

ProNoC

User Manual

Copyright ©2014–2023 Alireza Monemi

This file is part of ProNoC

ProNoC (stands for Prototype Network-on-Chip) is free software: you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation, either version 2 of the License, or (at your option) any later version.

ProNoC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with ProNoC. If not, see http://www.gnu.org/licenses/>.

This document may include technical inaccuracies or typographical errors.

Contents

1	Inst	allation Manual for the Ubuntu Linux Environment	4
	1.1	ProNoC Source Code	4
	1.2	Installation	5
2	Inte	erface Generator	8
	2.1	Introduction	8
	2.2	Generate New Interface	10
	2.3	Defined Interfaces	10
		2.3.1 interrupt_cpu	11
		2.3.2 interrupt _peripheral	11
		2.3.3 clk	12
		2.3.4 reset	12
		2.3.5 Enable	12
		2.3.6 Wb_master	12
		2.3.7 Wb_slave	13
3	IP (Generator	14
	3.1	Introduction	14
	3.2	Generate a New IP	14
	3.3	List of available Variables in ProNoC	18
	3.4	List of available IP cores in ProNoC	19
		3.4.1 Bus	19
		3.4.2 Communication	19
		3.4.3 DMA	19
		3.4.4 Display	19
		3.4.5 GPIO	19
		3.4.6 Interrupt	20
		3.4.7 NI	20
		3.4.8 Processor	20
		3.4.9 RAM	20
		3.4.10 Source	20
		3.4.11 Timer	20
4	Pro	cessing Tile Generator	21

5	Pro	cessing Tile Generator Hello World Tutorial	2
	5.1	System Requirements:	2
	5.2	Objectives:	2
	5.3	Desired SoC	2
		5.3.1 Schematic	2
		5.3.2 Application Software	2
	5.4	Create New SoC Using ProNoC Processing Tile Generator	2
	5.5	Software Development	3
	5.6	Simulate the generated RTL code using Modelsim software	3
	5.7	Simulate the generated RTL code using Verilator software	3
	5.8	Compile the generated RTL code using Quartus II/Vivado software	4
6	Add	l Custom IP to Processing Tile Generator Tutorial	4
	6.1	System Requirements:	4
	6.2	Objectives:	4
	6.3	Greatest Common Divisor (GCD) Algorithm	4
	6.4	GCD RTL code	4
		6.4.1 GCD Simulation	5
	6.5	Add Wishbone bus interface to GCD	5
	6.6	Add custom wishbone-based IP core to ProNoC Library	5
	6.7	Generate a new SoC enhanced with new IP core (GCD)	6
	6.8	Software Development	6
7	Sim	ple message passing demo on 2×2 MPSoC	6
	7.1	System Requirements:	6
	7.2	Generating a custom Processing tile	6
	7.3	Generating a 4×4 NoC-based MPSoC	7
	7.4	Software Development	7
8	Soft	ware Auto-generation using CAL language (CAL2C)	7
	8.1	Cal2C	7
	8.2	ORCC installation	7
	8.3	ORCC Hello word on ProNoC platform	8
		8.3.1 Run ORCC inbuilt simulator	8
		8.3.2 Run ORCC Compilation	8
		8.3.3 Modifying the generated C code using ProNoC	8
9	NoC	C Simulator	8
	9.1	System Requirements:	8
	9.2	Simulation Example:	8
		9.2.1 Generate first NoC simulation model with XY routing	8
		9.2.2 Generate the second NoC simulation model with fully adaptive	c
		9.2.3 Run simulation under Matrix Transposed traffic pattern	8

10	NoC	Emulator	93
	10.1	Summary	93
	10.2	System Requirements	93
	10.3	Emulation Example:	93
		10.3.1 Generate first NoC emulation model with XY routing	93
		10.3.2 Generate the second NoC emulation model with fully adaptive routing	95
		10.3.3 Run Emulation models under Matrix Transposed traffic pattern	95
11	Pro	NoC Tools	98
	11.1	JTAG UART	98
	11.2	UART Terminal	98
	11.3	Add new ALtera FPGA Board	101
	11.4	Add new Xilinx FPGA Board	102
Ap	pend	ices	104
A	NoC	Verilog File Parameters Description	105
B	NoC	Verilog File Signals Description	111
B	NoC B.1	Verilog File Signals Description Resource allocation units	111 111
B	NoC B.1	Verilog File Signals Description Resource allocation units B.1.1 Flit type	111 111 111
B	NoC B.1	Verilog File Signals Description Resource allocation units B.1.1 Flit type B.1.2 VC filed	111 111 111 111
B	NoC B.1 B.2	Verilog File Signals Description Resource allocation units B.1.1 Flit type B.1.2 VC filed Packet type	111 111 111 111 111 111
B	NoC B.1 B.2	Verilog File Signals Description Resource allocation units B.1.1 Flit type B.1.2 VC filed Packet type B.2.1 single-flit	111 1111 1111 1111 1111 1111 1111
В	NoC B.1 B.2	Verilog File Signals Description Resource allocation units B.1.1 Flit type B.1.2 VC filed Packet type B.2.1 single-flit B.2.2 Multi-flit	111 111 111 111 111 111 111 111 111
B	NoC B.1 B.2 B.3	Verilog File Signals Description Resource allocation units B.1.1 Flit type B.1.2 VC filed Packet type B.2.1 single-flit B.2.2 Multi-flit Control fields format	111 111 111 111 111 111 111 111 111 11
B	NoC B.1 B.2 B.3	Verilog File Signals Description Resource allocation units B.1.1 Flit type B.1.2 VC filed Packet type B.2.1 single-flit B.2.2 Multi-flit Control fields format B.3.1 Endpoint addressing format	111 111 111 111 111 111 111 111 111 11
В	NoC B.1 B.2 B.3	Verilog File Signals DescriptionResource allocation unitsB.1.1Flit typeB.1.2VC filedPacket typeB.2.1single-flitB.2.2Multi-flitControl fields formatB.3.1Endpoint addressing formatB.3.2destport	111 111 111 111 111 111 111 111 111 11
B	NoC B.1 B.2 B.3	Verilog File Signals DescriptionResource allocation unitsB.1.1Flit typeB.1.2VC filedPacket typeB.2.1single-flitB.2.2Multi-flitControl fields formatB.3.1Endpoint addressing formatB.3.2destportB.3.3class	111 111 111 111 111 111 111 111 111 11
B	NoC B.1 B.2 B.3	Verilog File Signals DescriptionResource allocation unitsB.1.1 Flit typeB.1.2 VC filedPacket typeB.2.1 single-flitB.2.2 Multi-flitControl fields formatB.3.1 Endpoint addressing formatB.3.2 destportB.3.3 classB.3.4 weight	111 111 111 111 111 111 111 111 111 11
В	NoC B.1 B.2 B.3	Verilog File Signals DescriptionResource allocation unitsB.1.1Flit typeB.1.2VC filedPacket typeB.2.1single-flitB.2.2Multi-flitControl fields formatB.3.1Endpoint addressing formatB.3.2destportB.3.3classB.3.4weightB.3.5header-data	111 111 111 111 111 111 111 111 111 11
B	NoC B.1 B.2 B.3	Verilog File Signals DescriptionResource allocation unitsB.1.1Flit typeB.1.2VC filedPacket typeB.2.1single-flitB.2.2Multi-flitControl fields formatB.3.1Endpoint addressing formatB.3.2destportB.3.3classB.3.4weightB.3.5header-data	111 111 111 111 111 111 111 111 111 11
B C	NoC B.1 B.2 B.3 Mult C.1	Verilog File Signals DescriptionResource allocation unitsB.1.1Flit typeB.1.2VC filedPacket typeB.2.1single-flitB.2.2Multi-flitControl fields formatB.3.1Endpoint addressing formatB.3.2destportB.3.3classB.3.4weightB.3.5header-dataSolution 1:	111 111 111 111 111 111 111 111 111 11

CHAPTER 1

Installation Manual for the Ubuntu Linux Environment

ProNoC SourceYou can download the ProNoC source code from ProNoC homepage or optionally open
the *terminal* and run:

Figure 1.1 shows the organization of important directories in ProNoC source code:

Figure 1.1: ProNoC Directory Structure.

- doc/: Contains the ProNoC documentations.
- mpsoc/: This is the main ProNoC source code directory where all projects source codes are placed.
- board/: This folder contains the FPGA boards' configuration setting files. ProNoC supports both Altera and Xilinx FPGAs.
- perl_gui/: It contains ProNoC's Graphical User Interface (GUI) source codes.
- remove_cycle/: This directory contains a third party source code for Breaking Cycles in Noisy Hierarchies. This code is used for removing cyclic turns in custom typologies' routing algorithms.
- rtl/: This folder contains all ProNoC's developed HDL codes including the RTL code for NoC, peripheral devices, NoC simulator and NoC emulator.

svn co http://opencores.org/ocsvn/an-fpga-implementation-of-lowlatency-noc-based-mpsoc/an-fpga-implementation-of-low-latency -noc-based-mpsoc/trunk

- script/: Contains some bash scripting language source codes.
- src_c/: Contains source codes written in C language used for converting memory files to different formats. This folder also contains codes for communicating with JTAG interface.
- src_processor/: This folder contains third party open-source soft-processors'
 source codes.
- mpsoc_work/: is a working directory for ProNoC. All generated files by ProNoC GUI will be placed here. This folder also is used as target directory for FPGA implementation and RTL simulation. The user requiters to install the soft-core CPUs' Toolchain in this folder.

Installation

- 1. Copy the downloaded folder (trunk/) somewhere in your home directory. Make sure that there is **no space** in selected path.
- 2. To give execute permission, open trunk/mpsoc in terminal and run

sudo chmod +x -Rf ./

3. Install required package dependencies

First make sure that your OS is updated by running following commands in terminal

sudo apt-get update
sudo apt-get upgrade

Then open terminal in mpsoc folder and run

sudo sh install.sh

 Now you should be able to run the ProNoC GUI by running the following command

```
cd mpsoc/perl_gui
perl ./ProNoC.pl
```

- 5. If it is the first time you are running the ProNoC software, you should see the setting window shown in Figure 1.2.
 - (a) Path setting: Here you can set the following path variables:
 - i. **PRONOC_WORK**: The working directory where the projects' files will be created and the toolchains are located. The default location is the trunk/mpsoc_work folder. Setting this variable is compulsory.
 - ii. **QUARTUS_BIN**: The path to QuartusII compiler bin directory. Setting of this variable is optional. It is needed only if you are going to use Altera FPGAs for implementation or emulation.

Configuration setting _ 🗆 🗆	×
Path setting	
PRONOC_WORK 🚱 /home/alireza/ProNoC/ 🥭 ᡨ Apply	
QUARTUS_BIN	
VIVADO_BIN 💡	
SDK_BIN	
Toolchain	
🕖 aeMB Size: 21 MB 🔮 Download Now	
\rm lm32 Size: 57 MB 🔮 Download Now	
🔃 or1k-elf Size: 219 MB 🔮 Download Now	
Tools	
🕕 The tools directory is empty! You need to run the Make tools first. 🧭 Make tools	
Со ок	

Figure 1.2: ProNoC configuration setting window snapshot.

- iii. VIVADO_BIN: The path to xilinx/Vivado/bin compiler directory. Setting of this variable is optional. It is needed only if you are going to use Xilinx FPGAs for implementation or emulation.
- iv. **SDK_BIN**: The path to Xilinx/SDK/bin directory. Setting of this variable is optional. It is needed if you are going to use Xilinx FPGAs for implementation or emulation.
- v. **MODELSIM_BIN**: The path to Modelsim simulator bin directory. Setting of this variable is optional. You should set this variable if the Modelsim simulator is installed on your machine and auto-generation of the simulation models using Modelsim software is desired.

However, in case there is a problem in downloading the files (toolchain status is still marked by \bigcirc icon), you can manually download the toolchains from the following links:

- i. aeMB
- ii. Lm32 or from Lm32

iii. or1k-elf for mor1k and or1200 OpenRISC CPUs.

Remember that if you downloaded the files manually, it is needed to unzip the files and copy the lm32, orlk-elf, and aemb folders in trunk/ mpsoc_work/toolchain directory. Moreover, you should provide the execution permission to the GNU toolchains by typing sudo chmod +x -Rf ./ command in terminal inside mpsoc_work/toolchain directory. (c) Tools: The required tools can be compiled by clicking on the *Make* tools. This button actually run the Makfile inside /mpsoc/src_c directory.

You can modify these setting at any time later via File->setting menu:

Figure 1.3: ProNoC setting menu.

	or 🌾 IP generator	Processing tile generator 🛛 🚼 NoC based MPS	oC generator	
lect file:			P Browse 🚺 Description	
Selec	t module: 🗘	🛃 Import Port	ts Select Category:	
Inte	erface name:		Select soket type: single connection 🛟 💡	
		😣 🖨 About ProNoC		
		ProNoC 1.8	8.0	
		ProNoC 1.8 NoC based MPSoC gen	8.0 Perator.	
		ProNoC 1.4 NoC based MPSoC gen http://opencores.org/project.an-fpga-implementati	8.0 herator. <u>Ion-of-low-latency-noc-based-mpsoc</u>	

Figure 1.4: ProNoC GUI snapshot.

CHAPTER 2

Interface Generator

Introduction The interface generator allows the addition of new interfaces to ProNoC software. An interface is a port or a group of ports that are common in different IP cores which are used for doing a specific task. The most common interfaces in ProNoC are the shared bus (wishbone bus) master/slave, clk and reset interfaces. Each individual interface is divided into two types of *socket* and *plug* interfaces. Two different IP cores can be connected when one has the *socket* type of an interface and another one has the *plug* type of that interface. While it is optional to select any side of the connection as *socket* or *plug* interface, bellow are some differences between them that help to select an appropriate type of interface for each IP core:

1. In processing tile generator only the *plug* interfaces of an IP are shown in the IP box. The user can select the connection interface from the list of all IP cores having the *socket* type of that interface as shown in Figure 2.1.

gpo	Instance name	cik	ss:clk	\$
Setting	gpo	reset	ss:reset	\$
Remove		L wb	10 bus0:vb_slave[0] bus0:vb_slave[1] bus1:vb_slave[0] bus1:vb_slave[1]	
	Plug	interfaces	Socket interfaces	

Figure 2.1: GPO IP box snapshot.

2. The *socket* interfaces can be defined as single or multi-connection. A socket interface can be defined as multi-connection only when it consists of only output ports. As a result, it can be connected to multiple IPs having the *plug* type of that interface. Examples of multi-connection *socket* in PoNoC are clk and reset interfaces.

Select soket type:	single connection	0
	multi connection	
< swap	🗩 plug	

Figure 2.2: multi-connection selection snapshot.

3. The number of a *socket* interface in an IP core can be parameterizable. To do this, the interfaces' ports that having the same name must be concatenated as a single port in the IP core Verilog file. This feature provides flexibility to the ProNoC Processing tile generator as an IP core now can have variable number of an interface which can be defined by the user at the generation time. As an example the interfaces of the Wishbone bus and the interrupt controller are defined as *socket* with parameterizable number of interfaces. Below is an example which shows how the interfaces are defined in a Wishbone Bus IP core module:

```
Listing 2.1: bus.v
module wishbone_bus #(
 parameter M = 4, //number of master port
 parameter S = 4, //number of slave port
 parameter Dw = 32,// maximum data width
 parameter Aw = 32 // address width
 parameter DwS= Dw * S,
 parameter AwS= Aw * S,
   .
) (
 //Slaves interface
 output [AwS-1 : 0] s_adr_o_all ,
 output [DwS-1 : 0] s_dat_o_all ,
 input [DwS-1 : 0] s_dat_i_all ,
 output [S-1 : 0] s_we_o_all ,
 output [S-1 : 0] s_cyc_o_all ,
 output [S-1 : 0] s_stb_o_all ,
  ٠
  .
```


Figure 2.3: (a) Select Verilog parameters **M** and **S** as the number of Wishbone bus (WB) master & slave interfaces for generating Wishbone Bus IP core. (b) The number of WB master/slave interfaces can be defined at SoC generation time via GUI.

Generate New Interface

In order to add a new interface to ProNoC, press the *p* browse button and select the Verilog file containing a module with the desired interface. If there are multiple modules inside that file, you can select the desired one from select module menu. To add ports to the interface press *select Ports* button. It opens a pop-up window as shown in Figure 2.4 where you can select and add the required ports.

Select file:	/nome/anreza	mywork/opencore	an-ipga-imprementation-or-low-ra	cency-noc-based-mpsoc/	urunk/mpsoc/src_periphera	ar/ram/general_ddal_s	Cy open
Select module:	dual_port_ram	1	: 🐣 Impor	t Ports	Select Category:	memory 🕜	Description
Interface name:		🖲 🗇 🛛 Import P	orts			ingle connection	\$
	*		Select the ports incl	uded in the interface		socket	
Type		Туре	Range	Name	Select	Name	
input	: (Aw-1):0					addr_a	
input	: (Dw-1):0	input	[(Aw-1):0]	addr_a	S	data a	
a davd	1 (Day 1)+0	input	[(Aw-1):0]	addr_b			
output	* (DW-1).0	input		dk		4_0	
Input	÷	Input	[(Dw-1):0]	data_a	8	we_a	
		Input	[(Dw-1):0]	data_b			
		output	[(Dw-1):0]	q_a	S		
		output	[(Dw-1):0]	q_b			
		input		we_a			
		Input		we_b			
			🔗 ok				
Discus salast the us	alles file analated b	- Interfere					
Please select the ve	rilog file containig th	e Interface					

Figure 2.4: Interface generator snapshot.

Using \iff swap button, you can define if the selected ports belong to the *socket* or *plug* type of an interface. You are only needed to define one type of an interface, the other type will be defined automatically. The width of each port can also be a Verilog code parameter. Note that any Verilog module using this interface must define the interface ports using the same parameter name.

The *socket* interfaces can be defined as single or multi connection. If a socket is defined as single connection, by connecting a new IP to the socket, the last connected *plug* to that *socket* will be disconnected automatically.

DefinedWhile it is optional to select any side of an interface connection as socket or plug whenInterfacesdefining a new interface, once the definition is done for an IP core, all other IP coreshaving that interface must follow the first IP core. Hence, it is important to know
how the defined interfaces (socket and plug) are mapped to the existing IP cores in the
library. This section provides the list of defined interfaces and the IP cores which use
these interfaces.

NI This is the interface connection between Network-on-chip (NoC) router and the NoC interface adapter module (NI). Figure 2.5 shows this interface.

Figure 2.5: NI socket/plug interfaces.

IP cores having NI socket: ni_master, ni_slave **IP cores having NI plug:** NoC

interrupt_cpu CPUs that have only one single interrupt pin must be connected to an interrupt controller module to allow combination of several sources of interrupt. The interface between these CPUs and Interrupt controller is called interrupt_cpu.

Figure 2.6: interrupt_cpu socket/plug interfaces.

IP core having interrupt_cpu socket: aeMB CPU IP core having interrupt_cpu plug: int_ctrl (interrupt controller module)

interrupt This is the interrupt interface connection between CPUs having multiple interrupt pins that can directly be connected to multiple the peripheral devices.

Figure 2.7: interrupt_peripheral socket/plug interfaces.

IP cores having interrupt_peripheral socket: int_ctrl, mor1kx, or1200, and lm32 CPUs.

IP cores having interrupt_peripheral plug: dma, timer, ni_master, ni_slave, ext_int (external interrupt), eth_mac100, jtag_uart.

clk

The clock pin interface.

Figure 2.8: clk socket/plug interfaces.

IP core having clk socket: clk_source

IP cores having clk plug: All IP cores which have clk pin except clk_source

reset The reset pin interface.

Figure 2.9: reset socket/plug interfaces.

IP core having reset socket: clk_source

IP cores having reset plug: All IP cores which have reset pin except clk_source

Enable The enable pin interface. The enable pin is used for disabling any active module in a processing tile (e.g CPUs). The Processing tile and NoC-based MCSoC generators automatically connect all enable plug interfaces to each other and used them for disabling CPUs during programming mode. The enable pin for each CPU must be defined as IO in processing tile generator.

Figure 2.10: Enable socket/plug interfaces.

IP core that have enable socket: -**IP** core that have enable plug: All CPUs

Wb_master The wishbone bus master interface. The Wb_master socket interface is mapped to wishbone bus module. All IP cores' WB master interface must be mapped to the plug interface.

Figure 2.11: WB master socket/plug interfaces.

IP core having Wb_master socket interface: Wishbone Bus module **IP cores having Wb_master plug interface:** All CPUs, ni_master, dma, eth_mac100, jtag_wb.

Wb_slave The wishbone bus slave interface. The Wb_slave socket interface is mapped to wishbone bus module. All IP cores' WB slave interface(s) must be mapped to the plug interface.

IP core having Wb_slave socket interface: Wishbone Bus module

IP core that have Wb_slave plug interface: ni_master, ni_slave, dma, eth_mac100, jtag_wb, jtag_uart, timer, gpio, gpi, gpo, single_port_ram, dual_port_ram, lcd_2x16, ext_int, int_ctrl

Figure 2.12: WB slave socket/plug interfaces.

CHAPTER 3

IP Generator

Introduction	The IP generator allows adding new intellectual properties (IPs) to the ProNoC's library. It provides a GUI interface for mapping the IP's ports to the interfaces, defining how the IP parameters must be collected from the user at tile generation time, and getting the location of IP cores' source files.
Generate a New IP	For adding a new IP to ProNoC, first you need to have the Verilog file(s) describing the RTL code of that IP.
	1. Click on <i>P</i> Browse button and select the Verilog file containing the top level module.
	 Select a category which this new IP core is belonging to. You can either select it form the list of available categories or define a new category by typing its name in Select Bus . All IPs belonging to the same category are listed under the same tree branch in processing tile generator.
	3. Define an IP name for this module. The IP name will be shown in IP list below its category name in Processing tile generator.
	4. In case the Verilog file contains several Verilog module select the top-level mod- ule in Select Module field.
	5. Using 1 IP Description button you can add a short description about the IP. This description will be shown when the IP is selected in processing tile generator. You can also add the IP-core documentation in PDF format here. This generates a short key for opening the IP documentation in processing tile generator.
	Note: In order to make the copy of your ProNoC software portable palace the documentation files somewhere inside mpsoc folder.
	6. The h Add Software files button allows the addition of the necessarily files and folders to the generated processing tile software directory ([PRONOC_WORK]/SOC/[PT -name]/sw). By pressing this button you will have three notebook pages:
	• Add existing files/folders: In this page you can add the list of files and folders which you want to copy them exactly into the mpsoc/SOC/[PT-name]/sw folder.
	• Add files contain variables: In this page you can add the list of files which contain some variables that can be replaced at the processing tile generation time. Variables must be written in the source file with <pre>\${variable_name}</pre> format. You can use any of available variables in ProNoC as variable name.
	• Add to tile.h: Define the header file for this peripheral device including peripheral device functions' deceleration, memory-mapped register address definition, definitions of data types, and C preprocessor commands. Do not

include function definitions in the header file. Functions should be defined in add to tile.c section. These definitions are added to the processing

tile header file at generation time. You can use any of available variables in ProNoC with ${\rm example}$ format. A header file example is as follows:

```
#define ${IP}_REG_0 (*((volatile unsigned int *)(${BASE})))
#define ${IP}_REG_1 (*((volatile unsigned int *)(${BASE}+4)
    ))
#define ${IP}_WRITE_REG1(value) ${IP}_REG_1 = value
#define ${IP}_READ_REG1 ( ) ${IP}_REG_1
#define ${IP}_is_busy(n) ((${IP}_REG_0 >> n) & 0x1)
```

A sample generated header file by ProNoC assuming the IP instance name is defined as f_{00} by the user and the WB slave address is defined as 0 x96000000 by ProNoC automatically is as follows:

```
/* foo */
#define foo_REG_0 (*((volatile unsigned int *)(0X96000000)))
#define foo_REG_1 (*((volatile unsigned int *)(0X96000000+4))
        )
#define foo_WRITE_REG1(value) foo_REG_1 = value
#define foo_READ_REG1 ( ) foo_REG_1
#define foo_is_busy(n) ((foo_REG_0 >> n) & 0x1)
```

- Add to tile.c: You can define the peripheral device's functions in this file. You can use any of available variables in ProNoC with \${variable_name} format in this file.
- 7. Add the list of all required HDL files for this new IP core by clicking on the second state of the seco
- 8. By pressing Parameter setting button, all parameters inside the top module Verilog file are extracted. This menu allows you to add, remove or define how to get the parameter values from the user. Below is an example for setting parameter **M** in wishbone bus.

Parameter name	Default value	Widget type 🕜	Widget content 🔇	Туре 😮	0	info 🕜	add/remove
м	4	Spin-button ‡	1,256,1	Localparam 🗘	👿 Redefine		🙆 remove

Figure 3.1: Parameter setting snapshot.

- **Parameter name**: It is the parameter name which has been read from the Verilog file.
- **Default value**: when an IP is selected for the first time in processing tile generator, the parameters are loaded by their default values.
- Widget type: It defines how the parameter value must be taken from the user when calling the IP in processing tile generator. There are four ways to define a widget type:
 - **Fixed**: The parameter is a fixed value and get the default value. User will not see the parameter and cannot change it in GUI.
 - Entry: The parameter value is received via entry widget. The user can type anything as parameter value.
 - Combo-box: The parameter value can be selected from a list of predefined values.
 - Spin-box: The parameter is a numeric value and is taken using spinbox widget.
- Widget content: For Fixed and Entry leave it empty. For Combo box define the parameters which must be shown in combo box. Use following format: "VALUE1", "VALUE2", ..., "VALUEn". For Spin box define it with this format minimum, maximum, step (e.g. 0,10,1).
- **Type**: Here you can define that how any specific IP-core parameter is defined in the generated processing tile Verilog file. You have three options localparam, Parameter, and Don't include. If you select it as Parameter then all processing tile parameters are also defined as parameter in the processing tile Verilog file. Hence, they can be changed during NoC-based MPSoC generation time. This allows calling same tile in different places with different parameter values. In case the parameter is a software parameter which must be used in software code variables define it as Don't include.
- **Redefine**: If it is check marked, the defined parameter/localparam in processing tile Verilog file will be passed to the IP core during instantiating. Remove the check mark if you only have added a parameter using parameter setting GUI which does not exist in the IP-core Verilog file.

• info: The parameter description for the user can be added here.

9. Add interface: You can add interfaces to the IP library by double-clicking on an interface name located at the left top corner. After adding the interface, it appears in the interface box where you can adjust the interface setting such as, interface name, type, and the number of that interface which appears in the new IP core.

For wishbone slave interface you can select the wishbone address setting by pressing (3) button and do the following settings:

- Interface name: define a name for this interface.
- Address Range: select the address range for WB slave port. These addresses are defined in mpsoc/perl_gui/lib/perl/wb_addr.pm file. You can add your own address range by modifying this file.
- Block address width: It defines the maximum memory size required for this interface in byte which is defined as 2 power of block address width (see Figure 3.2 caption as an example). The width can be defined as a fixed number when the number of memory mapped registers inside the interface is predefined as a fixed number. In case, that the number of required registers is dependent on a Verilog parameter (e.g. a memory block that its size is parameterizable) and it is aimed to be defined by the user at processing tile generation time then you can define it as parametrizable then select the corresponding parameter as address width.

Figure 3.2: Slave WB address setting snapshot. The size of memory mapped registers in this example is $2^5 = 32$ bytes. For a 32-width WB it is equal to 32/4 = 8 individual registers. In case, you have parameterizable number (e.g. **M**) to indicate memory mapped register width in words in your IP module Verilog file, you need to add another parameter such as **N=M+2** in parameter setting window and select its type as Don't include to be used as address width parameter in bytes.

For socket interfaces, there is an option to define the interface number as parameter by selecting 💓 concatenate condition or a fixed number by selecting 💱 separate condition. See socket interface specification for more information.

- 10. After adding the interfaces, you must mapped the top module ports to the interfaces ports. For each top-level module port you need to select the interface name and interface port. Figure 3.3 illustrates a snapshot of interface mapping for Wishbone Bus module.
- 11. Finally, by pressing 🙆 Generate you can generate the IP. You can also modify the existing IPs by using 🔎 Load IP button.

🎙 Interface generator 🛛 🌩	IP generator 🛛 🕞 Processing tile gen	erator	based MPSoC generator		
nterfaces list					
NoC	Select file: /home/alireza/My	work/mpsoc/src_pe	ripheral/bus/wishbone_bus.v	🔎 Browse 🛛 IP na	me: wishbone_bus
Interrupt					
source	Select wishhone hus *	Parameter	Select	- 🗿 👩 IP	🔥 Add Software 📄 Add H
wishbone	module:	setting	Category:	Descri	ption files files
wb_addr_map					
wb_master					
WD_Sidve	Interface name	Type	Interface Num		
	wb_master	socket 🛟	м : 😮 📀	💙 o	oncatenate 🔞 Remove
	wb_slave	socket ‡	s 💠 😮 🥝	\$ •	oncatenate 🔯 Remove
				14	
	wb_addr_map	socket 📮		×	separate Remove
	Type Port na	ame	Interface name	Interface port	Port Range
	output s_adr_o	o_all	socket:wb_slave ‡	adr_o ‡	Aw*S-1 : 0
	outout c dat .	0.0	cocketuub clave *	dat o *	Dwittent i o
	June	0_01	IO	uur_o *	
	output s_sel_o	o_all	socket:wb_master	sel_o ‡	SELw*S-1 : 0
	output s tag	o all	socket:wb_slave	tag o 🙏	TAGw*S-1 : 0

Figure 3.3: Wishbone Bus module interface mapping snapshot.

See Add Custom IP Tutorial for observing an example of adding a custom IP core to the ProNoC library.

List of available Variables in ProNoC

- \${[parameter_name]}: The IP core parameter value. The actual value is defined by the user when calling IP core at processing tile generation time. The parameter had to be added in GUI parameter using parameter setting button.
- \${CORE_ID}: Each Wishbone bus-based processing tile will have a unique CORE_ID that represents its location in NoC topology.

If the generated tile is used as top-level module <code>CORE_ID</code> will take the default value of zero.

- \${IP}: is the peripheral device instance name which is defined by the user when calling IP core using Processing tile generator.
- \${CORE}: is the peripheral device IP core name.
- \${BASE}: is the wishbone base address(es) and will be added during processing tile generation to processing tile C header file (mpsoc/SOC/[PT-name]/sw/[Tile_name].h). If more than one slave wishbone bus exist in the IP core, the variables are define as \${BASE0}, \${BASE1}....

List of available IP cores in ProNoC	This section provides a brief description about the available IP core modules in ProNoC library. Most IP cores that are developed with ProNoC software come with a separate documentation PDF file. These files are accessible by clicking on the IP core modules' name in following section. For the other IP cores which are adopted from OpenCores website the project homepage URL address is linked to the IP core name.
Bus	
	• Wishbone_bus (WB): is an open source hardware computer bus released by OpenCores. ProNoC's WB is fully parameterizable in terms of number of master/slave interfaces and data/address width.
Communication	
	• ProNoC_jtag_uart : A JTAG based Universal Asynchronous Receiver-Transmitter (UART) module with Wishbone-bus interface. The communication to the host PC is handled using Altera Virtual JTAG Tab or Xilinx BSCANE2 Tab. ProNoC has an in-build GUI with the ability of monitoring multiple UART terminals at the same time (See ProNoC_UART GUI).
	• ProNoC_jtag_wb : Altera JTAG to Wishbone bus interface. This module allows reading/writing data to the IP cores connected to the wishbone bus (e.g. memory cores). For Altera FPGAs, the communication between the host PC is done using mpsoc/src_c/jtag/jtag_libusb via USB Blaster I and mpsoc/src_c/jtag/jtag_quartus_stp via USB Blaster II. For XILINX FPGAs, it is done using mpsoc/src_c/jtag/jtag_xilinx_xsct. The communication with the FPGA board also can be done using a GUI interface called Run time JTAG debuger.
	• altera_jtag_uart : The Altera (Qsys) JTAG UART core with Wishbone bus inter- face.
	• Etmach_100: The Ethernet MAC (Media Access Control) 10/100 Mbps. This IP core is adopted from OpenCores/ethmac.
DMA	
	• dma : A wishbone bus round robin-based multi channel DMA (no byte enable is supported yet). The dma supports burst data transaction.
Display	
	• lcd_2×16: 2×16 Character Alphabet Liquid Crystal Display (LCD) driver module.
GPIO	
	• gpi: General purpose Wishbone bus-based input port.
	• gpo: General purpose Wishbone bus-based output port.
	• gpio: General purpose Wishbone bus-based bidirectional port.

Interrupt	
	• ext_int : External interrupt module.
	• int_ctrl : Interrupt controller. CPUs that have only one single interrupt pin (e.g. aeMB) must be connected to an interrupt controller module to allow combination of several sources of interrupt.
NI	
	• ni_master : ni_master is a Wishbone bus (WB)-based interface for the network- on-chip (ProNoC) router. This module has two WB master interfaces, one for sending and another for receiving data packets.
	• ni_slave : ni_slave is an extension of NI_master module connected to two input and output buffers. There are three WB slave interfaces in this module, one for writing on output buffer, one for reading input buffer and one for controlling the NI.
Processor	
	• Or1200: OR1200 is the original implementation of the OpenRISC 1000 architecture. Its source code has been adopted from github at openrisc/or1200.
	• aeMB: the EDK3.2 compatible Microblaze core. This IP core is adopted from OpenCores/aemb.
	• Im32: LatticeMico32 is a soft processor originally developed by Lattice Semi- conductor. The source code of this IP core is adopted from github/soc-Im32.
	• mor1kx : The mor1kx is a replacement for the original or1200 processor. The source code is adopted from github at openrisc/mor1kx
RAM	
	• single_port_ram : A Wishbone bus-based single port Random Access Memory (RAM).
	• dual_port_ram : A Wishbone bus-based dual port RAM.
Source	
	• clk_source : This module provides the clk and reset (socket) interfaces for all other IPs. It also synchronizes the reset signal.
Timer	
	• timer: A simple, general purpose, Wishbone bus-based, 32-bit timer.

CHAPTER 4

Processing Tile Generator

A Processing Tile (PT) is a set of several IPs (processors and peripheral devices) connecting via interfaces. Figure 4.1 illustrate a snapshot of PT generator. PT generator facilitates the RTL code generation of a custom PT by providing following features:

- 1. Allows addition of any arbitrary number of IP cores to the PT.
- 2. Provides a simple GUI for connection IP cores.
- 3. Provides a GUI for setting IP core parameters.
- 4. Auto-generates the Wishbone Bus slave interface addresses.
- 5. PT functional block diagram viewer.
- 6. PT RTL code generator.
- 7. Comes with an in-built text editor for software development and compilation.
- 8. Facilitate RTL code synthesizing using one of the Verilator, Modelsim, Vivado or QuartusII compilers.

For more information about PT generator, please refer to Processing Tile Generator Tutorial.

Figure 4.1: PT generator snapshot.

CHAPTER 5

Processing Tile Generator Hello World Tutorial

Summary	This tutorial teaches how to develop a shared bus (Wishbone bus) based system on chip (SoC) and a simple software implementation using ProNoC Processing Tile Genera- tor . The desired SoC will be generated by connecting open-source IP cores on Altera or Xilinx FPGA board.
System Requirements:	You will need an Altera or Xilinx FPGA development board and a computer system running Linux OS with:
	1. Installed the ProNoC GUI software and its dependency packages.
	2. Installed/Pre-built GNU toolchain of the Mor1kx soft-core processor.
	3. Installed Quarts II (Web-edition or full) compiler in case of having Altera FPGA Board or Vivado Design Suite compiler in case of using Xilinx FPGA board.
	For more information about the GNU toolchain installation please refer to the In- stallation Manual for the Ubuntu. In case your FPGA board is not included in the ProNoC FPGA board list please follow the instructions given in Adding a New Alter- a/Xilinx FPGA Board to ProNoC, to add your board to the ProNoC library.
Objectives:	
	1. To design a Wishbone bus-based system-on-chip hardware architecture using ProNoC Electronic Design Automation (EDA) software.
	2. To develop a simple software application running on generated SoC.
	3. To interact with on-board memory units using JTAG to wishbone interface mod- ule.
Desired SoC	
Schematic	Figure 5.1 illustrates the desired hardware architecture in this tutorial. This architecture consists of:
	1. Four LEDs connected to 4-bit general purpose output (GPO)
	2. A 32-bit timer.
	3. A mor1kx processor (You can use any of other available processors).
	4. A single port RAM.
	5. A JTAG UART.
	6. A Wishbone Bus.
	7. A Clock source (not shown in Figure 5.1).

Figure 5.1: The schematic of desired SoC in this tutorial.

Application Software	The aim of this tutorial is to design a simple SoC for running "Hello world" and "blink- ing LED" programs on the desired SoC.
Create New SoC Using ProNoC	Open mpsoc/perl_gui in terminal and run ProNoC GUI application:
Processing Tile Generator	It should open The GUI interface as illustrated in Figure 5.2.

🕽 🗐 🔍 ProNoC							
= 🏢 🔼							
💉 Interface ge	enerator	IP generator	Processing tile	generator	NoC based MPSoC generat	or	
Select file:							Browse 🚺 Description
	Select n	nodule:			Import Ports		Select Category:
	Interfa	ce name:				Select soket type:	single connection
Please select the	verilog file	e containig the interfa	ce				
-	Load I	nterface				🙆 Generate	

Figure 5.2: ProNoC GUI first page snapshot.

Then select the Processing Tile Generator tab:

Figure 5.3: ProNoC New Processing Tile generator snapshot.

At the left Tree-View window you can see the list of all available IP categories. Clicking on each category expand the associated list of IP cores. Each IP core can be added to GUI by double clinking on its name. The added IP core has three setting columns:

- (a) In first column you can shift IP core box position up/down in GUI interface, remove the IP core or set its parameters (if any).
- (b) In the second column you can rename the IP core instance name.
- (c) Third column shows all (*Plug*) interfaces of this module. here you can connect each plug to one appropriate (*socket*) interface. (Each interface is categorized into two types of plug and socket. See Interface Generator chapter for more information about interfaces. You can also export the interface as SoC's input/output (IO) ports here.

Now let start calling required IPs. We start with clk_source:

Add clk source This module provides clk and reset interfaces for all other IPs. It also synchronizes the reset signal.

- 1. Click on Source category, then double-click on clk_source.
- 2. Rename the clk_source instance name as source. Leave the interfaces as 10.

Figure 5.4: Adding clock source.

Add Wishbone Bus:

- 1. Click on Bus category and double-click on Wishbone_bus.
- 2. In parameter setting set M (master interfaces number) as 2 and s (slave interfaces number) as 4. These values are obtained from Figure 5.1. You can change them later if you want to add/remove any IPs.
- 3. Rename the instance name as bus.
- 4. Connect the clock and source interfaces to clk_source module.

Figure 5.5: Adding Wishbone bus.

Add the rest of IPs:

est of Add the rest of IP cores according to Table 5.1.

- Note that the parameters which are needed to be assigned differently for Altera & Xilinx FPGA board are footnoted.
- Note that the socket interface has the following format: connection-IP-instance-name : interface-name [interface number]. Hence, bus:wb_slave[0] means that the wb interface of GPO IP is connected to the bus via zeroth wb interface. Note that you can optionally connect it to any of other wb interfaces number as WB has a round-robin arbitration scheduler.
- In case of using other processor note that some softcore processor such as aeMB may need interrupt controller. Table 5.2 lists the IP core setting for this CPU.
- It is not necessarily to connect Wishbone bus Master/Slave interface according to the given port number in Table 5.1 and 5.2. Any arbitrary order will work.

Category	IP name	Parame	ter		Instance name		Int	erface connection
Source	clk_source	FPGA_VENDOR	\rightarrow	"ALTERA" ¹	source	clk reset	$\rightarrow \rightarrow$	IO IO
Bus	wishbone_bus	M S Dw Aw	$\begin{array}{c} \rightarrow \\ \rightarrow \\ \rightarrow \\ \rightarrow \end{array}$	2 4 32 32	bus	clk reset	$\stackrel{\rightarrow}{\rightarrow}$	source:clk source:reset
Processor	Mor1kx	OPTION_DCACHE_SNOOP FEATURE_INSTRUCTIONCACHE FEATURE_DATACACHE FEATURE_IMMU FEATURE_DMMU	$\stackrel{\rightarrow}{\rightarrow}\stackrel{\rightarrow}{\rightarrow}\stackrel{\rightarrow}{\rightarrow}\stackrel{\rightarrow}{\rightarrow}$	"NONE" "ENABLED" "ENABLED" "ENABLED" "ENABLED"	сри	clk reset snoop iwb dwb enable	$\stackrel{\uparrow}{\rightarrow}\stackrel{\uparrow}{\rightarrow}\stackrel{\uparrow}{\rightarrow}\stackrel{\uparrow}{\rightarrow}\stackrel{\uparrow}{\rightarrow}$	source:clk source:reset bus:snoop bus:wb_master[0] bus:wb_master[1] IO
RAM	single_port_ram	Dw Aw BYTE_WR_EN FPGA_VENDOR JTAG_CONNECT JTAG_INDEX BURST_MODE MEM_CONTENT_ FILE_NAME INITIAL_EN JTAG_CHAIN	$\uparrow \uparrow \uparrow$	32 14 "YES" "ALTERA" ¹ "ALTERA_JTAG_WB" ² CORE_ID "ENABLED" "ram0" "YES" 4	ram	clk reset wb	$\stackrel{\rightarrow}{\rightarrow}\stackrel{\rightarrow}{\rightarrow}$	source:clk source:reset bus:wb_slave[0]
Timer	timer	PRESCALE_WIDTH	\rightarrow	8	timer	clk reset wb intrp	$\begin{array}{c} \rightarrow \\ \rightarrow \\ \rightarrow \\ \rightarrow \end{array}$	source:clk source:reset bus:wb_slave[1] cpu:interrupt_peripheral[0]
Communication	ProNoC_jtag_uart	BUFF_Aw JTAG_INDEX JTAG_CHAIN JTAG_CONNECT INCLUDE_SIM_PRINTF	$\begin{array}{c} \rightarrow \\ \rightarrow \\ \rightarrow \\ \rightarrow \\ \rightarrow \\ \rightarrow \end{array}$	4 126-CORE_ID 3 "ALTERA_JTAG_WB" ² SIMPLE_PRINTF	uart	clk reset wb	$\stackrel{\rightarrow}{\rightarrow} \stackrel{\rightarrow}{\rightarrow}$	source:clk source:reset bus:wb_slave[2]
GPIO	gpo	PORT_WIDTH	\rightarrow	4	led	clk reset wb	\rightarrow \rightarrow \rightarrow	source:clk source:reset bus:wb_slave[3]

Table 5.1: IP core list and setting for Mor1kx SoC.

 $[\]stackrel{1}{\longrightarrow} "XILINX" \text{ For Xilinx FPGA}$ $\stackrel{2}{\longrightarrow} "XILINX_JTAG_WB" \text{ For Xilinx FPGA}$

Category	IP name	Parameter		Instance name	Inter	Interface connection		
Source	clk source	EPGA VENDOR		"AI TER A" ³	source	clk	\rightarrow	IO
Source	eik_source	IT GA_VENDOR		ALILKA	source	reset	\rightarrow	IO
Bus	wishbone_bus	M S Dw Aw	ightarrow ightarrow ightarrow	2 5 32 32	bus	clk reset	$\rightarrow \rightarrow$	source:clk source:reset
Processor	aeMB	STACK_SIZE HEAP_SIZE	\rightarrow \rightarrow	0X400 0X400	aeMB	clk reset iwb dwb enable	$\begin{array}{c} \rightarrow \\ \rightarrow \\ \rightarrow \\ \rightarrow \\ \rightarrow \\ \rightarrow \end{array}$	source:clk source:reset bus:wb_master[0] bus:wb_master[1] IO
RAM	single_port_ram	Dw Aw BYTE_WR_EN FPGA_VENDOR JTAG_CONNECT JTAG_INDEX BURST_MODE MEM_CONTENT_ FILE_NAME INITIAL_EN JTAG_CHAIN	$\begin{array}{c} \rightarrow \\ \rightarrow $	32 14 "YES" "ALTERA" ³ "ALTERA_JTAG_WB" ⁴ CORE_ID "ENABLED" "ram0" "YES" 4	ram	clk reset wb	\rightarrow \rightarrow \rightarrow	source:clk source:reset bus:wb_slave[0]
Interrupt	int_ctrl	INT_NUM	\rightarrow	1	int_ctrl	clk reset interrupt_cpu wb	$\begin{array}{c} \rightarrow \\ \rightarrow \\ \rightarrow \\ \rightarrow \end{array}$	source:clk source:reset aeMB:interrupt_cpu bus:wb_slave[4]
Timer	timer	PRESCALE_WIDTH	\rightarrow	8	timer	clk reset wb intrp	\rightarrow \rightarrow \rightarrow \rightarrow	source:clk source:reset bus:wb_slave[1] in_ctrl:int_periph[0]
Communication	ProNoC_jtag_uart	BUFF_Aw JTAG_INDEX JTAG_CHAIN JTAG_CONNECT INCLUDE_SIM_PRINTF	$ \begin{array}{c} \rightarrow \\ \rightarrow \\ \rightarrow \\ \rightarrow \\ \rightarrow \\ \rightarrow \end{array} $	4 126-CORE_ID 3 "ALTERA_JTAG_WB" ⁴ SIMPLE_PRINTF	uart	clk reset wb	\rightarrow \rightarrow \rightarrow	source:clk source:reset bus:wb_slave[2]
GPIO	gpo	PORT_WIDTH	\rightarrow	4	led	clk reset wb	$\rightarrow \rightarrow \rightarrow \rightarrow$	source:clk source:reset bus:wb_slave[3]

Table 5.2: IP core list and setting for aeMB SoC.

Check wishboneAfter adding all required IP cores, now you can check the auto-assigned Wishbonebus(es)bus addresses by clicking onImage: Wishbone-bus addr button. Note that the assignedaddresses:addresses are also modifiable.

 $^3 \rightarrow$ "XILINX" For Xilinx FPGA

 4 → "XILINX_JTAG_WB" For Xilinx FPGA

😣 🖨 💿 Wishbone slave	port address setting	_	_	_	
Instance name	Interface name	Bus name	Base address	End address	Size (Bytes)
0: led	wb	bus	0x91000000	0x9100001f	32 📀
1: uart	wb_slave	bus	0x900p0000	0x9000001f	32
2: ram	wb	bus	0x0000000	0x0000ffff	64 K
3: timer	wb	bus	0x96000000	0x9600001f	32
		Revert	💽 ок		

Figure 5.6: Wishbone bus addresses of the tutorial SoC.

These addresses are automatically set based on IP cores library setting, inserted parameters and numbers of repeating same IP cores in the system. However, you are free to adjust them to the new values as while as there is no conflict in inserted addresses.

View SoC Click on the Diagram button to observe the SoC functional block diagram.

Figure 5.7: The tutorial SoC diagram.

CLK setting: In case that the SoC is desired to be the top-level module in FPGA implementation (e.g. in this example), you may need to generate the SoC clock signal from the FPGA incoming reference clock.

To do that click on the Inclk Setting button. It will open a new window where you can connect your SoC top module to some clk sources. As an example Xilinx Kintex-7 FPGA KC705 has a differential reference clock. The differential FPGA input
clocks are first needed to be converted into a single clk using IBUFGDS module. The output of IBUFGDS (diff:clk) is 200 MHz which is too high for the desired SoC to meet the timing constraints. This clock can be divided by half using a PLL. To do so set the PLL multiplication (CLKFBOUT_MULT) and division factor (CLKOUTO_DEVIDE) to 9 and 18, respectively;

	cı	LK setting			••
IP list ▼ Source clk_source xilinx_IBUFGDS xilinx_pll	xilinx_IBUFGDS	Instance name	clk_p clk_n	10 10	4 * *
	xilinx_pll xilinx_pll Setting Remove	Instance name	clk_in reset_in	diff:clk IO	4 * *
	TOP Image: Setting Imag	Instance name	clk0 reset0	pll:clk[0] pll:reset	* *
_		Diagram		📀 ок	

Figure 5.8: Example of clock setting for Xilinx Kintex-7 FPGA KC705 Evaluation Kit.

- Note that in case you directly want to connect the FPGA reference clock to the SoC you can omit this configuration. The TOP module clk and reset signals left as output by default.
- If the processing tile is planed to be used in an internal module inside an MPSoC, the clock setting can be ignored.

Generate SoC RTL Code:

- 1. Set Tile name as tutorial.
- 2. Press 🙆 Generate RTL button.

	6.6		b	buc which which
list			0	bds.wb_sidvc[1]
Bus	jtag uart	Instance name cl	k	source: clk
Communication				
DMA	< 🔇 Setting uart	in	terrupt_peripheral	NC
Display				
)	re	eset	source:reset
Incertable	Processing Tile "tutorial" ha	as been created		
Other	successfully at /home/alirez	a/mywork/mpsoc_work/ W	b_slave	bus:wb_slave[2]
Processor	Soc/tutonal/.			
RAM		d	k	source:clk
iource		ОК		
īmer		re	eset	source:reset
	Remove	w	b	bus:wb_slave[3]
	Remove	w	b	bus:wb_slav

Figure 5.9: Generating the tutorial SoC.

If the generation is successful, you must have two new folders in your <code>mpsoc/soc/tutorial path</code>:

- sw: This folder contains the required software files including the programming header files, in-system memory editing files and Makefile.
 - tutorial.h: The SoC header file containing peripheral device functions' deceleration, memory-mapped register address definition, definitions of data types, and C preprocessor commands (some IPs may have additional header files).
 - tutorial.c: Contains all peripheral device's functions definition.
 - README: This file contains SoC parameters, IP connection and wishbone bus addresses. This file also explain how to work with Jtag_wb IP core.
 - program.sh: A sample bash file that can be used for programming the SoC RAMs at run time using JTAG interface.
- src_verilog: contains three Verilog files and a folder:
 - tutorial.v: the generated SoC RTL code. This file contains all IPs instances and connections.
 - tutorial_top.v: this file contains the tutorial SoC module instance connected to a JTAG controllers and clock convertor modules.
 - Top.v: Contains the highest top module where the SoC ports are connected to the target FPGA pins.
 - lib: This folder contains all IP cores HDL files.

Software Development

- 1. Click on the *Software* button to open the software development window.
- 2. In the left Tree-View window, you can select any file in project sw directory to open and then edit it. Click on tutorial.h file to see the file contents. This file contains all generated SoC functions and WB addresses.

/home/alireza/mywork/r	Q RegExp Case		
Makefile	1 #ifndef TUTORIAL_SYSTEM_H		
README	2 #define TUTORIAL_SYSTEM_H		
define_printf.h	3		
link.ld	5 /* led */		bus:wb_slave[1
main	6 #define led_WRITE_REG (*((volatile unsigned int *) (0X91000000+4)))		
main.c	7 #define led_WRITE(value) led_WRITE_REG=value		source:clk
mor1kx	8		
program.sh	9 /* udit */ 10 #include "define printf h" // This file must be available in processor folder which define the print 10 #include "define printf h" // This file must be available in processor folder which define the print 10 #include "define printf h" // This file must be available in processor folder which define the print 10 #include "define printf h" // This file must be available in processor folder which define the print 10 #include "define printf h" // This file must be available in processor folder which define the print 10 #include "define printf h" // This file must be available in processor folder which define the print 10 #include "define printf h" // This file must be available in processor folder which define the print 10 #include "define printf h" // This file must be available in processor folder which define the print 10 #include "define printf h" // This file must be available in processor folder which define the print 10 #include "define printf h" // This file must be available in processor folder which define the print he printf	eral	NC
simple-printf	11		
tutorial.h	12 #define uart_DATA_REG (*((volatile unsigned int *) (0X90000000)))		
ory sh	13 #define uart_CONTROL_REG (*((volatile unsigned int *) (0X90000000+4)))		source:reset
inco_inclusive	14 #define uart_CONTROL_WSPACE_MSK 0xFFFF0000		
	16 #define uart_DATA_NALID_MSK_0x000000FF		bus:wb_slave[2
	17		
	18 ////////////////////////////////////		source:clk
	19 void jtag_putchar(char ch);		
	20 char itag_getchar(Void); 21 wold outbyte(char c)/itag_putchar(c);} (/called in printf();		
	22 char inbyte(){return itag_getchar();}		source:reset
	23		
	24 void jtag_putchar(char ch){ //print one char from jtag_uart		bus:wb_slave[3
		10.0	

Figure 5.10: The software edit window snapshot.

3. Now click on main.c file. Replace the contents of this file with the following C code. This code writes the "Hello worlds!" on JTAG UART port once, and then controls the LEDs using the timer interrupt service routine. Each time an interrupt happens the LED which is on is turned off and the neighboring one is turned on. The timer asserts an interrupt in every 500 clock cycles. The interrupt time is deliberately chosen too small to speed up the simulation. In FPGA implementation which comes later we will increase the interrupt time to observe the blinking LEDs on the target FPGA board.

```
#include "tutorial.h"
// a simple delay function
void delay ( unsigned int num ) {
   while (num>0) {
     num--;
     nop(); // asm volatile ("nop");
   }
   return;
}
char i=1;
void timer_isr(void) {
  //write your interrupt code here
   i*=2;
   if((i&0xF)==0) i=1;
  led_WRITE(i);
  timer_TCSR=timer_TCSR; //ack int
   return;
}
int main() {
  printf("hello world!\n");
   delay(500);
   general_int_init();
   general_int_add(timer_INT_PIN, timer_isr, 0);
   general_int_enable(timer_INT_PIN);
   general_cpu_int_en();
   timer_int_init(500);
   while(1){
     delay(500);
   }
   return 0;
}
```

4. Now press the O compile button. This will compile the C code using Morlkx GNU toolchain. If everything runs ok, you must see "compilation finished successfully" message as shown in Figure 5.11. Otherwise, check the error message to fix your code and press the compile button again. If every thing runs successfully you must have ram0.bin, ram0.hex, and ram0.mif files in your sw/RAM directory.

/home/alireza/work	/🚍 File Search Help	
Makefile	Q	
RAM	nop(), // dom volucie (nop //	00
README	9 return	
SOURCE LIB	10 }	
cache.o		
crt0 o	12 cnar I=1; 13 void timer isr(void){	
exceptions o	14 //write your interrupt code here	
Exceptions.0	15 i*=2;	
ine_list	$ \begin{array}{c} 16 & \text{if}((i\& 0XF) == 0) & \text{i=1;} \\ 17 & \text{locl WPITE(i);} \\ \end{array} $	
image	18 timer TCSR=timer TCSR; //ack int	
image.ihex	19 return;	
image.lst	20 }	
image.map	21	
int.o	23 int main(){	
liborlib.a	24 printf("hello world!\n");	
link.ld	25 delay(500); 26 general int init();	
linkvar.ld	27 general int add(timer INT PIN, timer isr, 0):	
main c	28 general_int_enable(timer_INT_PIN);	
mmulo	29 general_cpu_int_en();	
marily tile a	30 timer_int_init(500); 31 while(1){	
morik_tile.c	32 delay(500);	
mor1k_tile.h	33 }	
mor1k_tile.o	34 return 0;	
)))		
me/alireza/work/gi	it/hea_ait/mpsoc_work/toolchain/bin/ibev2bin_i impage ibey_o_PAM/rom0_b	in
me/alireza/work/gi	it/hca_git/mpsoc_work/toolchain/bin/hin2mif_f RAM/ram0 bin_o RAM/ram	0 mif -w 32
me/alireza/work/gi	it/hca_git/mpsoc_work/toolchain/bin/bin2mm _f RAM/ram0 hin _o RAM/ram	m0 mem -w 32
me/alireza/work/gi	it/hca_git/mpsoc_work/toolchain/bin/bin2strf_RAM/ram0_binb	indificit w 52
* 0 * a	enca_greenpool_nonecontent/onecontent/onecontent	
mpilation finished	successfully.	
	4.a 4	

Figure 5.11: Compile the software code.

(a) In case you got region (ram or rom) overflowed such as the one shown in

Figure 5.12, you need to configure the linker (LD) size variables by clicking on the O LD linker button.

/home/alireza/work/git/hca_git/mpsoc_work/toolchain/or1k-elf/bin/or1k-elf-ld: image section `.stack' will not fit in region `ram' /home/alireza/work/git/hca_git/mpsoc_work/toolchain/or1k-elf/bin/or1k-elf-ld: region `ram' overflowed by 472 bytes make: *** [image] Error 1

Compilation failed.

Figure 5.12: LD Linker error example.

This opens a new window shown in Figure 5.13 where you can redefine the ROM/RAM regions in the executable output file. This file contains the following sections:

- .vectors: contains exceptions' handling addresses. This section is mapped to ROM region.
- .text: holds instructions and is mapped to ROM region.
- .rodata: contains read only data (constants) and is mapped to ROM region.
- .data: hols initialized writable data. As the data in this sections is writable its value may change during execution time. So after resetting the CPU data should get back its intile value again. To do that, this section has two addresses: The actual section is loaded in ROM on load address (LMA) address. The second address is reserved in RAM which is called virtual address (VMA) regions. At the boot time the entire .data section is copied from ROM to RAM. And the executable program only changes the values in RAM section.
- .bss: contains uninitialized data and is mapped to RAM.
- .stack: contains stack and is mapped in RAM.

As a result the RAM and ROM area size should be defined in such a way that the mentioned sections can be fitted in them.

By default, 75% of memory is dedicated for ROM area and the rest of 25% is reserved for RAM. Depending on which area is overflowed you can change these ratios here and retry compilation process. In case both areas are overflowed, you need to increase your memory size. Don't forget that you also need to increase the memory width parameter in memory IP in processing tile generator window later as well (i.e: RAMs' Aw parameter in Table 5.1).

				в	RAM info				0 🛛 😣
[Tile #	Memory Addr Width	ROM/(ROM+RAM) (%)	ROM index a Beginning	addr (hex) End	Size	RAM index Beginning	addr (hex) End	Size
	0	14 🗘 32 КВ	75.00 ‡	0000000 \$	0000c000	🗘 48 КВ	0000c000 \$	00010000	🗘 16 КВ
				0	к				

Figure 5.13: LD Linker configuration window snapshot.

Simulate the generated RTL code using Modelsim software If you have installed Modelsim software on your system, you can simulate your SoC working with your developed software. To do this, follow these instructions:

- 1. Press the D Compile RTL button in right down corner. This should open "select compiler window" as shown in Figure 5.14.
- 2. Select Modelsim as compiler tool.
- 3. Enter the path to your installed Modelsim bin directory.
- 4. Press the \Rightarrow Next button.

😣 🖨 💿 Step 1: Sele	ct Compiler	QuartusII
		Verilator
	Compiler tool 2	Modelsim
Modelsim bin: 💡	/home/alireza/altera/modelte	
	4	Next

Figure 5.14: Select Modelsim as simulator.

- 5. Now you must have the testbech.v opened in text editor window as shown in Figure 5.15. This is the minimum testbench file for running the simulation of the generated SoC in Modelsim software. It has the SoC instance module connected to the clock and reset signals. You can edit this file as you wish.
- 6. Press the 🜔 run button to run the simulation in Modelsim software.

nome/alireza/mywork/m	Q	RegExp
	17 ** Public License for more details)
	18 **	
	19 ** You should have received a copy of the GNU Lesser General Public	
	20 ** License along with ProNoC. If not, see <http:**www.gnu.org licenses=""></http:**www.gnu.org> .	
	21 ************************************	*****
	22 `timescale 1ns/1ps	
	23 module testbench;	
	24 // tutorial.v IO definition	
	25 wire [4-1 : 0] led_port_o;	
	26 reg source_clk_in;	
	<pre>27 reg cpu_cpu_en;</pre>	
	28 reg source_reset_in;	
	29	
	30 tutonal uut (
	31 .led_port_o(led_port_o),	
	32 .source_ck_in(source_ck_in),	
	34 source reset in(source reset in)	
	34 .source_reset_in(source_reset_in)	
	36	
	37 //clock defination	
	38 initial begin	
	39 forever begin	
	40 #5 source clk in=0;	
	41 #5 source clk in=1;	
	42 end	
	43 end	
	44	
	45 initial begin	
	46 // reset tutorial module at the start up	
	<pre>47 source_reset_in=1;</pre>	
	<pre>48 cpu_cpu_en=1;</pre>	
	49 // deasert the reset after 200 ns	
	50 #200	
	51 source_reset_in=0;	
	52 // write your testbench here	
	53	
	54	
t Modelsim dir in /home/	alireza/mywork/mpsoc_work/SOC/tutorial	
the list of all verilog files	in src verilog folder	
ate nun tel file	······································	
ate runtur me		

Figure 5.15: testbech.v file snapshot.

7. Figure 5.16 shows the Modelsim simulation output snapshot. You must see the "hello world!" in the Modelsim terminal. The output LEDs also must be seen as cyclic shift to the left of a one-hot code in the Signal Waveform Window.

😣 🖱 💿 ModelSim SE-64 6.5c	
<u>File Edit View Compile Simulate</u>	Add Wave Tools Layout Window Hel
🗋 - 😹 🖬 % 🚭 👗 🗞 🛍	12 😳 🗛 監 🗞 Help 💦 🖓 🦂 🧐 🤤 🖉 🖉 🖉 👔 🕅 Layout Sinulate 🛛 🚽 🗄 上 子 ゴ を デ ゴ 🔂 🖓 🖓
🖉 🛧 <table-cell-rows> 💱 🛛 100 ps 🕏</table-cell-rows>	L E B X (D D D D X X X 🖄 🖄 🔶 🔍 🔍 🔍 🔍 🔍 🔍 🗮 🛛 🕺 🛛 🕷 🛛 🙀 🔛 🖓 🔛 🖓 🔛 👘 🚺 💷 🔛 🖬 👘 🗍
🛺 sim = + 🗗 🗙 🖕 😁 + 🖻	🗑 Wave :
Tinstance	Messages
◆ ○ ← ◆ ○ ← ← FE ← FE ← FE ← FE ▼ ■ ▼ ■ ▼ ■ ▼ ■ ▼ ■ ■ ■ #ASS	Image: second
	20000 ns 20000 ns
	Cursor 1 1152689.608 ns
Library 😹 sim 🕙 🔲 🖂	
Transcript # hello world! # Break key hit # Break in Statement instruction # Simulation Breakpoint: Break i	الله المحمد المعادية المحمد المحم المحمد المحمد المحم المحمد المحمد ا
Now: 1 152 690 ne Delta: 4	elm/leathershi/utikau/mortky/0/mortky_cou/eanuscina/mortky_cou/mortky_ctil_canauscina/instructionstache_cti/#ASSIGN#1345

Figure 5.16: Modelsim output snapshot.

Simulate the generated RTL code using Verilator software If you have installed Verilator software on your system, you can simulate your SoC when it is running your developed software. To do this follow these instructions:

Press the Compile RTL button in right down corner. This should open "select compiler window" as shown in Figure 5.17. Select Verilator as compiler tool then press Next.

😣 🖨 💷 Step 1: Select Compiler	
	QuartusII
Compiler tool	Verilator
	Modelsim
	Next

Figure 5.17: Select Verilator compiler.

2. The Verilator Model of your SoC should be generated now. If the model is generated successfully, you must see "Veriator model has been generated successfully!" in the Textview window as shown in Figure 5.18.

🔉 🖨 🐵 Step 2: Compile
Permanting*comport: Thortxt_ctri_cappercence.r.tvov+: belayed assignments (<=) This hole cocked (non-nop or later) block, suggest blocking
<pre>passymmetric (~). %Warning-COMBDLY: mor1kx_ctrl_cappuccino.v:1067: Delayed assignments (<=) in non-clocked (non flop or latch) block; suggest blocking assignments (=).</pre>
%Warning-COMBOLY: mor1kx_ctr1_cappuccino.v:1070: Delayed assignments (<=) in non-clocked (non flop or latch) block; suggest blocking assignments (=).
%Waming-UNOPTFLAT: mor1kx_jcache.v:162: Signal unoptimizable: Feedback to dock or circular logic: v.cpu.mor1kx0.mor1kx_cpu.cappuccino.mor1kx_cpu->mor1kx_fetch_cappuccino.icache_gen.mor1kx_icache.next_lru_history
%Warning-UNOPTFLAT: Example path: mor1kx_icache.v:162: v.cpu.mor1kx0.mor1kx_cpu.cappuccino.mor1kx_cpu- >mor1kx_fetch_cappuccino.icache_gen.mor1kx_icache.next_lru_history
%Warning-UNOPTFLAT: Example path: mor1kx_icache.v:324: ALWAYS
%Warning-UNOPTFLAT: Example path: mor1kx_icache.v:157: v.cpu.mor1kx0.mor1kx_cpu.cappuccino.mor1kx_cpu- >mor1kx_fetch_cappuccino.icache_gen.mor1kx_icache.access
%Warning-UNOPTFLAT: Example path: mor1kx_cache_Iru.v:173: ALWAYS
%Waming-UNOPTFLAT: Example path: mor1kx_icache.v:162: v.cpu.mor1kx0.mor1kx_cpu.cappuccino.mor1kx_cpu- >mor1kx_fetch_cappuccino.icache_gen.mor1kx_icache.next_Inu_history
%Warning-UNOPTFLAT: mor1kx_dcache.v:181: Signal unoptimizable: Feedback to clock or circular logic: v.cpu.mor1kx0.mor1kx_cpu.cappuccino.mor1kx_cpu->mor1kx_lsu_cappuccino.dcache_gen.mor1kx_dcache.next_lru_history
%Warning-UNOPTFLAT: Example path: mor1kx_dcache.v:181: v.cpu.mor1kx0.mor1kx_cpu.cappuccino.mor1kx_cpu- >mor1kx_lsu_cappuccino.dcache_gen.mor1kx_dcache.next_lru_history
%Warning-UNOPTFLAT: Example path: mor1kx_dcache.v:461: ALWAYS
%Waming-UNOPTFLAT: Example path: morikx_dcache.v:176: v.cpu.morikx0.morikx_cpu.cappuccino.morikx_cpu- >morikx_isu_cappuccino.dcache_gen.morikx_dcache.access
%Warning-UNOPTFLAT: Example path: mor1kx_cache_Inu.v:173: ALWAYS
%Waming-UNOPTFLAT: Example path: mor1kx_dcache.v:181: v.cpu.mor1kx0.mor1kx_cpu.cappuccino.mor1kx_cpu- >mor1kx_lsu_cappuccino.dcache_gen.mor1kx_dcache.next_lru_history
%Error: Exiting due to 126 warning(s)
%Error: Command Failed /usr/bin/verilator_bincc tutorial.vprofile-cfuncsprefix Vtop -O3 -CFLAGS -O3
Veriator model has been generated successfully
📻 Previous

Figure 5.18: Verilator model generation snapshot.

- 3. Press Next.
- 4. Now you must have the testbech.c opened in software code edit window as shown in Figure 5.19. This is the minimum testbench file for running the generated SoC. It has the SoC instance module connected to the clock and reset signals. You can edit this file as you wish.

Figure 5.19: Verilator model testbench edit snapshot.

5. We would like to monitor the value of LEDs when running the simulation model. To do this, add the following lines to the testbech.c file:

- 43	int led=0;	
44	int main(int argc, char** argv) {	
45	Verilated::commandArgs(argc, argv);	// Remember args
46	top = new Vtop;	
47		

6. Press Compile button to generate the executable binary file. If the file is generated successfully you must see the "compilation finished successfully" message as shown in Figure 5.20.

+filt		
*RETCODE == 0		
ar: creating VtopALL.a		
Compilation finished successfully.	6	7
Previous Regenerate Testhench con	Compile	Run

Figure 5.20: Verilator compilation successful snapshot.

7. Now press the Run button. In the successful simulation you must observe the "Hello world!" sentence in terminal and each time you press the Enter button you must observe the printed value of LED output port change to one of "1,2,4,8" numbers in order as show in Figure 5.21.

Figure 5.21: Verilator simulation results snapshot.

Compile the generated RTL code using Quartus II/Vivado software If you have installed Quartus II/Vivado software on your system and you have an Altera/Xilinx FPGA development board, you can prototype your SoC on your target FPGA and change its software code at runtime using following instructions:

1. Press D Compile RTL button in right down corner. This should open "select compiler window" as shown in Figure 5.22. Select QuartusII or Vivado as the compiler tool depend on your FPGA vendor.

	Add New Board	3
	DE0_nano	QuartusII
	DE1_SoC	
Targeted Board: 💡	DE2_115	-
Quartus bin:	/home/alireza/intelFPGA_lite,	
	2	
		📄 Next

Figure 5.22: Select QuartusII as compiler.

2. Enter the path to your installed QuartusII/Vivado $\verb"bin"$ directory.

- 3. In Targeted Board search for your FPGA board name. If the board exist select it, press the wext button and continue from step 5. Otherwise, select Add New Board.
- 4. Press the Next button. If you selected Add New Board, follow instructions in Add new FPGA board to ProNoC to add your new board to ProNoC library.

Port Direction	Port Range	Port name	Assigment Type	Board Port name	Board Port Range
input		cpu_cpu_en	Direct ‡	*VCC ‡	
output	[4-1:0]	led_port_o		LED ‡	3 ‡:0 ‡
nput		source_clk_in	Direct ‡	FPGA_CLK1_50 ‡	
nput		source_reset_in	Negate(~)	KEY ‡	0 ‡

5. Assign your SoC pins to your FPGA boards pins as shown in Figure 5.23.

Figure 5.23: SoC pin assignment.

Here, we have a DE10_nano FPGA board which we have used its FPGA_CLK1_50, KEY[0], and LED[3:0] ports. The enable pin is connected to logic 1, led_port [3:0] to LED[3:0], the clk signal to FPGA_CLK1_50 and reset to negate KEY[0]. In DE10_nano FPGA board the KEY[1:0] are push-button switches and are active-high. Hence, to use them as active-high reset sources we have to negate their value.

- 6. Press the \rightarrow Next button.
- 7. Press the Scompile button. Then wait for QuartusII compilation tasks to complete.

 /home/alireza/mywork/mpsoc_wor 	k Q	RegExp Case
Top.v	20 ** License along with ProNoC. If not, see s	ono cessor centrar rabie
▶ lib	21 ************************************	*********
testbench.v	22	
tutorial.v	23 module Top (
tutorial top v	24 FPGA_CER1_50,	🥺 🗢 🗉 sh
	<pre>26 LED 27); 28 input FPGA_CLK1_50; 29 input [1:0] KEY; 30 output [7:0] LED; 31 32 33 tutorial_top uut(34 .cpu_cpu_en(1*bi), 35 .ied_port_o(LED[3:0]), 36 .source_ckin(FPGA_CLK1_50), 37 .source_reset_in(~ KEY[0]) 38); 39 40 41 endmodule 42</pre>	Into: associated documentation or intormation are expressly subject Into: to the terms and conditions of the Intel Program License Into: Subscription Agreement, the Intel Quartus Prime License Agreement, Into: the Intel PFOH PLicense Agreement, or other applicable license Into: the sole purpose of programming logic devices manufactured by Into: Intel and sold by Intel or its authorized distributors. Please Into: refer to the applicable agreement for intributors. Please Into: Processing started; Non Apr 9 14/49320 2018 Into: Command; gautus.page -GAblit tutorial -read_settings_files=on Into: 10.0,2, Created Quartus Prime Behault Settings File.Nome/Alireza/Augurt /mappic.com/rSGC/tutorial/tutorial_assignment_defaults.qdf, which contains the default assignment settings file assignment, default assignment, defaults.qdf, which contains the default assignment settings file Acutus Prime Sontains of the Quartus Primes to Augures to default assignment, defaults.qdf, din 16.10.Acutorial/tutorial/tutorial_assignment, defaults.qdf, which contains the default assignment settings file Acutus Prime Sontains file Anome/alireza/IntelPFOR_lite/17./quartus/linus04/assignment, defaults.qdf
	42	Warning (18236): Number of processors has not been specified which may cause over
xterm -e sh -c '/home/alireza/intelFf	PGA lite/17.1/guartus/bin/guartus fit64bit tuto	rloading on shared machines. Set the global assignment NUM_PHKHLLEL_PKULESSURS ialreain your QSE to an appropriate value for best performance.
cd "/home/alireza/mywork/mpsoc we	prk/SOC/tutorial/"	Info (20030); Parallel compilation is enabled and will use 2 of the 2 processors
xterm -e sh -c '/home/alireza/intelFF	A lite/17.1/guartus/bin/guartus asm64bit tut	orial
cd "/home/alireza/mywork/mpsoc wo	ork/SOC/tutorial/"	
xterm -e sh -c '/home/alireza/intelFf	PGA lite/17.1/guartus/bin/guartus_sta64bit tuto	rial;echo \$? > status'
Quartus compilation is done successfu	Illy in /home/alireza/mywork/mpsoc_work/SOC/tut	orial!

Figure 5.24: QuartusII compilation snapshot.

- 8. If Quartus compilation is finished successfully, power on your FPGA board and connect it to your PC then press *Program* the Board button to program your FPGA board using the generated sof file.
- 9. Press Ctrl+U to run the UART terminal GUI. Follow instructions on UART terminal GUI chapter to monitor the UART output.

In case you have Altera FPGA and you have preferred to used altera_jatag_uart instead of ProNoC_JTAG_UART, open Terminal and type \$QUARTUS_BIN/nios2-terminal. You must be able to observe the "Hello world!" Sentence in the terminal as shown in Figure 5.25.

Figure 5.25: nios2-terminal output snapshot.

10. As we mentioned in step 3, the interrupt time is too short to observe the LEDs blinking. To change the interrupt time click on Software button and change the timer interrupt time from 500 to 5000000. Then press the compile button. By clicking on Frogram the Board button you can reprogram your

SoC memory contents at run time. You should be able to observe the blinking LEDs now.

Figure 5.26: Increase timer interrupt time.

CHAPTER 6

Add Custom IP to Processing Tile Generator Tutorial

Summary	This tutorial teaches how to add a custom intellectual property (IP) core to ProNoC Processing Tile Generator using IP Generator . This tutorial uses a custom Verilog module for calculating the greatest common divisor (GCD) as an example hardware accelerator to be added to ProNoC IP library. The desired system is a Wishbone bus based SoC that is enhanced with GCD accelerator. This SoC will be generated by connecting open-source IP cores on Altera FPGA board.						
System Requirements:	You will need an Altera FPGA development board having USB blaster I or II and a computer system running Linux OS with:						
	1. Installed the ProNoC GUI software and its dependency packages.						
	2. Installed/Pre-built GNU toolchain of the aeMB soft-core processor.						
	3. Installed Quarts II (Web-edition or full) compiler.						
	For more information about the GNU toolchain installation please refer to the In- stallation Manual for the Ubuntu. In case your FPGA board is not included in ProNoC FPGA board list please follow the instruction given in Adding a New Altera FPGA Board to ProNoC, to add your board to ProNoC.						
Objectives:							
	1. To develop a Wishbone bus based custom Hardware Accelerator (HA) IP core.						
	2. To extend ProNoC IP core library with a new IP core and its required software header file.						
Greatest Common Divisor (GCD) Algorithm	The Greatest Common Divisor (GCD) of two integers p and q , is the largest integer that divides both p and q . GCD can be obtained using Euclidean algorithm as follow: Data: (p, q) : A pair of 8-bit binary positive numbers. Result: gcd : greatest common divisor INITIALIZE; while $p \neq q$ do if $p > q$ then p = p - q; end else if $p < q$ then q = q - p; end else gcd = p; end end						

Algorithm 1: Greatest Common Divisor algorithm.

The GCD flow chart:

Figure 6.1: GCD flow chart.


```
Listing 6.1: gcd.v
/****
* GCD
*****
                   ******/
module gcd #(
parameter GCDw=32
)( clk, reset, enable, in1, in2, done, gcd);
   input clk, reset;
   input [GCDw-1 : 0] in1, in2;
   output [GCDw-1 : 0] gcd;
   input enable;
   output done;
   wire ldG, ldP, ldQ, selP0, selQ0, selP, selQ;
   wire AeqB, AltB;
   gcd_cu CU(
      .clk (clk),
      .reset (reset),
      .AeqB (AeqB),
      .AltB (AltB),
      .enable (enable),
      .ldG (ldG),
      .ldP (ldP),
      .ldQ (ldQ),
      .selP0 (selP0),
```

```
.selQ0 (selQ0),
      .selP (selP),
      .selQ (selQ),
      .done (done)
   );
   gcd_dpu #(
     .GCDw(GCDw)
   )DPU(
      .clk (clk),
      .reset (reset),
      .in1 (in1),
      .in2 (in2),
      .gcd (gcd),
      .AeqB (AeqB),
      .AltB (AltB),
      .ldG (ldG),
      .ldP (ldP),
      .ldQ (ldQ),
      .selP0 (selP0),
      .selQ0 (selQ0),
      .selP (selP),
      .selQ (selQ)
      );
endmodule
/*****
* gcd_cu
              * * * * * * * * * * * * /
module gcd_cu (clk, reset, ldG, ldP, ldQ, selP0, selQ0, selP, selQ, AeqB,
    AltB, done, enable);
   input clk, reset;
   input AeqB, AltB, enable;
   output ldG, ldP, ldQ, selP0, selQ0, selP, selQ, done;
   reg ldG, ldP, ldQ, selP0, selQ0, selP, selQ, done;
   //State encoding
   parameter S0 = 2'b00, S1 = 2'b01, S2 = 2'b10;
   reg [1:0] y;
   always @ (posedge reset or posedge clk) begin
      if (reset == 1) y <= S0;</pre>
      else begin
         case (y)
            S0: begin if (enable == 1) y <= S1;
               else y <= S0;
            end
            S1: begin if (AeqB == 1) y <= S2;
               else y <= S1;
```

```
end
            S2: begin if (enable == 0) y <= S0;
             else y <= S2;
            end
            default: y <= S0;</pre>
         endcase
      end
   end
   always @ (y or enable or AeqB or AltB) begin
     ldG = 1'b0; ldP = 1'b0; ldQ = 1'b0;
      selP0 = 1'b0;
      selQ0 = 1'b0;
     selQ = 1'b0;
selQ = 1'b0;
done = 1'b0;
      case (y)
      S0: begin
         done = 1'b1;
         if (enable == 1) begin
            selP0 = 1; ldP = 1; selQ0 = 1; ldQ = 1; done = 0;
         end
      end
      S1: begin
         if (AeqB == 1) begin
           ldG = 1;
            done = 1;
         end
         else if (AltB == 1) begin
           1dQ = 1;
         end
         else begin
           ldP = 1; selP = 1; selQ = 1;
         end
      end
      S2: begin
        ldG = 1;
         done = 1;
      end
      default: ;
      endcase
      end
   endmodule
/ * * * * * * * * *
* gcd_dpu
module gcd_dpu #(
 parameter GCDw=32
)( clk, reset, in1, in2, gcd, ldG, ldP, ldQ, selP0, selQ0, selP, selQ,
```

```
AeqB, AltB);
   input clk, reset;
   input [GCDw-1:0] in1, in2;
   output [GCDw-1:0] gcd;
   input ldG, ldP, ldQ, selP0, selQ0, selP, selQ;
   output AeqB, AltB;
   reg [GCDw-1:0] reg_P, reg_Q;
  wire [GCDw-1:0] wire_ALU;
   reg [GCDw-1:0] gcd;
  wire AeqB, AltB;
   //RegP with Multiplex 2:1
   always @ (posedge clk or posedge reset)begin
      if (reset == 1) reg_P <= 0;</pre>
      else begin
         if (ldP == 1)begin
            if (selP0==1) reg_P <= in1;</pre>
            else reg_P <= wire_ALU;</pre>
         end
      end
  end
      //RegQ with Multiplex 2:1
   always @ (posedge clk or posedge reset) begin
      if (reset == 1) reg_Q <= 0;</pre>
      else begin
         if (ldQ == 1)begin
            if (selQ0==1) reg_Q <= in2;</pre>
            else reg_Q <= wire_ALU;</pre>
         end
      end
   end
   //RegG with enable signal
   always @ (posedge clk or posedge reset)begin
      if (reset == 1) gcd <= {GCDw{1'b0}};</pre>
      else begin
        if (ldG == 1) gcd <= req_P;</pre>
      end
  end
  assign AeqB = (reg_P == reg_Q)? 1'b1 : 1'b0;
  assign AltB = (reg_P < reg_Q) ? 1'b1 : 1'b0;</pre>
   //Subtractor
  assign wire_ALU = ((selP == 1) & (selQ == 1)) ? (reg_P - reg_Q) : (
      reg_Q - reg_P);
endmodule
```

Create mpsoc/src_peripheral/other directory and then copy the above gcd.v file inside it.

In order to verify GCD hardware module, we use Verilator simulator. Optionally you Simulation can use Modelsim as well.

1. If you have not yet installed Verilator simulator on your system run the following

GCD

command in terminal

```
sudo apt-get install verilator
```

2. Open terminal in the folder which you have created gcd.v file and run:

verilator --cc gcd.v

If your code is successfully verilated, you will have an <code>obj_dir</code> directory that includes all generated GCD object files.

3. Open obj_dir folder and create testbench.cpp inside it:

```
Listing 6.2: testbench.cpp
#include <stdlib.h>
#include <stdio.h>
#include <unistd.h>
#include <verilated.h>
#include "Vgcd.h" // From Verilating "gcd.v"
unsigned int input1[10] ={136, 25, 33220, 3627, 3450, 9375, 199317,
    157620, 5694235, 199307 };
unsigned int input2[10] ={248, 50, 2200, 4581, 6540, 61575, 103443,
    238844, 239871, 903443};
unsigned int expt_gcd[10] ={8, 25, 220, 9, 30, 75, 2523, 284, 2161,
    1};
Vgcd *gcd // Instantiation of module
unsigned int main_time = 0; // Current simulation time
int run;
unsigned int i=0,passed=1;
int main(int argc, char** argv) {
  Verilated::commandArgs(argc, argv); // Remember args
   gcd = new Vgcd;
   /***
   * initialize input
   ***************
   gcd->reset=1;
   gcd->enable=0;
     gcd->in1=0;
     gcd->in2=0;
   main_time=0;
   run=0;
   while (!Verilated::gotFinish() && i<10) {</pre>
      if (main_time & 0x1) {
         qcd \rightarrow clk = 0;
         if(gcd-> done==1 && run>6){
            printf("%u : GCD(%u,%u) = %d\t",main_time,gcd->in1, gcd->
                in2, gcd->gcd);
            if(gcd->gcd == expt_gcd[i]) printf(" Matched\n");
            else {passed=0; printf(" Error:Miss-matched\n");}
```

```
i++;
            run=0;
         }
         if(gcd-> enable == 1 && run==5) {
            gcd-> enable = 0;
         }
         if(run==4 && gcd->reset==0){
            gcd-> enable = 1;
            gcd-> in1 = input1[i];
gcd-> in2 = input2[i];
         }
         if (main_time >= 10 ) {
            gcd->reset=0;
            run++;
         }
      }//if
      else {
         gcd-> clk = 1; // Toggle clock
      }//else
      gcd->eval();
      main_time++;
   }
   if(passed) printf( " ********* GCD Testing passed ********\n
       ");
   else printf( " ********* GCD Testing failed **************");
   gcd->final();
}
double sc_time_stamp () { // Called by $time in Verilog
   return main_time;
}
```

4. Now create a Makefile inside obj_dir:

Listing 6.3: Makefile
-*- Makefile -*-
default: sim
MUDUL = Vgcd
include Vgcd.mk
lib: \$(MAKE) -f \$(MUDUL).mk
######################################
CPPFLAGS += -DVL_DEBUG=1 ifeq (\$(CFG_WITH_CCWARN),yes) # Local Else don't burden users CPPFLAGS += -DVL_THREADED=1 CPPFLAGS += -W -Werror -Wall endif
######################################
<pre>sim: testbench.o \$(VK_GLOBAL_OBJS) \$(MUDUL)ALL.a \$(LINK) \$(LDFLAGS) -g \$^ \$(LOADLIBES) \$(LDLIBS) -o testbench \$(LIBS) - Wall -03 2>&1 c++filt</pre>
testbench.o: testbench.cpp \$(MUDUL).h
clean: rm *.o *.a main

5. Now to compile the testbench code open terminal in obj_dir directory and run:

make

Sample output:

```
g++ -I. -MMD -I/usr/local/share/verilator/include -I/usr/local/
share/verilator/include/vltstd -DVL_PRINTF=printf -DVM_TRACE=0
    -DVM_COVERAGE=0 -DVL_DEBUG=1 -c -o testbench.o testbench.cpp
g++ -g testbench.o verilated.o Vgcd_ALL.a -o testbench -lm -lstdc
    ++ -Wall -O3 2>&1 | c++filt
```

This must generate a binary executable file inside obj_dir named as testbench.

6. To run the simulation run:

./testbench

Expected output:

37	:	C	GCD(136,248)= 8	Matched
51	:	C	GCD(25,50)= 25 M	atched
109		:	GCD(33220,2200)	= 220 Matched
177		:	GCD(3627,4581)=	9 Matched
217		:	GCD(3450,6540)=	30 Matched
263		:	GCD(9375,61575)	= 75 Matched
305		:	GCD(199317,1034	43)= 2523 Matched
365		:	GCD(157620,2388	44)= 284 Matched
445		:	GCD (5694235,239	871)= 2161 Matched
557		:	GCD(199307,9034	43)= 1 Matched
* *	* 7	* *	***** GCD Testi	ng passed **********

Add Wishbone bus interface to GCD

After the GCD core is functionality verified, next is to add Wishbone bus interface to GCD hardware. This interface module provides memory-mapped access of GCD module's input/output ports for the processor. The memory-mapped addresses are illustrated in Table 6.1:

Offset Address	Name	Description	Mode
0	DONE	Holds the value of done output port	Read-only
1	IN1	Write on GCD's module first input variable	Write-only
2	IN2	Write on GCD's module second input vari-	Write-only
		able. Writing on this register will trigger	
		the GCD's enable port	
3	GCD	Holds the generated GCD value	Read-only

Table 6.1: GCD_IP internal register addresses.

Create the following file inside mpsoc/src_peripheral/other directory

```
Listing 6.4: gcd_ip.v

module gcd_ip#(

    parameter GCDw=32,

    parameter Dw =GCDw,

    parameter Aw =5,

    parameter TAGw =3,

    parameter SELw =4

)

(

    clk,

    reset,

    //wishbone bus interface

    s_dat_i,

    s_sel_i,

    s_addr_i,
```

```
s_tag_i,
   s_stb_i,
   s_cyc_i,
   s_we_i,
   s_dat_o,
   s_ack_o,
   s_err_o,
   s_rty_o
);
   input clk;
   input reset;
   //wishbone bus interface
   input [Dw-1 : 0] s_dat_i;
   input [SELw-1 : 0] s_sel_i;
   input [Aw-1 : 0] s_addr_i;
   input [TAGw-1 : 0] s_tag_i;
   input s_stb_i;
   input s_cyc_i;
   input s_we_i;
   output [Dw-1 : 0] s_dat_o;
   output reg s_ack_o;
   output s_err_o;
   output s_rty_o;
//Wishbone bus registers address
   localparam DONE_REG_ADDR=0;
    localparam IN_1_REG_ADDR=1;
    localparam IN_2_REG_ADDR=2;
   localparam GCD_REG_ADDR=3;
   assign s_err_o = 1'b0;
   assign s_rty_o = 1'b0;
   wire[GCDw-1 :0] gcd;
   reg [GCDw-1 :0] readdata,in1,in2;
   wire done;
   assign s_dat_o =readdata;
   always @ (posedge clk or posedge reset) begin
      if(reset) begin
        s_ack_o <= 1'b0;
      end else begin
        s_ack_o <= (s_stb_i & ~s_ack_o);
      end //reset
   end//always
   always @ (posedge clk or posedge reset) begin
      if(reset) begin
         readdata <= 0;</pre>
         in1 <= 0;
in2 <= 0;
      end else begin
```

```
if(s_stb_i && s_we_i) begin //write regiters
         if(s_addr_i==IN_1_REG_ADDR[Aw-1: 0]) in1 <= s_dat_i;</pre>
         else if(s_addr_i==IN_2_REG_ADDR[Aw-1: 0]) in2 <= s_dat_i;</pre>
      end //sa_stb_i && sa_we_i
      else begin //read registers
         if (s_addr_i==DONE_REG_ADDR) readdata<={{GCDw{1'b0}},done};</pre>
         if (s_addr_i==GCD_REG_ADDR) readdata<=gcd;</pre>
      end
   end //reset
end//always
// start gcd calculation by writiing on in2 register
wire start=(s_stb_i && s_we_i && (s_addr_i==IN_2_REG_ADDR[Aw-1: 0]));
reg ps,ns;
reg gcd_reset,gcd_reset_next;
reg gcd_en,gcd_en_next;
always @ (posedge clk or posedge reset) begin
   if(reset) begin
      ps<=1'b0;
      gcd_reset<=1'b1;</pre>
      gcd_en<=1'b0;
   end else begin
      ps<=ns;
      gcd_en<=gcd_en_next;</pre>
      gcd_reset<=gcd_reset_next;
   end
end
always @(*)begin
   gcd_reset_next=1'b0;
   gcd_en_next=1'b0;
   ns=ps;
   case(ps)
      1'b0:begin
         if(start) begin
            ns=1'b1;
            gcd_reset_next=1'b1;
         end
      end
      1'b1:begin
         gcd_en_next=1'b1;
         ns=1'b0;
      end
   endcase
end
gcd #(
   .GCDw(GCDw)
) the_gcd
(
   .clk (clk),
   .reset (gcd_reset),
   .enable (gcd_en),
   .in1 (in1),
```

```
.in2 (in2),
.done (done),
.gcd (gcd)
);
endmodule
```

Add custom wishbone-based IP core to ProNoC Library In this section, we show how to add previously generated GCD IP core to ProNoC library. However, this can be applied to any other wishbone based IP core.

- 1. Open mpsoc/perl_gui in the terminal and run ProNoC GUI application:
 - ./ProNoC.pl
- 2. Then select the generator. The IP Generator snapshot is shown in Figure 6.2.

Add HD files
Add HD files
lange
lange

Figure 6.2: ProNoC New IP Generator snapshot.

- 3. Click on *P* Browse and select gcd_ip.v file.
- 4. Enter other as category name.
- 5. Enter gcd as IP name.

Interface gene	erator 🏼 🗰 IP generator	r Processing tile gener	ator 📲 NoC based MPSoC gene	rator	
erfaces list NoC	Select file: /hon	ne/alireza/mywork/mpsoc/src_	peripheral/Other/gcd_ip.v 3	P Browse	IP name: gcd 5
nterrupt source	Select module: gcd_ip	Parameter Se Setting Cat	lect egory: Other 4	• 0 Ø	IP Description h Add Software Software
vishbone	Interf	face name	Туре		Interface Num
	Туре	Port name	Interface name	Interface port	Port Range
	Type input	Port name clk	Interface name	Interface port	Port Range
	Type input input	Port name clk reset	Interface name	Interface port	Port Range
	Type input input input	Port name clk reset s_dat_i	Interface name	Interface port IO ‡ IO ‡ IO ‡	Port Range
	Type input input input input	Port name clk reset s_dat_i s_sel_i	Interface name IO ‡ IO ‡ IO ‡ IO ‡	Interface port IO IO IO IO IO IO IO IO	Port Range Dw-1 : 0 SELw-1 : 0

Figure 6.3: Select gcd_ip.v file.

- 6. The gcd_ip.v file has one parameter named as GCDw which we want to be redefined by the user during IP call time. To define the appropriate GUI interface for this parameter click on (2) parameter setting button.
- 7. In the newly open window, select Combo-box as widget type.
- 8. Enter 8, 16, 32 as widget content. It will allow the user to select one of these three values for this parameter during Processing tile generation.
- 9. In the next Combo-box define it as Localparam. You can optionally select it as Parameter. See here to understand the differences.
- 10. Click on *(i)* IP Description button to add parameter information.
- 11. Enter parameter information as GCD's Input/output width in bits then press ok.
- 12. In parameter setting window press \bigcirc ok to save your setting.

Interface generator	岸 IP generator 🛛 🧊 Pri	ocessing tile generator	NoC based			
NoC Select nterrupt Select mod	file: /home/alireza/m	nywork/mpsoc/src_peripheral/ Parameter 6 Select setting Category: Ot	/Other/gcd_i		Ok	
Define parameter	s detail					
Parameter name	Default value	Widget type 💡	Widget content	Туре	info	add/remov
GCDw	32	Combo-box 🛟	8,16,32	Localparam ‡	🛛 Redefine 10	🚺 🔞 remo
Dw	GCDw	Fixed ⁷	8	Localparam ‡	🐼 Redefine	🚺 🔞 remo
Aw	5	Fixed ‡		Localparam ‡	🐼 Redefine	🚺 🔞 remo
TAGw	3	Fixed ‡		Localparam 🛟	Redefine	🚺 🔞 remo
	4	Fixed ‡		Localparam 🛟	Redefine	🚺 🔞 remo
SELw					_	

Figure 6.4: GCD IP core parameter setting.

- 13. In Interface list window expand source and wishbone categories. Then double click on clk, reset and wishbone to add them to the GCD IP library.
- 14. In Wishbone bus interface row, click on (2) button.
- 15. Select custom devices as wishbone address range category.
- 16. Set block address range as 5. This results in allocating 32 Bytes for each instance of this module. The memory size must be selected equal or greater than the actual IP's internal register size. (GCD has four 32-bit internal registers which are equal to 16 Bytes memory space).
- 17. Press 🚫 ok.

Now we need to map each module individual port to its appropriate interface port. By selecting the interface name, the port with the most similar name is matched with module port name, automatically . For this example the software can match all ports correctly. However in general, you may also needed to adjust the port name as well.

- 18. Select plug:clk for clk interface.
- 19. Select plug:reset for reset interface.
- 20. Connect all other ports to plug:wb_slave interface.

Interface generator	I 😣 🔿 🗊 Interface para	🛞 🖱 💿 Interface parameter setting								
Interfaces list		15b								
NoC	Interface name	a	address r	ange: (start end name)		block address width 🕜				
interrupt										
clk	wb_slave	0xb800_0000	0xbfff_	ffff custom device:	s 15 ÷	Fixed 12 Bytes 5				
enable						16				
reset 13				17 🔗 ок						
wishbone										
wb_addr_map wb_master	Interface name	Туре		Interface Nur	m					
wb_slave	reset	plug 🗘		1 0	0	Remove				
	elle	nlua *			0	C Remove				
	CIK	prug +			•	Remove				
	wb_slave	plug 💲		1 : ?	0 14	🔀 Remove				
	Туре	Port name		Interface name	Interface	port Port Range				
	Input	clk	18	plug:clk ‡	clk_l	÷)				
	input	reset	10	plug:reset ‡	reset_i	\$				
	input	s dat i	10	plug.wb_slave_*	dat i	1 Dw-1 : 0				
	input	5_ddt_i		pidg.ttb_state +						
	Input	s_sel_l		plug:wb_slave 🗧	sel_i	ŞELW-1 : 0				
	Input	s_addr_i		plug:wb_slave ‡	adr_l	\$ Aw-1 : 0				
	input	s_tag_i		plug:wb_slave 💲	tag_i	\$ TAGw-1 : 0				
	input	s stb i		plug:wb slave 1	stb i	:				
	land b		20	aluque aluque à	Carrier I					
	Input	s_cyc_i		piug:wb_siave ‡	cyc_l	÷ [
	input	s_we_i		plug:wb_slave 💲	we_i	:				
	output	c dat o		pluguub clavo *	dat o	* Dw 1 + 0				

Figure 6.5: GCD Core interface setting.

- 21. Click on \equiv Add HDL Files button.
- 22. In front of Select file(s) click on 2 Browse button.
- 23. Select gcd.v and gcd_ip.v files and press 📀 ok.

Select file: /home/allr	eza/Mywork/mpsoc_doc/userm	anual/tutorial2/gcd_ip.v		P Browse	IP name: gcd	21
Select gcd_lp ‡	Parameter setting	Select Category: GCD	• 0	Description	h Add Software files	Add HDL files
800	Add HDL file(s)					
Interface nar		Global var	ables			
Add e reset	exsiting HDL file/folder 23 Selecet file(s	i): Prowse	22	Selecet folder(s):	P Browse	
wb_slave	soc/src_peripheral/GCD/gcd.v	FI	e path			8
Туре	soc/src_peripheral/GCD/gcd_ip	v				

Figure 6.6: Adding GCD core HDL files.

24. Click on h Add software files button. In the newly opened window, you

can add IP core's software library/header files. The listed files/folder here will be copied in generated SoC project folder inside sw directory.

25. Click on Add to tile.h tab.

26. Copy following text on the new tab, then click on \checkmark save button.

```
#define ${IP}_DONE_ADDR (*((volatile unsigned int *) ($BASE)))
#define ${IP}_IN_1_ADDR (*((volatile unsigned int *) ($BASE+4)))
#define ${IP}_IN_2_ADDR (*((volatile unsigned int *) ($BASE+8)))
#define ${IP}_GCD_ADDR (*((volatile unsigned int *) ($BASE+12)))
#define ${IP}_IN1_WRITE(value) ${IP}_IN_1_ADDR=value
#define ${IP}_IN2_WRITE(value) ${IP}_IN_2_ADDR=value
#define ${IP}_DONE_READ() ${IP}_DONE_ADDR
#define ${IP}_READ() ${IP}_GCD_ADDR
unsigned int gcd_hardware ( unsigned int, unsigned int);
```

27. Click on Add to tile.c tab.

28. Copy following text on the new tab, then click on 🚫 Save button.

```
unsigned int gcd_hardware ( unsigned int p, unsigned int q ){
    ${IP}_IN1_WRITE(p);
    ${IP}_IN2_WRITE(q);
    while (${IP}_DONE_READ()!=1);
    return ${IP}_READ();
}
```

The entered text here will be added to the [SoC_name].h and [SoC_name].c file. These files contain all IP cores' wishbone bus addresses, functions and header files. You can use some global variables with prime = 1 format here such as all IP core parameters and IP core Verilog instance name (see the list of complete available variables in ProNoC). These variables will be replaced with their exact values during SoC generation time. In this example, we used variable prime = 1 which is the IP core's instance name. Hence, in case this IP core is called more than once in any SoC, each instance has its own unique WB addresses and functions.

29. Click on 🙆 Generate to add the GCD IP core to the library.

Figure 6.7: Add GCD software files.

Generate a new SoC enhanced with new IP core (GCD) In this section, we aim to generate an embedded SoC enhanced using generated GCD IP core. The desired SoC schematic is shown in Figure 6.8.

Figure 6.8: Desired SoC with GCD IP core.

1. In ProNoC GUI Click on Processing Tile Generator. Use Table 6.2 and follow instruction in Create New SoC Using ProNoC Processing Tile Generator to generate a processing tile.

Category	IP name	Parameter		Instance name	Interface connection			
Source	clk_source	FPGA_VENDOR	\rightarrow	"ALTERA" ¹	source	clk	\rightarrow	IO
						reset	\rightarrow	IO
Bus	wishbone_bus	M S Dw Aw	$\begin{array}{c} \rightarrow \\ \rightarrow \\ \rightarrow \\ \rightarrow \end{array}$	2 4 32 32	bus	clk reset	$\stackrel{\rightarrow}{\rightarrow}$	source:clk source:reset
Processor	Mor1kx	OPTION_DCACHE_SNOOP FEATURE_INSTRUCTIONCACHE FEATURE_DATACACHE FEATURE_IMMU FEATURE_DMMU	$\begin{array}{c} \rightarrow \\ \rightarrow \\ \rightarrow \\ \rightarrow \\ \rightarrow \\ \rightarrow \end{array}$	"NONE" "ENABLED" "ENABLED" "ENABLED" "ENABLED"	сри	clk reset snoop iwb dwb enable	$\begin{array}{c} \uparrow \\ \uparrow $	source:clk source:reset bus:snoop bus:wb_master[0] bus:wb_master[1] IO
RAM	single_port_ram	Dw Aw BYTE_WR_EN FPGA_VENDOR JTAG_CONNECT JTAG_INDEX BURST_MODE MEM_CONTENT_ FILE_NAME INITIAL_EN JTAG_CHAIN	$\begin{array}{c} \uparrow \\ \uparrow $	32 14 "YES" "ALTERA" ¹ "ALTERA_JTAG_WB" ² CORE_ID "ENABLED" "ram0" "YES" 4	ram	clk reset wb	$\begin{array}{c} \rightarrow \\ \rightarrow \\ \rightarrow \end{array}$	source:clk source:reset bus:wb_slave[0]
Timer	timer	PRESCALE_WIDTH	\rightarrow	8	timer	clk reset wb intrp	$\begin{array}{c} \rightarrow \\ \rightarrow \\ \rightarrow \\ \rightarrow \end{array}$	source:clk source:reset bus:wb_slave[1] cpu:interrupt_peripheral[0]
Communication	ProNoC_jtag_uart	BUFF_Aw JTAG_INDEX JTAG_CHAIN JTAG_CONNECT INCLUDE_SIM_PRINTF	$\begin{array}{c} \rightarrow \\ \rightarrow \\ \rightarrow \\ \rightarrow \\ \rightarrow \\ \rightarrow \end{array}$	4 126-CORE_ID 3 "ALTERA_JTAG_WB" ² SIMPLE_PRINTF	uart	clk reset wb	$\stackrel{\rightarrow}{\rightarrow} \stackrel{\rightarrow}{\rightarrow}$	source:clk source:reset bus:wb_slave[2]

Table 6.2: GCD SoC IP core list and setting.

 $^{^1 \}rightarrow$ "XILINX" For Xilinx FPGA

 $^{^2 \}rightarrow$ "XILINX_JTAG_WB" For Xilinx FPGA

2. Add the new GCD IP to the SoC.

Table 6 3.	GCD	SoC IP	core	list and	setting
14010 0.5.	UCD	buc n	COLC	mot and	setting.

Category	IP name	Parameter	Instance name	Interface connection		
				clk \rightarrow	source:clk	
Other	gcd	$GCDw \rightarrow 32$	gcd	reset \rightarrow	source:reset	
				wb \rightarrow	bus:wb_slave[3]	

Figure 6.9: Add the generated GCD IP core to gcd_soc.

- 3. Set the tile name as gcd_soc.
- 4. Press the Ø Generate RTL button. This must generate a new folder: mpsoc_work /SOC/gcd_soc.

Figure 6.10: Generate the gcd_soc RTL codes.

Software Development

1. Click on Software button to open the software development window. Now click on main.c file. Replace the contents of main.c file with the following C code then press compile button. Check software edit terminal output to make sure that compilation ran successfully. If you got RAM or ROM overflow error follows instruction in linker LD setting to fix this error.

```
#include "gcd_soc.h"
unsigned int gcd_software ( unsigned int p, unsigned int q ){
   while (p != q) {
        if (p > q) p=p-q;
        else if (p < q) q=q-p;
     }
     return p;
}
int main(){
   int A,B,C,D;
   unsigned int t_hw,t_sw;
   unsigned int speed;
   printf ("GCD test application\n");
   while(1){
        printf ("Enter number #1:\n");
   }
</pre>
```

```
jtag_scanint(&A);
      printf ("Enter number #2:\n");
      jtag_scanint(&B);
      timer_reset();
     timer_start();
      C=gcd_hardware ( A, B);
      timer_stop();
      t_hw=timer_read();
      timer_reset();
      timer_start();
      D=gcd_software ( A, B);
      timer_stop();
      t_sw=timer_read();
      speed=(t_sw*10)/(t_hw);
     printf ("GCD_hardware (%d,%d) = %d\t clock_num=%d\n",A,B,C,
          t_hw);
      printf ("GCD_software (%d,%d) = %d\t clock_num=%d\n",A,B,D,
          t_sw);
      printf ("spead up=%d.%d times\n", speed/10, speed%10);
   }
return 0;
}
```

2. Follow instructions in Compile the generated RTL code using Quartus II software to compile and run the desired SoC on an FPGA board. For instance the pin assignment on DE10-Nano FPGA and a snapshot of a sample result on UART terminal is shown in Figures 6.11 and 6.12, respectively. You can test the GCD IP core by entering different values.

Port Direction	Port Range	Port name	Assigment Type	Board Port name	Board Port Range
nput		aeMB_sys_ena_i	Direct	*VCC \$)
nput		source_clk_in	Direct	<pre>\$</pre> FPGA_CLK1_50]
nput		source_reset_in	Negate(~)	‡ KEY ‡	0 ‡

Figure 6.11: DE10-Nano FPGA board pin assignment.

😣 🔵 💿 alireza@alireza: ~/mywork/mp	soc/perl_gui/lib/perl
alireza@alireza:~/mywork/mpsoc/p nios2-terminal: connected to har nios2-terminal: "DE-SoC [1-2]", nios2-terminal: (Use the IDE sto	perl_gui/lib/perl\$ \$QUARTUS_BIN/nios2-terminal -dware target using JTAG UART on cable device 2, instance 0 pp button or Ctrl-C to terminate)
GCD test application Enter number #1: 25684 Enter number #2: 36 GCD_hardware (25684,36) = 4 GCD_software (25684,36) = 4 spead up=12.0 times	clock_num=842 clock_num=10182
Enter number #1: 45585 Enter number #2: 75	
GCD_hardware (45585,75) = 15	clock_num=722
GCD_software (45585,75) = 15 spead up=12.0 times Enter number #1: 311 Enter number #2: 222	clock_num=8672
GCD_hardware (311,222) = 1 GCD_software (311,222) = 1 Spead up=6 1 times	clock_num=158 clock_num=966

Figure 6.12: Nios2-terminal output snapshots.

CHAPTER 7

Simple message passing demo on 2×2 MPSoC

Summary	This chapter demonstrates a simple message passing on a 2×2 NoC based MPSoC. This includes developing a custom shared bus (Wishbone bus) based processing tile using ProNoC Processing Tile Generator. The generated tile is used then for generating a multicore using ProNoC NoC based MPSoC generator.
System Requirements:	You will need an Altera or Xilinx FPGA development board and a computer system running Linux OS with:
	1. Installed the ProNoC GUI software and its dependency packages.
	2. Installed/Pre-built GNU toolchain. (or1k-elf) for compiling the Mor1kx soft- core processor software code.
	3. Installed Quarts II (Web-edition or full) or Vivado compiler.
	For more information about the GNU toolchain installation please refer to the In- stallation Manual for the Ubuntu. In case your FPGA board is not included in the ProNoC FPGA board list please follow the instructions given in Adding a New FPGA Board to ProNoC, to add your board to the ProNoC library.
Generating a custom Processing tile	Follow the instructions in Processing tile generator tutorial up to the Software Development section and generate a processing tile according to the tile setting listed in Table 7.1. Set the tile name as morlk_tile. Remember to press Generate RTL button at the end to generate the processing tile RTL code.
	• Note that the desired tile in this chapter has a network interface (NI) IP to be connected to a NoC.
	• The NI has a master interface which can automatically write the arrived packets from the NoC to the main memory. Hence, for the CPUs with enabled Data cache, you need to have either the snoop support (to invalidate the Data cache memory location where the NI writes on it) or map the NI receiver buffer on an uncachebale memory location. For this example we have enabled the snoop support of Mor1kx processor. The snoop interface of the CPU must be connected to the WB to inform about the main memory data changes.

Category	IP name	Paramet	ter		Instance name		Inter	face connection
Source	clk_source	FPGA_VENDOR	\rightarrow	"ALTERA" ¹	source	clk reset	$\stackrel{ ightarrow}{ ightarrow}$	IO IO
Bus	wishbone_bus	M S Dw Aw	$\begin{array}{c} \rightarrow \\ \rightarrow \\ \rightarrow \\ \rightarrow \end{array}$	4 4 32 32	bus	clk reset	$\stackrel{\rightarrow}{\rightarrow}$	source:clk source:reset
Processor	mor1kx	OPTION_DCACHE_SNOOP FEATURE_INSTRUCTIONCACHE FEATURE_DATACACHE FEATURE_IMMU FEATURE_DMMU	$\begin{array}{c} \rightarrow \\ \rightarrow \\ \rightarrow \\ \rightarrow \\ \rightarrow \\ \rightarrow \end{array}$	"ENABLED" "ENABLED" "ENABLED" "ENABLED" "ENABLED"	сри	clk reset snoop iwb dwb enable	$\begin{array}{c} \rightarrow \\ \rightarrow \end{array}$	source:clk source:reset bus:snoop bus:wb_master[0] bus:wb_master[1] IO
RAM	single_port_ram	Dw Aw BYTE_WR_EN FPGA_VENDOR JTAG_CONNECT JTAG_INDEX BURST_MODE MEM_CONTENT_FILE_NAME INITIAL_EN JTAG_CHAIN	$\begin{array}{c} \uparrow \\ \uparrow $	32 14 "YES" "ALTERA" ¹ "ALTERA_JTAG_WB" ² CORE_ID "ENABLED" "TABLED" "YES" 4	ram	clk reset wb	$\stackrel{\rightarrow}{\rightarrow} \stackrel{\rightarrow}{\rightarrow}$	source:clk source:reset bus:wb_slave[0]
NoC	ni_master	MAX_TRANSACTION_WIDTH MAX_BURST_SIZE Dw CRC_EN HDATA_PRECAPw	$\begin{array}{c} \rightarrow \\ \rightarrow \\ \rightarrow \\ \rightarrow \\ \rightarrow \\ \rightarrow \end{array}$	13 16 32 "NO" 0	ni	clk reset interrupt wb_send wb_receive wb_slave	$\begin{array}{c} \rightarrow \\ \rightarrow \\ \rightarrow \\ \rightarrow \\ \rightarrow \\ \rightarrow \end{array}$	source:clk source:reset cpu:interrupt_peripheral[0] bus:wb_master[2] bus:wb_master[3] bus:wb_slave[1]
Timer	timer	PRESCALE_WIDTH	\rightarrow	8	timer	clk reset wb intrp	$\begin{array}{c} \rightarrow \\ \rightarrow \\ \rightarrow \\ \rightarrow \end{array}$	source:clk source:reset bus:wb_slave[2] cpu:interrupt_peripheral[1]
Communication	ProNoC_jtag_uart	BUFF_Aw JTAG_INDEX JTAG_CHAIN JTAG_CONNECT INCLUDE_SIM_PRINTF	$\begin{array}{c} \rightarrow \\ \rightarrow \\ \rightarrow \\ \rightarrow \\ \rightarrow \\ \rightarrow \end{array}$	4 126-CORE_ID 3 "ALTERA_JTAG_WB" ² SIMPLE_PRINTF	uart	clk reset wb	$\begin{array}{c} \rightarrow \\ \rightarrow \\ \rightarrow \end{array}$	source:clk source:reset bus:wb_slave[2]

Table 7.1: Desired Processing core IP list and setting.

 $[\]label{eq:constraint} \stackrel{1}{\longrightarrow} "XILINX" \mbox{ For Xilinx FPGA} \\ \stackrel{2}{\longrightarrow} "XILINX_JTAG_WB" \mbox{ For Xilinx FPGA}$

Figure 7.1 illustrates the functional block diagram the Mor1k_tile module.

Figure 7.1: Mor1k_tile functional block diagram.

Generating a 4×4 NoC-based MPSoC

- Click on Soc based MPSoc generator
 Set the Noc configuration setting as stated in Table 7.2
- 2. Set the NoC configuration setting as stated in Table 7.2. Here we have defined two Virtual Networks (VNs) by defining two message classes and separating message class permitted VCs in such a way that each message class can only use its own dedicated VC. For more information regarding the NoC parameters please refer to NoC Verilog File Parameter Description.

Table 7.2:	4×4 NoC	configuration	setting.
------------	------------------	---------------	----------

Parameter	Value	Parameter	Value
Router Type	"VC_BASED"	Topology	"MESH"
Router per row	2	Router per column	2
VC number per port	2	Buffer flits per VC	4
payload Width	32	Routing Algorithm	"XY"
SSA Enable	"NO"	VC reallocation type	"NONATOMIC"
VC/SW combination type	"COMB_NONSPEC"	Crossbar mux type	"BINARY"
Class number	2	Class 0 Permitted VCs	
Class 1 Permitted VCs		Debug enable	0
Add pipeline register	0	Swich allocator first level	1
after crossbar	0	arbiters external priority enable	1
SW allocator arbitration type	"RRA"	Byte Enable	1

				ProNoC				0
File Tools View Help				=	🖪 🚠			
💉 Interface generator	IP generator	Processing ti	ile generator	NoC based MPSoC ge	nerator 1			
2 ^{No}	C Configuration							
Router Type	VC_BASED"	÷	4					
Topology	MESH"	:		Tile 0			Tile 1	
Routers per row	2	•		mor1k_tile			mor1k_tile	
Routers per column	2							
Router's endpoint number	1	•						
VC number per port	2	\$	-					
Buffer flits per VC	4	•						
Payload width	32			Tile 2			Tile 3	
Routing Algorithm	() "XY"	:		mor1k_tile			mor1k_tile	
Minimum packet size	2	•						
Bute Enable	A 0							
		6		5	7	8		
Load MPSoC	MPSoC name:	mor1k mpsoc		Diagram	CLK setting	Generate RTI	2 Software	Compile RTL

Figure 7.2: NoC-based MPSoC generator snapshot.

- 3. In Tile configuration setting, you should be able to see the list of all processing tile modules which have NI IP core in their shared bus.
 - (a) You can change the processing tile default parameters by clicking on its tile name. For this example, we leave the default parameters values unchanged.
 - (b) You can enter the tile numbers (location) where this processing tile should be placed in the NoC. Set the Morlk_tile tile numbers as 0,1,2,3 or simply as 1:3.

т	ïle Configuration
Tiles path:	lib/soc
3a Tile name	Tile numbers 🕜
aemb_tile	3b 🔹
mor1k_tile	0:3

Figure 7.3: Tile Configuration snapshot.

4. You can also map the generated processing tiles on their locations by simply clicking on the tile location in the NoC.

- (a) You can select the Processing tile name here.
- (b) If you wish this processing tile has a custom parameter setting you can select it here. In case you select the parameter setting as custom, after pressing the OK button, it shows a window where you can change the default parameters values. The tile which has a custom parameter setting is marked by * on its name.

Figure 7.4: Custom Tile setting.

5. You can press the Diagram to see the actual location of each tile in the selected topology. In this example:

Figure 7.5: 4x4 mesh topology.

- $6. \ Set \ MPSoC \ name \ as \ {\tt morlk_mpsoc}.$
- 7. In case the MPSoC clk should be generated using FPGA clk pin, click on the Setting button then follow in CLK setting to generate the MPSoC clk.

8. Click on 🛞 Generate RTL button to generate the MPSoC RTL code.

Software Development

- 1. Click on Software button to open the software development window.
- 2. In the left Tree-View window, you can select any file in project sw directory to open and then edit it. Replace the content of main.c files in all tiles with the following C codes.

In this example, tile 0 to 2 send each 3 packets to tile 3. Tiles 3 shows the packets' content in serial port terminal.

main.c

```
#define MULTI_CORE
#include "mor1k_tile.h"
unsigned char pck1[10]={"first data"};
unsigned char pck2[11]={"second data"};
unsigned char pck3[6]={"123456"};
unsigned char receive_buff[ni_NUM_VCs][16];
// a simple delay function
void delay ( unsigned int num ) {
   while (num>0) { num--; nop(); }
}
void error_handelling_function() {
   unsigned int i;
   for (i=0;i<ni_NUM_VCs;i++) {</pre>
      if(ni_got_buff_ovf(i)) {
         printf ("VC%u:The receiver allocated buffer size is smaller
              than the received packet size in core%u\n",i,COREID);
         ni_ack_buff_ovf_isr(i);
      }
      if(ni_got_send_dsize_err(i)) {
          printf ("VC%u:The send data size is not set in core%u\n",i
              , COREID);
          ni_ack_send_dsize_err_isr(i);
      if(ni_got_burst_size_err(i)){
          printf ("VC%u:The burst size is not set in core%u\n",i,
             COREID);
          ni_ack_burst_size_err_isr(i);
      if(ni_got_invalid_send_req(i)){
          printf( "VC%u:A new send request is received while the DMA
               is still busy sending previous packet in core%u\n",i,
              COREID);
          ni_ack_invalid_send_req_isr(i);
      if(ni_got_crc_mismatch(i)){
         printf( "VC%u:CRC miss-matched in core%u\n",i,COREID);
         ni_ack_crc_mismatch_isr(i);
```

```
}
   }//for
}//error_handle
void got_packet_funtion(void) {
   unsigned int i ;
   unsigned char iport;
   for (i=0;i<ni_NUM_VCs;i++) {</pre>
      if(ni_got_packet(i)) {
         iport =ni_RECEIVE_PRECAP_DATA_REG(i);
         //different destination can be targeted according to iport
         //E.g if(iport==0) ini_receive (i, (unsigned int)&
              receive_buff_p0[i][0], 16, 0);
         //E.g else if(iport==1) ini_receive (i, (unsigned int) \&
              receive_buff_p1[i][0], 16, 0);
         ni_receive (i, (unsigned int)& receive_buff[i][0], 16, 0);
         ni_ack_got_pck_isr(i);
      }//If ni got packet
   }//for
}// got_packet_function
void check_packet_funtion (void) {
   unsigned char iport;
   unsigned int i,j ,size ;
   struct SRC_INFOS src_info;
   for (i=0;i<ni_NUM_VCs;i++) {</pre>
      if(ni_packet_is_saved(i)) {
         src_info=get_src_info(i);
         size=ni_RECEIVE_DATA_SIZE_REG(i); //size in byte
         iport= src_info.r;
         //run a function on the recieved packet according to the
         //E.G func_on_recived_packe (iport);
         // but here we just print the recived packet in terminal
         printf("A message of %u bytes is recived from core (%x) in
             vc%u:", size,src_info.addr,i);
         for (j=0;j<size;j++) {</pre>
            printf("%c", receive_buff[i][j]);
         }
         printf("\n");
         ni_ack_save_done_isr(i);
      }//If ni_packet_is_saved
   }//for
}// check_packet_function
void sent_packet_done_function (void) {
  unsigned char oport;
   unsigned int i;
   for (i=0;i<ni_NUM_VCs;i++) {</pre>
      if(ni_packet_is_sent(i)) {
         ni_ack_send_done_isr(i);
      }//If ni_packet_is_sent
   }//for
}//sent_packet_done_funtion
```

```
void ni_isr(void) {
   //place your interrupt code here
   if(ni_any_err_isr_is_asserted() ) {
      // An error occure
      error_handelling_function();
   if( ni_any_sent_done_isr_is_asserted() ){
      //check which VC has finished sending the packet.
      sent_packet_done_funtion();
   if( ni_any_save_done_isr_is_asserted()){
      //check which VC has finished saving the packet. This function
           must be called before got_packet_function
      check_packet_funtion();
   if(ni_any_got_pck_isr_is_asserted() ){
      //check which VC got packet
     got_packet_funtion();
   }
   return;
}
int main() {
  printf("Hi from core %u\n",COREID);
   general_int_init();
   general_int_add(ni_INT_PIN, ni_isr, 0); //ni_INT_PIN
   // Enable ni interrupt (its connected to inttruupt pin 0)
   general_int_enable(ni_INT_PIN);
   general_cpu_int_en();
   // hw interrupt enable function:
   // ni_initial (burst_size, errors_int_en, send_int_en,
       save_int_en, got_pck_int_en)
   ni_initial (16,1,1,1,1); //enable the intrrupt when a packet is
       recived, saved or got any error
   if(COREID == 3) while(1); //Core 3 only receives packets from
       other cores
   //ni_transfer (w, v, class_num, dest_port , start_addr_pointer,
       data_size, dest_phy_addr);
   ni_transfer (1,0, 0, 0, (unsigned int)&pck1[0], 10,
       PHY_ADDR_ENDP_3);
   ni_transfer (1,1, 1, 0, (unsigned int)&pck2[0], 11,
       PHY_ADDR_ENDP_3);
   ni_transfer (1,0, 0, 0, (unsigned int)&pck3[0], 6, PHY_ADDR_ENDP_3
      );
   //printf("core %u sent packet to (%u,%u)",CORID,rnd_dest_x[i],
   printf("total sent packets by core%u is %u\n",COREID,3);
   while(1) {
   }
   return 0;
}
```

- 3. Now press the O compile button. This compiles the C codes using Morlkx GNU toolchain. If everything runs ok, you must see "compilation finished successfully" message. Otherwise, check the error message to fix your code and press the compile button again. Note that in case you got RAM or ROM overflow errors you can fix them following linker LD setting. If every thing runs successfully you must have ram0.bin, ram0.hex, and ram0.mif files in your sw/tile[n]/RAM directory, where n is the tile number.
- 4. Follow bellows instruction to see the simulation/compilation results: Simulate the generated RTL code using Modelsim software Simulate the generated RTL code using Verilator software Compile the generated RTL code using Quartus II software

bash 🕒 🖲 😣
_REGISTERED_FEEDBACK
TOP.tile_2.the_mor1k_tile.cpu.mor1kx0.bus_gen.dbus_bridge: Wishbone bus IF is B
<pre>FUP.tile_3.the_morik_tile.cpu.morikx0.bus_gen.ibus_bridge; Wishbone bus IF is B: REGISTERED FEEDBACK</pre>
TOP.tile_3.the_mor1k_tile.cpu.mor1kx0.bus_gen.dbus_bridge: Wishbone bus IF is B
_REGISTERED_FEEDBACK
Hi from core 3
A message of 10 bytes is recived from core (1) in vc0:first data
A message of 10 bHi from core 1
total sent packets by core1 is 3
Hi from core 2
total sent packets by core2 is 3
Hi from core 0
total sent packets by core0 is 3
ytes is recived from core (0) in vc1:first data
A message of 10 bytes is recived from core (2) in vc0:first data
A message of 11 bytes is recived from core (0) in vc1:second data
A message of 6 bytes is recived from core (2) in vc0:123456
A message of 11 bytes is recived from core (1) in vc1;second data
A message of 11 bytes is recived from core (2) in vcOtsecond data
A message of 6 bytes is recived from core (0) in vc1:123456
A message of 6 bytes is recived from core (1) in vc0:123456

Figure 7.6: Verilator simulation output snapshot.

Transcript	
Elle <u>E</u> dit <u>V</u> lew Bookmarks <u>W</u> indow <u>H</u> elp	
Transcript / /////	* *
🖹 - 🍃 🔛 🛸 🍈 🗼 🎕 🛍 😳 🗁 Ø - 🗰 🏗	
main_pane.oujects.interior.cs.uouy.tree	
run -all	
<pre>testbench.uut.the_mor1k_tile_0.cpu.mor1kx0.bus_gen.ibus_bridge: Wishbone bus IF is B3_REGISTERED</pre>	_FEEDBACK
<pre># testbench.uut.the_mor1k_tile_0.cpu.mor1kx0.bus_gen.dbus_bridge: Wishbone bus IF is B3_REGISTERED</pre>	_FEEDBACK
<pre>testbench.uut.the_mor1k_tile_1.cpu.mor1kx0.bus_gen.ibus_bridge: Wishbone bus IF is B3_REGISTERED</pre>	_FEEDBACK
<pre>testbench.uut.the_mor1k_tile_1.cpu.mor1kx0.bus_gen.dbus_bridge: Wishbone bus IF is B3_REGISTERED</pre>	_FEEDBACK
<pre>testbench.uut.the_mor1k_tile_2.cpu.mor1kx0.bus_gen.ibus_bridge: Wishbone bus IF is B3_REGISTERED</pre>	_FEEDBACK
<pre># testbench.uut.the_mor1k_tile_2.cpu.mor1kx0.bus_gen.dbus_bridge: Wishbone bus IF is B3_REGISTERED</pre>	_FEEDBACK
<pre># testbench.uut.the_mor1k_tile_3.cpu.mor1kx0.bus_gen.ibus_bridge: Wishbone bus IF is B3_REGISTERED</pre>	_FEEDBACK
<pre># testbench.uut.the_mor1k_tile_3.cpu.mor1kx0.bus_gen.dbus_bridge: Wishbone bus IF is B3_REGISTERED</pre>	_FEEDBACK
# Hi from core 3	
# A message of 10 bytes is recived from core (1) in vc0:first data	
# A message of 10 bHi from core 1	
# total sent packets by core1 is 3	
# Hi from core 2	
<pre># total sent packets by core2 is 3</pre>	
# Hi from core 0	
# total sent packets by core0 is 3	
<pre># ytes is recived from core (0) in vc1:first data</pre>	
# A message of 10 bytes is recived from core (2) in vc0:first data	
# A message of 11 bytes is recived from core (0) in vc1:second data	
# A message of 6 bytes is recived from core (2) in vc0:123456	
# A message of 11 bytes is recived from core (1) in vc1:second data	
# A message of 11 bytes is recived from core (2) in vc0:second data	
# A message of 6 bytes is recived from core (0) in vc1:123456	
# A message of 6 bytes is recived from core (1) in vc0:123456	
to mice and the second s	

Figure 7.7: Modelsim simulation output snapshot.

CHAPTER 8

Software Auto-generation using CAL language (CAL2C)

Cal2C	CAL2C is a tool that can auto-generate application C code from that application CAL actor Data-flow model. The generated C/C++ code is multi-threaded and can be run in parallel on a multicore system. However, to compile/execute the generated C code requires an operating system (OS) to be installed on the target platform. Meanwhile, the generated multicore by PRONoC has the lack of OS and can only run the bare metal application. PRONoC comes with a tool that takes the generated C/C++ codes and automatically converts them to several multi bare-metal C/C++ codes that each can be run on a single core. It provides the user a GUI to speed-up the actor mapping process. Several					
	actors can be grouped to be run on a single core. Grouped actors then can be mapped on any custom-defined MPSoC using a drag-and-drop interface or optimally using an application mapping algorithm.					
	in CAL data flow language on a Custom MPSoC.					
ORCC installation	To convert an application from CAL to C, you can use the Open RVC-CAL Compiler (ORCC). ORCC can be installed on eclipse IDE as a plugin.					
	1. Download the eclipse with pre-installed ORCC plugin from: eclipse-orcc. Down- load and unzip the eclipse in your home directory.					
	2. Download orc-apps by running the following command in terminal:					
	git clone https://github.com/orcc/orc-apps.git					
	3. This version of eclipse works fine with JDK 8. For higher JDK version it may raise an error. You can use SDKMAN to switch between different JDK versions on your system. To do so open terminal and type:					
	curl -s "https://get.sdkman.io" bash source "\$HOME/.sdkman/bin/sdkman-init.sh"					
	Now run following command to list all available different JDK versions for your system.					
	sdk list java					
	From the given list, install a java 8. It is not needed to be defined as the default java version at the end of the installation operation. E.g.					
	sdk install java 8.0.265-open					
	Installing: java 8.0.265-open Done installing! Do you want java 8.0.265-open to be set as default? (Y/n):					

4. Now to run the Eclipse open eclispe-orcc folder in terminal then run the following commands. It should ask you to set a workplace directory then open the Eclipse IDE.

April 20, 2023

sdk use java 8.0.265-open ./eclipse
Select a directory as workspace Eclipse uses the workspace directory to store its preferences and development artifacts.
Workspace: -//eclipse-workspace Browse

ORCC Hello word on ProNoC platform

- Select rكم Create new projects from an archive file or directory. <u>File</u> <u>E</u>dit <u>S</u>ource Refac<u>t</u>or <u>N</u>avigat Select an import wizard: New Open File... 🕶 🗁 General 😂 Open Projects from File System... 🗘 Archive File Close Close All 🛱 File System 冒 Save Preferences 🛱 Projects from Folder or Archive 🗒 Save As.. 🕨 🗁 Git 🐚 Save All 🕨 🗁 Gradle Revert 🕨 🗁 Install Move... 🕨 🗁 Maven 🖻 Rename... 🕨 🗁 Oomph Run/Debug Refresh E 🗁 Tasks Convert Line Delimiters To 🕨 🗁 Team 👜 Print.. ▶ 🗁 XML 🔤 Import... 🖆 Export... Properties Switch Workspace Restart ? < Back Next > Exit *
- 2. Select the path to orc-app/Hello word:

Workspace

Run ORCC inbuilt simulator

.

3. On the Package Explore click on Example.xdf -> Run As -> 2 Orcc Simulation

Figure 8.1: ORCC Run as Menu Snapshot.

4. Select a file as input stimulu

Select	simulator	• 🛛						
Select simulator:								
Visitor interpreter and debu	gger							
			Cancel	Select in	iput stimu	lus :	Q	ОК
			() Recent	• work	orc-apps	HelloWo	rld src	Þ
			습 Home	Name	~	Size	Туре	Modified
3	Cancel	or l		💼 cal				22:41
		JK	Desktop	🕐 Example.	xdf	1,1 kB	Markup	22:41

5. By default, the FIFO width in ORCC is set to 512-bytes (the minimum page-size desktop PC OS). However, this value may be too large for the targeted FPGA platform due to limited memory resources. You can set a smaller value for FIFO width in Simulation Options as shown in Figure 8.3.

	· · · · · · · · · · · · · · · · · · ·
	Name: .Example - Simulation
type filter text	Simulation settings 🕲 Simulation options 🔲 Common
Cradle Project Gradle Project Java Applet Java Applicati Ju Junit Launch Group Maven Build	Options: Debug mode Default FIFO size: 2 to the power of 6 Prime Revert
ilter matched 10 of	Reveit

Figure 8.3: Reducing FIFO width.

6. Now you can click on "Run" button and observe the simulation results in Eclipse console terminal:

I Package Exp 없 🗖 🗖	⊕ Example x
 ✓ Generation 	CopyTokenA CopyTokenB
😪 Example.xdf 😿 Example.xdfdiag 🎲 Hello.xdf 🎉 Hello.xdfdiag	Prod PingPong III III III III III III III
	Problems

Figure 8.4: Reducing FIFO width.

Run ORCC Compilation

- 8. It now asks you to choose an output folder where the generated C codes will be stored there. Then select c as backend and reduce the FIFO width as shown in

the bellow figures: . Create a new folder with the name of orcc-out and define it as the output directory in this step.

Select backend	• 😣	
Select backend:		
		Run Configurations
C COMPA (experimental)		Create, manage, and run configurations Compiles a dataflow program with Orcc.
HLS (experimental)		Image: Internet
Jade LLVM		Ju Java Application Settings & Compliation options 2 Ju Java Application Ju Junit Debug mode
OpenMP (experimental) PREESM		■ Maven Build ■ ② Orcc compilation
PROMELA TTA		Corce simulation Filter matched 11 of Revert Apply
? Cancel	ОК *	Close Run

9. Click on the Run button to compile the code:

😫 Package Exp 😫 📟 🗖	ⓒ Example 33
E & D V S HelloWorld [orc-apps ma V ∰ src → ⊕ cal	CopyTokenA II O II O II
Example.xdf K Example.xdfdiag Hello.xdf K Hello.xdf	Prod PingPong 0 II 1 1 0 II + II 2
	<pre>[Problems @ Jawdoc %) Declaration @ Console Xi Compliation console 11:00:40 PH: * Backend: C 11:00:40 PH: * Project: Helloworld 11:00:40 PH: * Project: Helloworld 11:00:40 PH: * Retorn: C 11:00:40 PH: Sport scripts into /home/alreza/work/promoc/mpsoc.work/orcc/scripts 11:00:40 PH: Export in 0.05, Result: 5 file(s) written - 0 file(s) cached 11:00:40 PH: Export in 0.05, Result: 5 file(s) written - 0 file(s) cached 11:00:40 PH: Export in 0.05, Result: 5 file(s) written - 0 file(s) cached 11:00:40 PH: Export in 0.04 PH: Export in 0.</pre>

Modifying the generated C code using ProNoC The generated C code by ORCC can only be run on the desktop PC having OS. To run them on the ProNoC custom embedded multicore hardware, they needed to be modified using ProNoC tools.

- 1. Follow instructions on Simple message passing demo on 2×2 MPSoC Chapter up to Software Development Section and generate a Multicore system in RTL.
 - Note that you need to set a value larger than zero (e.g. 4) for header data pre-captured width (HDATA_PRECAPw) parameter in NI configuration setting. This value defines the maximum number of input FIFOs in a processing tile source code that is 2^(HDATA_PRECAPw). In case that the number of FIFOs exceeds this limitation, an error is asserted during the compilation time.

Paran	neter setting for ni_master
Parameter name	Value Type
MAX_TRANSACTION_WIDTH	 13 13
MAX_BURST_SIZE	16 •
Dw	32
CRC_EN	
HDATA_PRECAPw	4

- You need to connect the NI interrupt pin to the processing core as the communication between actors located in different processing tiles is handled using interrupt service routine.
- Note that you can target a larger number of processing cores by changing NoC configuration setting.
- 2. Click on the Software button to open the software development window. Then click on the Auto-generate software using ORCC tab to open ORCC converter page.
- 3. To load the generated C codes in step 8 on select a file page click on button and load orcc-outdir/src/Example.csv. It should load the actors in the GUI window as shown in the bellow figure. You can also click on to see the actor communication graph.

Auto-generate Software using	ORCC							
🛓 🔒 🙆 🄾 🛛 Sele	t v #	Source	Destination	Bandwidth(MB)	Initial weight#	Virtual channel#	Message	class#
	0	Prod	CopyTokenA	1	1	0	0	4
	0	CopyTokenA	CopyTokenB	1	1	0	0	*
	0	Prod	PingPong	1	1	0	0	*
	0	CopyTokenB	Merger	1	1	0	0	*
	0	PingPong	Merger	1	1	0	0	*
				Tra	ce Diagram			- 6
					ce blagram			

4. Now click on Group Actors page. Here you can make different actor groups and put several actors in one group. All actors that are in the same group will be run on the same processing core. In this example, we have 5 actors and want to run them on a 4-cores processing platform. To do that, we need to make an actor-group containing at least two actors to fit in this target. You can drag any actor icon and drop it in any group window. Let's drag-and-drop Copy-TokenA and Copy-TokenB in the same group and rename the group as Copy, as shown in the bellow figure.

5. Now click on Map Actors. Here you can map actors/Grouped actors to processing tiles. Each processing tile can get only one actor or one actor-group. You can drag-and-drop actors to processing tiles or use a mapping algorithm (recommended Nmap) to do the mapping tasks automatically.

96 Software Edito	r 💽 Auto-gene	erate Software using ORCC			
1-Select orcc file 2-Group Actors 3-Map Actors	-Actors: Drag and	drop Actors/grouped Actor	Mapping Algorithm	nap	►
	-tile(0) copy -tile(2)	tile(1) Prod tile(3)	Mapping summary Average distance Max distance Min distance Normalized data per hop	1 1 1 1	
	Merger	PingPong	Normalized data per nop	1	

6. Click on ② Generate button to generate the bare-metal C codes for each processing core.

7. If everything goes correctly, you must have the new generated codes in your target MpSoC/SW folder. Click on Software Editor to compile the generated codes.

- 8. Now press the O compile button. This compiles the C codes using Morlkx GNU toolchain. If everything runs ok, you must see the "Compilation finished successfully" message. Otherwise, check the error message to fix your code and press the compile button again. Note that in case you got RAM or ROM overflow errors, you can fix them by following the linker LD setting. If everything runs successfully, you must have ram0.bin, ram0.hex, and ram0.mif files in your sw/tile[n]/RAM directory, where n is the tile number.
- 9. Follow bellow instructions to see the simulation/compilation results: Simulate the generated RTL code using Modelsim software Simulate the generated RTL code using Verilator software Compile the generated RTL code using Quartus II software

🖉 sim - Default 🛛 👘 🖈 🏠	Wave - Default	
▼ Instance 🛛 🖓		Msas
- testbench	TO led port o	sin .
× 1002		510 510
	Find:	510
	Time 12_led_port_0	
	3 mm	StD
	Name 🖉 💌 Now	819.54 us 010 5202 up 010 52
		0.00000.us
X Find: 🇰 💿 🕴 Search For 👻 🕴		
	X First diffe	
🚹 Library 🗙 🛃 Memory List 🗶 🟭 sim 🗙 🔺 🚺		
Transcript		
<pre>cestbench.uut.the_morik_tite_t.cpu.m</pre>	nor txxe.bus_gen.tbus_brituge	S: WISHDONE DUS IF IS D3_REGISTERED_FEEDDACK
<pre># testbench.uut.the_mor1k_tile_1.cpu.m</pre>	mor1kx0.bus_gen.dbus_bridge	e: Wishbone bus IF is B3_REGISTERED_FEEDBACK
<pre># testbench.uut.the_mor1k_tile_2.cpu.m</pre>	mor1kx0.bus_gen.ibus_bridge	e: Wishbone bus IF is B3_REGISTERED_FEEDBACK
<pre># testbench.uut.the_mor1k_tile_2.cpu.m</pre>	mor1kx0.bus_gen.dbus_bridge	e: Wishbone bus IF is B3_REGISTERED_FEEDBACK
<pre># testbench.uut.the_mor1k_tile_3.cpu.m</pre>	mor1kx0.bus_gen.ibus_bridg∈	e: Wishbone bus IF is B3_REGISTERED_FEEDBACK
<pre># testbench.uut.the_mor1k_tile_3.cpu.m</pre>	mor1kx0.bus_gen.dbus_bridge	e: Wishbone bus IF is B3_REGISTERED_FEEDBACK
# Producer (0)		
# Producer (1)		
# Producer (2)		
# PingPong [pp1] :1		
# PingPong [pp2] :2		
# PingPong [pp1] :3		
<pre># CopyToken (first): 1</pre>		
<pre># CopyToken (first): 2</pre>		
<pre># CopyToken (first): 3</pre>		
<pre># CopyToken (second): 1</pre>		
# CopyToken (second): 2		
# CopyToken (second): 3		
# Merger (0): 1; 1		
# Merger (1): 2; -2		
# Merger (2): 3; 3		
√SIM 2>		
iow: 819.540 ns. Delta: 7. T0. led. port. o		

Figure 8.5: The Modelsim simulation snapshot of ORCC hello world example.

bash		e)(8
TOP.tile_2.the_mor1k_tile.cpu.mor1kx0.bus_gen.ibus_bridge: REGISTEREN FEENBACK	Wishbone	bus	IF	is	ВЗ
TOP.tile_2.the_mor1k_tile.cpu.mor1kx0.bus_gen.dbus_bridge: REGISTEREN_EFENBACK	Wishbone	bus	IF	is	ВЗ
TOP.tile_3.the_mor1k_tile.cpu.mor1kx0.bus_gen.ibus_bridge:	Wishbone	bus	IF	is	ВЗ
TOP.tile_3.the_mor1k_tile.cpu.mor1kx0.bus_gen.dbus_bridge:	Wishbone	bus	IF	is	ВЗ
Producer (0)					
Producer (1)					
Producer (2)					
Copyloken (first): 1					
Lopyloken (first): 2					
ConvTaluar (first): 5					
CopyToken (second); I CopyToken (second); I					
PipePapa [pp2] +2					
PinoPono [pp1] +3					
nd): 2					
CopyToken (second): 3					
Merger (0): 1; 1					
Merger (1): 2; -2					
Merger (2): 3; 3					

Figure 8.6: Verilaor simulation snapshot of ORCC hello wold example.

CHAPTER 9

NoC Simulator

Summary	The ProNoC NoC is developed in RTL using Verilog HDL and it can be simulated using Verilator simulator. The ProNoC simulator provides the graphical user interface (GUI) for simulating different NoC configuration under different synthetic traffic patterns.
System Requirements:	You will need a computer system running Linux OS with:1. Installed the ProNoC GUI software and its dependency packages.2. Installed Verilator simulator.
Simulation Example:	In this example we simulate two 8×8 Mesh NoCs, one with fully adaptive routing and another with DoR routing algorithms.
Generate first NoC simulation model with XY routing	 Open mpsoc/perl_gui in terminal and run ProNoC GUI application: ./ProNoC.pl It should open The GUI interface as illustrated in Figure 9.1.

- 2. Click on **I** to open ProNoC simulator tabs.
- 3. Click on ${\tt NoC}$ Simulator tab to open simulator GUI interface:

🗧 🔍 ProNoC						
2 💼 🔁	3					
🔫 Trace generat	or NoC simulator	۰	NoC emulator			
Run simulator	Router Type	0	"VC_BASED"	:		
Simulation Model	Topology	0	"MESH"	:		
4	Routers per row	0	2			
	Routers per column	0	2	2	Avg. throughput/latency Injected Packet Worst-Case Delay Executaion Time	Latency
	VC number per port	0	2	۵.	875.8 - 758.9 -	•
	Buffer flits per VC	0	4		625.9 -	
	payload width	0	32	÷	2 500.0 - 2	0
	Routing Algorithm	0	"XY"	:	258.0	
					125.0	
		40			0.0	
	600				Desired Rvg. Injected Load Per Router (flits/clock (%))	
۶ د	bed		Save as:		Run all	

Figure 9.1: NoC simulator snapshot.

- 4. Click on ${\tt Generate NoC}$ Simulation Model tab to open NoC configuration setting page.
- 5. Change the default NoC parameters as shown in below table:

Parameter name	Value	Parameter Name	Value
Router Type	"VC_BASED"	Router per row	8
Router per column	8	VC number per port	2
Buffer Flits per VC	2	Payload width	32
Topology	"Mesh"	Routing Algorithm	"xy"
SSA Enable	"NO"	SW allocator arbitration type	"RRA"

- 6. Enter a name for this NoC configuration (e.g. mesh_8x8_xy).
- 7. Press the generate button.

Figure 9.2: Generate NoC simulation model.

Generate the second NoC simulation model with fully adaptive routing

- 8. In NOC configuration tab, keep the previously set parameters and only change the routing algorithm to "DUATO".
- 9. Enter a new name for this NoC configuration (e.g. mesh8x8_full).
- 10. press Generate button and wait for compilation to be done.

Run simulation under Matrix Transposed traffic pattern

- 11. Click on Run simulator tab.
- 12. Click on \bigoplus to add a NoC simulation model.
- 13. Set following configurations for the simulation model. For flit injection ratios, you can define individual ratios separated by comma (',') or optionally you can define a range of injection ratios with [min]:[max]:[step] format.

* Note that you can also add more injections ratios later. Each time you run the simulation the simulation results of new injection ratios are added to the previously plotted results.

Parameter name	Value	Parameter Name	Value
Verilated Model	"mesh_8x8_xy"	Traffic Type	Synthetic
Configuration Name	xy	Traffic name	transposed 1
Min pck size	2	Max ock size	10
Total packet number limit	200000	Simulation clock limits	100000
Injection ratios	2:32:2		

14. Click on 🔂 to add the second NoC simulation model. Fill the NoC configuration as shown in following table.

Parameter name	Value	Parameter Name	Value
Verilated Model	"mesh_8x8_full"	Traffic Type	Synthetic
Configuration Name	fully	Traffic name	transposed 1
Min pck size	2	Max ock size	10
Total packet number limit	200000	Simulation clock limits	100000
Injection ratios	2:32:2		

15. Save the simulation. You can save the simulation at any time during run time. Hence, later you can continue the rest of simulation.

- 16. To start the simulation press \bigotimes Run all button. You can also run each individual simulation by pressing the \bigotimes Run button in its simulation row.
- 17. After the simulation is done, if your graph is not yet completed you can enter a new injection ratio range and press the Run key again.
- 18. You can edit the generated graph and then save it from graph editing toolbox. By saving the simulation graph, the simulation results is also provided in a text file as well.

Figure 9.4

For each simulation experiment five simulation results are obtained:

- (a) Average latency per average desired flit injection ratio
- (b) Average throughput per average desired flit injection ratio
- (c) send/received packets number for each router at different injection ratios
- (d) send/received worst-case delay for each router at different injection ratios
- (e) Simulation execution clock cycles

ratio.

tion ratio.

(e) Simulation time in clock cycles.

Figure 9.5: Simulation sample results.

CHAPTER 10

NoC Emulator

Summary	ProNoC comes up with a GUI for emulating an actual NoC on Altera FPGAs. The ProNoC emulator is a programmable packet injector module that can be programmed at run time using Altera JTAG interface. These modules inject/sink packets to the prototype NoC according to the traffic patterns.
System Requirements	You will need an Altera FPGA development board having USB blaster I or II and a computer system running Linux OS with:
	1. Installed the ProNoC GUI software and its dependency packages.
	2. Installed Quarts II (Web-edition or full) compiler.
	For more information about the GNU toolchain installation please refer to the Installation Manual for the Ubuntu. In case your FPGA board is not included in ProNoC FPGA board list please follow the instruction given in Add new FPGA board to ProNoC, to add your board to ProNoC.
Emulation Example:	In this example we simulate two 5×5 Mesh NoCs, one with fully adaptive routing and another with DoR routing algorithms using DE10-nano Altera FPGA board.
Generate first NoC emulation model with XY routing	 Open mpsoc/perl_gui in terminal and run ProNoC GUI application: ./ProNoC.pl
	It should open The GUI interface as illustrated in Figure 10.1.
	2. Click on 🔣 to open ProNoC simulator tabs.
	3. Click on NoC Emulator tab to open the emulator GUI interface:

🚦 Trace genera	tor NoC simulator	() N	oC emulator			
Run emulator		NoC C	onfiguration	5		
Generate NoC mulation Model	Router Type	0	"VC_BASED"	:		
4	Topology	0	"MESH"	:		
	Routers per row	0	2	\$		
	Routers per column	0	2	•	Ava, throughput/latency Injected Packet Worst-Case Delay Executaion Time	
	VC number per port	0	2		875.8	Latency
	Buffer flits per VC	0	4	\$	758,8 -	0
	payload width	0	32	•	8 625.8 -	
	Routing Algorithm	0	"XY"	:	590.0 -	0
		-20			3 37.0 - 239.0 - 125.0 -	-
	8 4	0.			0 Desired Rvg. Injected Load Per Router (flits/clock (%)) ■ no_name	

Figure 10.1

4. Click on Generate NoC Emulation Model tab to open NoC configuration setting page.

Parameter name	Value	Parameter Name	Value
Router Type	"VC_BASED"	Router per row	5
Router per column	5	VC number per port	2
Buffer Flits per VC	2	Payload width	32
Topology	"Mesh"	Routing Algorithm	"xy"
SSA Enable	"NO"	SW allocator arbitration type	"RRA"

5. Change the default NoC parameters as shown in below table:

- 6. Enter a name for this NoC configuration e.g. mesh_5x5_xy.
- 7. Press the generate button.

Pck. injector FIFO Width:	16
Save as:	mesh_5x5_xy 6
Project directory	() /home/alireza/mywork/mpso
	Generate 7

Figure 10.2: Generate NoC model

8. Follow instructions in Compile the generated RTL code using Quartus II software to compile the desired emulation model for an Altera FPGA board. For this example we used the DE10-Nano FPGA board which its pin assignment is shown in Figures 10.3.

ort Direction	Port Range	Port name	Assigment Type	Board Port name	Board Port Range
put		clk	Direct ‡	FPGA_CLK1_50	
ıtput		done_led		LED ‡	0 ‡
itput		jtag_reset_led		LED *	1 *
itput		noc_reset_led		LED *	2 🔹
put		reset	Negate(~) 🛟	KEY ‡	0 ‡

Figure 10.3: DE10-Nano FPGA board pin assignment.

second NoC
emulation
model with fully
adaptive routing
9. In NOC configuration tab, keep the previously set parameters and only change the routing algorithm to "DUATO".
10. Enter a new name for this NoC configuration e.g. mesh5x5_full.

11. Generate the NoC emulation model in similar way to step 8.

Run Emulation models under Matrix Transposed traffic pattern

Generate the

- 12. Click on Run Emulator tab.
- 13. Click on 🔁 to add a NoC emulation model.
- 14. Set following configurations for the emulation model. For flit injection ratios, you can define individual ratios separated by comma (',') or optionally you can define a range of injection ratios with [min]: [max]:[step] format.

* Note that you can also add more injections ratios later. Each time you run the emulation the emulation results of new injection ratios are added to the previously plotted results.

Parameter name	Value	Parameter Name	Value
FPGA Board	[Your FPGA board name]	Sram Object file	"mesh_5x5_xy"
Configuration Name	xy	Traffic name	transposed 2
Packet size in flits	5	Packet number limit per node	1000000
Emulation clock limits	2500000	Injection ratios	2:50:2

15. Click on 🕂 to add the second NoC emulation model. Fill the NoC configuration as shown in following table.

Parameter name	Value	Parameter Name	Value
FPGA Board	[Your FPGA board name]	Sram Object file	"mesh_5x5_full"
Configuration Name	fully	Traffic name	transposed 2
Packet size in flits	5	Packet number limit per node	1000000
Emulation clock limits	2500000	Injection ratios	2:50:2

- 16. Save the emulation. You can save the emulation at any time during run time. Hence, later you can continue the rest of emulation.
- 17. To start the emulation, Power on your FPGA board and connect it to your PC then pressRun all button. You can also run each individual emulation by pressing the Run button in its emulation row.
- After the emulation is done, if your graph is not yet completed you can enter a new injection ratio range and press the Run key again.
- 19. The emulator generates similar results as NoC simulator generates.

(c) Injected packets per router at 50% injection ratio.

(d) Worst-case delay per router at 50% injection ratio.

(e) Emulation time in clock cycles.

Figure 10.4: Emulator sample results.
CHAPTER 11

ProNoC Tools

JTAG UART ProNoC support including several JTAG based Universal Asynchronous Receiver-Transmitter (UART) in a SoC/MPSoC. A unique JTAG_INDEX should be assigned to each UART to avoid conflict.

UART Terminal ProNoC includes an in-built GUI for UARTs terminal. To run the UART terminal run ProNoC and press Ctrl+U. You can also directly run this tool by running following commands in in linux terminal.

cd mpsoc/perl_gui/lib/perl
perl uart.pl

Figure 11.1 illustrates the snapshot of the UART GUI. The following settings are required in order to connect to UART modules:

- 1. UART name: Select one of ProNoC_XILINX_UART or ProNoC_AlTERA_UART according to your FPGA device.
- 2. Define the total number of UART modules in your SoC/MPSoC design. Each UART module will have its own output window on the left side of the main window.
- 3. For each UART module set the corresponding JTAG_INDEX. This value is given as an input parameter to each UART module. The default value for each UART is 126-CORE_ID. In case you have left the default values for an MPSoC where each of its tile has its own UART module, these indexes are 126,125,124 and so on.
- 4. You need to set the FPGA device configuration on JTAG chain now. Click on prowse button will guide you about this task.
 - (a) For Xilinx FPGAs you need to set the JTAG TAP chain number. This parameter has been passed to the UART module as global parameter. The default value is 3.
 - (b) For Xilinx FPGAs you need to set the FPGA device target number in the JTAG chain. Figure 11.1 shows an example for Digilent Arty-Z7 XILINX FPGA board. The FPGA device is xc7z020 which is the 3rd target in jtag chain.
 - (c) For Altera FPGAs (see Figure 11.2) set the Hardware name.
 - (d) For Altera FPGAs you need to set the FPGA device target number in the JTAG chain. Figure 11.2 shows an example for DE10-Nano Altera FPGA board. The FPGA device is 5CSEBA6U23I7 which is the 2nd target in jtag chain.
- 5. you can now connect/disconnect the JTAG UART terminal by pressing clicking on OFF/ON button.

2	U 2	ART Terminal	_	•••
INDEX# 126	INDEX# 125	UART name	ProNoC_XILINX_UART	: 1
HITTOM COTE 1!	Hi from core 2!	Number of UART	4 2 3 4a	÷
		JTAG TARGET	3 4b	: 🍠 4
		JTAG Connect OFF	5	
2		SEND_TO INDEX# 120	5 ‡	
INDEX# 124 ‡	INDEX# 123 \$			
Hi from core 3!	Hi from core 4!	taraata arai	10	
		1 Digilent Arty Z7 0030 2 arm_dap (idcode 4t 3 xc7z020 (idcode 23 done	17A4CB29A ba00477 irlen 4) 727093 irlen 6 fpga) 4b	

Figure 11.1: Uart terminal snapshot (Xilinx FPGA configuration).

UART name	ProNoC_ALTERA_UART 💲	1		
Number of UART	4			
Hardware Name	DE-SoC 4C 4	_		
Device Number	2 4d 💌			
JTAG Connect OFF				
Detected Hardware DE-SoC 4C There are total pf 2 devices in JTAG chain: 1: 4BA00477 SOCVHPS 2: 02D020DD 5CSEBA6(.IES)/5CSEMA6/4d . Select the corresponding Jtag device number which the serial port is connected to				

Figure 11.2: Altera FPGA configuration setting.

For Xilinx FPGAs you can also use <code>mpsoc/src_c/jtag/uart_xsct_terminal/uart</code> to monitor UART output ports on linux terminal.Remember you need to add the path to <code>xilinx/SDK/bin</code> to your PATH variable first. Run ./uart without any option to see the usage info. Following is the example command for monitoring Digilent Arty-Z7 XILINX FPGA with four UART modules:

./uart -a 3 -b 36 -t 3 -n 126,125,124,123

Figure 11.3: Linux terminal-based UART terminal.

Add ne	W
ALtera	FPGA
Board	

On ProNoC GUI window click on Tools then select Add new Altera FPGA Board. A new window as shown in Figure 11.4 must appear. Fill the required fields as follows:

- 1. Enter your board name. Do not use any space in the given name
- 2. Enter the path to FPGA board QSF file. In your Altera board installation CD or in the Internet search for a QSF file containing your FPGA device name with other necessary global project setting including the pin assignments (e.g DE10_Nano_golden_top.qsf).
- 3. Enter the path to [FPGA_board_top].v file. In your Altera board installation CD or in the Internet search for a Verilog file containing all your FPGA device IO ports (e.g DE10_Nano_golden_top.v).
- 4. Power on your FPGA board and connect it to your PC then press the *V* Auto Fill button to auto-fill the JTAG configuration setting.
- 5. Press the 🕂 Add button.

add New FPGA Board		
FPGA Borad name:	OE10_Nano_VB2	a
FPGA board golden top QSF file:	DE10_Nano_golden_top.qsf 🔎	b
FPGA board golden top verilog file	DE10_nano_VB2.v	с
FPGA Board JTA	G Configuration	_
FPGA Borad USB Blaster PID:	6010	
FPGA Borad Programming Hardware Name:	DE-SoC	
FPGA Borad Device location in JTAG chain:	2	
have delivered the ball DOCA. The data data is a	his liberary fis	
home/alireza/intelFPGA_lite/17.1/quartus/) DE-SoC [1-2] 4BA00477 SOCVHPS 02D02DD SCSEBA6(. ES)/SCSEMA6/ *RETCODE == 0	bin/jtagconfig	

Figure 11.4: Add new FPGA board to ProNoC.

Add new Xilinx FPGA Board

On ProNoC GUI window click on Tools then select Add new Xilinx FPGA Board. A new window as shown in Figure 11.5 must appear. Fill the required fields as follows:

- 1. FPGA board display name: Enter a name for your FPGA Board. Do not use any space in the given name.
- 2. Set the path to Vivado board files repository. E.g. for ArtyZ7 FPGA board you can download its corresponding repo from https://github.com/Digilent/vivado-boards and save in \${ProNoC_work }/toolchain/board_files folder.
- 3. FPGA board part name: Your Board name (Board PART). You can click on its adjacent 💞 to get the list of all available boards in your Vivado software.
- 4. FPGA part name: Enter your FPGA device name (PART). If you have selected Board PART in last step you can click on its adjacent 💸 to get this parameter.
- 5. FPGA Hardware device name: The target hardware name in JTAG chain. Connect your FPGA board to your PC and click on its adjacent 💸 to get the list of all available targets in your FPGA board.
- 6. Target device JTAG chain order number: The order number of target device in the jtag chain. Connect your FPGA board to your PC and click on its adjacent 🞲 to get this value.
- 7. FPGA board xdc file: Path to FPGA board xdc file. In your Xilinx board installation CD or on the Internet, search for an xdc file containing your FPGA device pin assignment constrain.
- 8. FPGA board golden top Verilog file: (Path to FPGA_board_top.v file) A Verilog file containing all your FPGA device IO ports.

PGA board display name:	0	arty_z7	1
Set board repo:	0	vork/toolchain/board_files	2
PGA board part name:	0	digilentinc.com:arty-z7-20: 🔻 💙	3
PGA part name:	0	xc7z020clg400-1	2
PGA Hardware device name:	0	xc7z020_1 🔹 🏹	5
Target device JTAG chain order number	0	3 🗘 🗘	6
PGA board xdc file:	0	Arty_z7_20.xdc 🔎	
PGA board golden top Verilog file	0	Arty_z7_20.v 🔎	8
3 xc7z020 (idcode 23727093 irlen 6 one	fpga)	

Figure 11.5: Add new Xilinx FPGA board to ProNoC.

Appendices

APPENDIX A

NoC Verilog File Parameters Description

v	$v \in \mathbb{N}, v \ge 1.$	Number of VC per router port. Defining V as 1 results in a simple non-VC based router.
в	$B\in\mathbb{N},B\geqslant 2$	Buffer size per VC in flit for ports con- nected to other routers.
LB	$\texttt{LB} \in \mathbb{N}, \texttt{LB} \geqslant 2$	Buffer size per VC in flit for ports con- nected to endpoints (local ports).
PCK_TYPE	"MULTI_FLIT", "SINGLE_FLIT"	Refer to Packet type for more informa- tion.
TOPOLOGY	"MESH" "TORUS" "RING" "LINE" "FATTREE" "TREE" "CUSTOM"	The NoC topology.
		A desired topology can be defined using at most four parameters: e.g: in mesh:
T1,T2,T3,T4	T1,T2,T3,T4 ∈ N	 T1: NX, number of node in x dimension. T2: NY, number of node in y dimension. T3: NL: number of individual router local ports T4: is not used. e.g: in Tree, Fattree: T1: K, umber of last level individual router's endpoints.
		T2:L layer number.T2,T3 are not used.
ROUTE_NAME	"XY", "DUATO", "WEST_FIRST", "NORTH_LAST", "NEGETIVE_FIRST", "ODD_EVEN"	NoC routing algorithm for mesh topol- ogy. "XY" is deterministic routing (DoR), "DUATO" is fully adaptive and the rest are partially adaptive routing algorithms.
	"TRANC_XY", "TRANC_DUATO", "TRANC_WEST_FIRST", "TRANC_NORTH_LAST", "TRANC_NEGETIVE_FIRST" "TRANC_ODD_EVEN"	NoC routing algorithm for torus topol- ogy. See [rahmati:2012] for more infor- mation.

	"NCA_RND_UP", "NCA_DST_UP", "NCA_STRAIGHT_UP",	NoC routing algorithm for Fatree topol- ogy. Nearest common ancestor (NCA) where the up port is selected randomly (RND), based on destination endpoint ad- dress (DST) or it is the top port that is lo- cated in front of the the port which has received the packet (STRAIGHT).
С	$c \in \mathbb{N}$	The number of message classes. Packets that belong to different message classes can have access to a different subset of VCs. The subset of VCs for each class is defined using CLASS_SETTING parame- ter.
Fpay	Fpay $\in \mathbb{N}$, Fpay $\geqslant 32$	Flit payload size in bit.
MUX_TYPE	"BINARY", "ONE_HOT"	Crossbar's multiplexer type in a NoC router. Binary and one-hot multiplexers are preferable for FPGA and ASIC im- plementation, respectively.
VC_ REALLOCATION_ TYPE	"ATOMIC", "NONATOMIC"	"ATOMIC": only an empty output VC can be reallocated for a new header flit. "NONATOMIC": A VC can be reallocated when it has received the tail flit of the last packet and has at least one empty buffer space. See [monemi:2016a] for more in- formation.
COMBINATION_ TYPE	"COMB_NONSPEC", "COMB_SPEC1", "COMB_SPEC2"	VC/SW combination type. None- Speculative or Speculative VC/SW com- bination.
FIRST_ ARBITER_ EXT_P_EN	0, 1	If it is set as 0, then the first level arbiters' priority registers in switch allocator are updated whenever any request is granted at first level otherwise the priority regis- ters are updated only if they also receive the second level arbitration grants.
BYTE_EN	0,1	0: Disabled 1: Enabled. Adds a byte enable (BE) filed to header flit which shows the location of last valid byte in tail flit. It is needed once the sent data unit is smaller than Fpay.
CONGESTION_ INDEX	CONGESTION_INDEX $\in \mathbb{N}$, 0 \leq CONGESTION_INDEX \leq 7	Define how congestion metrics is se- lected. See Table A.2 for more informa- tion.

DEBUG_EN	0,1	If is defined as 1, the simulation will be run using extra debugging codes. The debugger dose several faults detec- tion such as out of order flits receiving, packet miss-routing and VC status miss- matching.
ADD_PIPREG_ AFTER_ CROSSBAR	0,1	If is defined as 1, a pipeline register will be added after the crossbar switch which add one clock cycle latency for link traversal stage. It may be needed for ASIC NoC where routers are connected using long wires. However, in FPGA im- plementation it may not be required.
CLASS_ SETTING	{V'bx,,V'bx}	It defines how each message class can have access to VCs. For each class a V- bit access-VC value is defined in such a way that each asserted bit represents the VC which this message class can request for. The CLASS_SETTING is concatenate of all message class access-VC values.
ESCAP_VC_MASK	V'bX	It is a V-bit value and its asserted bit(s) represent the escape VC(s) (EVC). It is valid only for fully adaptive routing. You must make sure that each message class have access to at least one EVC to prevent deadlock in fully adaptive routing.
SSA_EN	"YES", "NO"	If set as "YES", packets which are travel- ing to the same dimension bypass router pipeline stages using Static straight allo- cator. See [monemi:2016b] for more in- formation.
SMART_MAX	$smart_max \in \mathbb{N},$ $smart_max \ge 0$	If Max Straight Bypass (SMART_MAX) is defined as $n > 0$ then packets are allowed to bypass Maximum of n routers in straight direction in single cycle. See [monemi:2021] for more information.

SWA_ARBITER_ TYPE	"RRA", "WRRA"	Switch allocator's output ports arbiters type: RRA: Round Robin Arbiter. Pro- vides only local fairness in a router. WRRA: Weighted Round Robin Arbiter. Results in global fairness in the NoC. Us- ing WRRA the switch allocation requests are granted according to their weights which increases dynamically due to con- tention.Refer to [monemi:2020] for more information.
WEIGHTw	WEIGHTW $\in \mathbb{N}$, 2 \leq WEIGHTW \leq 7	WRRA weights' maximum width in bits.
MIN_PCK_SIZE	MIN_PCK_SIZE ∈ N, MIN_PCK_SIZE ≥ 1	The minimum packet size in flits. In atomic VC re-allocation, it is just im- portant to define if the single-flit sized packets are allowed to be injected to the NoC by defining this parameter value as one. Setting any larger value than one results in the same architecture and the NoC works correctly even if it receives smaller packets size as while as they are not single-flit sized packets. However, for non-atomic VC reallocation NoCs, you have to define the exact value as it de- fines the NoC control registers' internal buffers. The NoC may crash once it re- ceives packets having smaller size than the defined minimum packet size.
SELF_LOOP_EN	"YES", "NO"	If the self-loop is enabled, it allows a router input port sends packets to its own output port. Enabling it allows a tile to be able to send packets to itself too.;

		Configura a NoC as Unicast Multicast or
CAST_TYPE	"UNICAST", "MULTICAST_PARTIAL", "MULTICAST_FULL", "BROADCAST_PARTIAL", "BROADCAST_FULL"	Configure a NoC as Unicast, Multicast or broadcast NoC. In Unicast NoC, a packet can be send to only one destination. In Multicast, a single packet can have mul- tiple target destination nodes. The broad- cast packets are sent to all other destina- tion nodes. For Multicast and broadcast NoC only one single copy of a packet is needed to be injected to the source router, the routers then fork the packet to different output ports when it is nec- essary. Multicast and Broadcast can be selected as FULL, where all destinations can be included in packet destination list or PARTIAL where a user defined subset of nodes can be targeted in Muticasting. Note that the Multicast/broadcast pack- ets size should be equal or smaller than router input port buffer size.
MCAST_ENDP_ LIST	NE'bX	MCAST_ENDP_LIST is an NE bit one-hot coded number where NE is the total num- ber of emdpoints and the asserted bit indicates that the corresponding desti- nation ID can be targeted in multicas- t/broadcast packets. The corresponding destinations with zero bit can only re- ceive unicast packets. This parameter is only valid for "BROADCAST_PARTIAL" and "MULTICAST_PARTIAL" parameters.

Index	Description	pin overhead
0	Number of unavailable VCs in the neighboring router	_
	adjacent input port.	
1	Number of consumed credit in all VCs of the neighbor-	_
	ing router adjacent input port.	
2	Number of active switch allocation requests in all ports	2-bit
	of the neighboring router.	
3	Number of active switch allocation requests in all ports	3-bit
	of the neighboring router.	
4	Number of active switch allocation requests in all ports	2-bit
	of the neighboring router that are not granted.	
5	Number of active switch allocation requests in all ports	3-bit
	of the neighboring router that are not granted.	
6	Number of unavailable VC in all ports of the neighbor-	2-bit
	ing router	
7	Number of unavailable VC in all ports of the neighbor-	3-bit
	ing router	

Table A.2: Congestion metrics.

APPENDIX B

NoC Verilog File Signals Description

Resource allocation units A packet is the unit of data that is routed between a source and a destination cores. Packets contain control signals such as routing data, destination address, message classes in addition to the data. Flits (flow control units) are the atomic units that form packets. A packet consists of three types of flit; it starts with a header flit, followed by an optional number of body flits, and ends with a tail flit. Phit (physical unit), is the smallest unit of data transmitted in a single cycle on a communication link. In ProNoC flits are single phit size. The NoC resource allocation units is shown in Figure **B**.1.

Figure B.1: Units of resource allocation in NoC.

Flit type Type is a 2-bit signal indicates the type of its respective flit (header, body or tail). The first bit is asserted for header flits. The second flit is asserted if the flit is a tail. For body flits neither of these two bits are asserted. For single flit packets both of type bits are asserted.

VC filed VC filed is coded in one-hot format and the asserted bit indicates the packet VC number.

Packet type ProNoC supports two types of single or multi flit packet format. The packet format is defined by setting PCK_TYPE parameter to one of SINGLE_FLIT or MULTI_FLIT values.

single-flit : In this configuration all packets injected to the NoC must consist of only single-flit. The packet control fields are added to packet Data filed as shown in Figure B.2.

		Fpay-bit
Pck1	Ctrl-fileds	pck-Data
Pck2	Ctrl-fileds	pck-Data
Pck3	Ctrl-fileds	pck-Data

Figure B.2: Single-flit type packet format.

Multi-flit

: In multi-flit format a packet can consist any arbitrary number of flits. In this format the header flit carries the control fields as part of its payload filed as shown if Figure B.3.

Figure B.3: Muti-flit type packet format.

Control fieldsThe header flit carries some necessarily information which is required by the flow control. The
header flit format varies depending on ho NoC parameter are selected.

Endpoint addressing format

ProNoC encodes the endpoint addresses according to the topology parameters:

Line,Ring : {L,X}

X: connected router index number.

L: index of router local port connected to the endpoint node.

 $Mesh, Torus: \{L, Y, X\}$

X: Index of the first dimension (column) of the connected router.

Y: index of the second dimension (row) of the connected router.

L: index of a router local port connected to the endpoint node.

Figure B.4: 2×2 CMESH endpoint coding example.

The endpoint address size in Line, Ring, Mesh and, Torus is obtained using the following equations:

$$NXw = \log 2NX;$$

$$NYw = (NY > 1)? \log 2NY : 0;$$

$$NLw = (NL > 1)? \log 2NL : 0;$$

$$EAw = NLw + NYw + NXw;$$
(B.1)

where NX is the maximum number of routers in first dimension, NY is maximum number of router in second dimension, NL is maximum number of individual router's local port, NXw is router first dimension size in bits, NYw is router second dimension size in bits, NLw is router local port index width in bits, and EAw is the endpoint address width.

In Fatree/tree each individual endpoint address is coded based on port number of parent routers: $\{P_0, P_1, ..., P_{k-1}\}$

where K is the height of tree and P_n is the router's bellow port number located at the n^{th} layer which can receives a packet from that endpoint (note that $n_{root}=0$). Figure B.5 shows an example of endpoint encoding in a fattree (k=3,n=3). As an example a packet which sent from T₇ to any of root nodes will always received from port number 1,2,0 in each layer respectively.

Figure B.5: Fattree (k=3,1=3) endpoint coding example.

$$Kw = \log 2K$$
$$EAw = L \times Kw$$
(B.2)

where L is length of three and K is the number of endpoints connected to each individual router in last tree level.

Once you press Generate RTL button in NoC-based MPSoC using ROC based MPSoC generator, the endpoint addresses are generated in [PRONOC_WORK]/mpsoc/[PT-name]/sw/phy_addr.h file.

phy_addr.h contains 2×2 CMESH endpoint adresses.

```
#ifndef PHY ADDR H
   #define PHY_ADDR_H
   #define PHY_ADDR_ENDP_0 0x0
   #define PHY_ADDR_ENDP_1 0x4
   #define PHY_ADDR_ENDP_2 0x8
   #define PHY_ADDR_ENDP_3 0xc
   #define PHY_ADDR_ENDP_4 0x1
   #define PHY_ADDR_ENDP_5 0x5
   #define PHY_ADDR_ENDP_6 0x9
   #define PHY_ADDR_ENDP_7 0xd
   #define PHY_ADDR_ENDP_8 0x2
   #define PHY_ADDR_ENDP_9 0x6
   #define PHY_ADDR_ENDP_10 0xa
   #define PHY_ADDR_ENDP_11 0xe
   #define PHY_ADDR_ENDP_12 0x3
   #define PHY_ADDR_ENDP_13 0x7
   #define PHY_ADDR_ENDP_14 0xb
   #define PHY_ADDR_ENDP_15 0xf
```

	#endif						
destport	ProNoC routers use router ahead and th varies dependent of this field is automa duty of endpoints to ports. Endpoints an the <i>destport</i> filed. T Table B.1:	ProNoC routers use look-ahead routing algorithm i.e. the destination port is calculated one router ahead and the result is attached to the header flit in <i>destport</i> filed. The <i>destport</i> format varies dependent on topology and routing algorithm. Once a packet is injected into the NoC this field is automatically updated by each router at packet departure time. However, it is the duty of endpoints to update the <i>destport</i> filed of packets which are injected to the router's local ports. Endpoints are supposed to use ni_conventional_routing Verilog module to obtain the <i>destport</i> filed. The size of <i>destport</i> filed is shown in Table B.1: DSTPw for different typologies. Note that K is the tree height.					
	TOPOLOGY	RING, LINE	MESH. TORUS	FATTREE	TREE	1	
	DSTPw (bits)	2	4	K+1	log2(K+1)		
class	This filed indicates VCs. The permitted using CLASS_SETT	This filed indicates the message class binary number. Each specific class can use different set of VCs. The permitted VCs which can be used by each individual class is given to the RTL code using CLASS_SETTING Verilog parameter.					
		$Cw = (C > 0)? \log 2C : 0$ (B.3)					
	where C is number	where C is number of defined class and Cw is class width filed in bits.					
weight	This filed carries p congestion. weight arbitration.	This filed carries packets weight which increases dynamically inside the NoC at presence of congestion. weight filed is only valid once the router is configured with weighted round robin arbitration.					
	$Ww = (SWA_ARBITER_TYPE == "WRAA")? WEIGHTW: 0 $ (B.4)						
	where C is number	here C is number of defined class and Cw is class width filed in bits.					
header-data	The header flit can optionally carries some data. The size of data which a header flit can carries. The number of data bits which a header flit can carry (HDw) :						
	HDw = Fpay - 2EAw - DSPTw - Ww (B.5)						

APPENDIX C

Multiple physical NoCs with different configurations

In ProNoC the NoC configuration parameters are defined in noc_localparam.v file in mpsoc /rtl/src_noc/ path. This file is then used inside pronoc_pkg.sv file to define NoC structs, channels, and interfaces. In SystemVerilog it is not possible to override a parameter inside a package, so in case you needed to have multiple NoCs with different parameters in a system you may face a challenge.

Solution 1:

A hack to fix this issue is to compile each NoC as a separate library. Following shows the required steps for Modelsim simulation. Assume we need to have three different NoCs (NoC1,NoC2,NoC3) where each NoCs has a different flit payload width (512,72,64 bits).

1. Modify noc_localparam.v as suggested bellow. Here the USE_LIB macro is passed during compilation time and will determines the payload width.

```
//NoCs' common parameters definition
  localparam V=1;
  localparam B=16;
  localparam PCK_TYPE="SINGLE_FLIT";
   localparam MIN_PCK_SIZE=1;
   localparam BYTE_EN=0;
   localparam SSA_EN="NO";
   localparam SMART_MAX=0;
//NoC's unique parameter definition
   `define STRINGIFY(x) `"x`"
   `ifdef USE_LIB
     localparam LIB_STR =`STRINGIFY(`USE_LIB);
     localparam Fpay = (LIB_STR =="noc1_rtl_work")? 512 :
      (LIB_STR =="noc2_rtl_work")? 72 : 64 ;
   `else
     localparam Fpay=32 ;
   `endif
```

2. Create a top module for each NoC in a separate file (noc1.sv,noc2.sv,noc3.sv) and instantiate the noc_top in them. Do not forget to include pronoc_def.v file.

```
`include "pronoc_def.v"
module noc1
    import pronoc_pkg::*; // need `USELIB noc1_rtl_work
    (
    input clk,
    input reset,
    input smartflit_chanel_t pronoc_chan_in [NE-1 : 0],
    output smartflit_chanel_t pronoc_chan_out [NE-1 : 0]
);
noc_top the_noc1 (
    .reset(reset),
    .clk(clk),
    .chan_in_all (pronoc_chan_out));
endmodule
```

3. Prepare compilation script, that compile noc1.sv, noc2.sv and noc3.sv with different USE_LIB values to generate the desired NoCs:

```
#!/usr/bin/tclsh
set comp_path [path_to_work_dir]
file mkdir $comp_path
cd $comp_path
set noc1_rtl_work $comp_path/noc1_rtl_work
set noc2_rtl_work $comp_path/noc2_rtl_work
set noc3_rtl_work $comp_path/noc3_rtl_work
set work_path $comp_path/work
if {[file exists $noc1_rtl_work]} {vdel -lib $noc1_rtl_work -all}
if {[file exists $noc2_rtl_work]} {vdel -lib $noc2_rtl_work -all}
if {[file exists $noc3_rtl_work]} {vdel -lib $noc3_rtl_work -all}
if {[file exists $work_path]} {vdel -lib $work_path -all}
vlib work
vlib $noc1_rtl_work
vlog -compile_uselibs -libmap_verbose +acc=rn -work noc1_rtl_work +
    define+USE_LIB=noc1_rtl_work -F noc_flist.f noc1.sv
vmap noc1_rtl_work $noc1_rtl_work
vlib $noc2_rtl_work
vlog -compile_uselibs -libmap_verbose +acc=rn -work noc2_rtl_work +
   define+USE_LIB=noc2_rtl_work -F noc_flist.f noc2.sv
vmap noc2_rtl_work $noc2_rtl_work
vlib $noc3_rtl_work
vlog -compile_uselibs -libmap_verbose +acc=rn -work noc3_rtl_work +
    define+USE_LIB=noc3_rtl_work -F noc_flist.f noc3.sv
vmap noc3_rtl_work $noc3_rtl_work
vlog +acc=rn -compile_uselibs -libmap_verbose -work work -L
    noc1_rtl_work -L noc2_rtl_work -L noc3_rtl_work testbench.sv
vsim -t ps -L noc1_rtl_work -L noc2_rtl_work -L noc3_rtl_work
    work.testbench
run 100 ms
quit
```

Solution 2:

Another simpler solution is to avoid importing import pronoc_pkg.sv and instead, include that file in each module.

- 1. Open mpsoc/rtl/pronoc_def.v file in a text editor and remove/comment the line containing `define IMPORT_PRONOC_PCK.
- 2. Modify noc_localparam.v and redefine NoC local parameters according toNOC_ID:

```
//NoCs' common parameters definition
localparam V=1;
localparam B=16;
localparam PCK_TYPE="SINGLE_FLIT";
localparam MIN_PCK_SIZE=1;
localparam BYTE_EN=0;
localparam SSA_EN="NO";
localparam SMART_MAX=0;
// Rest of parameters ...
//NoC's unique parameter definition
localparam Fpay = (NOC_ID == 0) ? 512 :
(NOC_ID == 1) ? 72 : 64;
```

3. Now you can have multiple physical NoCs where they are recognized by passing different values to NOC_ID parameter in noc_top module.

```
noc_top #(
  NOC_ID(0)
)noc0(
  .reset(reset),
  .clk(clk),
   .chan_in_all (chan_in0),
   .chan_out_all(chan_out0)
);
noc_top #(
  NOC_ID(1)
)noc1(
  .reset(reset),
   .clk(clk),
   .chan_in_all (chan_in1),
   .chan_out_all(chan_out1)
);
```