
ProNoC
System Overview

Copyright ©2014–2018 Alireza Monemi
This file is part of ProNoC
ProNoC (stands for Prototype Network-on-Chip) is free software: you can redistribute it
and/or modify it under the terms of the GNU Lesser General Public License as published
by the Free Software Foundation, either version 2 of the License, or (at your option) any
later version.
ProNoC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
without even the implied warranty of MERCHANTABILITY or FITNESS FOR A
PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public License along with
ProNoC. If not, see <http:**www.gnu.org/licenses/>.

Project
Summary

Prototype-network-on-chip (ProNoC) is an EDA tools that facilitates prototyping of
custom heterogeneous NoC-based many-core-SoC (MCSoC). ProNoC is enhanced us-
ing a parameterizable virtual channel based low-latency NoC that is optimized for
FPGA implementation (see NoC Specification Section for more details). Moreover,
ProNoC can also be used as a custom Wishbone bus based SoC generator (SoC with-
out NoC) using available Intellectual Properties (IPs) in ProNoC library. The ProNoC
IP library can be easily extended to support more IPs. More technical information
about this project can be found in ProNoC paper [1].

ProNoC GUI
MCSoC
Generator

Writing the whole RTL code of a complex heterogeneous MCSoC manually can be
time-consuming and error prone due to the huge number of possible configurations as
well as high similarity among sub-components code portions. In order to facilitate the
design of such complex systems, ProNoC, an open-source EDA tools that generates
the complete heterogeneous customized NoC-based MCSoC RTL code is developed.

Figure 1: ProNoC system overview

The design effort increases when developing a heterogeneous MCSoC as each pro-
cessing tile must be designed separately. To ease and speed up the development of such
platform, a graphical user interface (GUI) is developed to generate a custom NoC-based
MCSoC. The ProNoC GUI is written with Perl programming language and GTK2 li-
brary. Figure 2 illustrates the ProNoC design flow. ProNoC consists of four main
windows corresponding to each layer in MCSoC design as follow.

Interface
Generator

The components interconnection is facilitated by defining the interface. Interface is
the combination of several ports that provide specific functionality. Each interface is
divided into two groups namely as socket and plug. Components having the socket
interface can be connected to other components having the plug type of the same in-
terface. In processing tile generator, only the plug interface are shown in IP box where
user can connect them to the list of available sockets. For instance, the master and
slave interface of the Wishbone bus are defined as sockets type whereas all other com-
ponents that are connected to the Wishbone bus would have the plug type interfaces.

ProNoC homepage May 15, 2018 1

http://www.sciencedirect.com/science/article/pii/S0141933117302417
http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

Figure 2: ProNoC design flow.

For more information on Interface Generator, please refer to /trunk/mpsoc/perl_gui

/doc/interface_gen.pdf located in project folder.

IP Generator The IP generator facilitates the process of making a library for each IP. An IP can
either be a processor or a peripheral device such as memory, timer, bus or an interrupt
controller. The IP generator reads the Verilog file containing the top-level module of
the IP and user can define the number of interfaces and map them to the IP ports. One
advantage of the IP generator is that it can also detect the Verilog file parameters and
allow the user to choose an appropriate GUI interface such as spin-bottom or combo-
box for redefining the parameter when each IP is called by the PT generator. User
can also define the preferable memory-mapped range and required address width (e.g.
the address width can be a Verilog parameter) for slave Wishbone bus interface(s).
Hence, the PT generator can automatically assign Wishbone bus addresses. For more
information on IP Generator, please refer to /trunk/mpsoc/perl_gui/doc/ip_gen.

pdf located in project folder.

Processing Tile
Generator

The processing tile (PT) generator contains the list of all IPs that can be connected
to each other using available defined interfaces. This integration tool provides some
facilities such as automatic generation of interconnect logic and automatic Wishbone
address setting. It also provides graphical interface for setting different IP parameters.
The PT generator can generate any custom PT, generate the Verilog file containing the
top level design, and generate a header file containing IP’s Wishbone addresses and

ProNoC homepage May 15, 2018 2

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

Figure 3: Processing tile generator snapshot.

functions. Figure 3 shows a snapshot of the PT generator. For more information on
PT Generator, please refer to to /trunk/mpsoc/perl_gui/doc/pt_gen.pdf located in
project folder.

NoC-based
MCSoC
Generator

The MCSoC generator facilitates the generation of a heterogeneous NoC-based MC-
SoC by providing GUI interface for setting the NoC’s and PTs’ parameters. It checks
all processing tiles which have been previously generated using the PT generator and
lists all the tiles containing the NI to connect to the NoC.

NoC Simulator ProNoC is developed in Verilog language, the code is verified using Modelsim simula-
tor. However, RTL simulation is too slow to efficiently evaluate the performance of a
medium or large NoC under different network traffic patterns and NoC parameters. In
order to accelerate the NoC simulation, Verilator simulator is used to generate a C++
model of an NoC router from the Verilog RTL code. A C++ testbench code connects
multiple generated routers to generate the NoC. It also connects NoC routers to packet
generators which are able to inject packets with six different synthetic traffic patterns
namely: uniform random, Matrix-transposed 1 and 2, Bit-complement, Bit-reversal,
and Tornado. Figure 5 shows the ProNoC simulator processes flowchart.

NoC Emulator Although Verilator simulator can speed up simulation time, it consumes a lot of time
especially for large NoCs. ProNoC comes up with a GUI interface for emulating of
actual NoC using Altera FPGAs. To do this, a programmable packet injector module
is developed which can be programed at run time using Altera JTAG. These modules
inject/sink packets to the prototype NoC using different synthetic traffic patterns. In
order to emulate specific NoC configuration, two files must be provided to the emulator,
which are the SRAM Object File (.sof) of the compiled top-level design and the NoC

ProNoC homepage May 15, 2018 3

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

Figure 4: NoC-based MCSoC generator snapshot.

Figure 5: NoC simulator flowchart.

ProNoC homepage May 15, 2018 4

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

configuration information file (.info file). The emulator provides the GUI interface for
generating the top-level module containing the NoC, packet injectors and, remotely
controllable reset and counters. The generated Verilog code is compiled using Quartus
II compiler to provide the .sof file.

Figure 6: NoC emulator runtime stages flow chart.

Having the .sof and .info files of different NoC configurations, the emulation can be
done using steps shown in Figure 6. The ProNoC emulator GUI snapshot is illustrated
in Figure 7.

ProNoC homepage May 15, 2018 5

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

Figure 7: ProNoC NoC emulator snapshot.

NoC
Specification Network-on-Chip (NoC) is a scalable on-chip interconnects for complex and large-

scale MCSoC. Prototyping modern NoCs on field programmable gate array (FPGA)
platform can provide a functional system model that allows evaluation of the state-of-
the-art NoC-based MCSoC. However, most existing FPGA-based NoC routers have
simple implementation that can not represent the state-of-the-art application-specific
integrated circuit (ASIC) NoCs which limits the evaluation of FPGA based MCSoC
prototypes to simple NoC parameterizes. ProNoC presents an FPGA-optimized NoC-
based MCSoC with ASIC-based NoC functionalities. The NoC specifications are as
follow.

• Wormhole packet switching flow-control: Wormhole allows storing of differ-
ent flits of the same packet in several routers along the path and requires low
buffer.

• Virtual Channel(VC): ProNoC supports parameterizable number of VCs. All
VCs that are located in the same input port of the router share one BRAM mem-
ory. Typically, several VCs on a single physical channel can be implemented for
various reasons such as to increase NoC throughput, prevent deadlock condition
in both network-level and protocol-level, or to generate virtual networks (VNs)
to support QoS for different application classes. In case that none of aforemen-
tioned features are required, the user can define VC number as one which results
in a simple non-VC based router architecture.

• Combined VC/switch allocator: combined allocator allows simultaneous al-
location of VC and switch stages in the same clock cycle to reduce the router

ProNoC homepage May 15, 2018 6

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

latency. ProNoC can be configured with three different combined VC/SW allo-
cators:

(a) Baseline. (b) Comb-spec1

(c) Comb-spec2. (d) Comb-nonspec.

Figure 8: Parallel VC/SW allocation functional block diagram.

1. comb-spec1: VC allocator combined with speculative switch allocator where
the validity of speculative requests are checked after the switch allocation
stage.

2. comb-spec2: VC allocator combined with speculative switch allocator where
the validity of speculative requests are checked after the first level arbitra-
tion stage of the switch allocator.

3. comb-nonspec: VC allocator combined with non- speculative switch allo-
cator where the validity of speculative requests are checked at the beginning
of switch allocation.

Combing VC and switch allocation has the benefit of lower area in comparison
with separated speculative VC and SW allocator (This configuration also can be
selected with setting combination type as baseline. However, it is not a recom-
mended configuration as it results in high area-overhead without any significant
improvement in router performance.

• Non-atomic or atomic VC reallocation:

In atomic VC reallocation, a free VC can be reallocated only when it is empty.
whereas in non-atomic VC reallocation a non-empty VC can be reallocated once
it receives the tail flit. Atomic VC reallocation may results in inefficient buffer
utilization and performance degradation.

ProNoC homepage May 15, 2018 7

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

Figure 9

• NoC topology: Currently ProNoC supports two regular topologies of 2D Mesh
and Torus.

• Different routing algorithm: ProNoC supports deterministic (DoR), partial
adaptive (turn models and odd-even) and fully adaptive routing. To avoid a dead-
lock condition in torus topology due to wrap-around wires, packets are routed
based on TRANC routing. ProNoC proposes an improved flow control for 2D
mesh. For more information see our NoCArc’16 paper [2].

• Router pipeline stages: ProNoC NoC router has two pipeline stages. In the first
stage three processes of look-ahead route computation, VC allocation and SW
allocation are done in parallel. The second stage is switch traversal.

ProNoC can also be configured with a static strength allocator (SSA), which
allows packets traversing to the same direction pass NoC router withing 1-clk
latency. More information about SSA can be found in: our ICITACEE 2016 [3].

FPFA Synthesis
Results

The FPGA synthesis results of some 4× 4 Mesh NoCs with different configuration are
shown in this section. In all tables NoC are configured with flit size of 32 bit and 4-
flit buffer size per VC on Stratix IV EP4SGX230KF40C2 Altera FPGA. Note that the
reported values in percentages indicates the amount of target FPGA hardware resource
usage. We also provide the synthesis results of CONNECT as it also targets ASIC
style NoC router implementation. See [3] for more information including performance
comparison between CONNECT and proposed NoC router.

Table 1: No-VC and 2-VC based comparison.

DoR NoC Max freq.
Total BRAM
num. (M9k)

Total LCs of
4x4 mesh

Avg. LCs of a
5-port router

no-VC 258 MHz 64 (5.2%) 11296 (6.2%) 673 (0.4%)
2-VC 218 MHz 64 (5.2%) 18578 (10.2%) 1105 (0.6%)

ProNoC homepage May 15, 2018 8

http://dl.acm.org/citation.cfm?id=2994134
http://icitacee.undip.ac.id/index.php/icitacee/index/pages/view/2016-program
http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

Table 2: 2-clk and 2clk-SSA synthesis results comparison using 4-VCs.

DoR NoC Max freq.
Total BRAM
num. (M9k)

Total LCs of
4x4 mesh

Avg. LCs of a
5-port router

2-cycle 165 MHz 64 (5.2%) 41406 (23%) 3234 (1.8%)
2-cycle-SSA 152 MHz 64 (5.2%) 46296 (25%) 3616 (2.0%)
CONNECT 94 MHz - 67666 (43%) 5286 (3.6%)

Table 3: 4-VCs adaptive NoC synthesis results.

Max freq.
Total BRAM
num. (M9k)

Total LCs of
4x4 mesh

Avg. LCs of a
5-port router

Fully/partially
adaptive 161-163 MHz 64 (5.2%)

48,668 - 49940
(27 %)

3802 - 3901
(2%)

In-system
Communication

The communication with the FPGA board including memory content updating (pro-
gramming the processors) or reading/writing to the probes/sources has been done us-
ing JTAG interfaces. To do this a Jtag_wb interface module is developed which can
be connect the Wishbone bus to the Altera Virtual JTAG TAB. The communication via
host PC and FPGA board is handled using Jtag_man software which is written in C to
allow simple data transferring to the Jtag_wb via USB blaster cable.

Target Platform ProNoC has been developed and verified using ALtera FPGAs. In order to use other
FPGA vendors you probably need to replace the Altera VJTAG TAB with the specific
target FPGA Jtag TAB and modify the Jtag_man.c to adapt with the new TAB.

How to Cite If you found ProNoC useful please cite one of the following references in your publi-
cations:

[1] Alireza Monemi, Jia Wei Tang, Maurizio Palesi, and Muhammad N Marsono. ProNoC: A
low latency network-on-chip based many-core system-on-chip prototyping platform. Mi-
croprocessors and Microsystems, 54:60–74, 2017.

[2] Alireza Monemi, Chia Yee Ooi, Muhammad Nadzir Marsono, and Maurizio Palesi. Im-
proved flow control for minimal fully adaptive routing in 2D mesh NoC. In Proceedings
of the 9th International Workshop on Network on Chip Architectures, NoCArc’16, pages
9–14. ACM, 2016.

[3] Alireza Monemi, Chia Yee Ooi, Maurizio Palesi, and Muhammad Nadzir Marsono. Low
latency network-on-chip router using static straight allocator. In Proceedings of 3rd In-
ternational Conference on Information Technology, Computer and Electrical Engineering,
ICITACEE’16. IEEE, 2016.

[4] Alireza Monemi, Chia Yee Ooi, and Muhammad Nadzir Marsono. Low latency network-
on-chip router microarchitecture using request masking technique. International Journal
of Reconfigurable Computing, 2015:2, 2015.

ProNoC homepage May 15, 2018 9

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

Additional
Documentation

For more information and tutorials, please check ProNoC User manual.pdf file.

ProNoC homepage May 15, 2018 10

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

	Project Summary
	ProNoC GUI MCSoC Generator
	Interface Generator
	IP Generator
	Processing Tile Generator
	NoC-based MCSoC Generator
	NoC Simulator
	NoC Emulator

	NoC Specification
	FPFA Synthesis Results

	In-system Communication
	Target Platform
	How to Cite
	Additional Documentation

