
ProNoC
User Manual

Copyright ©2014–2018 Alireza Monemi
This file is part of ProNoC
ProNoC (stands for Prototype Network-on-Chip) is free software: you can redistribute it
and/or modify it under the terms of the GNU Lesser General Public License as published
by the Free Software Foundation, either version 2 of the License, or (at your option) any
later version.
ProNoC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
without even the implied warranty of MERCHANTABILITY or FITNESS FOR A
PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public License along with
ProNoC. If not, see <http:**www.gnu.org/licenses/>.
This document may include technical inaccuracies or typographical errors.

Contents

1 Installation Manual for the Ubuntu Linux Environment 3
1.1 Installation . 3

2 Interface Generator 6
2.1 Introduction . 6
2.2 Generate New Interface . 8
2.3 Defined Interfaces . 8

2.3.1 interrupt cpu . 9
2.3.2 interrupt peripheral . 9
2.3.3 clk . 10
2.3.4 reset . 10
2.3.5 Enable . 10
2.3.6 Wb master . 10
2.3.7 Wb slave . 11

3 IP Generator 12
3.1 Introduction . 12
3.2 Generate a New IP . 12
3.3 List of available Variables in ProNoC 16
3.4 List of available IP cores in ProNoC 17

3.4.1 Bus . 17
3.4.2 Communication . 17
3.4.3 DMA . 17
3.4.4 Display . 17
3.4.5 GPIO . 17
3.4.6 Interrupt . 17
3.4.7 NI . 18
3.4.8 Processor . 18
3.4.9 RAM . 18
3.4.10 Source . 18
3.4.11 Timer . 18

4 Processing Tile Generator 19

1

5 Processing Tile Generator Hello World Tutorial 21
5.1 System Requirements: . 21
5.2 Objectives: . 21
5.3 Desired SoC . 21

5.3.1 Schematic . 21
5.3.2 Application Software . 22

5.4 Create New SoC Using ProNoC Processing Tile Generator 22
5.5 Software Development . 33
5.6 Simulate the generated RTL code using Modelsim software 36
5.7 Simulate the generated RTL code using Verilator software 38
5.8 Compile the generated RTL code using Quartus II software 42

6 Add Custom IP to Processing Tile Generator Tutorial 46
6.1 System Requirements: . 46
6.2 Objectives: . 46
6.3 Greatest Common Divisor (GCD) Algorithm 46
6.4 GCD RTL code . 47

6.4.1 GCD Simulation . 50
6.5 Add Wishbone bus interface to GCD 54
6.6 Add custom wishbone-based IP core to ProNoC Library 57
6.7 Generate a new SoC enhanced with new IP core (GCD) 64
6.8 Software Development . 68

7 NoC Verilog File Parameters Description 71

8 NoC Simulator 74
8.1 System Requirements: . 74
8.2 Simulation Example: . 74

8.2.1 Generate first NoC simulation model with XY routing 74
8.2.2 Generate the second NoC simulation model with fully adaptive

routing . 75
8.2.3 Run simulation under Matrix Transposed traffic pattern 75

9 NoC Emulator 79
9.1 summary . 79
9.2 System Requirements . 79
9.3 Emulation Example: . 79

9.3.1 Generate first NoC emulation model with XY routing 79
9.3.2 Generate the second NoC emulation model with fully adaptive

routing . 81
9.3.3 Run Emulation models under Matrix Transposed traffic pattern 81

ProNoC homepage May 15, 2018 2

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

CHAPTER 1

Installation Manual
for the Ubuntu
Linux Environment

Installation

1. You can download the ProNoC source code from ProNoC homepage or option-
ally open the terminal and run:

svn co http://opencores.org/ocsvn/an-fpga-implementation-of-low-
latency-noc-based-mpsoc/an-fpga-implementation-of-low-latency-
noc-based-mpsoc/trunk

Copy the downloaded folder (trunk/) somewhere in your home directory. Make
sure that there is no space in destination address.

2. To give execute permission, open trunk/mpsoc in terminal and run

sudo chmod +x -Rf ./

3. Install required package dependencies

sudo apt-get install build-essential
sudo apt-get install libgtk2.0-dev libglib2.0-dev
sudo apt-get install libpango1.0-dev
sudo apt-get install clang
sudo apt-get install lib32z1
sudo apt-get install libgd-graph-perl
sudo apt-get install cpanminus
sudo apt-get install libusb-1.0
sudo apt-get install graphviz
sudo apt-get install libgtksourceview2.0-dev

4. Install required Perl modules:

sudo cpanm ExtUtils::Depends
sudo cpanm ExtUtils::PkgConfig
sudo cpanm Glib
sudo cpanm Pango
sudo cpanm Gtk2
sudo cpanm String::Similarity
sudo cpanm Gtk2::Ex::Graph::GD
sudo cpanm GD::Graph::bars3d
sudo cpanm IO::CaptureOutput
sudo cpanm Proc::Background
sudo cpanm List::MoreUtils
sudo cpanm File::Find::Rule
sudo cpanm Gtk2::SourceView2
sudo cpanm Verilog::EditFiles

5. Add mpsoc_work path to the PATH variable in .bashrc file:

gedit ~/.bashrc

Add PRONOC_WORK variable to .bashrc file then save and close it:

export PRONOC_WORK={path_to_mpsoc_work_directory}
e.g export PRONOC_WORK=/home/alireza/Mywork/mpsoc_work

Now run the following command in terminal to update the variables

ProNoC homepage May 15, 2018 3

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc
http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

source ~/.bashrc

6. Install Verilator simulator.

sudo apt-get install verilator
sudo cpanm install Verilog::Language

7. Add QUARTUS_BIN variable to .bashrc file. (This stage is optional, do it only if
you are going to use Altera FPGAs for implementation or emulation):

export QUARTUS_BIN={path_to_quartus_bin_directory}
#e.g. export QUARTUS_BIN=/home/alireza/intelFPGA_lite/17.1/quartus

/bin

8. Add MODELSIM_BIN variable to .bashrc file. (This stage is optional, do it if you
have installed Modelsim simulator and you want ProNoC to auto-generate the
simulation models using Modelsim software):

export MODELSIM_BIN={path_to_Modelsim_bin_directory}
#e.g. export MODELSIM_BIN=/home/alireza/altera/modeltech/bin

Now run the following command in terminal to update the PATH variable

source ~/.bashrc

9. Download soft-core processors’ GNU toolchain:

(a) aeMB

(b) Lm32 or from Lm32

(c) or1k-elf for mor1k and or1200 OpenRISC CPUs.

Unzip the files and copy them in mpsoc_work/toolchain directory:

mv lm32 mpsoc_work/toolchain/lm32
mv aemb mpsoc_work/toolchain/aemb
mv mor1k mpsoc_work/toolchain/mor1k

10. Give execution permission to GNU toolchains. Open terminal in mpsoc_work/

toolchain and run

sudo chmod +x -Rf ./

11. Open /mpsoc/src_c in terminal and run

make

12. Now you can run the GUI application by

cd mpsoc/perl_gui
./ProNoC.pl

ProNoC homepage May 15, 2018 4

http://www.multcloud.com/share/87d0060e-9109-46a5-b170-f874f75fc34c
http://www.multcloud.com/share/aca75bf6-01c5-4559-978f-84cab79d8d53
http://www.ohwr.org/attachments/1301/gcc-4.5.3-lm32.tar.xz
http://www.multcloud.com/share/c2faea3b-9690-4757-a1ba-5a8ed8656bc4
http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

Figure 1.1: ProNoC GUI snapshot.

ProNoC homepage May 15, 2018 5

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

CHAPTER 2

Interface Generator

Introduction The interface generator allows the addition of new interfaces to ProNoC software. An
interface is a port or a group of ports that are common in different IP cores which are
used for doing a specific task. The most common interfaces in ProNoC are the shared
bus (wishbone bus) master/slave, clk and reset interfaces. Each individual interface
is divided into two types of socket and plug interfaces. Two different IP cores can
be connected when one has the socket type of an interface and another one has the
plug type of that interface. While it is optional to select any side of the connection as
socket or plug interface, bellow are some differences between them that help to select
an appropriate type of interface for each IP core:

1. In processing tile generator only the plug interfaces of an IP are shown in the
IP box. The user can select the connection interface from the list of all IP cores
having the socket type of that interface as shown in Figure 2.1.

Figure 2.1: GPO IP box snapshot.

2. The socket interfaces can be defined as single or multi-connection. A socket
interface can be defined as multi-connection only when it consists of only output
ports. As a result, it can be connected to multiple IPs having the plug type of
that interface. Examples of multi-connection socket in PoNoC are clk and reset
interfaces.

Figure 2.2: multi-connection selection snapshot.

3. The number of a socket interface in an IP core can be parameterizable. To do
this, the interfaces’ ports that having the same name must be concatenated as
a single port in the IP core Verilog file. This feature provides flexibility to the
ProNoC Processing tile generator as an IP core now can have variable number
of an interface which can be defined by the user at the generation time. As an
example the interfaces of the Wishbone bus and the interrupt controller are de-
fined as socket with parameterizable number of interfaces. Below is an example
which shows how the interfaces are defined in a Wishbone Bus IP core module:

ProNoC homepage May 15, 2018 6

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

Listing 2.1: bus.v
module wishbone_bus #(
parameter M = 4, //number of master port
parameter S = 4, //number of slave port
parameter Dw = 32,// maximum data width
parameter Aw = 32 // address width
parameter DwS= Dw * S,
parameter AwS= Aw * S,
.
.

)(
//Slaves interface
output [AwS-1 : 0] s_adr_o_all ,
output [DwS-1 : 0] s_dat_o_all ,
input [DwS-1 : 0] s_dat_i_all ,
output [S-1 : 0] s_we_o_all ,
output [S-1 : 0] s_cyc_o_all ,
output [S-1 : 0] s_stb_o_all ,
.
.

(a)

(b)

Figure 2.3: (a) Select Verilog parameters M and S as the number of Wishbone bus
(WB) master & slave interfaces for generating Wishbone Bus IP core. (b) The number
of WB master/slave interfaces can be defined at SoC generation time via GUI.

ProNoC homepage May 15, 2018 7

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

Generate New
Interface

In order to add a new interface to ProNoC, press the browse button and select the Ver-
ilog file containing a module with the desired interface. If there are multiple modules
inside that file, you can select the desired one from Select module menu. To add ports
to the interface press Import Ports button. It opens a pop-up window as shown in
Figure 2.4 where you can select and add the required ports.

Figure 2.4: Interface generator snapshot.

Using swap button, you can define if the selected ports belong to the socket or plug
type of an interface. You are only needed to define one type of an interface, the other
type will be defined automatically. The width of each port can also be a Verilog code
parameter. Note that any Verilog module using this interface must define the interface
ports using the same parameter name.

The socket interfaces can be defined as single or multi connection. If a socket is
defined as single connection, by connecting a new IP to the socket, the last connected
plug to that socket will be disconnected automatically.

Defined
Interfaces

While it is optional to select any side of an interface connection as socket or plug when
defining a new interface, once the definition is done for an IP core, all other IP cores
having that interface must follow the first IP core. Hence, it is important to know
how the defined interfaces (socket and plug) are mapped to the existing IP cores in the
library. This section provides the list of defined interfaces and the IP cores which use
these interfaces.

NI This is the interface connection between Network-on-chip (NoC) router and the NoC
interface adapter module (NI). Figure 2.5 shows this interface.

ProNoC homepage May 15, 2018 8

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

Figure 2.5: NI socket/plug interfaces.

IP cores having NI socket: ni master, ni slave
IP cores having NI plug: NoC

interrupt cpu CPUs that have only one single interrupt pin must be connected to an interrupt con-
troller module to allow combination of several sources of interrupt. The interface be-
tween these CPUs and Interrupt controller is called interrupt cpu.

Figure 2.6: interrupt cpu socket/plug interfaces.

IP core having interrupt cpu socket: aeMB CPU
IP core having interrupt cpu plug: int ctrl (interrupt controller module)

interrupt
peripheral

This is the interrupt interface connection between CPUs having multiple interrupt pins
that can directly be connected to multiple the peripheral devices.

Figure 2.7: interrupt peripheral socket/plug interfaces.

IP cores having interrupt peripheral socket: int ctrl, mor1kx, or1200, and lm32
CPUs.
IP cores having interrupt peripheral plug: dma, timer, ni master, ni slave, ext int
(external interrupt), eth mac100, jtag uart.

ProNoC homepage May 15, 2018 9

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

clk The clock pin interface.

Figure 2.8: clk socket/plug interfaces.

IP core having clk socket: clk source
IP cores having clk plug: All IP cores which have clk pin except clk source

reset The reset pin interface.

Figure 2.9: reset socket/plug interfaces.

IP core having reset socket: clk source
IP cores having reset plug: All IP cores which have reset pin except clk source

Enable The enable pin interface. The enable pin is used for disabling any active module in a
processing tile (e.g CPUs). The Processing tile and NoC-based MCSoC generators au-
tomatically connect all enable plug interfaces to each other and used them for disabling
CPUs during programming mode. The enable pin for each CPU must be defined as IO
in processing tile generator.

Figure 2.10: Enable socket/plug interfaces.

IP core that have enable socket: -
IP core that have enable plug: All CPUs

Wb master The wishbone bus master interface. The Wb master socket interface is mapped to
wishbone bus module. All IP cores’ WB master interface must be mapped to the plug
interface.

ProNoC homepage May 15, 2018 10

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

Figure 2.11: WB master socket/plug interfaces.

IP core having Wb master socket interface: Wishbone Bus module
IP cores having Wb master plug interface: All CPUs, ni master, dma, eth mac100,
jtag wb.

Wb slave The wishbone bus slave interface. The Wb slave socket interface is mapped to wish-
bone bus module. All IP cores’ WB slave interface(s) must be mapped to the plug
interface.
IP core having Wb slave socket interface: Wishbone Bus module
IP core that have Wb slave plug interface: ni master, ni slave, dma, eth mac100,
jtag wb, jtag uart, timer, gpio, gpi, gpo, single port ram, dual port ram, lcd 2x16,
ext int, int ctrl

Figure 2.12: WB slave socket/plug interfaces.

ProNoC homepage May 15, 2018 11

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

CHAPTER 3

IP Generator

Introduction The IP generator allows adding new intellectual properties (IPs) to the ProNoC’s li-
brary. It provides a GUI interface for mapping the IP’s ports to the interfaces, defining
how the IP parameters must be collected from the user at tile generation time, and
getting the location of IP cores’ source files.

Generate a New
IP

For adding a new IP to ProNoC, first you need to have the Verilog file(s) describing the
RTL code of that IP.

1. Click on button and select the Verilog file containing the top level mod-
ule.

2. Select a category which this new IP core is belonging to. You can eighther select
it form the list of available categories or define a new category by typing its

name in . All IPs belonging to the same category are
listed under the same tree branch in processing tile generator.

3. Define an IP name for this module. The IP name will be shown in IP list below
its category name in Processing tile generator.

4. In case the Verilog file contains several Verilog module select the top level mod-
ule in Select Module field.

5. Using button you can add a short description about the IP. This
description will be shown when the IP is selected in processing tile generator.
You can also add the IP-core documentation in PDF format here. This generate
a short key for opening the IP documentation in processing tile generator.

Note: In order to make the copy of your ProNoC software portable palace the
documentation files somewhere inside mpsoc folder.

6. The button allows the addition of the necessarily files and fold-

ers to the generated processing tile software directory (mpsoc/SOC/[PT-name]/
sw). By pressing this button you will have three notebook pages:

• Add existing files/folders: In this page you can add the list of files and
folders which you want to copy them exactly into the mpsoc/SOC/[PT-name
]/sw folder.

• Add files contain variables: In this page you can add the list of files which
contain some variables that can be replaced at the processing tile generation
time. Variables must be written in the source file with ${variable_name}

format. You can use any of available variables in ProNoC as variable name.

• Add to tile.h: You can add the definition and functions for this peripheral
device here. These definitions are added to the processing tile header file
at generation time. You can use any of available variables in ProNoC with
${variable_name} format. A header file example is as follows:

ProNoC homepage May 15, 2018 12

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

#define ${IP}_REG_0 (*((volatile unsigned int *)(${BASE})))
#define ${IP}_REG_1 (*((volatile unsigned int *)(${BASE}+4)

))

#define ${IP}_WRITE_REG1(value) ${IP}_REG_1 = value
#define ${IP}_READ_REG1 () ${IP}_REG_1

#define ${IP}_is_busy(n) ((${IP}_REG_0 >> n) & 0x1)

void ${IP}_initial (unsigned int v) {
${IP}_WRITE_REG1(v);

}

A sample generated header file by ProNoC assuming the IP instance name
is defined as foo by the user and the WB slave address is defined as 0

X96000000 by ProNoC automatically is as follows:

/* foo */
#define foo_REG_0 (*((volatile unsigned int *)(0X96000000)))
#define foo_REG_1 (*((volatile unsigned int *)(0X96000000+4))

)

#define foo_WRITE_REG1(value) foo_REG_1 = value
#define foo_READ_REG1 () foo_REG_1

#define foo_is_busy(n) ((foo_REG_0 >> n) & 0x1)

void foo_initial (unsigned int v) {
foo_WRITE_REG1(v);

}

7. Add the list of all required designed HDL files for the new IP core by using
button. All files listed here will be copied in the generated process-

ing tile inside mpsoc/SOC/[PT-name]/src_verilog folder.

8. By pressing button, all parameters inside the top module Verilog

file are extracted. This menu allows you to add, remove or define how to get the
parameter values from the user. Below is an example for setting parameter M in
wishbone bus.

Figure 3.1: Parameter setting window snapshot.

• Parameter name: It is the parameter name which has been read from the
Verilog file.

ProNoC homepage May 15, 2018 13

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

• Default value: when an IP is selected for the first time in processing tile
generator, the parameters are loaded by their default values.

• Widget type: defines how the parameter value must be taken from the user
when calling the IP in processing tile generator. There are four ways to
define a widget type:

– Fixed: The parameter is a fixed value and get the default value. User
will not see the parameter and cannot change it in GUI.

– Entry: The parameter value is received via entry widget. The user
can type anything as parameter value.

– Combo-box: The parameter value can be selected from a list of pre-
defined values.

– Spin-box: The parameter is a numeric value and is taken using spin-

box widget.

• Widget content: For Fixed and Entry leave it empty. For Combo box
define the parameters which must be shown in combo box. Use following
format: "VALUE1","VALUE2",...,"VALUEn". For Spin box define it with
this format minimum,maximum,step (e.g 0,10,1).

• Type: Here you can define that how any specific IP-core parameter is de-
fined in the generated processing tile Verilog file. You have three options
localparam, Parameter, and Don't include. If you select it as Parameter
then all processing tile parameters are also defined as parameter in the pro-
cessing tile Verilog file. Hence, they can be changed during NoC-based
MPSoC generation time. This allows calling same tile in different places
with different parameter values. In case the parameter is a software pa-
rameter which must be used in software code variables define it as Don't
include.

• Redefine: If it is check marked, the defined parameter/localparam in pro-
cessing tile Verilog file will be passed to the IP core during instantiating.
Remove the check mark if you only have added a parameter using parame-
ter setting GUI which does not exist in the IP-core Verilog file.

parameter PARAM1= n; //redefined is on
localparam PARAM2=m; //redefined is off

ip_name #(
// redefined parameters
.PARAM1(PARAM1)

) instance_name(
//ports definition starts here

);

• info: The parameter description for the user can be added here.

9. Add interface: You can add interfaces to the IP library by double clicking on
an interface name located at the left top corner. After adding the interface, it
appears in the interface box where you can adjust the interface setting such as,

ProNoC homepage May 15, 2018 14

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

interface name, type, and the number of that interface which appears in the new
IP core.

For wishbone slave interface you can select the wishbone address setting by
pressing button and do the following settings:

• Interface name: define a name for this interface.

• Address Range: select the address range for WB slave port. These ad-
dresses are defined in mpsoc/perl_gui/lib/perl/wb_addr.pm file. You
can add your own address range by modifying this file.

• Block address width: define the maximum memory size required for this
interface in byte which is defined as 2 power of block address width

(see Figure 3.2 caption as an example). The width can be defined as a fixed
number when the number of memory mapped registers inside the interface
is predefined as a fixed number. In case, that the number of required regis-
ters is dependent on a Verilog parameter (e.g. a memory block that its size
is parameterizable) and it is aimed to be defined by the user at processing
tile generation time then you can define it as parametrizable then select
the corresponding parameter as address width.

Figure 3.2: Slave WB address setting snapshot. The size of memory mapped registers
in this example is 25 = 32 bytes. For a 32-width WB it is equal to 32/4 = 8 individual
registers. In case, you have parameterizable number (e.g. M) to indicate memory
mapped register width in words in your IP module Verilog file, you need to add another
parameter such as N=M+2 in parameter setting window and select its type as Don'
t include to be used as address width parameter in bytes.

For socket interfaces, there is an option to define the interface number as parame-
ter (by selecting) or a fixed number by selecting
condition. See socket interface specification for more information.

10. After adding the interfaces you must mapped the top module ports to the in-
terfaces ports. For each top level module port you need to select the interface
name and interface port. Figure 3.3 illustrates a snapshot of interface mapping
for Wishbone Bus module.

11. Finally by pressing you can generate the IP. You can also modify
the existing IPs by using button.

See Add Custom IP Tutorial for observing an example of adding a custom IP core
to the ProNoC library.

ProNoC homepage May 15, 2018 15

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

Figure 3.3: Wishbone Bus module interface mapping snapshot.

List of available
Variables in
ProNoC • ${[parameter_name]}: The IP core parameter value. The actual value is de-

fined by the user when calling IP core at processing tile generation time. The
parameter had to be added in GUI parameter using parameter setting button.

• ${CORE_ID}: Each Wishbone bus-based processing tile will have a unique CORE_ID
that represents its location in NoC topology:

CORE ID = ((y ∗NX) + x) (3.1)

where (x,y) are the node location in x and y axes and NX is the number of node
in x dimension. If the generated tile is used as top level module CORE_ID will
take the default value of zero.

• ${IP}: is the peripheral device instance name which is defined by the user when
calling IP core using Processing tile generator.

• ${CORE}: is the peripheral device IP core name.

• ${BASE}: is the wishbone base address(es) and will be added during process-
ing tile generation to processing tile C header file (mpsoc/SOC/[PT-name]/sw/[
Tile_name].h). If more than one slave wishbone bus exist in the IP core, the
variables are define as ${BASE0}, ${BASE1}... .

ProNoC homepage May 15, 2018 16

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

List of available
IP cores in
ProNoC

This section provides a brief description about the available IP core modules in ProNoC
library. Most of IP cores that are developed with ProNoC software come with a separate
documentation PDF file. Theses files are accessible by clicking on the IP core modules’
name in following section. For the other IP cores which are adopted from OpenCores
website the project homepage URL address is linked to the IP core name.

Bus

• Wishbone bus (WB): is an open source hardware computer bus released by
OpenCores. ProNoC’s WB is fully parameterizable in terms of number of mas-
ter/slave interfaces and data/address width.

Communication

• Etmach 100: The Ethernet MAC (Media Access Control) 10/100 Mbps. This
IP core is adopted from OpenCores/ethmac.

• jtag uart: The Altera JTAG UART core with Wishbone bus interface.

• jtag wb: Altera VJTAG to Wishbone bus interface. This module allows read-
ing/writing data to the IP cores connected to the wishbone bus (e.g. memory
cores). The communication between the host PC and the VJTAG is done us-
ing mpsoc/src_c/jtag/jtag_libusb via USB Blaster I and mpsoc/src_c/jtag

/jtag_quartus_stp via USB Blaster II.

DMA

• dma: A wishbone bus round robin-based multi channel DMA (no byte enable is
supported yet). The dma supports burst data transaction.

Display

• lcd 2×16: 2×16 Character Alphabet Liquid Crystal Display (LCD) driver mod-
ule.

GPIO

• gpi: General purpose Wishbone bus-based input port.

• gpo: General purpose Wishbone bus-based output port.

• gpio: General purpose Wishbone bus-based bidirectional port.

Interrupt

• ext int: External interrupt module.

• int ctrl: Interrupt controller. CPUs that have only one single interrupt pin (e.g.
aeMB) must be connected to an interrupt controller module to allow combination
of several sources of interrupt.

ProNoC homepage May 15, 2018 17

https://opencores.org
https://cdn.opencores.org/downloads/wbspec_b3.pdf
https://opencores.org
https://opencores.org/websvn,filedetails?repname=ethmac&path=%2Fethmac%2Ftrunk%2Fdoc%2Feth_design_document.pdf
https://opencores.org/project,ethmac
http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

NI

• ni master: ni master is a Wishbone bus (WB)-based interface for the network-
on-chip (ProNoC) router. This module has two WB master interfaces, one for
sending and another for receiving data packets.

• ni slave: ni slave is an extension of NI master module connected to two input
and output buffers. There are three WB slave interfaces in this module, one for
writing on output buffer, one for reading input buffer and one for controlling the
NI.

Processor

• Or1200: OR1200 is the original implementation of the OpenRISC 1000 archi-
tecture. Its source code has been adopted from github at openrisc/or1200.

• aeMB: the EDK3.2 compatible Microblaze core. This IP core is adopted from
OpenCores/aemb.

• lm32: LatticeMico32 is a soft processor originally developed by Lattice Semi-
conductor. The source code of this IP core is adopted from github/soc-lm32.

• mor1kx: The mor1kx is a replacement for the original or1200 processor. The
source code is adopted from github at openrisc/mor1kx

RAM

• single port ram: A Wishbone bus-based single port Random Access Memory
(RAM).

• dual port ram: A Wishbone bus-based dual port RAM.

Source

• clk source: This module provides the clk and reset (socket) interfaces for all
other IPs. It also synchronizes the reset signal.

Timer

• timer: A simple, general purpose, Wishbone bus-based, 32-bit timer.

ProNoC homepage May 15, 2018 18

https://openrisc.io/implementations.html#OR1200
https://github.com/openrisc/or1200
http://www.codelooker.com/dfilec/8310labmicsoc/aeMB_datasheet.pdf
https://opencores.org/project,aemb
http://www.latticesemi.com/-/media/LatticeSemi/Documents/UserManuals/JL/LatticeMico32ProcessorReferenceManual37.ashx?document_id=51558
https://github.com/jbornschein/soc-lm32/tree/master/rtl/lm32
https://openrisc.io/implementations.html#OR1200
https://github.com/openrisc/mor1kx
http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

CHAPTER 4

Processing Tile
Generator

A Processing Tile (PT) is a set of several IPs (processors and peripheral devices) con-
necting via interfaces. Figure 4.1 illustrate a snapshot of PT generator. PT generator
facilitates the RTL code generation of a custom PT by providing following features:

1. Allows addition of any arbitrary number of IP cores to the PT.

2. Provides a simple GUI for connection IP cores.

3. Provides a GUI for setting IP core parameters.

4. Auto-generates the Wishbone Bus slave interface addresses.

5. PT functional block diagram viewer.

6. PT RTL code generator.

7. Comes with an in-built text editor for software development and compilation.

8. Facilitate RTL code synthesizing using one of the Verilator, Modelsim or Quar-
tusII compilers.

For more information about PT generator, please refer to Processing Tile Generator
Tutorial.

ProNoC homepage May 15, 2018 19

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

Figure 4.1: PT generator snapshot.

ProNoC homepage May 15, 2018 20

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

CHAPTER 5

Processing Tile
Generator Hello
World Tutorial

Summary This tutorial teaches how to develop a shared bus (Wishbone bus) based system on chip
(SoC) and a simple software implementation using ProNoC Processing Tile Genera-
tor. The desired SoC will be generated by connecting open-source IP cores on Altera
FPGA board.

System
Requirements:

You will need an Altera FPGA development board having USB blaster I or II and a
computer system running Linux OS with:

1. Installed the ProNoC GUI software and its dependency packages.

2. Installed/Pre-built GNU toolchain of the aeMB soft-core processor.

3. Installed Quarts II (Web-edition or full) compiler.

For more information about the GNU toolchain installation please refer to the In-
stallation Manual for the Ubuntu. In case your FPGA board is not included in the
ProNoC FPGA board list please follow the instructions given in Adding a New Altera
FPGA Board to ProNoC, to add your board to the ProNoC library.

Objectives:

1. To design a Wishbone bus-based system-on-chip hardware architecture using
ProNoC Electronic Design Automation (EDA) software.

2. To develop a simple software application running on generated SoC.

3. To interact with on-board memory units using JTAG to wishbone interface mod-
ule.

Desired SoC

Schematic Figure 5.1 illustrates the desired hardware architecture in this tutorial. This architecture
consists of:

1. Four LEDs connected to 4-bit general purpose output (GPO)

2. A 32-bit timer.

3. A mor1kx processor (You can use any of other available processors).

4. A single port RAM.

5. A JTAG UART.

6. A Wishbone Bus.

7. A Clock source (not shown in Figure 5.1).

ProNoC homepage May 15, 2018 21

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

Figure 5.1: The schematic of desired SoC in this tutorial.

Application
Software

The aim of this tutorial is to design a simple SoC for running ”Hello world” and ”blink-
ing LED” programs on the desired SoC.

Create New SoC
Using ProNoC
Processing Tile
Generator

Open mpsoc/perl_gui in terminal and run ProNoC GUI application:
./ProNoC.pl

It should open The GUI interface as illustrated in Figure 5.2.

Figure 5.2: ProNoC GUI first page snapshot.

Then select the Processing Tile Generator :

ProNoC homepage May 15, 2018 22

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

Figure 5.3: ProNoC New Processing Tile generator snapshot.

At the left Tree-View window you can see the list of all available IP categories.
Clicking on each category expand the associated list of IP cores. Each IP core can
be added to GUI by double clinking on its name. The added IP core has three setting
columns:

(a) In first column you can shift IP core box position up/down in GUI interface,
remove the IP core or set its parameters (if any).

(b) In the second column you can rename the IP core instance name.

(c) Third column shows all (Plug) interfaces of this module. here you can connect
each plug to one appropriate (socket) interface. (Each interface is categorized
into two types of plug and socket. See Interface Generator chapter for more in-
formation about interfaces. You can also export the interface as SoC’s input/out-
put (IO) ports here.

Now let start calling required IPs. We start with clk_source:

ProNoC homepage May 15, 2018 23

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

Add clk source This module provides clk and reset interfaces for all other IPs. It also synchronizes the
reset signal.

1. Click on Source category, then double click on clk_source.

2. Rename the clk_source instance name as source. leave the interfaces as IO.

Figure 5.4: Adding clock source.

ProNoC homepage May 15, 2018 24

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

Add Wishbone
Bus:

1. Click on Bus category and double click on Wishbone_bus.

2. In parameter setting set M (master interfaces number) as 2 and S (slave interfaces
number) as 4. These values are obtained from Figure 5.1. You can changed them
later if you want to add/remove any IPs.

3. Rename the instance name as bus.

4. Connect the clock and source interfaces to clk_source module.

Figure 5.5: Adding Wishbone bus.

ProNoC homepage May 15, 2018 25

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

Add GPO:

1. Click on GPIO category and then double click on gpo.

2. In parameter setting set PORT_WIDTH as 4.

3. Rename the instance name as led.

4. Connect the clock and source interfaces to clk_source module.

5. In interface connection column connect wb (Wishbone bus) interface to bus:

wb_slave[0]

Figure 5.6: Adding GPO.

The socket interface has the following format:
connection-IP-instance-name : interface-name [interface number].
hence, bus:wb_slave[0] means that the wb interface of GPO IP is connected to the bus

via zeroth wb interface. Note that you can optionally connect it to any of other wb

interfaces number as WB has a round-robin arbitration scheduler.

ProNoC homepage May 15, 2018 26

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

Add Processor:

1. Click on Processor category and then double click on mor1kx.

2. Rename the instance name as cpu.

3. Connect the clock interface to clk_source:clk module.

4. Connect enable interface to IO

5. Connect the reset interface to clk_source:resetinterface.

6. Connect iwb (instruction wishbone bus) and dwb (data wishbone bus) interfaces
to bus:wb_master[0] and bus:wb_master[1], respectively.

Figure 5.7: Adding Processor.

ProNoC homepage May 15, 2018 27

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

Add Timer:

1. Click on Timer category and then double click on timer.

2. Rename the instance name as timer.

3. Connect the clk interface to clk_source:clk interface.

4. Connect interrupt interface to cpu:int_periph[0].

5. Connect the reset interface to clk_source:reset interface.

6. Connect wb (Wishbone bus) interface to bus:wb_slave[1].

Figure 5.8: Adding Timer.

ProNoC homepage May 15, 2018 28

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

Add JTAG
UART:

1. Click on communication category and then double click on jtag_wb.

2. Rename the instance name as jtag_uart.

3. Connect the clk interfaces to clk_source:clk.

4. Leave interrupt_peripheral unconnected (NC).

5. Connect the reset interface to clk_source:reset.

6. Connect wb_slave interface to bus:wb_slave[2].

Figure 5.9: Adding JTAG UART.

ProNoC homepage May 15, 2018 29

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

Add Single port
RAM:

1. Click on RAM category and then double click on single_port_ram.

2. In parameter setting set Aw as 14. AW is the memory address width. Hence,
this results in a 214 × 32 bit= 500kb memory. Make sure your FPGA board has
sufficient on-chip BRAM to be allocated. Otherwise decrees the AW to fit with
your target device.

3. Select ALTERA for FPGA_VENDOR.

4. Connect JTAG_CONNECT to JTAG_WB. This allows the editing of memory content
at run time using JTAG interface.

5. Set INITIAL_EN as "YES". This enable the memory initialization at compilation
time. This configuration is also required for simulating the system using Model-
sim or Verilator softwares. Leave the rest of parameters as their default.

6. Rename the instance name as ram.

7. Connect the clk and reset interfaces to clk_source module.

8. Connect wb interface to bus:wb_slave[3].

Figure 5.10: Adding Single port RAM.

ProNoC homepage May 15, 2018 30

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

Check wishbone
bus(es)
addresses:

After adding all required IP cores, now you can check the auto-assigned Wishbone bus
addresses by clicking on Wishbone-bus addr button. Note that the assigned addresses
are also modifiable.

Figure 5.11: Wishbone bus addresses of the tutorial SoC.

These addresses are automatically set based on IP cores library setting, inserted pa-
rameters and numbers of repeating same IP cores in the system. However, you are free
to adjust them to the new values as while as there is no conflict in inserted addresses.

View SoC
functional block
diagram:

Press the diagram button to observe the SoC functional block diagram.

Figure 5.12: The tutorial SoC diagram.

ProNoC homepage May 15, 2018 31

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

Generate SoC
RTL Code: 1. Set Tile name as tutorial.

2. Press Generate RTL button.

Figure 5.13: Generating the tutorial SoC.

If the generation is successful, you must have two new folders in your mpsoc/soc/
tutorial path:

• sw: This folder contains the required software files including the programming
header files, in-system memory editing files and Makefile.

– tutorial.h: The SoC header file containing all peripheral devices’ WB
addresses and functions (some IPs may have additional header files).

– README: This file contains SoC parameters, IP connection and wishbone
bus addresses. This file also explain how to work with Jtag_wb IP core.

– program.sh: A sample bash file that can be used for programing the SoC
RAMs at run time using JTAG interface.

• src_verilog: contains two Verilog files and a folder:

– tutorial.v: the generated SoC RTL code. This file contains all IPs in-
stances and connections.

– tutorial_top.v: this file contains the tutorial SoC module instance con-
nected to a JTAG-based remote enable/reset controller which disable the
SoC during programming time.

– lib: This folder contains all IP cores HDL files.

ProNoC homepage May 15, 2018 32

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

Software
Development

1. Click on Software button to open the software development win-
dow.

2. In the left Tree-View window, you can select any file in project sw directory to
open and then edit it. Click on tutorial.h file to see the file content. This file
contain all generated SoC functions and WB addresses.

Figure 5.14: The software edit window snapshot.

3. Now click on main.c file. Replace the content of the main.c file with the follow-
ing C code. This code writes the ”Hello worlds!” on Altera JTAG UART port
once and then controls the LEDs using the timer interrupt service routine. Each
time an interrupt happens the LED which is on is turned off and the neighboring
one is turned on. The timer assert an interrupt in every 500 clock cycles. The
interrupt time is deliberately chosen too small to speed up the simulation. In
FPGA implementation which comes later we will increase the interrupt time to
observe the blinking LEDs on the target FPGA board.

ProNoC homepage May 15, 2018 33

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

#include "tutorial.h"

// a simple delay function
void delay (unsigned int num){

while (num>0){
num--;
nop(); // asm volatile ("nop");

}
return;

}

char i=1;
void timer_isr(void){

//write your interrupt code here
i*=2;
if((i&0xF)==0) i=1;
led_WRITE(i);
timer_TCSR=timer_TCSR; //ack int
return;

}

int main(){
printf("hello world!\n");
delay(500);
int_init (5000);
int_init();
//assume hw interrupt pin is connected to cpu intrrupt pin 0
int_add(0, timer_isr, 0);
// Enable this interrupt
int_enable(0);
cpu_enable_user_interrupts();
timer_int_init(500);
while(1){

delay(500);
}
return 0;

}

ProNoC homepage May 15, 2018 34

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

4. Now press the compile button. This will compile the C code using Mor1kx GNU
toolchain. If everything is ok you must see ”compilation finished successfully”
message as shown in Figure 5.15. Otherwise, check the error message to fix your
code and press the compile button again. If every thing run successfully you must
have ram0.bin, ram0.hex, and ram0.mif files in your sw/RAM directory.

Figure 5.15: Compile the software code.

ProNoC homepage May 15, 2018 35

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

Simulate the
generated RTL
code using
Modelsim
software

If you have installed Modelsim software you can simulate your SoC when running your
developed software. To do this follow these instructions:

1. Press Compile RTL button in right down corner. This should

open ”select compiler window” as shown in Figure 5.16.

Figure 5.16: Compile the software code.

2. Select Modelsim as compiler tool.

3. Enter the path to your installed Modelsim bin directory.

4. Press Next.

ProNoC homepage May 15, 2018 36

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

5. Now you must have the testbech.v opened in software code edit window as
shown in Figure 5.17. This is the minimum testbench file for running the gen-
erated SoC. It has the SoC instance module connected to the clock and reset
signals. You can edit this file as you wish.

6. Press the run button to run the simulation in Modelsim software.

Figure 5.17: Select Modelsim compiler.

7. Figure 5.18 shows the Modelsim software snapshot You must see the ”hello
world!” expression in Modelsim terminal. The LEDs outputs also must be seen
as cyclic shift to the left of a one-hot code.

ProNoC homepage May 15, 2018 37

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

Figure 5.18: Modelsim output snapshot.

Simulate the
generated RTL
code using
Verilator
software

If you have installed Verilator software on your system, you can simulate your SoC
when it is running your developed software. To do this follow these instructions:

1. Press Compile RTL button in right down corner. This should

open ”select compiler window” as shown in Figure 5.19. Select Verilator as
compiler tool then press Next.

Figure 5.19: Select Verilator compiler.

ProNoC homepage May 15, 2018 38

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

2. The Verilator Model of your SoC should be generated now. If the model is
generated successfully, you must see ”Veriator model has been generated suc-
cessfully!” in the textview window as shown in Figure 5.20.

Figure 5.20: Verilator model generation snapshot.

3. Press Next.

4. Now you must have the testbech.c opened in software code edit window as
shown in Figure 5.21. This is the minimum testbench file for running the gen-
erated SoC. It has the SoC instance module connected to the clock and reset
signals. You can edit this file as you wish.

ProNoC homepage May 15, 2018 39

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

Figure 5.21: Verilator model testbench edit snapshot.

5. We would like to monitor the value of LEDs when running the simulation model.
To do this add the following lines to the testbench code:

ProNoC homepage May 15, 2018 40

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

6. Press Compile button to generate the executable binary file. If the file is gener-
ated successfully you must see the ”compilation finished successfully” message
as shown in Figure 5.22.

Figure 5.22: Verilator compilation successful snapshot.

7. Now press the Run button. In the successful simulation you must observe the
”Hello world!” sentence in terminal and each time you press the Enter botton
you must observe the printed value of LED output port change to one of ”1,2,4,8”
numbers in order as show in Figure 5.23.

ProNoC homepage May 15, 2018 41

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

Figure 5.23: Verilator simulation results snapshot.

Compile the
generated RTL
code using
Quartus II
software

If you have installed Quartus II software on your system and an Altera FPGA devel-
opment board, you can implement your SoC on your target FPGA and also change its
software code at runtime using following instructions:

1. Press Compile RTL button in right down corner. This should

open ”select compiler window” as shown in Figure 5.24. Select QuartusII as
compiler tool.

Figure 5.24: Select Verilator compiler.

2. Enter the path to your installed QuartusII bin directory.

ProNoC homepage May 15, 2018 42

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

3. In Targeted Board search for your FPGA board name. If the board exist select
it, press Next button and continue from step 5. Otherwise, select Add New Board

and then press Next button.

4. If you selected Add New Board, a new window as shown in Figure 5.25 must be
appear. Fill the required fields as follows:

(a) Enter your board name. Do not use any space in given name

(b) Enter the path to FPGA board qsf file. In your Altera board installation CD
or in the Internet search for a QSF file containing your FPGA device name
with other necessary global project setting including the pin assignments
(e.g DE10 Nano golden top.qsf).

(c) Enter the path to FPGA board top.v file. In your Altera board installation
CD or in the Internet search for a Verilog file containing all your FPGA
device IO ports (e.g DE10 Nano golden top.v).

(d) Power on your FPGA board and connect it to your PC then press Auto Fill

button to auto-fill the JTAG configuration setting.

(e) Press Add button.

Figure 5.25: Add new FPGA board to ProNoC.

5. Assign your SoC pins to your FPGA boards defined pins as shown in Figure 5.26.

ProNoC homepage May 15, 2018 43

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

Figure 5.26: SoC pin assignment.

Here, we have connected the enable pin to logic 1, led port [3:0] to LED[3:0],
the clk signal to FPGA CLK1 50 and reset to negate KEY[0]. KEY[1:0] are
push-button switches and are active high.

6. Press Next button.

7. Press Compile button.Then wait until QuartusII compilation tasks to be finished.

Figure 5.27: QuartusII compilation snapshot.

8. If Quartus compilation is finished successfully, power on your FPGA board and
connect it to your PC then press Program the Board button to program your
FPGA board using the generated sof file.

9. Open Terminal and type $QUARTUS_BIN/nios2-terminal. You must be able to
observe the ”Hello world!” sentence in the terminal as shown in Figure 5.28.

ProNoC homepage May 15, 2018 44

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

Figure 5.28: nios2-terminal output snapshot.

10. As we mentioned in step 3, the interrupt time is too short to observe the LEDs
blinking. To change the interrupt time click on button and change
the timer interrupt time from 500 to 5000000. Then press compile button. By
clicking on button you can reprogram your SoC memory using
the new code and you should observe the LEDs blinking now.

Figure 5.29: Increase timer interrupt time.

ProNoC homepage May 15, 2018 45

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

CHAPTER 6

Add Custom IP to
Processing Tile
Generator Tutorial

Summary This tutorial teaches how to add a custom intellectual property (IP) core to ProNoC
Processing Tile Generator using IP Generator. This tutorial uses a custom Verilog
module for calculating the greatest common divisor (GCD) as an example hardware
accelerator to be added to ProNoC IP library. The desired system is a Wishbone bus
based SoC that is enhanced with GCD accelerator. This SoC will be generated by
connecting open-source IP cores on Altera FPGA board.

System
Requirements:

You will need an Altera FPGA development board having USB blaster I or II and a
computer system running Linux OS with:

1. Installed the ProNoC GUI software and its dependency packages.

2. Installed/Pre-built GNU toolchain of the aeMB soft-core processor.

3. Installed Quarts II (Web-edition or full) compiler.

For more information about the GNU toolchain installation please refer to the In-
stallation Manual for the Ubuntu. In case your FPGA board is not included in ProNoC
FPGA board list please follow the instruction given in Adding a New Altera FPGA
Board to ProNoC, to add your board to ProNoC.

Objectives:

1. To develop a wishbone bus based custom Hardware Accelerator (HA) IP core.

2. To extend ProNoC IP core library with a new IP core and software header file.

Greatest
Common
Divisor (GCD)
Algorithm

The Greatest Common Divisor (GCD) of two integers p and q, is the largest integer
that divides both p and q. GCD can be obtained using Euclidean algorithm as follow:

Data: (p, q): A pair of 8-bit binary positive numbers.
Result: gcd: greatest common divisor
INITIALIZE;
while p 6= q do

if p > q then
p = p− q;

end
else if p < q then

q = q − p;
end
else

gcd = p;
end

end

Algorithm 1: Greatest Common Divisor algorithm.

ProNoC homepage May 15, 2018 46

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

The GCD flow chart:

Figure 6.1: GCD flow chart.

GCD RTL code The GCD Verilog RTL code is as follows:

Listing 6.1: gcd.v
/************************
* GCD

*************************/

module gcd #(
parameter GCDw=32

)(clk, reset, enable, in1, in2, done, gcd);
input clk, reset;
input [GCDw-1 : 0] in1, in2;
output [GCDw-1 : 0] gcd;
input enable;
output done;
wire ldG, ldP, ldQ, selP0, selQ0, selP, selQ;
wire AeqB, AltB;

gcd_cu CU(
.clk (clk),
.reset (reset),
.AeqB (AeqB),
.AltB (AltB),
.enable (enable),
.ldG (ldG),
.ldP (ldP),
.ldQ (ldQ),
.selP0 (selP0),

ProNoC homepage May 15, 2018 47

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

.selQ0 (selQ0),

.selP (selP),

.selQ (selQ),

.done (done)
);

gcd_dpu #(
.GCDw(GCDw)

)DPU(
.clk (clk),
.reset (reset),
.in1 (in1),
.in2 (in2),
.gcd (gcd),
.AeqB (AeqB),
.AltB (AltB),
.ldG (ldG),
.ldP (ldP),
.ldQ (ldQ),
.selP0 (selP0),
.selQ0 (selQ0),
.selP (selP),
.selQ (selQ)
);

endmodule

/************************
* gcd_cu

*************************/

module gcd_cu (clk, reset, ldG, ldP, ldQ, selP0, selQ0, selP, selQ, AeqB,
AltB, done, enable);

input clk, reset;
input AeqB, AltB, enable;
output ldG, ldP, ldQ, selP0, selQ0, selP, selQ, done;
reg ldG, ldP, ldQ, selP0, selQ0, selP, selQ, done;

//State encoding
parameter S0 = 2'b00, S1 = 2'b01, S2 = 2'b10;
reg [1:0] y;
always @ (posedge reset or posedge clk) begin

if (reset == 1) y <= S0;
else begin

case (y)
S0: begin if (enable == 1) y <= S1;

else y <= S0;
end
S1: begin if (AeqB == 1) y <= S2;

else y <= S1;

ProNoC homepage May 15, 2018 48

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

end
S2: begin if (enable == 0) y <= S0;

else y <= S2;
end
default: y <= S0;

endcase
end

end

always @ (y or enable or AeqB or AltB) begin
ldG = 1'b0; ldP = 1'b0; ldQ = 1'b0;
selP0 = 1'b0;
selQ0 = 1'b0;
selP = 1'b0;
selQ = 1'b0;
done = 1'b0;
case (y)
S0: begin

done = 1'b1;
if (enable == 1)begin

selP0 = 1; ldP = 1; selQ0 = 1; ldQ = 1; done = 0;
end

end

S1: begin
if (AeqB == 1) begin

ldG = 1;
done = 1;

end
else if (AltB == 1) begin

ldQ = 1;
end
else begin

ldP = 1; selP = 1; selQ = 1;
end

end
S2: begin

ldG = 1;
done = 1;

end
default: ;
endcase
end

endmodule

/************************
* gcd_dpu

*************************/

module gcd_dpu #(
parameter GCDw=32

)(clk, reset, in1, in2, gcd, ldG, ldP, ldQ, selP0, selQ0, selP, selQ,

ProNoC homepage May 15, 2018 49

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

AeqB, AltB);
input clk, reset;
input [GCDw-1:0] in1, in2;
output [GCDw-1:0] gcd;
input ldG, ldP, ldQ, selP0, selQ0, selP, selQ;
output AeqB, AltB;
reg [GCDw-1:0] reg_P, reg_Q;
wire [GCDw-1:0] wire_ALU;
reg [GCDw-1:0] gcd;
wire AeqB, AltB;
//RegP with Multiplex 2:1
always @ (posedge clk or posedge reset)begin

if (reset == 1) reg_P <= 0;
else begin

if (ldP == 1)begin
if (selP0==1) reg_P <= in1;
else reg_P <= wire_ALU;

end
end

end

//RegQ with Multiplex 2:1
always @ (posedge clk or posedge reset) begin

if (reset == 1) reg_Q <= 0;
else begin

if (ldQ == 1)begin
if (selQ0==1) reg_Q <= in2;
else reg_Q <= wire_ALU;

end
end

end

//RegG with enable signal
always @ (posedge clk or posedge reset)begin

if (reset == 1) gcd <= {GCDw{1'b0}};
else begin

if (ldG == 1) gcd <= reg_P;
end

end

//Comparator
assign AeqB = (reg_P == reg_Q)? 1'b1 : 1'b0;
assign AltB = (reg_P < reg_Q) ? 1'b1 : 1'b0;

//Subtractor
assign wire_ALU = ((selP == 1) & (selQ == 1)) ? (reg_P - reg_Q) : (

reg_Q - reg_P);
endmodule

Create mpsoc/src_peripheral/other directory and then copy the above gcd.v file
inside it.

GCD
Simulation

In order to verify GCD hardware module, we use Verilator simulator. Optionally you
can use Modelsim as well.

1. If you have not yet installed Verilator simulator on your system run the following

ProNoC homepage May 15, 2018 50

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

command in terminal
sudo apt-get install verilator

2. Open terminal in the folder which you have created gcd.V file and run:
verilator --cc gcd.v

If your code is successfully verilated, you will have an obj_dir directory that
includes all generated GCD object files.

3. Open obj_dir folder and create testbench.cpp inside it:

Listing 6.2: testbench.cpp
#include <stdlib.h>
#include <stdio.h>
#include <unistd.h>
#include <verilated.h>
#include "Vgcd.h" // From Verilating "gcd.v"

unsigned int input1[10] ={136, 25, 33220, 3627, 3450, 9375, 199317,
157620, 5694235, 199307 };

unsigned int input2[10] ={248, 50, 2200, 4581, 6540, 61575, 103443,
238844, 239871, 903443};

unsigned int expt_gcd[10] ={8, 25, 220, 9, 30, 75, 2523, 284, 2161,
1};

Vgcd *gcd // Instantiation of module

unsigned int main_time = 0; // Current simulation time
int run;
unsigned int i=0,passed=1;

int main(int argc, char** argv) {
Verilated::commandArgs(argc, argv); // Remember args
gcd = new Vgcd;
/********************
* initialize input

*********************/
gcd->reset=1;
gcd->enable=0;

gcd->in1=0;
gcd->in2=0;

main_time=0;
run=0;

while (!Verilated::gotFinish() && i<10) {

if (main_time & 0x1) {
gcd-> clk = 0;
if(gcd-> done==1 && run>6){

printf("%u : GCD(%u,%u)= %d\t",main_time,gcd->in1, gcd->
in2, gcd->gcd);

if(gcd->gcd == expt_gcd[i]) printf(" Matched\n");
else {passed=0; printf(" Error:Miss-matched\n");}

ProNoC homepage May 15, 2018 51

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

i++;
run=0;

}
if(gcd-> enable == 1 && run==5){

gcd-> enable = 0;
}
if(run==4 && gcd->reset==0){

gcd-> enable = 1;
gcd-> in1 = input1[i];
gcd-> in2 = input2[i];

}
if (main_time >= 10) {

gcd->reset=0;
run++;

}

}//if
else {

gcd-> clk = 1; // Toggle clock

}//else

gcd->eval();
main_time++;

}
if(passed) printf(" ********** GCD Testing passed ************\n

") ;
else printf(" ********** GCD Testing failed ************\n");
gcd->final();

}

double sc_time_stamp () { // Called by $time in Verilog
return main_time;

}

ProNoC homepage May 15, 2018 52

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

4. Now create a Makefile inside obj_dir:

Listing 6.3: Makefile
-*- Makefile -*-

default: sim

MUDUL = Vgcd

include Vgcd.mk

lib:
$(MAKE) -f $(MUDUL).mk

##################################
Compile flags

CPPFLAGS += -DVL_DEBUG=1
ifeq ($(CFG_WITH_CCWARN),yes) # Local... Else don't burden users
CPPFLAGS += -DVL_THREADED=1
CPPFLAGS += -W -Werror -Wall
endif
##############################
Linking final exe -- presumes have a sim_main.cpp

sim: testbench.o $(VK_GLOBAL_OBJS) $(MUDUL)__ALL.a
$(LINK) $(LDFLAGS) -g $ˆ $(LOADLIBES) $(LDLIBS) -o testbench $(LIBS) -

Wall -O3 2>&1 | c++filt

testbench.o: testbench.cpp $(MUDUL).h

clean:
rm *.o *.a main

5. Now to compile the testbench code open terminal in obj_dir directory and run:

make

Sample output:

g++ -I. -MMD -I/usr/local/share/verilator/include -I/usr/local/
share/verilator/include/vltstd -DVL_PRINTF=printf -DVM_TRACE=0
-DVM_COVERAGE=0 -DVL_DEBUG=1 -c -o testbench.o testbench.cpp

g++ -g testbench.o verilated.o Vgcd__ALL.a -o testbench -lm -lstdc
++ -Wall -O3 2>&1 | c++filt

This must generate a binary executable file inside obj_dir named as testbench.

ProNoC homepage May 15, 2018 53

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

6. To run the simulation run:
./testbench

Expected output:
37 : GCD(136,248)= 8 Matched
51 : GCD(25,50)= 25 Matched
109 : GCD(33220,2200)= 220 Matched
177 : GCD(3627,4581)= 9 Matched
217 : GCD(3450,6540)= 30 Matched
263 : GCD(9375,61575)= 75 Matched
305 : GCD(199317,103443)= 2523 Matched
365 : GCD(157620,238844)= 284 Matched
445 : GCD(5694235,239871)= 2161 Matched
557 : GCD(199307,903443)= 1 Matched

********** GCD Testing passed ************

Add Wishbone
bus interface to
GCD

After the GCD core is functionality verified, next is to add Wishbone bus interface
to GCD hardware. This interface module provides memory-mapped access of GCD
module’s input/output ports for the processor. The memory-mapped addresses are il-
lustrated in Table 6.1:

Table 6.1: GCD IP internal register addresses.

Offset
Address Name Description Mode

0 DONE Holds the value of done output port Read-only
1 IN1 Write on GCD’s module first input variable Write-only
2 IN2 Write on GCD’s module second input vari-

able. Writing on this register will trigger
the GCD’s enable port

Write-only

3 GCD Holds the generated GCD value Read-only

Create the following file inside mpsoc/src_peripheral/other directory

Listing 6.4: gcd ip.v
module gcd_ip#(

parameter GCDw=32,
parameter Dw =GCDw,
parameter Aw =5,
parameter TAGw =3,
parameter SELw =4

)
(

clk,
reset,
//wishbone bus interface
s_dat_i,
s_sel_i,
s_addr_i,

ProNoC homepage May 15, 2018 54

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

s_tag_i,
s_stb_i,
s_cyc_i,
s_we_i,
s_dat_o,
s_ack_o,
s_err_o,
s_rty_o

);
input clk;
input reset;

//wishbone bus interface
input [Dw-1 : 0] s_dat_i;
input [SELw-1 : 0] s_sel_i;
input [Aw-1 : 0] s_addr_i;
input [TAGw-1 : 0] s_tag_i;
input s_stb_i;
input s_cyc_i;
input s_we_i;

output [Dw-1 : 0] s_dat_o;
output reg s_ack_o;
output s_err_o;
output s_rty_o;

//Wishbone bus registers address
localparam DONE_REG_ADDR=0;
localparam IN_1_REG_ADDR=1;
localparam IN_2_REG_ADDR=2;
localparam GCD_REG_ADDR=3;

assign s_err_o = 1'b0;
assign s_rty_o = 1'b0;

wire[GCDw-1 :0] gcd;
reg [GCDw-1 :0] readdata,in1,in2;
wire done;

assign s_dat_o =readdata;

always @ (posedge clk or posedge reset) begin
if(reset) begin

s_ack_o <= 1'b0;
end else begin

s_ack_o <= (s_stb_i & ~s_ack_o);
end //reset

end//always

always @ (posedge clk or posedge reset) begin
if(reset) begin

readdata <= 0;
in1 <= 0;
in2 <= 0;

end else begin

ProNoC homepage May 15, 2018 55

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

if(s_stb_i && s_we_i) begin //write regiters
if(s_addr_i==IN_1_REG_ADDR[Aw-1: 0]) in1 <= s_dat_i;
else if(s_addr_i==IN_2_REG_ADDR[Aw-1: 0]) in2 <= s_dat_i;

end //sa_stb_i && sa_we_i
else begin //read registers

if (s_addr_i==DONE_REG_ADDR) readdata<={{GCDw{1'b0}},done};
if (s_addr_i==GCD_REG_ADDR) readdata<=gcd;

end
end //reset

end//always

// start gcd calculation by writiing on in2 register
wire start=(s_stb_i && s_we_i && (s_addr_i==IN_2_REG_ADDR[Aw-1: 0]));
reg ps,ns;
reg gcd_reset,gcd_reset_next;
reg gcd_en,gcd_en_next;

always @ (posedge clk or posedge reset) begin
if(reset) begin

ps<=1'b0;
gcd_reset<=1'b1;
gcd_en<=1'b0;

end else begin
ps<=ns;
gcd_en<=gcd_en_next;
gcd_reset<=gcd_reset_next;

end
end

always @(*)begin
gcd_reset_next=1'b0;
gcd_en_next=1'b0;
ns=ps;
case(ps)

1'b0:begin
if(start) begin

ns=1'b1;
gcd_reset_next=1'b1;

end
end
1'b1:begin

gcd_en_next=1'b1;
ns=1'b0;

end
endcase

end

gcd #(
.GCDw(GCDw)

) the_gcd
(

.clk (clk),

.reset (gcd_reset),

.enable (gcd_en),

.in1 (in1),

ProNoC homepage May 15, 2018 56

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

.in2 (in2),

.done (done),

.gcd (gcd)
);

endmodule

Add custom
wishbone-based
IP core to
ProNoC Library

In this section, we show how to add previously generated GCD IP core to ProNoC
library. However, this can be applied to any other wishbone based IP core.

1. Open mpsoc/perl_gui in the terminal and run ProNoC GUI application:

./ProNoC.pl

It should open The GUI interface as follows:

Figure 6.2: ProNoC GUI first page snapshot.

ProNoC homepage May 15, 2018 57

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

2. Then select the . The IP Generator snapshot is shown in Figure 6.3.

Figure 6.3: ProNoC New IP Generator snapshot.

3. Click on Browse and select gcd_ip.v file.

4. Enter Other as category name.

5. Enter gcd as IP name.

ProNoC homepage May 15, 2018 58

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

Figure 6.4: Select gcd.v file.

6. The gcd_ip.v file has one parameter named as GCDw which we want to be rede-
fined by the end user during IP call time. To define the appropriate GUI interface
for this parameter click on parameter setting.

7. In the newly open window, select Combo-box as widget type.

8. Enter 8,16,32 as widget content. It will allow the user to select one of these
three values for this parameter during Processing tile generation.

9. In the next Combo-box select Localparam.

10. Click on button to add parameter information.

11. Enter parameter information as GCD's Input/output width in bits then press
ok.

12. In parameter setting window press ok to add your setting.

ProNoC homepage May 15, 2018 59

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

Figure 6.5: GCD IP core parameter setting.

13. In Interface list window expand source and wishbone categories. Then dou-
ble click on clk, reset and wishbone to add them to the GCD IP library.

14. In wishbone bus interface row click on button.

15. Select custom devices for wishbone address range.

16. Set block address range as 5. This results in allocating 32 Bytes for each in-
stances of this module. The memory size must be selected equal or greater than
the actual IP’s internal register size. (GCD has four 32-bit internal register which
is equal to 16 Bytes).

17. Press ok.

Now we need to map each module individual port to its appropriate interface
port. By selecting the interface name, the application automatically selects the
nearest port which match with module port name. For this example it can match
all ports correctly. However in general you may also needed to adjust the port
name as well.

18. Select plug:clk for clk port.

19. Select plug:reset for reset port.

20. Connect all other ports to plug:wb_slave. port.

ProNoC homepage May 15, 2018 60

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

Figure 6.6: GCD Core interface setting.

21. Click on Add HDL Files button.

22. In front of Select file(s) click on Browse.

23. Select gcd.v and gcd_ip.v files and press ok.

Figure 6.7: Adding GCD core HDL files.

24. Click on Add software files button. In the newly opened window, you can

ProNoC homepage May 15, 2018 61

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

add IP core’s software library/header files. The listed files/folder here will be
copied in generated SoC project folder inside sw directory.

25. Click on Add to tile.h tab.

26. Copy following text on the new tab, then click on Save button.

#define ${IP}_DONE_ADDR (*((volatile unsigned int *) ($BASE)))
#define ${IP}_IN_1_ADDR (*((volatile unsigned int *) ($BASE+4)))
#define ${IP}_IN_2_ADDR (*((volatile unsigned int *) ($BASE+8)))
#define ${IP}_GCD_ADDR (*((volatile unsigned int *) ($BASE+12)))

#define ${IP}_IN1_WRITE(value) ${IP}_IN_1_ADDR=value
#define ${IP}_IN2_WRITE(value) ${IP}_IN_2_ADDR=value
#define ${IP}_DONE_READ() ${IP}_DONE_ADDR
#define ${IP}_READ() ${IP}_GCD_ADDR

unsigned int gcd_hardware (unsigned int p, unsigned int q){
${IP}_IN1_WRITE(p);
${IP}_IN2_WRITE(q);
while (${IP}_DONE_READ()!=1);
return ${IP}_READ();

}

The entered text here will be added to the [SoC_name].h file. This file contains
all IP cores’ wishbone bus addresses, functions and header files. You can use
some global variables with $[variable_name] format here such as all IP core
parameters and IP core Verilog instance name. These variables will be replaced
with their exact values during SoC generation time). In this example, we used
variable ${IP} which is the IP core’s instance name. Hence, in case this IP core
is called more than once in any SoC, each instance has distinguished addresses
and functions.

27. Click on Generate to add the GCD IP core to the library.

ProNoC homepage May 15, 2018 62

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

Figure 6.8: Add GCD software files.

ProNoC homepage May 15, 2018 63

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

Generate a new
SoC enhanced
with new IP
core (GCD)

In this section, we aim to generate an embedded SoC enhanced using generated GCD
IP core. The desired SoC schematic is shown in Figure 6.9.

Figure 6.9: Desired SoC with GCD IP core.

ProNoC homepage May 15, 2018 64

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

Figure 6.10

1. In ProNoC GUI Click on Processing Tile Generator. This tools facilitate the
generation of a custom SoC using a list of available IP cores. Add all required
IP cores according to the following stages:

(a) Click on IP core category name to see the list of its containing IP cores.

(b) Double click on each IP core name to add the IP core to the SoC. Add all
IP cores listed in Table 6.2 first then continue with the next step.

(c) Click on Setting button to open the IP core parameter setting window.

(d) Adjust IP core parameters according to Table 6.2.

(e) Rename the IP core instance name according to Table 6.2.

(f) Connect IP cores interfaces as listed in Table 6.2.

ProNoC homepage May 15, 2018 65

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

Table 6.2: GCD SoC IP core list and setting.

Category IP name Parameter Instance name Interface connection

Source clk source - source
clk
reset

→
→

IO
IO

Bus wishbone bus

M
S
Dw
Aw

→
→
→
→

3
5
32
32

bus
clk
reset

→
→

source:clk
source:reset

Processor aeMB
STACK SIZE
HEAP SIZE

→
→

0X400
0x400 aeMB

clk
reset
iwb
dwb
enable

→
→
→
→
→

source:clk
source:reset
bus:wb master[0]
bus:wb master[1]
IO

RAM single port ram

Dw
Aw
BYTE WR EN
FPGA VENDOR
JTAG CONNECT
JTAG INDEX
BURST MODE
MEM CONTENT
FILE NAME
INITIAL EN

→
→
→
→
→
→
→
→

→

32
12
”YES”
”ALTERA”
”DISABLED”
CORE ID
”DISABLED”
”ram0”

”YES”

ram
clk
reset
wb

→
→
→

source:clk
source:reset
bus:wb slave[0]

Interrupt int ctrl INT NUM → 1 int ctrl

clk
reset
interrupt cpu
wb

→
→
→
→
→

source:clk
source:reset
aeMB:interrupt cpu
bus:wb slave[1]

Timer timer PRESCALE WIDTH → 8 timer

clk
reset
wb
intrp

→
→
→
→

source:clk
source:reset
bus:wb slave[2]
in ctrl:int periph[0]

Communication jtag wb
Dw
VJTAG INDEX

→
→

32
CORE ID jtag wb

clk
reset
wbm

→
→
→

source:clk
source:reset
bus:wb master[2]

Communication jtag uart
FPGA VENDOR
SIM BUFFER SIZE
SIM WAIT COUNT

→
→
→

”ALTERA”
100
1000

uart

clk
reset
intrpt
wb

→
→
→
→

source:clk
source:reset
NC
bus:wb slave[3]

ProNoC homepage May 15, 2018 66

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

2. Add the new GCD IP to SoC.

Table 6.3: GCD SoC IP core list and setting.

Category IP name Parameter Instance name Interface connection

Other gcd GCDw → 32 gcd
clk
reset
wb

→
→
→

source:clk
source:reset
bus:wb slave[4]

Figure 6.11

3. Set the tile name as gcd_soc.

4. Press generate button. This must generate a folder in mpsoc_work/SOC/gcd_soc.

ProNoC homepage May 15, 2018 67

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

Figure 6.12

Software
Development

1. Click on Software button to open the software development

window. Now click on main.c file. Replace the content of main.c file with the
following C code then press compile button. Check software edit terminal output
to make sure that compilation ran successfully.

#include "gcd_soc.h"

unsigned int gcd_software (unsigned int p, unsigned int q){
while (p != q) {

if (p > q) p=p-q;
else if (p < q) q=q-p;

}
return p;

}

int main(){
int A,B,C,D;
unsigned int t_hw,t_sw;
unsigned int speed;
printf ("GCD test application\n");
while(1){

printf ("Enter number #1:\n");

ProNoC homepage May 15, 2018 68

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

jtag_scanint(&A);
printf ("Enter number #2:\n");
jtag_scanint(&B);
timer_reset();
timer_start();
C=gcd_hardware (A, B);
timer_stop();
t_hw=timer_read();
timer_reset();
timer_start();
D=gcd_software (A, B);
timer_stop();
t_sw=timer_read();
speed=(t_sw*10)/(t_hw);
printf ("GCD_hardware (%d,%d) = %d\t clock_num=%d\n",A,B,C,

t_hw);
printf ("GCD_software (%d,%d) = %d\t clock_num=%d\n",A,B,D,

t_sw);
printf ("spead up=%d.%d times\n",speed/10,speed%10);

}
return 0;
}

2. Follow instructions in Compile the generated RTL code using Quartus II soft-
ware to compile and run the desired SoC on an Altera FPGA board. The DE10-
Nano FPGA board pin assignment and a snapshot of a sample result on UART
terminal is shown in Figures 6.13 and 6.14, respectively. You can test the GCD
IP core by entering different values.

Figure 6.13: DE10-Nano FPGA board pin assignment.

ProNoC homepage May 15, 2018 69

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

Figure 6.14: Nios2-terminal output snapshots.

ProNoC homepage May 15, 2018 70

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

CHAPTER 7

NoC Verilog File
Parameters
Description

V V ∈ N, V > 1.

Number of VC per router port. Defining
V as 1 results in a simple non-VC based
router.

B B ∈ N, B > 1 Buffer size per VC in flit .

NX NX ∈ N, NX > 2

The number of node in x axis of a mesh or
torus topology. For ring and line topolo-
gies, it is total number of nodes in the
ring.

NY NY ∈ N, NY > 2

The number of node in y axis of mesh or
torus. Not used in ring and line topolo-
gies.

C C ∈ N

Number of message classes. Packets that
belong to different message classes can
have access to a different subset of VCs.
The subset of VCs for each class is de-
fined using CLASS SETTING parameter.

Fpay
Fpay ∈ N,
Fpay > 32

Flit payload size in bit.

MUX TYPE
"BINARY",
"ONE HOT"

Crossbar’s multiplexer type in a NoC
router. Binary and one-hot multiplexers
are preferable for FPGA and ASIC im-
plementation, respectively.

VC

REALLOCATION

TYPE

"ATOMIC",
"NONATOMIC"

"ATOMIC": only an empty output VC can
be reallocated for a new header flit.
"NONATOMIC": A VC can be reallocated
when it has received the tail flit of the last
packet and has at least one empty buffer
space.

COMBINATION

TYPE

"COMB NONSPEC",
"COMB SPEC1",
"COMB SPEC2",
"BASELINE"

VC/SW combination type. Note that us-
ing "BASELINE" is not recommended.

FIRST

ARBITER

EXT P EN

0,
1

If it is set as 0, then the first level arbiters’
priority registers in switch allocator are
updated whenever any request is granted
at first level otherwise the priority regis-
ters are updated only if they also receive
the second level arbitration grants.

TOPOLOGY

"MESH",
"TORUS"

"RING"

"LINE"

The NoC topology.

ProNoC homepage May 15, 2018 71

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

ROUTE NAME

"XY",
"DUATO",
"WEST FIRST",
"NORTH LAST",
"NEGETIVE FIRST",
"ODD EVEN"

NoC routing algorithm for mesh topol-
ogy. "XY" is deterministic routing (DoR),
"DUATO" is fully adaptive and the rest are
partially adaptive routing algorithms.

"TRANC XY",
"TRANC DUATO",
"TRANC WEST FIRST",
"TRANC NORTH LAST",
"TRANC NEGETIVE FIRST"
"TRANC ODD EVEN"

NoC routing algorithm for torus topol-
ogy. See ? for more information.

CONGESTION

INDEX

CONGESTION INDEX ∈ N,
0 6 CONGESTION INDEX 6 7

Define how congestion metrics is se-
lected. See Table 7.2 for more informa-
tion.

DEBUG EN 0,1

If is defined as 1, the simulation will
be run using extra debugging codes.
The debugger dose several faults detec-
tion such as out of order flits receiving,
packet miss-routing and VC status miss-
matching.

ADD PIPREG

AFTER

CROSSBAR

0,1

If is defined as 1, a pipeline register
will be added after the crossbar switch
which add one clock cycle latency for
link traversal stage. It may be needed for
ASIC NoC where routers are connected
using long wires. However, in FPGA im-
plementation it may not be required.

CLASS

SETTING
{V’bX,V’bX}

It defines how each message class can
have access to VCs. For each class a V-bit
access-VC value with asserted bits rep-
resent the VCs which this message class
can request for. The CLASS SETTING is
concatenate of all message class access-
VC values.

ESCAP VC MASK V’bX

It is a V-bit value and its asserted bit(s)
represent the escape VC(s) (EVC). It is
valid only for fully adaptive routing. Yoiu
must make sure that each message class
have access to at least one EVC to prevent
deadlock.

ProNoC homepage May 15, 2018 72

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

SSA EN "YES" , "NO"

If set as ”YES”, packets which are travel-
ing to the same dimension bypass router
pipeline stages using Static straight allo-
cator.

SWA ARBITER

TYPE

"RRA",
"WRRA"

Switch allocator’s output ports arbiters
type: RRA: Round Robin Arbiter. Pro-
vides only local fairness in a router.
WRRA: Weighted Round Robin Arbiter.
Results in global fairness in the NoC.
Switch allocation requests are grated ac-
cording to their weight which increases
due to contention

WEIGHTw
WEIGHTw ∈ N,
2 6 WEIGHTw 6 7

WRRA weights’ maximum width in bits.

Table 7.2: Congestion metrics. The adaptive router can be configured bypassing the
congestion index as parameter to the to level RTL code.

Index Description pin overhead
0 Number of unavailable VCs in the neighboring router

adjacent input port.
1 Number of consumed credit in all VCs of the neighbor-

ing router adjacent input port.
2 Number of active switch allocation requests in all ports

of the neighboring router.
2-bit

3 Number of active switch allocation requests in all ports
of the neighboring router.

3-bit

4 Number of active switch allocation requests in all ports
of the neighboring router that are not granted.

2-bit

5 Number of active switch allocation requests in all ports
of the neighboring router that are not granted.

3-bit

6 Number of unavailable VC in all ports of the neighbor-
ing router

2-bit

7 Number of unavailable VC in all ports of the neighbor-
ing router

3-bit

ProNoC homepage May 15, 2018 73

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

CHAPTER 8

NoC Simulator

Summary The ProNoC NoC is developed in RTL using Verilog HDL and it can be simulated using Verilator
simulator. The ProNoC simulator provides the graphical user interface (GUI) for simulating
different NoC configuration under different synthetic traffic patterns.

System
Requirements:

You will need a computer system running Linux OS with:

1. Installed the ProNoC GUI software and its dependency packages.

2. Installed Verilator simulator.

For more information about the ProNoC and GNU toolchain installation please refer to the
ProNoC system installation file located in /DoC folder.

Simulation
Example:

In this example we simulate two 8×8 Mesh NoCs, one with fully adaptive routing and another
with DoR routing algorithms.

Generate first
NoC simulation
model with XY
routing

1. Open mpsoc/perl_gui in terminal and run ProNoC GUI application:

./ProNoC.pl

It should open The GUI interface as illustrated in Figure 8.1.

2. Click on to open ProNoC simulator tabs.

3. Click on NoC Simulator tab to open simulator GUI interface:

Figure 8.1

4. Click on Generate NoC Simulation Model tab to open NoC configuration setting
page.

5. Change the default NoC parameters as shown in below table:

ProNoC homepage May 15, 2018 74

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

Parameter name Value Parameter Name Value
Router Type ”VC BASED” Router per row 8
Router per column 8 VC number per port 2
Buffer Flits per VC 2 Payload width 32
Topology ”Mesh” Routing Algorithm ”xy”
SSA Enable ”NO” SW allocator arbitration type ”RRA”

6. Enter a name for this NoC configuration e.g. mesh_8x8_xy.

7. Press the generate button.

Figure 8.2: Generate NoC model

Generate the
second NoC
simulation model
with fully
adaptive routing

8. In NOC configuration tab Keep the previously set parameters and only change the routing
algorithm to ”DUATO”.

9. Enter a new name for this NoC configuration e.g. mesh8x8_full.

10. press Generate button and wait for compilation to be done.

Run simulation
under Matrix
Transposed traffic
pattern

11. Click on Run simulator tab.

12. Click on to add a NoC simulation model.

13. Set following configurations for the simulation model. For flit injection ratios, you can
define individual ratios separated by comma (’,’) or optionally you can define a range of
injection ratios with [min]:[max]:[step] format.
* Note that you can also add more injections ratios later. Each time you run the simulation
the simulation results of new injection ratios are added to the previously plotted results.

ProNoC homepage May 15, 2018 75

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

Parameter name Value Parameter Name Value
Verilated Model ”mesh 8x8 xy” Traffic Type Synthetic
Configuration Name xy Traffic name transposed 1
Min pck size 2 Max ock size 10
Total packet number limit 200000 Simulation clock limits 100000
Injection ratios 2:32:2

Figure 8.3

14. Click on to add the second NoC simulation model. Fill the NoC configuration as
shown in following table.

Parameter name Value Parameter Name Value
Verilated Model ”mesh 8x8 full” Traffic Type Synthetic
Configuration Name fully Traffic name transposed 1
Min pck size 2 Max ock size 10
Total packet number limit 200000 Simulation clock limits 100000
Injection ratios 2:32:2

15. Save the simulation. You can save the simulation at any time during run time. Hence,
later you can continue the rest of simulation.

16. To start the simulation press Run all button. You can also run each individual

simulation by pressing the Run button in its simulation row.

17. After the simulation is done, if your graph is not yet completed you can enter a new
injection ratio range and press the Run key again.

ProNoC homepage May 15, 2018 76

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

18. You can edit the generated graph and then save it from graph editing toolbox. By saving
the simulation graph, the simulation results is also provided in a text file as well.

Figure 8.4

For each simulation experiment five simulation results are obtained:

(a) Average latency per average desired flit injection ratio

(b) Average throughput per average desired flit injection ratio

(c) send/received packets number per router for different injection ratios

(d) send/received worst-case delay per router for different injection ratios

(e) Simulation execution clock cycles

ProNoC homepage May 15, 2018 77

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

(a) Load-latency (b) Load-throughput

(c) Injected packets per router at 32% injection
ratio.

(d) Worst-case delay per router at 32% injec-
tion ratio.

(e) Simulation time in clock cycles.

Figure 8.5: Simulation sample results.

ProNoC homepage May 15, 2018 78

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

CHAPTER 9

NoC Emulator

summary ProNoC comes up with a GUI for emulating an actual NoC on Altera FPGAs. The ProNoC emu-
lator is a programmable packet injector module that can be programmed at run time using Altera
JTAG. These modules inject/sink packets to the prototype NoC according the traffic patterns.

System
Requirements

You will need an Altera FPGA development board having USB blaster I or II and a computer
system running Linux OS with:

1. Installed the ProNoC GUI software and its dependency packages.

2. Installed Quarts II (Web-edition or full) compiler.

For more information about the GNU toolchain installation please refer to the Installation
Manual for the Ubuntu. In case your FPGA board is not included in ProNoC FPGA board list
please follow the instruction given in Adding a New Altera FPGA Board to ProNoC, to add your
board to ProNoC.

Emulation
Example:

In this example we simulate two 5×5 Mesh NoCs, one with fully adaptive routing and another
with DoR routing algorithms using DE10-nano Altera FPGA board.

Generate first
NoC emulation
model with XY
routing

1. Open mpsoc/perl_gui in terminal and run ProNoC GUI application:

./ProNoC.pl

It should open The GUI interface as illustrated in Figure 9.1.

2. Click on to open ProNoC simulator tabs.

3. Click on NoC Emulator tab to open the emulator GUI interface:

Figure 9.1

4. Click on Generate NoC Emulation Model tab to open NoC configuration setting page.

ProNoC homepage May 15, 2018 79

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

5. Change the default NoC parameters as shown in below table:

Parameter name Value Parameter Name Value
Router Type ”VC BASED” Router per row 5
Router per column 5 VC number per port 2
Buffer Flits per VC 2 Payload width 32
Topology ”Mesh” Routing Algorithm ”xy”
SSA Enable ”NO” SW allocator arbitration type ”RRA”

6. Enter a name for this NoC configuration e.g. mesh_5x5_xy.

7. Press the generate button.

Figure 9.2: Generate NoC model

8. Follow instructions in Compile the generated RTL code using Quartus II software to com-
pile the desired emulation model for an Altera FPGA board. For this example we used
the DE10-Nano FPGA board which its pin assignment is shown in Figures 9.3.

Figure 9.3: DE10-Nano FPGA board pin assignment.

ProNoC homepage May 15, 2018 80

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

Generate the
second NoC
emulation model
with fully
adaptive routing

9. In NOC configuration tab Keep the previously set parameters and only change the routing
algorithm to ”DUATO”.

10. Enter a new name for this NoC configuration e.g. mesh5x5_full.

11. Generate the NoC emulation model in similar way to step 8.

Run Emulation
models under
Matrix
Transposed traffic
pattern

12. Click on Run Emulator tab.

13. Click on to add a NoC emulation model.

14. Set following configurations for the emulation model. For flit injection ratios, you can
define individual ratios separated by comma (’,’) or optionally you can define a range of
injection ratios with [min]:[max]:[step] format.
* Note that you can also add more injections ratios later. Each time you run the emulation
the emulation results of new injection ratios are added to the previously plotted results.

Parameter name Value Parameter Name Value
FPGA Board [Your FPGA board name] Sram Object file ”mesh 5x5 xy”
Configuration Name xy Traffic name transposed 2
Packet size in flits 5 Packet number limit per node 1000000
Emulation clock limits 25000000 Injection ratios 2:50:2

15. Click on to add the second NoC emulation model. Fill the NoC configuration as
shown in following table.

Parameter name Value Parameter Name Value
FPGA Board [Your FPGA board name] Sram Object file ”mesh 5x5 full”
Configuration Name fully Traffic name transposed 2
Packet size in flits 5 Packet number limit per node 1000000
Emulation clock limits 25000000 Injection ratios 2:50:2

16. Save the emulation. You can save the emulation at any time during run time. Hence, later
you can continue the rest of emulation.

17. To start the emulation, Power on your FPGA board and connect it to your PC then press
Run all button. You can also run each individual emulation by pressing the

Run button in its emulation row.

18. After the emulation is done, if your graph is not yet completed you can enter a new
injection ratio range and press the Run key again.

19. The emulator generates similar results as NoC simulator generates.

ProNoC homepage May 15, 2018 81

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

(a) Load-latency (b) Load-throughput

(c) Injected packets per router at 50% injection
ratio.

(d) Worst-case delay per router at 50% injec-
tion ratio.

(e) Emulation time in clock cycles.

Figure 9.4: Emulator sample results.

ProNoC homepage May 15, 2018 82

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

	Installation Manual for the Ubuntu Linux Environment
	Installation

	Interface Generator
	Introduction
	Generate New Interface
	Defined Interfaces
	interrupt_cpu
	interrupt _peripheral
	clk
	reset
	Enable
	Wb_master
	Wb_slave

	IP Generator
	Introduction
	Generate a New IP
	List of available Variables in ProNoC
	List of available IP cores in ProNoC
	Bus
	Communication
	DMA
	Display
	GPIO
	Interrupt
	NI
	Processor
	RAM
	Source
	Timer

	Processing Tile Generator
	Processing Tile Generator Hello World Tutorial
	System Requirements:
	Objectives:
	Desired SoC
	Schematic
	Application Software

	Create New SoC Using ProNoC Processing Tile Generator
	Software Development
	Simulate the generated RTL code using Modelsim software
	Simulate the generated RTL code using Verilator software
	Compile the generated RTL code using Quartus II software

	Add Custom IP to Processing Tile Generator Tutorial
	System Requirements:
	Objectives:
	Greatest Common Divisor (GCD) Algorithm
	GCD RTL code
	GCD Simulation

	Add Wishbone bus interface to GCD
	Add custom wishbone-based IP core to ProNoC Library
	Generate a new SoC enhanced with new IP core (GCD)
	Software Development

	NoC Verilog File Parameters Description
	NoC Simulator
	System Requirements:
	Simulation Example:
	Generate first NoC simulation model with XY routing
	Generate the second NoC simulation model with fully adaptive routing
	Run simulation under Matrix Transposed traffic pattern

	NoC Emulator
	summary
	System Requirements
	Emulation Example:
	Generate first NoC emulation model with XY routing
	Generate the second NoC emulation model with fully adaptive routing
	Run Emulation models under Matrix Transposed traffic pattern

