid. The mask array must be stored in a CAM with
the same structure as the data dictionary. The size of the
mask array is 4�max dictionary length. The priority logic
and match decision logic select the best compression
match, using the results of the search operation in the dic-
tionary, and forward this information to the coding unit
(discussed in the next section). The full match detection
unit uses the match information plus the same length infor-
mation to detect full matches in the dictionary. Owing to the
variable-width dictionary locations, a match type such as
‘1100’ could mean either a partial match of the two
MSBs or that a full match in a partial word of only 2
bytes has been detected. The full match detection logic
resolves this ambiguity and generates the appropriate
signals for the adaptation logic and the run-length coding
logic. In order to achieve this, the full match detection
logic receives the same length data that contains three

vectors, each one indicating a same length of 2 bytes,
3 bytes and 4 bytes. The full match detection unit compares
the match result and the same length data to issue full
matches. For example if the match result is ‘1100’ and
both search data and dictionary data have a same length
of 2 bytes, a full match has been found. Similarly, full
matches are issued when the match results are ‘1110’ and
‘1111’ and the same length of 3 bytes and 4 bytes are
active, respectively. All the other cases do not result in a
full match.

The adaptation logic implements the MTF maintenance
policy, generating an adaptation vector that will shift the
dictionary and mask data down. New data are inserted at
the top of the dictionary while old data move down one pos-
ition until the location where a full match (if any) was
detected. The rest of the dictionary remains untouched.
Misses or partial matches effectively move down the
entire dictionary, evicting the data located at the bottom
of the dictionary. The Out of Date Adaptation logic
(ODA) is used to break the feedback loop present in the
search and adaptation operations, enabling a higher clock-
ing rate. Inserting a simple pipeline register will adversely
affect compression performance, because it would not be
possible to avoid duplicating the same dictionary data in
several dictionary positions. ODA means that dictionary
adaptation at time t þ 2 takes place using the adaptation
vector generated at time t, but it is designed to guarantee
that data duplication is restricted to position 0 thereby main-
taining dictionary efficiency.

6.1.2 Decompressor: The modelling unit of the
decompressor is depicted in Fig. 5. It receives the match
(dictionary) location, mask data, match type and literal

Fig. 3 X-MatchPROVW example
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data from the decoder and uses this information to recon-
struct the original data element. The decompression
dictionary utilises a standard synchronous RAM instead of
a CAM, because the received match location is used as
the SRAM memory addresses. The pointer array logic per-
forms an indirection function over the read and write
addresses prior to accessing the RAM dictionary. It
models the MTF maintenance policy of the compressor
CAM dictionary by updating pointers instead of moving
data. The pointer array enables the mapping of the CAM
dictionary to RAM for decompression. Otherwise an extra

shift register array would have been needed for the decom-
pression dictionary, thereby increasing the logic complexity
of the implementation. Similarly to the compression
dictionary, the decompression dictionary stores data and
mask information. The number of storage elements in the
RAM memory is the same as that of the CAM memory.
The output tuple assembler uses the literal data, match
type, dictionary data and mask data to output the original
word with a variable width ranging from 8 to 32 bits.
These data are forwarded to the assembling unit, which
performs the reverse operation to that of the compression

Fig. 4 Compressor model architecture

Fig. 5 Decompressor model architecture
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parsing unit: it assembles the variable width words into
fixed-length 32-bit words that are then written into the
output buffer.

6.2 Coding/decoding architecture

6.2.1 Compressor: Figure 6 shows the coding archi-
tecture associated with the VW algorithm. There are two
coders, namely the main coder and the run-length coder.
The main coder monitors whether the signals being for-
warded by the model correspond to miss or match events.
The 16-to-4 encoder codes the unary match location
vector into a more manageable log2(max dictionary
length) binary representation. This binary match vector is
then further processed by the phased binary coder, which
assigns a code whose length in bits is defined by how
many dictionary locations are active in that coding event.
The output is concatenated with the output of the match
type coder generator. A second code concatenator unit
selects between the match event output or the miss event
output depending on the miss signal generated when the
match type is not valid as defined in Table 1. In parallel
to this process, the run-length coding logic monitors the
full match signals being forwarded by the model. These
signals detect repetitions of full match events at location 0
or at locations above 0.
If two or more full matches occur consecutively at the

same dictionary location, the codeword corresponding to
the first and second matches are removed from the pipeline
and the coding logic stops producing codewords that will be
coded as part of a run-length code. The coding event that
stops the run length forces the RLI coding control unit to
output the run-length codeword followed by the codeword
for the event that stopped the run length.

6.2.2 Decompressor: Figure 7 shows the decoder
architecture. It receives variable-length codewords of a
maximum length of 35 bits (1 bit for miss, 2 bits for miss
type and 32 bits for literal bytes), which are then processed

in the main decoder to detect possible run-length codes and
generate the match location, mask, match type and literal
data combinations required to reconstruct the original
data. The RLI decoding logic forwards this information to
the modelling unit if a run-length code was not detected;
otherwise it outputs the match location where the run-
length was detected, together with the full match type as
many times as indicated by the run-length codeword.
There are two feedback paths that are not visible in
Fig. 7, called match width and set length to zero; these
paths carry information back to the unpacking unit as this
unit needs to know how many bits have been used in the
previous decoding step in order to shift out old data
and concatenate new data. This feedback loop is the
performance limiting factor in the design because it is
not possible to add a pipeline register without affecting
functionality.

6.3 Packing/unpacking architecture

6.3.1 Packing architecture: Figure 8 shows the pack-
ing architecture. The bit assembly logic assembles the
variable-length codewords produced by the coder into
64-bit fixed length codes than are then output to the width
adaptation logic. A 98-bit register is necessary because in
the worst case there could be 63 bits in the buffer waiting
to be output and a 35-bit codeword could be generated
(63þ 35 ¼ 98). The maximum codeword of length 35 is
obtained with 1 bit for missþ 2 bits for miss typeþ 32
bits of literal data ¼ 35 bits. The active code length is
stored in a 7-bit register. The 64-bit codeword is then for-
warded to the width adaptation logic that reads in 64-bit
compressed words from the bit assembly logic and writes
out 32-bit compressed words to the compressed output
bus. It performs a buffering function smoothing the data
flow out of the chip to the compressed port and it also trans-
forms the data width from 64 bits to a more manageable 32
bits. It contains a total of 2 kbytes of fully synchronous
dual-port RAM organised in two blocks of 256 � 32 bits

Fig. 6 Coder architecture
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to buffer compressed data before being output to the com-
pressed data out bus.

6.3.2 Unpacking architecture: Figure 9 shows the
unpacking architecture. The bit disassembly logic unpacks
64 bits of compressed data read from the internal buffers
into variable-length codewords. To be able to shift out old
data and concatenate new data, the codeword length must
be supplied by the decoder logic. This forms a feedback
loop difficult to improve. The 64-bit words are provided
by the width adaptation logic that performs the equivalent
but opposite function as in the packer. It reads in 32 bits
of compressed data from the input compressed bus and it
writes out 64 bits of compressed data to the bit disassembly
logic when it requires more data. It performs a buffering
function smoothing the data flow in the chip from the com-
pressed port. It contains 2 kbytes of fully synchronous dual-
port RAM organised in two blocks of 256 � 32 bits each as
in the packer. The design uses a technique where decoding
takes place in parallel to concatenation of new data to
improve speed. This means that the concatenation of new
data must take place before the number of bits decoded in
the current cycle is known. In order to guarantee that the

next decoding cycle can take place, enough bits must
be left in the register in case a maximum number of bits
are consumed in the current cycle. The maximum number
of bits that can be consumed is 35, so concatenation of
new data must take place if fewer than 70 bits are valid in
the register. If there are 70 bits valid and the current cycle
consumes 35 bits, then 35 bits will be left for the next
cycle and the decoding operation can carry on uninter-
rupted. Because 64 bits are added to old data when the
number of valid bits is less than 70, the decoding register
is extended to 133 bits (69þ 64 ¼ 133 bits).

7 Performance analysis

There are two variables that define the performance of a
data compression architecture, namely the average com-
pression ratio and the throughput it achieves on represen-
tative data sets.

7.1 Compression efficiency

We selected three data sets for the compression efficiency
analysis. The Calgary and Canterbury [34] data sets are

Fig. 7 Decoder architecture

Fig. 8 Packing architecture
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standards used by the data compression community, and the
memory data set was developed within the research group to
enable studying compressibility of main memory in a com-
puter system.
The Canterbury data set was introduced to replace the

ageing Calgary data set and includes representative data
found in modern computer systems. Both data sets are
biased to data that is textual in nature such as book chapters,
poetry, C and Lisp source code and html web pages, but
they also include application data, spreadsheet files and
fax images.
Figures 10 to 12 show the compression results comparing

the parsing (X-MatchPROVW_1024) and non-parsing
(X-MatchPRO_1024) versions of the X-MatchPRO algori-
thm against the three hardware implementations of the
algorithms we reviewed in Section 2. These are the
ALDC developed by IBM, the DCLZ developed by
Hewlett-Packard and the LZS developed by HiFn. These
devices are representative of the fastest and best com-
pression technology available today. The dictionary size
was increased to the maximum allowed in each algorithm
in order to obtain the best compression performance from

each of them. Such maximum values are up to 2048
locations for the LZ algorithms and 1024 locations for
X-MatchPRO. The horizontal axis indicates the block
size; input data are processed as blocks and the dictionary
is reset between blocks. This means that no history infor-
mation is kept from the compression of one block to the
compression of the next block. The vertical axis measures
the compression performance as a ratio of output bits to
input bits, so the smaller the value the better the
compression.

The two standard data sets show a similar data
compression trend. The non-parsing version of the
X-MatchPRO algorithm is the worst performer for all data
blocks with approximately a 17% degradation relative to
the VW version. The textual nature of these data sets
explains the better performance of the variable-width
algorithm, which is able to adjust its width to the natural
word width of the data source. The non-parsing version
uses a width fixed to 32 bits that works well in
the machine-readable data subset, but performs poorly
for human-readable data. The VW algorithm using the
1024-entry dictionary achieves compression levels similar

Fig. 9 Unpacking architecture
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Fig. 10 Performance using the Calgary data set
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to the other three commercial algorithms. This translates
to compression ratios of slightly better than 0.5 for
block sizes greater than 4 kbytes. Compression performance
for the 16-entry dictionary is around 0.65. For data blocks
larger than 4 kbytes, a saturation effect is noticeable in all
algorithms. It can also be observed that the VW algorithm
demonstrates improved performance relative to the other
algorithms with increasing block size. The reason is that a
VW dictionary needs more data to be generated effectively,
because up to four LZ dictionary locations can be stored
in a single VW location. This means that, in general, the
VW algorithm needs a larger data window to achieve
optimal performance. The memory data set of Fig. 12
shows that the two X-MatchPRO variants achieve very
similar performance levels. This data type has a 32-bit
granularity because it is formed by data captured directly
from main memory in a 32-bit UNIX workstation while
running applications such as EDA tools and web surfing.
Under these conditions, the VW algorithm gracefully
returns to a non-parsing operational mode. The LZ1
algorithms achieve identical levels of compression,

whereas the LZ2 algorithm underperforms the rest for all
block sizes.

7.2 Compression throughput

The non-parsing version of the algorithm processes 4 bytes
per cycle independently of the data source, which is equiv-
alent to a throughput of 200 Mbyte/s when clocking at
50 MHz. The VW algorithm has a throughput that is data-
dependent, because it will parse the input data in data
words ranging from 1 to 4 bytes. A natural word of length
greater than 4 bytes will be parsed into a number of
4-byte words plus a partial word ranging from 1 to 4
bytes. To evaluate the effects of parsing on data throughput,
the average number of bytes processed per clock cycle was
measured using the same data sets as for the compression
efficiency experimentation. Typically, the throughput on
data sets that are textual in nature is around 3.5 bytes per
cycle, whereas almost 4 bytes per cycle are obtained for
binary data sets.
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We calculated an arithmetic mean of 3.7 bytes per cycle,
which translates to 185 Mbyte/s when clocking at 50 MHz.
These figures are independent of input data block size.

8 Hardware implementation

Both versions of the X-MatchPRO algorithm were proto-
typed and validated on an Altera APEX20KE device popu-
lating a PCI-based Altera development platform. The FPGA
implementation achieved 50 MHz, which is equivalent to a
throughput of around 185 Mbyte/s for the VW version of
the algorithm. The complexity of X-MatchPROVW in the
APEX technology for a dictionary of 16 locations is
approximately 8 k FPGA logic cells. This is approximately
15% more than the non-parsing version whose complexity
is 6.8 k FPGA logic cells. Most of the FPGA resources
are used by the CAM dictionary, which typically accounts
for 80% of the total gate count because it is implemented
using flip-flops. The requirement to store the 4-bit masks
together with the 32-bit dictionary words increases the dic-
tionary size by 12.5%. Chip complexity increases by a
factor of 1.5 each time the dictionary size is doubled. This
means that the optimal dictionary size of 1024 locations
requires approximately 100 k FPGA logic cells with more
than 90% of these cells in the CAM dictionary. An ASIC
implementation was subsequently undertaken for the

UMC 0.13 mm, eight-layer copper process, using the flow
outlined in Fig. 13 to measure the performance level
obtained with ASIC technology. The design was originally
synthesised in Synplify ASIC and then, read into the
Synopsys Design Compiler for further logical netlist optim-
isation. It was then read into the Synopsys Physical
Compiler tool and optimised for minimum physical con-
straints (MPC). The MPC (placed) netlist was then run
through Place and Route on the Cadence Encounter plat-
form to verify that the design was indeed routable.

Once the routability aspect of the design was achieved,
the original logical netlist was re-read into the Physical
Compiler once more, but now with real physical constraints
applied. These constraints specified the utilisation factor,
aspect ratio and die size, power ring dimensions, power
trunks width and number, pin (port) location and, finally,
the power straps characteristics. It was re-optimised and
passed to Encounter for the final Place and Route run.
Figure 14 depicts the final placed and routed database of
the X-MatchPROVW algorithm. The characteristics of the
hard macro are given in Table 3. The final hard-macro
clocks at a conservative (for the process) 273 MHz. At
this frequency, it achieves 1.092 Gbyte/s compression/
decompression bandwidth with an initial latency of
14.64 ns and a pipelining rate of 3.6 ns. To the best of our
understanding, this is the fastest streaming data compres-
sor/decompressor available either in industry or academia
today.

9 Conclusions

This paper presented the novel X-MatchPROVW lossless
data compression algorithm and architecture based on a
variable-width dictionary in which the input data is
parsed into natural words of varying length instead of a
fixed 4-byte length. Every dictionary entry has an associ-
ated mask that identifies the valid bytes in that position.
The mask is stored in the dictionary together with the
data, so a match can only be effective over valid data
bytes. This new architecture achieves a high throughput,
because it processes multiple bytes per clock cycle and
increases compression as the likelihood of finding a
match in the dictionary increases. Although alternative

SynplifyASIC
Initial ASIC Synthesis

Design Compiler
High-performance ASIC

Synthesis

Physical Compiler
Preliminary ASIC Synthesis &

Placement (MPC)

Cadence Encounter

First-pass Place and Route

Design Routable ?

N

Physical Compiler

Final ASIC Synthesis &

Placement (Ports , power
grid)

Cadence Encounter

Final -pass Place and Route

Design Routable ?

GDS2 Ready

N

Validated RTL
and constraints

Fig. 13 Physical implementation flow

Fig. 14 X-MatchPROVW layout

Table 3: ASIC details

Physical parameter Value

Std cells (hard macros) 31 856 (8 RAMs)

Dimensions 2 mm � 1 mm (2 mm2)

Std Cell utilisation 58%

Fmax 273 MHz
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definitions of word are possible, parsing is typically done
with the space character. The method, therefore, increases
the algorithm granularity from the classical 1 byte to that
of the natural word, where the natural word length is
defined as a maximum sequence of alphabetic characters
or non-alphabetic characters limited by the space charac-
ter. The physical realisation of the method limits the
width of the dictionary location in hardware to 4 bytes,
but the presence of the internal run-length coder and
the move-to-front dictionary maintenance policy keeps
the logical connection of a word that extends over
several dictionary locations. Additionally, a phase
binary coding technique is used so the number of valid
words in the dictionary is determined by the degree of
redundancy present in the input data source. An ASIC
implementation was undertaken and the resulting hard
macro achieved a throughput of more than 1 Gbyte/s
in streaming data, while maintaining low latency.
Automatic configuration of the maximum physical dic-
tionary size (at compile time) and the maximum logical
dictionary size (at run-time) enables compressed data
blocks generated with small dictionaries to remain com-
patible with implementations using large dictionaries.
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