ProNoC

User Manual

Copyright ©2014-2018 Alireza Monemi

This file is part of ProNoC

ProNoC (stands for Prototype Network-on-Chip) is free software: you can redistribute it
and/or modify it under the terms of the GNU Lesser General Public License as published
by the Free Software Foundation, either version 2 of the License, or (at your option) any
later version.

ProNoC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
without even the implied warranty of MERCHANTABILITY or FITNESS FOR A
PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public License along with
ProNoC. If not, see <http:**www.gnu.org/licenses/>.

This document may include technical inaccuracies or typographical errors.

Contents

1 Installation Manual for the Ubuntu Linux Environment
1.1 Installation e

2 Interface Generator

2.1 Introduction
2.2 Generate New Interface
2.3 DefinedInterfaces
231 AnterruptCpu . . . v v e e e e e e e e e e e
2.3.2 interrupt _peripheral
233 ck. .. e
234 reset e e e
235 Enable
23.6 Wbomaster
237 Whbsslave
3 IP Generator
3.1 Introduction e
3.2 GenerateaNewlIP
3.3 List of available Variables in ProNoC
3.4 List of available IP cores in ProNoC
341 Bus e
342 Communication e
343 DMA . ..
344 Display
345 GPIO e
34.6 Interrupt.
347 NI ... e e
348 Processor
349 RAM e
3.4.10 Source e
3411 Timer e

4 Processing Tile Generator

5 Processing Tile Generator Hello World Tutorial 22
5.1 System Requirements: 22
5.2 Objectives: e e e 22
5.3 DesiredSoC e 22

5.3.1 Schematic 22

5.3.2 Application Software 23
5.4 Create New SoC Using ProNoC Processing Tile Generator 23
5.5 Software Development, 34
5.6 Simulate the generated RTL code using Modelsim software 37
5.7 Simulate the generated RTL code using Verilator software 39
5.8 Compile the generated RTL code using Quartus II software 43

6 Add Custom IP to Processing Tile Generator Tutorial 48
6.1 System Requirements: 48
6.2 Objectives: 48
6.3 Greatest Common Divisor (GCD) Algorithm 48
64 GCDRTLcodeo, 49

6.4.1 GCD Simulation 52
6.5 Add Wishbone bus interfacetoGCD 56
6.6 Add custom wishbone-based IP core to ProNoC Library 59
6.7 Generate a new SoC enhanced with new IP core (GCD) 65
6.8 Software Development 69

7 Simple message passing demo on 4x4 MPSoC 72
7.1 System Requirements: 72
7.2 Generating a custom Processing tile 72
7.3 Generating a 4x4 NoC-based MPSoC 74
7.4 Software Development 76

8 NoC Verilog File Parameters Description 83

9 NoC Simulator 86
9.1 System Requirements: 86
9.2 Simulation Example: 86

9.2.1 Generate first NoC simulation model with XY routing 86

9.2.2 Generate the second NoC simulation model with fully adaptive
TOULING 87

9.2.3 Run simulation under Matrix Transposed traffic pattern 87

10 NoC Emulator 91
10.1 Summary e 91
10.2 System Requirements 91
10.3 Emulation Example:, 91

10.3.1 Generate first NoC emulation model with XY routing 91
10.3.2 Generate the second NoC emulation model with fully adaptive
TOULING o oL 93
ProNoC homepage December 13, 2018 2

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

10.3.3 Run Emulation models under Matrix Transposed traffic pattern 93

ProNoC homepage December 13, 2018 3

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

CHAPTER 1

Installation Manual
for the Ubuntu
Linux Environment

Installation

. You can download the ProNoC source code from ProNoC homepage or option-

ally open the ferminal and run:

svn co http://opencores.org/ocsvn/an-fpga-implementation-of-low-
latency-noc-based-mpsoc/an-fpga-implementation-of-low-latency-
noc-based-mpsoc/trunk

Copy the downloaded folder (trunk/) somewhere in your home directory. Make
sure that there is no space in destination address.

. To give execute permission, open trunk/mpsoc in terminal and run

sudo chmod +x -Rf ./

. Install required package dependencies

sudo apt-get install build-essential

sudo apt-get install libgtk2.0-dev libglib2.0-dev
sudo apt-get install libpangol.O-dev

sudo apt-get install clang

sudo apt-get install 1ib32z1

sudo apt-get install libgd-graph-perl

sudo apt-get install cpanminus

sudo apt-get install libusb-1.0

sudo apt-get install graphviz

sudo apt-get install libgtksourceview2.0-dev

4. Install required Perl modules:

sudo cpanm ExtUtils::Depends
sudo cpanm ExtUtils::PkgConfig
sudo cpanm Glib

sudo cpanm Pango

sudo cpanm Gtk2

sudo cpanm String::Similarity
sudo cpanm Gtk2::Ex::Graph::GD
sudo cpanm GD::Graph::bars3d
sudo cpanm IO::CaptureOutput
sudo cpanm Proc::Background
sudo cpanm List::MoreUtils
sudo cpanm File::Find::Rule
sudo cpanm Gtk2::SourceView2
sudo cpanm Verilog::EditFiles

Now run the following command in terminal to update the variables

source ~/.bashrc

5. Install Verilator simulator.

sudo apt-get install verilator
sudo cpanm install Verilog::Language

Now run the following command in terminal to update the PATH variable

ProNoC homepage December 13, 2018 4

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc
http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

source ~/.bashrc

6. Download soft-core processors’ GNU toolchain:

(a) aecMB
(b) Lm32 or from Lm32
(c) orlk-elf for morlk and or1200 OpenRISC CPUs.

Unzip the files and copy them in mpsoc_work/toolchain directory:

mv 1m32 mpsoc_work/toolchain/1m32
mv aemb mpsoc_work/toolchain/aemb
mv orlk-elf mpsoc_work/toolchain/orlk-elf

7. Give execution permission to GNU toolchains. Open terminal in mpsoc_work/
toolchain and run

sudo chmod +x —-Rf ./

8. Open /mpsoc/src_c in terminal and run

make

9. Now you can run the GUI application by

cd mpsoc/perl_gui
./ProNoC.pl

10. If it is the first time you are running the ProNoC software, it asks you to set the
following paths:

(a) PRONOC_WORK: The working directory where the projects’ files will
be created and the toolchains are located. The default location is the t runk
/mpsoc_work folder. Setting this variable is compulsory.

(b) QUARTUS_BIN: The path to QuartusII compiler bin directory. Setting of
this variable is optional and is needed if you are going to use Altera FPGAs
for implementation or emulation.

(c) MODELSIM_BIN: The path to Modelsim simulator bin directory. Setting
of this variable is optional and is needed if you have installed Modelsim
simulator and you want ProNoC to auto-generate the simulation models
using Modelsim software.

You can modify these variables at any time later via File->setting menu:
File View Help

| Setting 0

Quik

ProNoC homepage December 13, 2018 5

http://www.multcloud.com/share/87d0060e-9109-46a5-b170-f874f75fc34c
http://www.multcloud.com/share/aca75bf6-01c5-4559-978f-84cab79d8d53
http://www.ohwr.org/attachments/1301/gcc-4.5.3-lm32.tar.xz
http://www.multcloud.com/share/c2faea3b-9690-4757-a1ba-5a8ed8656bc4
http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

* Configuration setting

setting

PRONOC_WORK |g‘ eza/mywork/mpsoc_work ,'Q
QUARTUS BIN |) |PGA _lite/17.1/quartus/bin || /=

MODELSIM BIN | @) | |re/17.1/modelsim_ase/bin|

@ ok

Figure 1.1: ProNoC path variables setting.

|
W &

e
&¥ Interface generator | 4 P generator 5 Processing tile generator | =g NoC based MPSoC generator

Select file: A prowse| | (@) pescription
Select module: & 1mport Ports Select Category: Q ‘
Interface name: Select soket type: 5\"9‘9 connection : e

About ProNoC

ProNoC 1.8.0

NoC based MPSoC generator.

Credits License Close

Please select the verilog file containig the interface

/2 Load Interface @ Generate

Figure 1.2: ProNoC GUI snapshot.

ProNoC homepage December 13, 2018 6

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

CHAPTER 2

Interface Generator

Introduction

The interface generator allows the addition of new interfaces to ProNoC software. An
interface is a port or a group of ports that are common in different IP cores which are
used for doing a specific task. The most common interfaces in ProNoC are the shared
bus (wishbone bus) master/slave, clk and reset interfaces. Each individual interface
is divided into two types of socket and plug interfaces. Two different IP cores can
be connected when one has the socket type of an interface and another one has the
plug type of that interface. While it is optional to select any side of the connection as
socket or plug interface, bellow are some differences between them that help to select
an appropriate type of interface for each IP core:

1. In processing tile generator only the plug interfaces of an IP are shown in the
IP box. The user can select the connection interface from the list of all IP cores
having the socket type of that interface as shown in Figure 2.1.

Plua interfaces Socket interfaces

Figure 2.1: GPO IP box snapshot.

2. The socket interfaces can be defined as single or multi-connection. A socket
interface can be defined as multi-connection only when it consists of only output
ports. As a result, it can be connected to multiple IPs having the plug type of
that interface. Examples of multi-connection socket in PoNoC are clk and reset
interfaces.

Select soket type: | single connection 9
; ool
¥ swap Jplug

Figure 2.2: multi-connection selection snapshot.

3. The number of a socket interface in an IP core can be parameterizable. To do
this, the interfaces’ ports that having the same name must be concatenated as
a single port in the IP core Verilog file. This feature provides flexibility to the
ProNoC Processing tile generator as an IP core now can have variable number
of an interface which can be defined by the user at the generation time. As an
example the interfaces of the Wishbone bus and the interrupt controller are de-
fined as socket with parameterizable number of interfaces. Below is an example
which shows how the interfaces are defined in a Wishbone Bus IP core module:

ProNoC homepage December 13, 2018 7

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

Listing 2.1: bus.v

module wishbone_bus # (

parameter M = 4, //number of master
parameter S = 4, //number of :
parameter Dw = 32, // maximum
parameter Aw = 32 // addr

parameter DwS= Dw x S,
parameter AwS= Aw * S,

F s interface

output [AwS-1 : 0] s_adr_o_all ,
output [DwS-1 : 0] s_dat_o_all ,
input [DwS-1 : 0] s_dat_i_all ,
output [S-1 : 0] s_we_o_all ,
output [S-1 0] s_cyc_o_all ,
output [S-1 : 0] s_stb_o_all ,

s
I’ [~ b GBS
tor | # 1P generator 5 processin o for | fBfg NoC based MPSoC generator
Select file: /homeyalireza/Mywo SELw | peripheral/bus/wishbone_bus.v
Interface name Type = te Num

wh_master socket ° Dw 0 o {Y/ concatenate

wb_slave socket * s e e £y concatenate

wb_addr_map | socket % 1 e e {/ separate
k. plug o 1 Qe

reset plug o 1 Qe
(2)

B ©00 raramecer ceing for wishbonebus

| clk clk_source0 :clk
Parameter name Value Description
2 M a = e intrp int_ctri0:int_periph[0]
3 s 4 = (7] reset clk_source0:reset
Dw 32 2 (7] wb 10
. wishbone_bus0:wb_slave[0]
1po Aw 32 (2] ak
wishbone_bus0:wb_slave[1]
2] @ reset wishbone_bus0:wb_slave[2]
X OK
wishbone_bus0:wb_slave[3]
kY wh

(b)

Figure 2.3: (a) Select Verilog parameters M and S as the number of Wishbone bus
(WB) master & slave interfaces for generating Wishbone Bus IP core. (b) The number
of WB master/slave interfaces can be defined at SoC generation time via GUL

ProNoC homepage December 13, 2018 8

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

Generate New
Interface

Defined
Interfaces

NI

In order to add a new interface to ProNoC, press the browse button and select the Ver-
ilog file containing a module with the desired interface. If there are multiple modules
inside that file, you can select the desired one from select module menu. To add ports
to the interface press Import Ports button. It opens a pop-up window as shown in
Figure 2.4 where you can select and add the required ports.

7

oNoC

e mpsocfrnkimpsocise_peripheraramigeneral_oua 5| /2 srowse @ over

memory) @ oescrpion

el e

LAY«

anportsam - | & 1mpor ors

adr.
[(aw-1):0] addra] I
put -0 cata
input [aw-1):0] ader b s
tout ©v-10 - " I aa
\ml Pt put [(Dw-1):0] data_a] L]
m nput [ow-13:0] @b
e output (©Ew-1:01 aa 4
E ot {ow1yal b
P @
2 b 5
@ =
EE + the verilog file containig the nterface
-
o
i © oo
-
=) en.USvUTFg 5 Ready NormalMode W H B

Figure 2.4: Interface generator snapshot.

Using swap button, you can define if the selected ports belong to the socket or plug
type of an interface. You are only needed to define one type of an interface, the other
type will be defined automatically. The width of each port can also be a Verilog code
parameter. Note that any Verilog module using this interface must define the interface
ports using the same parameter name.

The socket interfaces can be defined as single or multi connection. If a socket is
defined as single connection, by connecting a new IP to the socket, the last connected
plug to that socket will be disconnected automatically.

While it is optional to select any side of an interface connection as socket or plug when
defining a new interface, once the definition is done for an IP core, all other IP cores
having that interface must follow the first IP core. Hence, it is important to know
how the defined interfaces (socket and plug) are mapped to the existing IP cores in the
library. This section provides the list of defined interfaces and the IP cores which use
these interfaces.

This is the interface connection between Network-on-chip (NoC) router and the NoC
interface adapter module (NI). Figure 2.5 shows this interface.

ProNoC homepage December 13, 2018 9

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

interrupt_cpu

interrupt
_peripheral

Socket Plug

Xw
current_x re—# current_x
Yw
current_y [e—# current_y
. Fw | .
flit_out va flit_in
1
flit_out_wr va flit_in_wr
\
credit_in [«—# credit_out
L Fw | ..
flit_in +—+# flit_out
1
flit_in_wr [«+—# flit_out_wr
\Y
credit_out + credit_in

Figure 2.5: NI socket/plug interfaces.

IP cores having NI socket: ni_master, ni_slave
IP cores having NI plug: NoC

CPUs that have only one single interrupt pin must be connected to an interrupt con-
troller module to allow combination of several sources of interrupt. The interface be-
tween these CPUs and Interrupt controller is called interrupt_cpu.

Socket Plug

C. . 1 j
int_i [«—# int_o

Figure 2.6: interrupt_cpu socket/plug interfaces.

IP core having interrupt_cpu socket: acMB CPU
IP core having interrupt_cpu plug: int_ctrl (interrupt controller module)

This is the interrupt interface connection between CPUs having multiple interrupt pins
that can directly be connected to multiple the peripheral devices.

Socket Plug

C. . 1 j
int_i [«—# int_o

Figure 2.7: interrupt_peripheral socket/plug interfaces.

IP cores having interrupt_peripheral socket: int_ctrl, morlkx, or1200, and Im32
CPUs.

IP cores having interrupt_peripheral plug: dma, timer, ni_master, ni_slave, ext_int
(external interrupt), eth_mac100, jtag_uart.

ProNoC homepage December 13, 2018 10

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

clk

reset

Enable

Wb_master

The clock pin interface.

Socket Plug

1
(clk o va ck i)

Figure 2.8: clk socket/plug interfaces.

Y

IP core having clk socket: clk_source
IP cores having clk plug: All IP cores which have clk pin except clk_source

The reset pin interface.

Socket Plug

1
(reset_o 7 reset_i)

Figure 2.9: reset socket/plug interfaces.

Y

IP core having reset socket: clk_source
IP cores having reset plug: All IP cores which have reset pin except clk_source

The enable pin interface. The enable pin is used for disabling any active module in a
processing tile (e.g CPUs). The Processing tile and NoC-based MCSoC generators au-
tomatically connect all enable plug interfaces to each other and used them for disabling
CPUs during programming mode. The enable pin for each CPU must be defined as 10
in processing tile generator.

Socket Plug

1
< enable_o va enable_i >

Figure 2.10: Enable socket/plug interfaces.

Y

IP core that have enable socket: -
IP core that have enable plug: All CPUs

The wishbone bus master interface. The Wb_master socket interface is mapped to
wishbone bus module. All IP cores’ WB master interface must be mapped to the plug
interface.

ProNoC homepage December 13, 2018 11

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

Whb_slave

Socket

Plug

ack o
adr_i
bte_i

cti_i
cyc_i
dat_i
dat_o
err_o
rty_o
sel_i
stb_i
tag_i
we_i

Auuulllnnuuul

Figure 2.11: WB master socket/plug interfaces.

IP core having Wb_master socket interface: Wishbone Bus module
IP cores having Whb_master plug interface: All CPUs, ni_master, dma, eth_mac100,

jtag_wb.

The wishbone bus slave interface. The Wb_slave socket interface is mapped to wish-
bone bus module. All IP cores” WB slave interface(s) must be mapped to the plug

interface.

IP core having Wb_slave socket interface: Wishbone Bus module
IP core that have Wb_slave plug interface: ni_master, ni_slave, dma, eth_mac100,
jtag_wb, jtag_ uart, timer, gpio, gpi, gpo, single_port_ram, dual_port_ram, lcd_2x16,

ext_int, int_ctrl

Socket Plug
ack_of———|ack_i
adr_i [« adr_o
bte i [« bte_o
cti_i [cti_o
cycC_i [cyc_o
dat_i [dat_o
dat_o———(dat_i
err_ of—|err_i
rty_ of———»|rty_i
sel_i |« sel_o
stb_i [stb_o
tag_i [« tag_o
we_i |« we_o

Figure 2.12: WB slave socket/plug interfaces.

ProNoC homepage

December 13, 2018 12

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

CHAPTER 3

IP Generator

Introduction

Generate a New
P

The IP generator allows adding new intellectual properties (IPs) to the ProNoC’s li-
brary. It provides a GUI interface for mapping the IP’s ports to the interfaces, defining
how the IP parameters must be collected from the user at tile generation time, and
getting the location of IP cores’ source files.

For adding a new IP to ProNoC, first you need to have the Verilog file(s) describing the
RTL code of that IP.

1.

Click on ,j Browse button and select the Verilog file containing the top level
module.

Select a category which this new IP core is belonging to. You can eighther select

it form the list of available categories or define a new category by typing its
name in 355 o - | . All IPs belonging to the same category are

listed under the same tree branch in processing tile generator.

Define an 1p name for this module. The IP name will be shown in IP list below
its category name in Processing tile generator.

In case the Verilog file contains several Verilog module select the top level mod-
ule in select Module field.

. Using @D 1P Description button you can add a short description about the

IP. This description will be shown when the IP is selected in processing tile
generator. You can also add the IP-core documentation in PDF format here.
This generate a short key for opening the IP documentation in processing tile
generator.

Note: In order to make the copy of your ProNoC software portable palace the
documentation files somewhere inside mpsoc folder.

Add Software
The h files

ers to the generated processing tile software directory (mpsoc/soc/ [PT-name]/
sw). By pressing this button you will have three notebook pages:

button allows the addition of the necessarily files and fold-

* Add existing files/folders: In this page you can add the list of files and
folders which you want to copy them exactly into the mpsoc/soc/ [PT-name
1 /sw folder.

* Add files contain variables: In this page you can add the list of files which
contain some variables that can be replaced at the processing tile generation
time. Variables must be written in the source file with $ {variable_name}
format. You can use any of available variables in ProNoC as variable name.

* Add to tile.h: You can add the definition and functions for this peripheral
device here. These definitions are added to the processing tile header file
at generation time. You can use any of available variables in ProNoC with
${variable_name} format. A header file example is as follows:

ProNoC homepage December 13, 2018 13

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

#define ${IP}_REG_0 (x((volatile unsigned int =) (${BASE})))
#define ${IP}_REG_1 (*((volatile unsigned int =x) (${BASE}+4)
))

#define ${IP}_WRITE_REGI (value) ${IP}_REG_1 = value
#define ${IP}_READ_REG1l () ${IP}_REG_1

#define ${IP}_is_busy(n) ((${IP}_REG_0 >> n) & O0Oxl)

void ${IP}_initial (unsigned int wv) {
S{IP}_WRITE_REGI1 (V) ;
}

A sample generated header file by ProNoC assuming the IP instance name
is defined as foo by the user and the WB slave address is defined as o
x96000000 by ProNoC automatically is as follows:

#define foo_REG_O0 (*((volatile unsigned int *) (0X96000000)))
#define foo_REG_1 (% ((volatile unsigned int =) (0X96000000+4))
)

#define foo_WRITE_REGI (value) foo_REG_1 = value
#define foo_READ_REG1 () foo_REG_1

#define foo_is_busy(n) ((foo_REG_0 >> n) & 0x1)
void foo_initial (unsigned int wv) {

foo_WRITE_REGI1 (v) ;
}

7. Add the list of all required designed HDL files for the new IP core by using

= ﬁ-dﬁE:EHSD'- button. All files listed here will be copied in the generated process-

ingtﬂeinskk:mpsoc/soc/[PTfname]/src_verilogikﬂden

Parameter
setting

8. By pressing © button, all parameters inside the top module Verilog

file are extracted. This menu allows you to add, remove or define how to get the
parameter values from the user. Below is an example for setting parameter M in
wishbone bus.

Parameter name Default value Widget type g Widget content g Type e 0 info e add/remove

M 4 Spin-button 7 ||1,256,1 Localparam : | & Redefine @ @remove

Figure 3.1: Parameter setting window snapshot.

* Parameter name: It is the parameter name which has been read from the
Verilog file.

ProNoC homepage December 13, 2018 14

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

* Default value: when an IP is selected for the first time in processing tile
generator, the parameters are loaded by their default values.

* Widget type: defines how the parameter value must be taken from the user
when calling the IP in processing tile generator. There are four ways to
define a widget type:

— Fixed: The parameter is a fixed value and get the default value. User
will not see the parameter and cannot change it in GUL

— Entry: The parameter value is received via entry widget. The user
can type anything as parameter value.

— Combo-box: The parameter value can be selected from a list of pre-
defined values.

— Spin-box: The parameter is a numeric value and is taken using spin-
box widget.

* Widget content: For Fixed and Entry leave it empty. For Combo box
define the parameters which must be shown in combo box. Use following
format: "vALUE1", "VALUE2", ..., "VALUEn". For Spin box define it with
this format minimum, maximum, step (e.g 0,10,1).

* Type: Here you can define that how any specific IP-core parameter is de-
fined in the generated processing tile Verilog file. You have three options
localparam,Parameter,andDon't include.IfyOHSCkXIitaSParameter
then all processing tile parameters are also defined as parameter in the pro-
cessing tile Verilog file. Hence, they can be changed during NoC-based
MPSoC generation time. This allows calling same tile in different places
with different parameter values. In case the parameter is a software pa-
rameter which must be used in software code variables define it as bon't

include.

* Redefine: If it is check marked, the defined parameter/localparam in pro-
cessing tile Verilog file will be passed to the IP core during instantiating.
Remove the check mark if you only have added a parameter using parame-
ter setting GUI which does not exist in the IP-core Verilog file.

parameter PARAM1l= n; //redefined is on
localparam PARAM2=m; //redefined is off

ip_name # (
// redefined parameters
.PARAM1 (PARAM1)

) instance_name (
//ports definition starts here

)i
¢ info: The parameter description for the user can be added here.

9. Add interface: You can add interfaces to the IP library by double clicking on
an interface name located at the left top corner. After adding the interface, it
appears in the interface box where you can adjust the interface setting such as,

ProNoC homepage December 13, 2018 15

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

interface name, type, and the number of that interface which appears in the new
IP core.

For wishbone slave interface you can select the wishbone address setting by
pressing | | button and do the following settings:

¢ Interface name: define a name for this interface.

* Address Range: select the address range for WB slave port. These ad-
dresses are defined in mpsoc/perl_gui/lib/perl/wb_addr.pm file. You
can add your own address range by modifying this file.

* Block address width: define the maximum memory size required for this
interface in byte which is defined as 2 power of block address width
(see Figure 3.2 caption as an example). The width can be defined as a fixed
number when the number of memory mapped registers inside the interface
is predefined as a fixed number. In case, that the number of required regis-
ters is dependent on a Verilog parameter (e.g. a memory block that its size
is parameterizable) and it is aimed to be defined by the user at processing
tile generation time then you can define it as parametrizable then select
the corresponding parameter as address width.

(] T L rye oxato0_0000 oxatfr_fmr HDLC Controller _

0x9100_0000 0x91fT_fr1r General-Purpose 1/0
EEH D 0x9600_0000 0x96rT_frTr PWM/Timer/Counter Ctri block adress width| @
0xa400_0000 Oxa4fr_frit Digital Camera Ctrl
wb 0xa600_0000 Oxb7fr_frT Reserved1 Fxed w|B2Bresl(5
0xa500_0000 Oxasfr_frit Debug
0x9300_0000 0xO3fF_frff Memory Controller

0xa300_0000 Oxa3fr_fit 12€ Controller

Figure 3.2: Slave WB address setting snapshot. The size of memory mapped registers
in this example is 2° = 32 bytes. For a 32-width WB it is equal to 32/4 = 8 individual
registers. In case, you have parameterizable number (e.g. M) to indicate memory
mapped register width in words in your IP module Verilog file, you need to add another
parameter such as N=M+2 in parameter setting window and select its type as pon'
t include to be used as address width parameter in bytes.

10.

11.

For socket interfaces, there is an option to define the interface number as pa-
rameter by selecting {3/ concatenate condition or a fixed number by selecting
{¥/ separate condition. See socket interface specification for more information.

After adding the interfaces you must mapped the top module ports to the in-
terfaces ports. For each top level module port you need to select the interface
name and interface port. Figure 3.3 illustrates a snapshot of interface mapping
for Wishbone Bus module.

Finally by pressing @ Generate, you can generate the IP. You can also modify
the existing IPs by using /2 Load IP button.

See Add Custom IP Tutorial for observing an example of adding a custom IP core
to the ProNoC library.

ProNoC homepage December 13, 2018 16

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

& o

&¥ mterrace generator | # 1P generator | [Processing tile generator | B8 NoC based MPSOC generator

Interfaces list

> NoC Select file: hor /mpsoc/src_peripher :_bus.v /> Browse| IP name: |wishbone_bus
> interrupt
> source
Select " Parameter| Select - i Add Software | | — Add HDL
¥ wishbone module; | Mshbone bus 1) @ setting Category: | 245 (2] $Desmphor\ h " fies = files
wh_addr_map
wh_master
wh_slave Interface name Type Interface Num
wb_master socket % M =) £/ concatenate @ remove
wb_siave socket % s 1@ 0 {Y/ concatenate Q remove
wb_addr_map socket 3 Tl 7 1] {Y separate @ Remove
Type Port name Interface name Interface port Port Range
output s_adr_o_all socket:wb_slave B adr_o s[awss1 o
output s_dat_o_al cnctant . claun = aat_o slfows1 o
10
output s_sel_o_al ket master sel_o 2 |[setwrs1 : o
output s taa o al taa o 2 llmaGw=s1 : o
Please select the veriiog file containig the ip module socket:wb_addr_map
plugireset
2 Load P plug:clk @ cenerate

List of available
Variables in
ProNoC

Figure 3.3: Wishbone Bus module interface mapping snapshot.

${ [parameter_name] }: The IP core parameter value. The actual value is de-
fined by the user when calling IP core at processing tile generation time. The
parameter had to be added in GUI parameter using parameter setting button.

$ {core_1D}: Each Wishbone bus-based processing tile will have a unique core_1p
that represents its location in NoC topology:

CORE_ID = ((y * NX) +) (3.1)

where (z,y) are the node location in x and y axes and [N X is the number of node
in z dimension. If the generated tile is used as top level module core_1p will
take the default value of zero.

s{1p}: is the peripheral device instance name which is defined by the user when
calling IP core using Processing tile generator.

${core}: is the peripheral device IP core name.

${BasE}: is the wishbone base address(es) and will be added during process-
ing tile generation to processing tile C header file (mpsoc/soc/ [PT-name] /sw/ [
Tile_name] .h). If more than one slave wishbone bus exist in the IP core, the
variables are define as $ {BASEO}, ${BASE1}... .

ProNoC homepage December 13, 2018 17

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

List of available
IP cores in
ProNoC

Bus

Communication

DMA

Display

GPIO

Interrupt

This section provides a brief description about the available IP core modules in ProNoC
library. Most of IP cores that are developed with ProNoC software come with a separate
documentation PDF file. Theses files are accessible by clicking on the IP core modules’
name in following section. For the other IP cores which are adopted from OpenCores
website the project homepage URL address is linked to the IP core name.

* Wishbone_bus (WB): is an open source hardware computer bus released by
OpenCores. ProNoC’s WB is fully parameterizable in terms of number of mas-
ter/slave interfaces and data/address width.

¢ Etmach_100: The Ethernet MAC (Media Access Control) 10/100 Mbps. This
IP core is adopted from OpenCores/ethmac.

 jtag uart: The Altera JTAG UART core with Wishbone bus interface.

e jtag_ wb: Altera VITAG to Wishbone bus interface. This module allows read-
ing/writing data to the IP cores connected to the wishbone bus (e.g. memory
cores). The communication between the host PC and the VITAG is done us-
ing mpsoc/src_c/jtag/jtag_libusb via USB Blaster I and mpsoc/src_c/jtag
/3tag_quartus_stp via USB Blaster II.

* dma: A wishbone bus round robin-based multi channel DMA (no byte enable is
supported yet). The dma supports burst data transaction.

e led 2x16: 2x16 Character Alphabet Liquid Crystal Display (LCD) driver mod-
ule.

* gpi: General purpose Wishbone bus-based input port.
* gpo: General purpose Wishbone bus-based output port.

* gpio: General purpose Wishbone bus-based bidirectional port.

e ext_int: External interrupt module.

e int_ctrl: Interrupt controller. CPUs that have only one single interrupt pin (e.g.
aeMB) must be connected to an interrupt controller module to allow combination
of several sources of interrupt.

ProNoC homepage December 13, 2018 18

https://opencores.org
https://cdn.opencores.org/downloads/wbspec_b3.pdf
https://opencores.org
https://opencores.org/websvn,filedetails?repname=ethmac&path=%2Fethmac%2Ftrunk%2Fdoc%2Feth_design_document.pdf
https://opencores.org/project,ethmac
http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

NI

Processor

RAM

Source

Timer

ni_master: ni_master is a Wishbone bus (WB)-based interface for the network-
on-chip (ProNoC) router. This module has two WB master interfaces, one for
sending and another for receiving data packets.

ni_slave: ni_slave is an extension of NI_master module connected to two input
and output buffers. There are three WB slave interfaces in this module, one for
writing on output buffer, one for reading input buffer and one for controlling the
NI

Or1200: OR1200 is the original implementation of the OpenRISC 1000 archi-
tecture. Its source code has been adopted from github at openrisc/or1200.

aeMB: the EDK3.2 compatible Microblaze core. This IP core is adopted from
OpenCores/aemb.

Im32: LatticeMico32 is a soft processor originally developed by Lattice Semi-
conductor. The source code of this IP core is adopted from github/soc-Im32.

morlkx: The morlkx is a replacement for the original or1200 processor. The
source code is adopted from github at openrisc/mor1kx

single_port_ram: A Wishbone bus-based single port Random Access Memory
(RAM).

dual_port_ram: A Wishbone bus-based dual port RAM.

clk_source: This module provides the clk and reset (socket) interfaces for all
other IPs. It also synchronizes the reset signal.

timer: A simple, general purpose, Wishbone bus-based, 32-bit timer.

ProNoC homepage December 13, 2018 19

https://openrisc.io/implementations.html#OR1200
https://github.com/openrisc/or1200
http://www.codelooker.com/dfilec/8310labmicsoc/aeMB_datasheet.pdf
https://opencores.org/project,aemb
http://www.latticesemi.com/-/media/LatticeSemi/Documents/UserManuals/JL/LatticeMico32ProcessorReferenceManual37.ashx?document_id=51558
https://github.com/jbornschein/soc-lm32/tree/master/rtl/lm32
https://openrisc.io/implementations.html#OR1200
https://github.com/openrisc/mor1kx
http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

CHAPTER 4

Processing Tile
Generator

A Processing Tile (PT) is a set of several IPs (processors and peripheral devices) con-
necting via interfaces. Figure 4.1 illustrate a snapshot of PT generator. PT generator
facilitates the RTL code generation of a custom PT by providing following features:

1. Allows addition of any arbitrary number of IP cores to the PT.
2. Provides a simple GUI for connection IP cores.

3. Provides a GUI for setting IP core parameters.

4. Auto-generates the Wishbone Bus slave interface addresses.
5. PT functional block diagram viewer.

PT RTL code generator.

N o

Comes with an in-built text editor for software development and compilation.

8. Facilitate RTL code synthesizing using one of the Verilator, Modelsim or Quar-
tusII compilers.

For more information about PT generator, please refer to Processing Tile Generator
Tutorial.

ProNoC homepage December 13, 2018 20

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

& B

m ; 55
.’ Intertace generator | #F 1P generator | [Processing tile generator % oC based MPSoC generstor

IP list mortloc Instance name dlk ssicli =
> Bus —_—
o A (@ s
> DMA 1
» Display A ‘6 Remove | reset ssireset 2 =
e ——— L J
> GPID
> Interrupt iwb | bus:wb_master{0] 2|
> NoC
& awb | bus:wb_master(1] =
> Other |
> Processor apo Instance name ak | ss:aik - |
> RAM
P Source A | @ seting [1ed reset = =
= g = |
~ =
> ‘@ Gt Led Step 1: Select Compiler =
Parameter name Value Description| : k- |
o E
- - {) Verilator -
- Targeted Board: e DE10_nano_VB2 4 |
s 3 @ stance name Interface name Bus name Base address End address JIEZ == Modelsim
= 8|
0: led wh bus | 0xe1000000 | | ox8100001F | Quartus bin: e [momeyalireza/intelFPGA_iite]| 42 |
ow 32 |2 o - = I
b2
1:sim_uart whb_slave bus 0xa5000000 0xa5000001] =,
Aw 2 1 |@ = = ‘ i J =
& bl
k= |
@ ox 2: ram wb bus | ox00000000 | [ox000030r =
B 3
I
/2 Load Tile Tile name: | morik_soc] @ Wishbone-bus pddr 5= Diagram 6 @ Generate RTL Compile RTL
| o | = | | | J !
v /homeyalirezafmywork/mpsoc_work/SOC/morl Q) | 7] regExp [Case
Makefile 1
> RAM 2 winclude "morlk_soc.h"
3 // a simple delay function
README 4 void delay (unsigned int num){
define_printf.h 5
6 while (num>0){
L 7 num
image.ihex 8 nop(); // asm volatile ("nop”);
image.Ist =l
10 return;|
image.map i
jtag_intfc.sh
link.Id
main.c
morlk_soc.h = B
> morlie 18 sim_uart_putstring (*hellof\n’,8);
19 delay(100);
ram.sh
e 20 sim_uart_putstring(*by!\n",4);
b simple-printf 21 delay(200);

22 sim_uart_putstring ("\n",1);
23 sim_uart_putchar(i);

24 sim_uart_putstring ("\n",1);
25 }

write_memory.sh

26
27 return 0;

29
30
y psoc_work/toolchain/orl 1 p -h -S image > image.lst
micdir -p ./RAM
y psoc_work toolchain/orl k-elf/bin/orl k-elf-objcopy -O ihex image image.ihex
y psoc_work/tool -f image.ihex -e 3FFF -0 RAM/ram0.mif
Loaded 6388 bytes between: 0000 to 1AD7
¥ psoc_work/tool -i image.ihex -0 RAM/ramO.bin
y psoc_work/tool 2str -f RAM/ram0.bin -h
m™m *.0*.a
Compilation finished successfully.
| 2‘ Regenerate main.c | @ Compile | | £f Program the memory

Figure 4.1: PT generator snapshot.

ProNoC homepage December 13, 2018 21

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

CHAPTER 5

Processing Tile
Generator Hello
World Tutorial

Summary

System

Requirements:

Objectives:

Desired SoC

Schematic

This tutorial teaches how to develop a shared bus (Wishbone bus) based system on chip
(SoC) and a simple software implementation using ProNoC Processing Tile Genera-
tor. The desired SoC will be generated by connecting open-source IP cores on Altera
FPGA board.

You will need an Altera FPGA development board having USB blaster I or II and a
computer system running Linux OS with:

1. Installed the ProNoC GUI software and its dependency packages.
2. Installed/Pre-built GNU toolchain of the aeMB soft-core processor.

3. Installed Quarts IT (Web-edition or full) compiler.

For more information about the GNU toolchain installation please refer to the In-
stallation Manual for the Ubuntu. In case your FPGA board is not included in the
ProNoC FPGA board list please follow the instructions given in Adding a New Altera
FPGA Board to ProNoC, to add your board to the ProNoC library.

1. To design a Wishbone bus-based system-on-chip hardware architecture using
ProNoC Electronic Design Automation (EDA) software.

2. To develop a simple software application running on generated SoC.

3. To interact with on-board memory units using JTAG to wishbone interface mod-
ule.

Figure 5.1 illustrates the desired hardware architecture in this tutorial. This architecture
consists of:

1. Four LEDs connected to 4-bit general purpose output (GPO)

2. A 32-bit timer.

3. A morlkx processor (You can use any of other available processors).
4. A single port RAM.

5. AJTAG UART.

6. A Wishbone Bus.

7. A Clock source (not shown in Figure 5.1).

ProNoC homepage December 13, 2018 22

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

Application
Software

Create New SoC
Using ProNoC
Processing Tile
Generator

1315013 @S

0000

Sy St So
Wishbone Bus
S3 Mq Mg
Data Instruction

Figure 5.1: The schematic of desired SoC in this tutorial.

The aim of this tutorial is to design a simple SoC for running “Hello world” and blink-
ing LED” programs on the desired SoC.

Open mpsoc/perl_gui in terminal and run ProNoC GUI application:
./ProNoC.pl

It should open The GUI interface as illustrated in Figure 5.2.

(% &

) s
" Interface generator | 3§ IP generator "' Processing tile generator | g8g8 NoC based MPSoC generator

Select file: 22 Browse g Description
Select module: &y mport Ports Select Category: (2]
Interface name Select soket type: | single connection = e
Please select the verilog file containig the interface
4= Loaa Interrace @ Generate

Figure 5.2: ProNoC GUI first page snapshot.

Then select the Processing Tile Generator tab:

ProNoC homepage December 13, 2018 23

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

& n

—r
nterface generator generator rocessing tile generator | £ NoC based MPSoC generator
"I i P fgp il ¢ ;:NCD d MPSoC

1P list

» Bus

P Communication
P DMA

P Display
» GPIO

» Interrupt
» NoC

P Other

P Processor
P> RAM

¥ Source

» Timer

dk source. This module provides the clk and reset (socket) interfaces for all other IPs. It also synchronizes the reset signal.

& Load Tile| Tile name: @ Wishbone-bus addr -—:—. Diagram @ Generate RTL :'i-:: Software e Compile RTL

Figure 5.3: ProNoC New Processing Tile generator snapshot.

At the left Tree-View window you can see the list of all available IP categories.
Clicking on each category expand the associated list of IP cores. Each IP core can
be added to GUI by double clinking on its name. The added IP core has three setting
columns:

(a) In first column you can shift IP core box position up/down in GUI interface,
remove the IP core or set its parameters (if any).

(b) In the second column you can rename the IP core instance name.

(c) Third column shows all (Plug) interfaces of this module. here you can connect
each plug to one appropriate (socket) interface. (Each interface is categorized
into two types of plug and socket. See Interface Generator chapter for more in-
formation about interfaces. You can also export the interface as SoC’s input/out-
put (I0) ports here.

Now let start calling required IPs. We start with c1k_source:

ProNoC homepage December 13, 2018 24

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

Add clk source This module provides clk and reset interfaces for all other IPs. It also synchronizes the
reset signal.

1. Click on source category, then double click on c1k_source.

2. Rename the c1k_source instance name as source. leave the interfaces as 10.

0 ProNoC
#® B
[BB
“ Interface generator # IP generator . Processing tile generator ot NoC based MPSoC generator

IP list clk_source Instance name dk 10

Qi .
Q remove

Bus
Communication
DMA

Display

GPIO

KD

Interrupt
NoC
Other
Processor
RAM

Source 1

4 v ¥V ¥ ¥V YV VY VVV

clk_source
P Timer

clk source. This module provides the clk and reset (socket) interfaces for all other IPs. It also synchronizes the reset signal.

42 Load Tile| Tile name (® wishbone-bus addr | | ‘B Diagram @ Generate RTL Software a Compile RTL

Figure 5.4: Adding clock source.

ProNoC homepage December 13, 2018 25

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

Add Wishbone
Bus: . .
1. Click on Bus category and double click on wishbone_bus.

2. In parameter setting set M (master interfaces number) as 2 and s (slave interfaces
number) as 4. These values are obtained from Figure 5.1. You can changed them
later if you want to add/remove any IPs.

3. Rename the instance name as bus.

4. Connect the clock and source interfaces to c1k_source module.

oéoPocc |

L] . . [~ —_— =1~ :
& Interface generator # 1P generator -] Processing tile generator 5% MoC based MPSoC generator

IP list clk_source Instance name dk 10 s
'V Bus

1 PAS 9 Setting source reset 10 =
P Communication
» DMA Xz @ Remove
b Display -
i GRIO) wishbone_bus Instance name dk source:clk =
P Interrupt - i 2 =

Parameter setting for wishbone_b
> NoC 3 ||bus I’ESEt4 source:reset X
P Other
Parameter name Value Description
P Processor
> RAM M e Q
» Source
b Timer s 4 = g
wishbone bus I | Dw 2 32 = e |
1 Aw 32 = e I:

- [I +H

#— Load Tile| Tile G oK i&-bus addr 7] Diagram Generate RTL ¥a| Software Compile RTL

Figure 5.5: Adding Wishbone bus.

ProNoC homepage December 13, 2018 26

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

Add GPO:
1. Click on cp10 category and then double click on gpo.
2. In parameter setting set PORT_WIDTH as 4.
3. Rename the instance name as led.
4. Connect the clock and source interfaces to c1k_source module.

5. In interface connection column connect wb (Wishbone bus) interface to bus:

wb_slave[0]

L] = - BE
& Interface generator # 1P generator 5 Processing tile generator 11 NoC based MPSoC generator
1P list
: V @ Remove
» Bus
> Communication
- GoiA wishbone_bus Instance name dk source: clk =
b Display R . -
b @ Setting bus reset source: reset =
¥ GPIO
api
s R
~ emove
gpio @
s 1 gpo 3 Instance name dk 4 source:clk
||
wb 5 || bus:wh_slave[n]
Parameter name Value Description
A e
2 . .
Wishbone-bus add D @ cenertern | |[FF] ot & compile RTL
Q oK @ ishbone-bus addr | | g3 Diagram enerate @ ware ompile

Figure 5.6: Adding GPO.

The socket interface has the following format:
connection-IP-instance-name : interface-name [interface number].
hence, bus:wb_slave[0] means that the wb interface of cpo IP is connected to the bus
via zeroth wb interface. Note that you can optionally connect it to any of other wb
interfaces number as WB has a round-robin arbitration scheduler.

ProNoC homepage December 13, 2018 27

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

Add Processor:

. Click on processor category and then double click on mor1kx.

Rename the instance name as cpu.
Connect the clock interface to c1k_source:clk module.

Connect enable interface to 10

. Connect the reset interface to c1k_source: resetinterface.

Connect iwb (instruction wishbone bus) and dwb (data wishbone bus) interfaces
to bus:wb_master[0] and bus:wb_master[1], respectively.

!$I o

L [= L T
& Interface generator * IP generator -] Processing tile generator 5% NoC based MPSeC generator

T ErvscaTTeTTT == SeaTeTeT

IP list
b Intemupt A Q) setting| [led reset Source: reset
P NoC I —
b Other hA @ Remove wh bus:wb_slave[0]
'V Processor — —
Altor morlkx Instance name ck 3 | source:clk |
Orizoo
amber23
Im32 reset 5 | sour\:a:resetl
morl ko
» T iwb 0 | bus:wb_master{o]
=l
il dwb bus:wb_master{1]
B Timer
\A simple, general purpose, Wishbone bus-based, 32-bit timer.
/42 Load Tile| Tile name: |tutoriall € wisnbone-bus addr | | Ay Diagram @ Generate RTL Software e Compile RTL

Figure 5.7: Adding Processor.

ProNoC homepage December 13, 2018 28

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

Add Timer:

1. Click on Timer category and then double click on timer.

2. Rename the instance name as timer.

3. Connect the clk interface to c1k_source:clk interface.

4. Connect interrupt interface to cpu:int_periph[0].

5. Connect the reset interface to c1k_source:reset interface.

6. Connect wb (Wishbone bus) interface to bus:wb_slave[1].

o

~ o o
*. Interface generator # IP generator .| Processing tile generator 1 NoC based MPSoC generator

1P list

»
>
>
>
L3
L3
L3
»
>
>
>

Bus x> @ Remove

Communication S e

DMA

Display

GPIO

Interrupt

NoC g timer e Instance name
Other .

Processor A 9 Setting
RAM I . 2
Source ¥ @ Remave

¥ Timer

A

A2 Load Tile| Tile name: [tutoriall

[

dk

intrp

whb

w

4
5

6

source: reset

bus:wb_master{0]

bus:wh_master{1]

source:clk

cpuinterrupt_peripheral[0]

source: reset

| bus:wb_slave[1] I
|

simple, general purpose, Wishbone bus-based, 32-bit timer.

@ Wishbone-bus addr —:—- Diagram @ Generate RTL

Software a Compile RTL

Figure 5.8: Adding Timer.

ProNoC homepage

December 13, 2018

29

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

Add JTAG
UART: . .
1. Click on communication category and then double click on jtag_wb.
2. Rename the instance name as jtag_uart.
3. Connect the clk interfaces to c1k_source:clk.
4. Leave interrupt_peripheral unconnected (NC).

5. Connect the reset interface to clk_source:reset.

6. Connect wb_slave interface to bus:wb_slave[2].

Els

(1.~
A Interface generator 1P generator ' Processing tile generator :: NoC based MPScC generator
- B

1P list =
» Bus ﬁ @ Setting timer | intrp cpu:interrupt_peripheral[0]
¥ Communication I —
sthmac 100 A @ Remove reset source: reset
e I (Rl -
jtag_wb wh bus:wb_slave[1]
» DMA
» Display jtag_uart 2 Instance name dk 3 | source: clk !
» GPIO
» Interrupt Q @ Setting | interrupt_peripheral 4
> NoC E I
b Other ¥ @ Remaove reset 5 source: reset
P Processor = = -
» RAM wh_slave 10

bus:wb_slave[0]->gpo0:wb_slave[0]

[The Altera JTAG UART core with Wishbone bus interface.
bus:wb_slave[1]-=timer0:wb_slave[0]

—_—
6 bus:wb_s1a\re[2]
bus:wb_slave[3]
/2 Load Tile| Tile name: [tutorial @ wishbone-bus addr | | g Disgram | |3 Generate RTL| 1

Figure 5.9: Adding JTAG UART.

ProNoC homepage December 13, 2018 30

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

Add Single port

RAM: i .
1. Click on rau category and then double click on single_port_ram.

2. In parameter setting set aw as 14. AW is the memory address width. Hence,
this results in a 2'4 x 32 bit= 500kb memory. Make sure your FPGA board has
sufficient on-chip BRAM to be allocated. Otherwise decrees the AW to fit with
your target device.

3. Select ALTERA for FPGA_VENDOR.

4. Connect JTaG_coNNECT to JTAG_wB. This allows the editing of memory contents
at run time using JTAG interface.

5. Set in1TIAL_EN as "vEs". This enable the memory initialization at compilation
time. This configuration is also required for simulating the system using Model-
sim or Verilator softwares. Leave the rest of parameters as their default.

6. Rename the instance name as ram.
7. Connect the clk and reset interfaces to c1k_source module.

8. Connect wb interface to bus:wb_slave[3].

e® PNoc. |
#

&¥ interface generaig

Pocnerio Pr
Parameter setting

Do tile geperzio

g MoC based MPSoC generator
ingle_port_ram

foi

1P list reset source:reset
b | Parameter name Value
ErT— wh bus:wb_siave[1]
» DMA Dw 3] |2
N i 5 “ Instance name dk source:clk
w -
» GRID =
o Ert interrupt_peripheral Ne
ntermy
b nec B BYTE_WR_EN “YES® <
o 3
reset source: reset
> Oth
= FPGA_VENDOR 3| | auErar | -
» Processor
. wh_slave busiwb_siave[2]
RaM ITAG_CONNECT 4| “11ac_we 5
dual_port_ram
— Instance name dk source:clk
1 ITAG_INDEX CORE_ID 6 7
> Sooree
> Timer BURST_MODE "ENABLED" - [E"‘ e St

MEM_CONTENT_FILE_NAME | "ram0" whb 8 bus:wb_slave[3]
a1 INITIAL_EN 5 |"YES“ = I 0

| @ o E

A2 Load Tile lbus adar ‘34 Diagram @ Generate RTL

e Compile RTL

Figure 5.10: Adding Single port RAM.

ProNoC homepage December 13, 2018 31

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

Check wishbone After adding all required IP cores, now you can check the auto-assigned Wishbone

bus(es)

addresses: addresses are also modifiable.

bus addresses by clicking on @ Wishbone-bus addr button. Note that the assigned

> Wishbone slave port address setting

Instance name Interface name Bus name

0: led wh
1: vart wh_slave

2: ram wh

3: timer whb

", Revert

Base address

0x31000000

0x900p0000

0x00000000

0x36000000

ﬂoK

End address

0x9100001F

0x9000001f

OxDDOOFFF

0x9600001F

Figure 5.11: Wishbone bus addresses of the tutorial SoC.

Size (Bytes)

These addresses are automatically set based on IP cores library setting, inserted pa-
rameters and numbers of repeating same IP cores in the system. However, you are free
to adjust them to the new values as while as there is no conflict in inserted addresses.

»
Press the a

View SoC
functional block
diagram: »

Processing Tile Functional block diagram

Remove unconnected Interfaces (@

PR

Remove Clk Interfaces (&

Remove Reset Interfaces | [§F

interrupt_peripheral _0

cpu

iwb

dwb

Diagram button to observe the SoC functional block diagram.

intrp

wb

timer

source

led

wb

|

|

wb_master_0

7

whb_master_1

wb_slave_0

wh_slave_1

wb_slave_2

uart

whb_slave

/

wb_slave_3

bus

ram

wb

Figure 5.12: The tutorial SoC diagram.

ProNoC homepage

December 13, 2018

32

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

Generate SoC
RTL Code:

1. Set Tile name as tutorial.

2. Press @Generate RTL button.

= o

“ Interface generator

Communication
DMA

Display

GPIO

=

BE
17 generator ; Processing tile generator | g8 NoC based MPSoC generator

jtag_uart Instance name

| 0 Settmg‘ uart

wb

ck

interrupt_peripheral

bus:wb_slave[1]

source:clk

NC

source: reset

>
>
>
>
>
> Interrupt
>
>
>
>
>

NoC -t Processing Tile "tutorial” has been created
successfully at /home/alireza/mywork/mpsoc_work/ JWb_slave bus:wb_slave[2]
Other S0C/tutorialf.
Processor
clk source:clk
RAM
OK
Source
reset source: reset
> Timer
x> @ Remove wb bus:whb_slave[3]

Single port ram with wishbone bus interface.

O Wishbone-bus addr

@ Generate RTL Software e Compile RTL

2 Load Tile| Tile name: |tutorial = Diagram
L Tl

Figure 5.13: Generating the tutorial SoC.

If the generation is successful, you must have two new folders in your mpsoc/soc/
tutorial path:

* sw: This folder contains the required software files including the programming
header files, in-system memory editing files and Makefile.

— tutorial.h: The SoC header file containing all peripheral devices’ WB
addresses and functions (some IPs may have additional header files).

— reapMe: This file contains SoC parameters, IP connection and wishbone
bus addresses. This file also explain how to work with Jtag_wb IP core.

— program.sh: A sample bash file that can be used for programing the SoC
RAMs at run time using JTAG interface.

* src_verilog: contains two Verilog files and a folder:
— tutorial.v: the generated SoC RTL code. This file contains all IPs in-

stances and connections.

— tutorial_top.v: this file contains the tutorial SoC module instance con-
nected to a JTAG-based remote enable/reset controller which disable the
SoC during programming time.

ProNoC homepage December 13, 2018 33

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

— 1ib: This folder contains all IP cores HDL files.

Software
Development .)
1. Click on the Software button to open the software development window.

2. In the left Tree-View window, you can select any file in project sw directory to
open and then edit it. Click on tutorial.h file to see the file contents. This file
contains all generated SoC functions and WB addresses.

0 /homefalireza/mywork fmpsoc_work/SOCftutorial/sw/tutorialh - Otec

¥ /home/alireza/mywork/t Q (] RegExp [] case
Makefile 1 #ifndef TUTORIAL_SYSTEM_H a
README 2 #define TUTORIAL_SYSTEM_H
3
define_printf.h .
-7 | /* =ourm v/ 1 bus:wb_slave[1]
link.1d 5 /% led */
— 6 #defineled WRITE_REG (*{{volatile unsigned int *} (DX91000000+4)3)
- 7 #define led_WRITE(value) led_WRITE_REG=value source: dk
» morlloc 8|
program.sh R ot 2 e erol NC
" 10 #indude "define_printf.h" // This file must be available in processor folder which define the pri H
= ! 11
2| twtorialh 12 #define uart_DATA_REG (*(([volatile unsigned int *) (0X30000000)))
| 13 #define uart_CONTROL_REG (*((volatile unsigned int *) (0X90000000+4))) source: reset
= ry.sh 14 #define uart_CONTROL_WSPACE_MSK OxFFFFO000
15 ldEf!nE uart_DATA_RVALID_MSK 0x00008000 bus:wb_slave[2]
16 #define uart_DATA_DATA_MSK 0x000000FF
17
B fETITITE L1 asic function for Jtag_vart// /A1 HEFEFEIEEEEHEEEEREEEEEEREETET LT S
19 void jtag_putchar(char ch);
20 char jtag_getchar{void);
21 woid outbyte(char c}{jtag_putchar(c);} //called in printf(); i
22 char inbyte(){return jtag_getchar();} source: rest
23
24 void jtag_putchar(char ch){ //print one char from jtag_uart bus:whb_slave[3]
-
e Compile RTL
.?_ Regenerate main.c @ Compile {f Program the memory E1

Figure 5.14: The software edit window snapshot.

3. Now click on main.c file. Replace the contents of this file with the following
C code. This code writes the “Hello worlds!” on Altera JTAG UART port once,
and then controls the LEDs using the timer interrupt service routine. Each time
an interrupt happens the LED which is on is turned off and the neighboring one
is turned on. The timer asserts an interrupt in every 500 clock cycles. The
interrupt time is deliberately chosen too small to speed up the simulation. In
FPGA implementation which comes later we will increase the interrupt time to
observe the blinking LEDs on the target FPGA board.

ProNoC homepage December 13, 2018 34

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

#include "tutorial.h"

void delay (unsigned int num) {

while (num>0) {

num--—;
nop () ;
}
return;

char i=1;
void timer_isr (void) {

ix=2;

if ((1&0xF)==0) i=1;
led WRITE (i) ;

timer TCSR=timer_TCSR;
return;

int main() {
printf ("hello world!\n");
delay (500) ;
int_init () ;

int_add (0, timer_isr, 0);

int_enable (0) ;
cpu_enable_user_interrupts();
timer_int_init (500);
while (1) {

delay (500) ;
}

return 0;

ProNoC homepage December 13, 2018

35

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

4. Now press the @ compile button. This will compile the C code using Morlkx
GNU toolchain. If everything runs ok, you must see “compilation finished suc-
cessfully” message as shown in Figure 5.15. Otherwise, check the error message
to fix your code and press the compile button again. If every thing runs success-
fully you must have ram0.bin, ram0.hex, and ram0.mif files in your sw/RaM

directory.

_ fhomefalireza/mywork/mpsoc_work/sOC/tutorial/sw/main.c - Otec

¥ /home/alireza/myw Q

Makefile 1 #include "tutorial.h"
README 2 /f a simple delay fundction

3 wvoid dela unsigned int num
define_printf.h v g "

4 while (num=0){
link.|d 5 num--;
main.c ? }nop(); /) asm volatile ("nop");
B morlkx 8 return;
9%}
rogram.sh
I3- g . 10
B simple-printf 11 char i=1;
tutorial.h 12 woid timer_isr{woid){

. 13 /fwrite your interrupt code here
write_memory.sh |44 i*=2;
15 if((i&0xFF)==0) i=1;
16 led_WRITE(i);
17 timer_TCSR=timer_TCSR; /fack int
18 return;
19 }

21 int main(){

22 printf("hello world\n");
23 delay(500);

24 int_init (5000);

25 int_init();

26 //assume hw interrupt pin is connected to 10th cpu intrmupt pin

27 int_add(0, timer_isr, 0);

28 /[Enable this interrupt

29 int_enable(0);

30 cpu_enable_user_interrupts();
31 timer_int_init(500);

32 while(1){

from main.c:1:

[7] RegExp [| Case

morlky/system.h:9:13: note: expected void (*)(void *) but argument is of type void (*)(wvoid)

extern int int_add(unsigned long vect void (* handler){void *) void *arg);

a~

Compilation finished successfully.

“u

[4 Regenerate main.c ‘@ Compile

Program the memory

Figure 5.15: Compile the software code.

ProNoC homepage December 13, 2018

36

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

Simulate the
generated RTL
code using
Modelsim
software

If you have installed Modelsim software on your system, you can simulate your SoC
working with your developed software. To do this, follow these instructions:

1. Press the @ Compile RTL button in right down corner. This should open “’select
compiler window” as shown in Figure 5.16.

2. Select Modelsim as compiler tool.
3. Enter the path to your installed Modelsim bin directory.

4. Press the wp Next button.

B Step 1: Select Compiler QuartusIl .

Verilator

Compiler tool 2 Y

Modelsim bin: g I;'hornefalirezafaltemfrnodelteI,...'-

3

4 Ey Next

Figure 5.16: Select Modelsim as simulator.

ProNoC homepage December 13, 2018 37

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

5. Now you must have the testbech.v opened in text editor window as shown in
Figure 5.17. This is the minimum testbench file for running the simulation of the
generated SoC in Modelsim software. It has the SoC instance module connected
to the clock and reset signals. You can edit this file as you wish.

6. Press the {g run button to run the simulation in Modelsim software.

/home/alireza/mywork/mpsoc_work/SOC/tutorial/src_verilog/testbench.v - Otec

P /home/alireza/mywork/m | Q (7] RegExp [] Case

17 ** Public License for more details.

18 +*

19 ** You should have received a copy of the GNU Lesser General Public

20 ** License along with ProNoC. If not, see <http: **www.gnu.omg/licenses/> .
21
22 “timescale 1ns/1ps

23 module testbench;

24 /f tutorial.v 10 definition

25 wire [4 -1 01 led_port_o;
26 reg source_clk_in;

27 reg cpu_cpu_en;

28 reg source_reset_in;

29
30 tutorial uut

31 .led_port_o{led_port o),

32 .source_clk_in(source_clk_in),
33 .cpu_cpu_en(cpu_cpu_en),

34 .source_reset_in(source_reset_in)
35);

36

37 /fclock defination
38 initial begin

39 forever begin

40 #5 source_clk_in=0;
41 #5 source_ck_in=1;
42 end

43 end|

44

45 initial begin

46 // reset tutorial module at the start up
47 source_reset_in=1;

48 cpu_cpu_en=1;

49 // deasert the reset after 200 ns

50 #200

51 source_reset_in=0;

52 // write your testbench here

creat Modelsim dir in /home/alireza/mywork/mpsoc_work/SOC/tutorial
Get the list of all verilog files in src_verilog folder
Create run.tdl file

4= Previous m Regenerate testbench.v @

Figure 5.17: testbech.v file snapshot.

7. Figure 5.18 shows the Modelsim simulation output snapshot. You must see the
“hello world!” expression in the Modelsim terminal. The LEDs outputs also
must be seen as cyclic shift to the left of a one-hot code in the Signal Waveform
Window.

ProNoC homepage December 13, 2018 38

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

ModelSim SE-64 6.5¢

File Edit View Compile Simulats Add Wave Tools Layout Window Help

|[D-2HcS sBBS> (A% W @ @-ag ESH@“@@HLayuu(WJ“gél‘Lj}:lﬁjH} &

|@lt «= B w-dGBlEBE WPCBR TN || Q@ aar| wox a4 | N meaib]| L
& sim == *JJJO + 7 gl

¥ Instance ¥|Name |

||

A
1 =
g Library | & sim <[»]
i Ha x|
i hello world! 7 —
Break key hit
Break (o Statamedr lastructioacache ctel av Jhome/aliveza/wywork/mpsoc_work/SOC/tutorial/sec_verilog/Llib/merlkx_ctel_cappucciac.v Liae 13495
Simulation Breakpoiat: Hreak ia Statemeat iasteuctioancachs_ctcl at fhome/alicera/mywock/mpsoc_wock/S30C/tutorial/sce_verilog/lib/moclkx_ctel_cappucciao.v line 1143 ¥
[Now: 1,152,690 ns Deha: 4 |sim 1ks0/mor ko i 1k_cpuimort ks _ctrl_c inof i 345

Figure 5.18: Modelsim output snapshot.

Simulate the If you have installed Verilator software on your system, you can simulate your SoC
generated RTL when it is running your developed software. To do this follow these instructions:

code using o)

Verilator 1. Press the @ Compile RTL button in right down corner. This should open “’select
software compiler window” as shown in Figure 5.19. Select Verilator as compiler tool then

press wpy Next.

QuartusIl

Modelsim

Ep Next

Figure 5.19: Select Verilator compiler.

ProNoC homepage December 13, 2018 39

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

2. The Verilator Model of your SoC should be generated now. If the model is
generated successfully, you must see ~Veriator model has been generated suc-
cessfully!” in the Textview window as shown in Figure 5.20.

Step 2 Com

AUV BIITIG - S TULL T 11O LA UGB UGG SUUS /1y S0 SSSIgTITIEI LS (=) 11 1011~ CIUCKE (11U (105U 120011 UIUCK, SUgYSst DIy
assignments (=).
%Warning-COMBDLY: morlkx_ctd_cappuccino.v: 1067: Delayed assignments (<=) in non-clocked (non flop or latch) block; suggest blocking
assignments (=).
OWarming-COMBDLY: morlkx_ctrl_cappuccin.v:1070: Delayed assignments (<=} in non-clocked (non flop or latch) block; suggest blocking
assignments (=).

S%Waming-UNOPTFLAT: merlkx_icache.v:162: Signal unoptimizable: Feedback to dock or circular legic
V.CpU.morLkx0.morLkx_Cpu.cappucting. morlio:_cpu->morlks_fetch_cappuccino.icache_gen.morlkx_icache.next_iru_history
%Wamning-UNOPTFLAT: Example path: morlkx_icache.w: 162! v.cpu.morlkx0.morlkx_cpu.cappuccino.morlky_cpu-
>morl kx_fetch_cappuctino.icache_gen.morl kx_icache.next_Iru_history

O9%Waming-UNOPTFLAT: Example path: morlkx_icache.v:324: ALWAYS

O%Waming-UNOPTFLAT: Example path: morlkx_icache.v:157: v.cpu.morlkx.morl kx_cpu.cappuecino.mordkx_cpu-
>morlioc_fetch_cappuctino.icache_gen.morlkx_icache.access

9Waming-UNOPTFLAT: Example path: morlkx_cache Inu.v:173: ALWAYS

9Waming-UNOPTFLAT: Example path: morlkx_icache.v:162: v.cpu.morlkx.morLkx_Cpu.cappuecino.morlis_cpu-
>morl kx_fetch_cappuctino.icache_gen.morl kx_icache.next_Iru_history

9%Warming-UNOPTFLAT: morlkx_dcache.v:181: Signal unoptimizable: Feedback to dock or circular logic

v.cpu. merlkx0.morlkx_cpu.cappuccing.merlkx_cpu->morlkx_Isu_cappuccine.dcache_gen.morlkx_deache.next_Iru_history

S%Waming-UNOPTFLAT: Example path: morlkx_dcache.v:181: v.cpu.morlk.morlkx_cpu.cappuccine.morlkx_cpu-
>morlix_Isu_cappuccino.deache_gen.morlkx_dcache.next_Ins_history

95Waming-UNOPTFLAT: Example path: morlkx_dcache.v:461: ALWAYS

9Waming-UNOPTFLAT: Example path: morlkx_dcache.v:176: v.CpU.MOrLkx0.morlkx_cpu.cappuccing. morlkx_cpu-
>morl kx_lsu_cappuccino.deache_gen.morlkx_dcache.access

O9%Waming-UNOPTFLAT: Example path: morlkx_cache_lru.v:173: ALWAYS

O%Waming-UNOPTFLAT: Example path: morlkx_dcache.v:181: v.cpu.morlkxd.morlkx_cpu.cappuccing. mord kx_cpu-
>marlkx_Isu_cappuccino.deache_gen.marlkx_dcache.next_Inu_history

SErar: Exiting due to 126 waming(s)

SErrar: Command Failed /usrbin/verilator_bin --cc tutorial.w --profile-cfuncs --prefix Vtop -03 -CFLAGS -03

Veriator model has been generated successfully]

= Previous @ Next

Figure 5.20: Verilator model generation snapshot.

3. Press Next.

4. Now you must have the testbech.c opened in software code edit window as
shown in Figure 5.21. This is the minimum testbench file for running the gen-
erated SoC. It has the SoC instance module connected to the clock and reset
signals. You can edit this file as you wish.

ProNoC homepage December 13, 2018 40

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

x J/home falireza/mywork/mpsoc_work/SOC/tutorial/verilator/testbench.cpp - Otec

P /home/alireza/ Q

[-- IOV T I S
#

7] RegExp [| Case

/
**File: testbench.cpp

o
** Copyright (C) 2014-2018 Alireza Monemi
*
** This file is part of ProNoC 1.8.0

*

** proNoC (stands for Prototype Network-on-chip) is free software:

10 ** you can redistribute it and/or modify it under the terms of the GNU
11 ** Lesser General Public License as published by the Free Software Foundation,
12 **gjther version 2 of the License, or (at your option) any later version.
13 **
14 ** ProNoC is distributed in the hope that it will be useful, but WITHOUT
15 ** ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
16 ** or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General
17 ** Public License for more details.
18 **
19 ** You should have received a copy of the GNU Lesser General Public
20 ** License along with ProNoC. If not, see <http: * *www.gnu.org/licenses/>.
27
22
23 #indude =stdlib.h>
24 #indude <stdic.h>
25 #indude <unistd.h=
26 #incdude <string.h>
27 #indude <verilated.h> /{ Defines common routines
28 #indude "Vtop.h" [From Verilating "tutorial.v" file
29
30 Vtop *top;
31 ¢+
32 IO type port_size port_name
33 output led_PORT_WIDTH-1 : O top-=led_port o
] .
- Regenerate Testbench.cpp @ Compile

¢ Run

Figure 5.21: Verilator model testbench edit snapshot.

5. We would like to monitor the value of LEDs when running the simulation model.
To do this, add the following lines to the testbech.c file:

=43 int led=0;|
44 int main{int argc, char** argv) {

45
46
47

Verilated : :commandArgs(argc, argv); // Remember args
new Vtop;

ProNoC homepage

December 13, 2018

41

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

66 if ((main_time & 1) == 0) {

67 top-=source_clk_in=1;

6B /J Toggle clock

69 // you can change the inputs and read the outputs here in case they are
70 // captured at posedge of cock

71

72

73 if{led!=top-=led_port_o){
74 led = top-=led_port_o ;
P75 printf("%X ",top->led_port_o);
w75 getchar();

mp77 }
78
79
80 it
81 else

6. Press Compile button to generate the executable binary file. If the file is gener-
ated successfully you must see the "compilation finished successfully” message
as shown in Figure 5.22.

il
*RETCODE == 0

ar: creating Vtop__ALL.a

Compilation finished successfully.

6 7

4= Previous 2 Regenerate Testbench.cpp |@ Compile | | v Run

Figure 5.22: Verilator compilation successful snapshot.

7. Now press the Run button. In the successful simulation you must observe the
“Hello world!” sentence in terminal and each time you press the Enter button
you must observe the printed value of LED output port change to one of ”’1,2,4,8”
numbers in order as show in Figure 5.23.

ProNoC homepage December 13, 2018 42

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

Compile the
generated RTL
code using
Quartus I1
software

T
i

[

Figure 5.23: Verilator simulation results snapshot.

If you have installed Quartus II software on your system and you have an Altera FPGA
development board, you can prototype your SoC on your target FPGA and change its
software code at runtime using following instructions:

1. Press @ Compile RTL button in right down corner. This should open “select
compiler window” as shown in Figure 5.24. Select QuartusII as compiler tool.

Step 1: Selestc

DEOD_nano
o | QuartusIl & I

DE1_SoC 1
Targeted Board: g DE2 115

Quartus bin: () ||/nomesalirezasinteiFPGa_iite]|

2

-y Next

Figure 5.24: Select Quartusll as compiler.

2. Enter the path to your installed QuartusII bin directory.

3. In Targeted Board search for your FPGA board name. If the board exist select

ProNoC homepage December 13, 2018 43

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

it, press the w=p Next button and continue from step 5. Otherwise, select add
New Board and then press the mp Next button.

4. If you selected Add New Board, a new window as shown in Figure 5.25 must be
appear. Fill the required fields as follows:

(a) Enter your board name. Do not use any space in the given name

(b) Enter the path to FPGA board QSF file. In your Altera board installation
CD or in the Internet search for a QSF file containing your FPGA device
name with other necessary global project setting including the pin assign-
ments (e.g DE10_Nano_golden_top.gsf).

(c) Enter the path to [FPGA _board_top].v file. In your Altera board installation
CD or in the Internet search for a Verilog file containing all your FPGA
device 10 ports (e.g DE10_Nano_golden_top.v).

(d) Power on your FPGA board and connect it to your PC then press the
{7 ruto Fill button to auto-fill the JTAG configuration setting.

(e) Press the @ add button.

FPGA Borad name: gl DE10_Nano_VB2 l a
FPGA board golden top QSF file: e I DE10_Nano_golden_top.qsf ‘... l b
FPGA board golden top verilog file el DE10_nano_VB2.v| J— l c

FPGA Board JTAG Configuration
FPGA Borad USB Blaster PID: e 6010
FPGA Borad Programming Hardware Name: e DE-SoC

FPGA Borad Device location in JTAG chain: | (g [2 =

Detected PID: 6010
/home/alireza/intelFPGA_lite/17.1/quartus/bin/jtagconfig
1) DE-SoC [1-2]

4BADD477 SOCVHPS

02D020DD SCSEBAG(.|ES)/SCSEMAG/..

*RETCODE == 0
Detected Hardware: DE-50C
Device name in qsf file is: SCSEBAGUZ3I7

SCSEBAGU23I7
has the most similarity with 5CSEBAG(.|ES)/5CSEMAB/.. in JTAG chain

Figure 5.25: Add new FPGA board to ProNoC.

ProNoC homepage December 13, 2018 44

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

5. Assign your SoC pins to your FPGA boards pins as shown in Figure 5.26.

% Step Z: Pin Assignment

Port Direction Port Range Port name Assigment Type Board Port name Board Port Range
input Cpu_cpu_en Direct = *VCC =
output [4-1:0] led_port_o LED = 3 L0 2
input source_clk_in Direct = FPGA_CLK1_50 =
input source_reset_in Negate(~) = KEY = o

4= Previous = Next

Figure 5.26: SoC pin assignment.

Here, we have a DE10_nano FPGA board which we have used its FPGA_CLK1_50,
KEY[0], and LED[3:0] ports. The enable pin is connected to logic 1, led_port
[3:0] to LED[3:0], the clk signal to FPGA_CLK1_50 and reset to negate KEY[0].
In DE10_nano FPGA board the KEY[1:0] are push-button switches and are
active-high. Hence, to use them as active-high reset sources we have to negate
their value.

6. Press the wyp Next button.

7. Press the e compile button. Then wait for Quartusll compilation tasks to
complete.

ProNoC homepage December 13, 2018 45

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

J/home/alireza/mywork/mpsoc_work/SOC/tutorial/src_verilog//Topv - Otec

¥ /homefalirezajmywork/mpsoc_work | T o
Topv = ST TS TS Ve U GRS TS S CESsr GeeTa T aETT
20 ** License along with ProNoC. If not, see <htip: **www.gnu.omg/licenses/>.
) 21
testbench.v 22

23 module Top (

i FommE Y, 24 FPGA_CLK1_S0,
tutorial_top.v 5 KEY,

26 LED

7

28 input FPGA_CLKI_50;
29 input [1: 0] KEY;
30 output [7: 0] LED;

31

32

33 tutorial_top uut(

34 .cpu_cpu_en(1'b1),

35 .led_port_of LED [3: 0]),
36 .source_dk_in{ FPGA_CLK1_50),
37 .source_reset_in(~ KEY [0])
38)

39

40

41 endmodule

42

S A
xterm - sh - '/home/alireza/intelFPGA_lite/17.1/quartus/bin/quartus_fit --64bit tutorial --res
cd "/homeyalireza/ mywork/mpsoc_work/ SOC/tutorial/”

xterm - sh - '/home/alireza/intelFPGA_lite/17. 1/quartus/bin/quartus_asm --64bit tutorial -

cd "/homeyalireza/mywork/mpsoc_work/ SOC/tutorial/”
xterm - sh - '/home/alireza/intelFPGA_lite/17. 1/quartus/bin/quartus_sta --64bit tutorial;echo $2 > status'
Quartus compilation is done successfully in /home/alireza/mywork/mpsoc_waork/SOC/tutorial!

—— Tem——— = o [—

Figure 5.27: QuartuslI compilation snapshot.

8. If Quartus compilation is finished successfully, power on your FPGA board and
connect it to your PC then press £¥ program the Board button to program your
FPGA board using the generated sof file.

9. Open Terminal and type $QUARTUS_BIN/nios2-terminal. You must be able to
observe the “Hello world!” sentence in the terminal as shown in Figure 5.28.

De alireza@alireza: ~
alireza@alireza:~$ SQUARTUS_BIN/nios2-terminal
terminal: connected to hardware target using JTAG UART on cable
2-terminal: "DE-SoC [1-3]", device 2, instance @

terminal: (Use the IDE stop button or Ctrl-C to terminate)

world!

Figure 5.28: nios2-terminal output snapshot.

10. As we mentioned in step 3, the interrupt time is too short to observe the LEDs
blinking. To change the interrupt time click on Software button and change
the timer interrupt time from 500 to 5000000. Then press the @ compile
button. By clicking on £ program the Board button you can reprogram your

SoC memory contents at run time. You should be able to observe the blinking
LEDs now.

ProNoC homepage December 13, 2018 46

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

fhome/alireza/mywork/mpsoc_work/SOC/tutorial/sw/mal Otec

¥ /nomefalireza/mywork/mpsoc_worl | QY
Makefile 15
16

»
RAM 17
README 18
define_printf.h 19
20
image 21
image.ihex 22
23
image.lst B
image.map 25
N 26
jtag_intfc.sh 57
link.1d 28
main.c =
30
P morlkx *1
program.sh 32
33
B simple-printf o
tutorial.h 35
36
—turite memerv.sh A=

write Is verified

index num=127

Initial Vitag for DE-SoC & @2*

send I:1,D:2:0,1:0 to jtag
*RETCODE == D

Memory is programed successfully!

,2' Regenerate main.c

[] RegExp [] Case
WUROxF)==0) 1=1;
led_WRITE(7);
timer TCSR=timer_TCSR; //ack int
return;

K

int main(){
printf("helle world!\n");
delay(500);
int_init (5000);
int_init();
//assume hw interrupt pin is connected to cpu intrrupt pin 0
int_add(0, timer_isr, 0);
#/ Enable this interrupt
int_enable(0);
cpu_enable_user_intermupts();
timer_int_inif{5000000);
while(1){
delay(500);

return 0;

@ Compile £# Program the memory

Figure 5.29: Increase timer interrupt time.

ProNoC homepage

December 13, 2018 47

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

CHAPTER 6

Add Custom IP to
Processing Tile
Generator Tutorial

Summary

System

Requirements:

Objectives:

Greatest
Common
Divisor (GCD)
Algorithm

This tutorial teaches how to add a custom intellectual property (IP) core to ProNoC
Processing Tile Generator using IP Generator. This tutorial uses a custom Verilog
module for calculating the greatest common divisor (GCD) as an example hardware
accelerator to be added to ProNoC IP library. The desired system is a Wishbone bus
based SoC that is enhanced with GCD accelerator. This SoC will be generated by
connecting open-source IP cores on Altera FPGA board.

You will need an Altera FPGA development board having USB blaster I or II and a
computer system running Linux OS with:

1. Installed the ProNoC GUI software and its dependency packages.
2. Installed/Pre-built GNU toolchain of the aeMB soft-core processor.

3. Installed Quarts IT (Web-edition or full) compiler.

For more information about the GNU toolchain installation please refer to the In-
stallation Manual for the Ubuntu. In case your FPGA board is not included in ProNoC
FPGA board list please follow the instruction given in Adding a New Altera FPGA
Board to ProNoC, to add your board to ProNoC.

1. To develop a Wishbone bus based custom Hardware Accelerator (HA) IP core.

2. To extend ProNoC IP core library with a new IP core and its required software
header file.

The Greatest Common Divisor (GCD) of two integers p and ¢, is the largest integer
that divides both p and q. GCD can be obtained using Euclidean algorithm as follow:

Data: (p, q): A pair of 8-bit binary positive numbers.
Result: gcd: greatest common divisor
INITIALIZE,
while p £ g do
if p > g then
| P=P—¢
end
else if p < g then
|l 9=q—p;
end
else
| ged = p;
end

end

Algorithm 1: Greatest Common Divisor algorithm.

ProNoC homepage December 13, 2018 48

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

The GCD flow chart:

Figure 6.1: GCD flow chart.

GCD RTL code The GCD Verilog RTL code is as follows:

Listing 6.1: ged.v

module gcd #(
parameter GCDw=32

) (clk, reset, enable, inl, in2, done, gcd);
input clk, reset;
input [GCDw-1 : 0] inl, in2;
output [GCDw-1 : 0] gcd;
input enable;
output done;
wire 1dG, 1dP, 1dQ, selP0, selQ0, selP, selQ;
wire AegB, AltB;

gcd_cu CU(
.clk (clk),
.reset (reset),
.AegB (AegB),
.AltB (AltB),
.enable (enable),
.1dG (1dG),
.1dP (1dP),
.1dQ (1dQ),
.selP0 (selPO),

ProNoC homepage December 13, 2018

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

.selQ0

.selP

.selQ

.done
) i

(selQ0),
(selP),
(selQ),
(done)

gcd_dpu # (
.GCDw (GCDw)

) DPU (
.clk (clk),
.reset (reset),
.inl (inl),
.in2 (in2),
.gcd (ged),
.AegB (AegB),
.AltB (AltB),
.1dG (1dG),
.1dp (1dp),
.1do (1dQ),
.selP0 (selPO),
.selQ0 (selQ0),
.selP (selP),

.selQ (selQ)

) i

endmodule

module gcd_cu (clk,
AltB, done,
input clk, reset;
input AegB, AltB,
output 1dG, 1dP,

reg 1dG, 1dP, 1dQ,

parameter SO0 =
reg [1:0] y;

always @
if (reset

else begin

case (y)

S0: begin

else y

end

Si:

== 1)

begin
else y

reset,
enable) ;

2'b00,

1dG, 1dP, 1dQ, selP0O, selQ0, selP, selQ,

enable;
1dQ,
selPO,

selP0, selQO,
selQ0, selpP,

selP, selQ, done;
selQ, done;

Sl = 2'b01, S2 = 2'b10;

(posedge reset or posedge clk) begin

y <= S0;

if
<=
if
<=

(enable == 1)
S0;

y <= S1;

(AegB == 1)
Sip

y <= S2;

AegB,

ProNoC homepage

December 13, 2018

50

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

end

S2: begin if (enable == 0) y <= SO;
else y <= S2;
end
default: y <= S0;
endcase
end
end

always @ (y or enable or AegB or AltB) begin
1dG = 1'b0; 1dP = 1'b0; 1dQ = 1'bO;
selP0 = 1'b0;
selQ0 = 1'b0;
selP = 1'b0;
selQ = 1'b0;
done = 1'b0;

case (y)
S0: begin
done = 1'bl;
if (enable == 1l)begin
selP0 = 1; 1dP = 1; selQO0 = 1; 1dQ = 1;
end
end
S1l: begin
if (AegB == 1) begin
1dG = 1;
done = 1;
end
else if (AltB == 1) begin
1dQ = 1;
end

else begin
1dP = 1; selP = 1; selQ = 1;

end

end

S2: begin
1dG = 1;
done = 1;

end

default: ;

endcase

end

endmodule

module gcd_dpu # (
parameter GCDw=32

) (clk, reset, inl, in2, gcd, 1dG, 1dP, 1dQ, selPO,

done =

selQO,

0;

selP,

selQ,

ProNoC homepage December 13, 2018

51

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

GCD
Simulation

AegB, AltB);
input clk, reset;
input [GCDw-1:0] inl, in2;
output [GCDw-1:0] gcd;
input 1dG, 1dP, 1dQ, selP0O, selQ0, selP, selQ;
output AeqgB, AltB;
reg [GCDw-1:0] reg_P, reg_Q;
wire [GCDw-1:0] wire_ALU;
reg [GCDw-1:0] gcd;
wire AegB, AltB;

always @ (posedge clk or posedge reset)begin

if (reset == 1) reg_P <= 0;
else begin
if (1dP == 1)begin
if (selP0O==1) reg_P <= inl;
else reg P <= wire_ALU;
end
end
end

always Q@ (posedge clk or posedge reset) begin

if (reset == 1) reg_Q <= 0;
else begin
if (1dQ == 1)begin
if (selQ0==1) reg_Q <= in2;
else reg_Q <= wire_ALU;
end
end
end

always @ (posedge clk or posedge reset)begin

if (reset == 1) gcd <= {GCDw{1l'bO}};
else begin
if (1dG == 1) gcd <= reg_P;

end
end
assign AegB = (reg_P == reg_Q)? 1'bl : 1'bO;
assign AltB = (reg_ P < reg_Q) ? 1'bl : 1'bO;
assign wire_ALU = ((selP == 1) & (selQ == 1)) ?

reg_Q - reg_P);
endmodule

Create mpsoc/src_peripheral/other directory and then copy the above gcd. v file

inside it.

In order to verify GCD hardware module, we use Verilator simulator. Optionally you

can use Modelsim as well.

1. If you have not yet installed Verilator simulator on your system run the following

(reg_P - reg_Q)

ProNoC homepage December 13, 2018

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

command in terminal

sudo apt-get install verilator

2. Open terminal in the folder which you have created gcd. v file and run:

verilator --cc gcd.v

If your code is successfully verilated, you will have an obj_dir directory that
includes all generated GCD object files.

3. Open obj_dir folder and create testbench.cpp inside it:

Listing 6.2: testbench.cpp

#include <stdlib.h>
#include <stdio.h>
#include <unistd.h>
#include <verilated.h>
#include "Vgcd.h"

unsigned int inputl[10] ={136, 25, 33220, 3627, 3450, 9375, 199317,
157620, 5694235, 199307 };

unsigned int input2[10] ={248, 50, 2200, 4581, 6540, 61575, 103443,
238844, 239871, 903443};

unsigned int expt_gecd[10] ={8, 25, 220, 9, 30, 75, 2523, 284, 2161,
1};

Vgcd *gcd

unsigned int main_time = 0;
int run;
unsigned int i=0,passed=1;

int main(int argc, char** argv) {
Verilated: :commandArgs (argc, argv);
gcd = new Vgcd;

gcd->reset=1;
gcd->enable=0;
gcd->inl=0;
gcd->in2=0;
main_time=0;
run=0;

while (!Verilated::gotFinish() && 1<10) {

if (main_time & 0x1) {
gcd-> clk = 0;
if (gcd-> done==1 && run>6) {
printf ("$u : GCD(%u, %u)=
in2, gcd->gcd);
if (gcd->gcd == expt_gcd[i]) printf (" Matched\n");
else {passed=0; printf (" Error:Miss-matched\n");}

$d\t",main_time,gcd->inl, gcd->

ProNoC homepage December 13, 2018 53

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

i++;
run=0;

}

if (gcd-> enable == 1 && run==5) {
gcd-> enable = 0;

}

if (run==4 && gcd->reset==0) {
gcd-> enable = 1;
gcd-> inl = inputl([i];
gcd-> in2 = input2[i];

}

if (main_time >= 10) {
gcd->reset=0;
run++;

gcd->eval () ;
main_time++;

}

if (passed) printf(" xx*xxxxxxx GCD Testing passed sx*xx**k*x**\N
n
else F))]Cil’ltf(" xkkxxxxx4k*x GCD Testing failed kkkkkkkxxkkkk\N") ;
gcd->final () ;
}
double sc_time_stamp () {

return main_time;

ProNoC homepage December 13, 2018 54

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

4. Now create a Makefile inside obj_dir:

Listing 6.3: Makefile

default: sim

MUDUL = Vgcd

include Vgcd.mk

1lib:
$ (MAKE) —-f $(MUDUL) .mk

CPPFLAGS += -DVL_DEBUG=1
ifeq ($(CFG_WITH_CCWARN),yes)
CPPFLAGS += -DVIL_THREADED=1
CPPFLAGS += -W —-Werror -Wall
endif

sim: testbench.o $(VK_GLOBAL_OBJS) $(MUDUL)_ ALL.a
$(LINK) $(LDFLAGS) -g $° $(LOADLIBES) $(LDLIBS) -o testbench $(LIBS) -
Wall -03 2>&1 | c++filt

testbench.o: testbench.cpp $(MUDUL) .h

clean:
rm .0 *.a main

5. Now to compile the testbench code open terminal in ob3_dir directory and run:

make

Sample output:

g++ -I. -MMD -I/usr/local/share/verilator/include -I/usr/local/
share/verilator/include/vltstd -DVL_PRINTF=printf -DVM_TRACE=0
-DVM_COVERAGE=0 -DVL_DEBUG=1 -c -o testbench.o testbench.cpp

gt++ —-g testbench.o verilated.o Vgcd__ALL.a -o testbench -1lm -lstdc
++ -Wall -03 2>&1 | c++filt

This must generate a binary executable file inside obj_dir named as testbench.

ProNoC homepage December 13, 2018 55

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

Add Wishbone
bus interface to
GCD

6. To run

the simulation run:

./testbench

Expected output:

37 : GCD(136,248)= 8 Matched
51 : GCD(25,50)= 25 Matched

109 :
177
217
263
305 :
365
445
557

GCD (33220,2200)= 220 Matched

: GCD(3627,4581)= 9 Matched
: GCD(3450,6540)= 30 Matched

GCD (9375,61575)= 75 Matched
GCD(199317,103443)= 2523 Matched

: GCD(157620,238844)= 284 Matched
: GCD(5694235,239871)= 2161 Matched
: GCD(199307,903443)= 1 Matched

*%xxxkkkkxxx GCD Testing passed Kk kkkkkkkk kK

After the GCD core is functionality verified, next is to add Wishbone bus interface
to GCD hardware. This interface module provides memory-mapped access of GCD
module’s input/output ports for the processor. The memory-mapped addresses are il-
lustrated in Table 6.1:

Table 6.1: GCD_IP internal register addresses.

(A)flfc?:ss Name Description Mode
0 DONE | Holds the value of done output port Read-only
1 IN1 Write on GCD’s module first input variable | Write-only
2 IN2 Write on GCD’s module second input vari- | Write-only
able. Writing on this register will trigger
the GCD’s enable port
3 GCD | Holds the generated GCD value Read-only

Create the following file inside mpsoc/src_peripheral/other directory

Listing 6.4: ged_ip.v

module gcd_ip# (

parameter
parameter
parameter
parameter
parameter

clk,
reset,

s_dat_1i,
s_sel_i,
s_addr_i,

GCDhw=32,
Dw =GCDw,
Aw =5,
TAGw =3,
SELw =4

ProNoC homepage December 13, 2018

56

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

s_tag_1i,
s_stb_1i,
s_cyc_i,
s_we_1i,

s_dat_o,
s_ack_o,
s_err_o,
s_rty_o

input clk;
input reset;

input [Dw-1 : 0] s_dat_i;
input [SELw-1 : 0] s_sel_i;
input [Aw-1 : 0] s_addr_i;
input [TAGw-1 : 0] s_tag_i;
input s_stb_i;

input s_cyc_i;

input s_we_i;

output [Dw-1 : 0] s_dat_o;
output reg s_ack_o;

output s_err_o;

output s_rty_o;

localparam DONE_REG_ADDR=0;
localparam IN_1_REG_ADDR=1;
localparam IN_2_REG_ADDR=2;
localparam GCD_REG_ADDR=3;

assign s_err_o 1'b0;
assign s_rty_o = 1'b0;

wire[GCDw-1 :0] gcd;
reg [GCDw-1 :0] readdata,inl,in2;
wire done;

assign s_dat_o =readdata;

always @ (posedge clk or posedge reset) begin
if (reset) begin
s_ack_o <= 1'b0;
end else begin
s_ack_o <= (s_stb_i & ~s_ack_o);
end
end

always @ (posedge clk or posedge reset) begin
if (reset) begin
readdata <= 0;
inl <= 0;
in2 <= 0;
end else begin

ProNoC homepage December 13, 2018

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

if (s_stb_i && s_we_1i) begin

if (s_addr_i==IN_1_REG_ADDR[Aw-1:
else if (s_addr_i==IN_2_REG_ADDR[Aw-1:

end
else begin
if (s_addr_i==DONE_REG_ADDR)
if (s_addr_i==GCD_REG_ADDR)
end
end
end

wire start=(s_stb_i && s_we_1i &&
reg ps,ns;

reg gcd_reset,gcd_reset_next;
reg gcd_en,gcd_en_next;

always @
if (reset) begin
ps<=1'b0;
gcd_reset<=1'bl;
gcd_en<=1'b0;
end else begin
ps<=ns;
gcd_en<=gcd_en_next;
gcd_reset<=gcd_reset_next;
end
end

always @ (*)begin
gcd_reset_next=1'b0;
gcd_en_next=1'b0;

ns=ps;
case (ps)
1'b0:begin
if (start) begin
ns=1"'bl;
gcd_reset_next=1'bl;
end
end
1'bl:begin
gcd_en_next=1'bl;
ns=1"'b0;
end
endcase
end
gcd #(
.GCDw (GCDw)
) the_gcd
(
.clk (clk),
.reset (gcd_reset),
.enable (gcd_en),
.inl (inl),

(s_addr_i==IN_2_REG_ADDR[Aw-1:

0]) inl <= s_dat_i;

0]) in2 <= s_dat_i;

readdata<={{GCDw{1'b0}},done};
readdata<=gcd;

01));

(posedge clk or posedge reset) begin

ProNoC homepage December 13,

2018 58

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

.in2 (in2),
.done (done),
.gcd (gcd)

)i

endmodule

Add custom In this section, we show how to add previously generated GCD IP core to ProNoC
wishbone-based library. However, this can be applied to any other wishbone based IP core.

IP core to
ProNoC Library 1. Open mpsoc/perl_gui in the terminal and run ProNoC GUI application:

./ProNoC.pl

It should open The GUI interface as follows:

e
#| &

¥ mnterr tor | # 1P tor | [Processing ti tor | B NoC based MPSoC t
&¥ Interface generator generator | [Processing tile generator | 18 NoC based MPSoC generator

Select file: A browse| | @) Description
Select module: & Import Ports Select Category: Q '
Interface name: Select soket type: | single connection
— e)

About ProNoC

ProNoC 1.8.0

NoC based MPSoC generator.

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

Credits License Close

Please select the verilog file containig the interfacd

#— Load Interface @ Generate

Figure 6.2: ProNoC GUI first page snapshot.

ProNoC homepage December 13, 2018 59

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

2. Then select the # 1P generator. The IP Generator snapshot is shown in Figure 6.3.

5 BE
¥ 1nierface generator 1P generator || B Processing tile generator | B® NoC based MPSoC generator
. £ =

Interfaces list

> interrupt Select
> source module
> wishbane

Type

Please select the verilog file containig the ip module

A Loaa P

Parameter Select

setting Category: |55

Interface name Type

Port name

/2 Browse| IP name:

- g 9 Des::ptmn

Interface Num

Interface name Interface port

@ corere

Figure 6.3: ProNoC New IP Generator snapshot.

3. Click on /= Browse and select gcd_ip.v file.

4. Enter other as category name.

5. Enter gcd as IP name.

Add Software = Add HDL

= files

Port Range

ProNoC homepage

December 13, 2018

60

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

s
&¥ interface generstor | 1P generator 3 Processing tile generator | B8 NoC based MPSoC generstor
wls
Interfaces list - - 5 —
Select file: |/nnmefanreza,mywnrk,mpsnc/src,penpnemuomer,gm,m,v | 3 2 Browse| 1P name: [ped
» NoC
> interrupt Select g Parameter| Select P Add Software | | = Add HDL
b source module: | 99-P < setting Category: 4 & e $Descrip(inr\ h files = files
> wishbone
Interface name Type Interface Num
Type Port name Interface name Interface port Port Range
input dlk o 10 .
input reset o 10 .
input s dat i o 10 + | [ow-1 0
input s seli 0 0 - | [sELw-1 0
input s_addr_i 0 0 <|faw-r 0

Please select the verilog file containig the ip module

A2 L @ cenerate
Figure 6.4: Select gcd_ip.v file.

6. The gcd_ip.v file has one parameter named as ccpw which we want to be rede-
fined by the user during IP call time. To define the appropriate GUI interface for
this parameter click on @ parameter setting button.

7. In the newly open window, select combo-box as widget type.

8. Enter 8,16, 32 as widget content. It will allow the user to select one of these
three values for this parameter during Processing tile generation.

9. In the next Combo-box define it as Localparam. You can optionally select it as
parameter. See here to understand the differences.

10. Click on) 1p pescription button to add parameter information.

11. Enter parameter information as GCD's Input/output width in bits then press

\’; ok.

12. In parameter setting window press %9 ok to save your setting.

ProNoC homepage December 13, 2018 61

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

" Add description
so :

[
&¥ interface generator | 2 1P generator 'j Processing tile generator | 38 NoC Dasﬂ

Interfaces list . : |
Select file: /home/alireza/mywork/mpsoc/src_peripheral/Other/ged_i

b NoC —
> interrupt Select arameter Select p | b
> source module: | 9P < o 6 catgory: [0

Parameter name Default value widget type () widget content () Tyee @ (2] info @@ | ada/remove
R - % (74
GCDwW 32 8,16,32 Localparam = | [Rederine10 @ remove
7 8
Dw GCOw Fixed . Locsiparsm [= | @ redetine (@) @ remove
Aw 5 Fixed & Localparem | 2 | @ Rederine | @] | €D remove
TAGW 3 Fixed - Locsiparsm [2 | @ redetine @) @ remove
SELw 4 Fixed = Localparam 2| [Redefine @ @ remove
Fixed B ponQindude = [resefine | @) & 2w
@
Y I
2 Load e @ senerte

Figure 6.5: GCD IP core parameter setting.

13. In Interface 1list window expand source and wishbone categories. Then dou-
ble click on c1k, reset and wishbone to add them to the GCD IP library.

14. In Wishbone bus interface row, click on ¢ button.
15. Select custom devices as wishbone address range category.

16. Set block address range as 5. This results in allocating 32 Bytes for each instance
of this module. The memory size must be selected equal or greater than the actual
IP’s internal register size. (GCD has four 32-bit internal registers which are equal
to 16 Bytes memory space).

17. Press @ ok.

Now we need to map each module individual port to its appropriate interface
port. By selecting the interface name, the port with the most similar name is
matched with module port name, automatically . For this example the software
can match all ports correctly. However in general, you may also needed to adjust
the port name as well.

18. Select plug:c1k for c1k interface.
19. Select plug:reset for reset interface.

20. Connect all other ports to plug:wb_slave interface.

ProNoC homepage December 13, 2018 62

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

Interface generator
Interfaces list
* NoC
» interrupt
v source

enable

wb_addr_map
wb_master

21. Clickon =

Interface parameter setting

15b

interface name

address range: (start end name)

block address wmthlo

whb_slave 0xb800_0000 OXbfff_ffff custom devices | 15 3 Fixed =
Interface name Type Interface Num
reset plug 2 1 @ Remove
clk plug 2 8 & @ Remove
wb_slave plug = 1 @ Remove ﬂ
Type Port name Interface name Interface port Port Range
input clk 18 |plug:clk 3 clk_i =
input reset 19 |Pplug:reset reset_i =
input s_dat_i plug:wb_slave 2 dat_i s ||Dw-1 0
input s_sel_i plug:wb_slave 2 sel_i : | |SELw-1 : 0
input s_addr_i plug:wb_slave adr_i 2 ||Aw-1 = 0
input s_tag_| plug:wb_slave £ tag i S||TAGW-1 0
input s_sth_| plug:wb_slave 2 stb_i =
. . 20 i D i =
input s_cye i plug:wb_slave : cyc_| ~
input s_we_| plug:wb_slave 2 we_i -
autnut s dat o nlug:wh <l - dat o = 1iDw-1 o

Figure 6.6: GCD Core interface setting.

Add HDL Files button.

22. In front of select file(s) clickon ,2 Browse button.

23. Select gcd.v and gcd_ip.v files and press @ ok.

Select file: i/mpsoc doc/user
Select g Parameter Select
module: (991P_ * setting Category: | P

Interface naf

clk

reset

wb_slave

input

Add HDL file(s)

e

Add exsiting HDL file/folder

23 selecet file(s):

/mpsoc/src_p

/mpsoc/src_p

eripheral/GCD/ged.v

eripheral/GCD/gcd_ip.v

A Browse

»
b Q Q Description

1P name: |ged

h Add Software
files

21

Add HDL
files

Selecet folder(s):

2 Browse

Figure 6.7: Adding GCD core HDL files.

00

24. Click on h 2add software files button. In the newly opened window, you

ProNoC homepage

December 13, 2018

63

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

can add IP core’s software library/header files. The listed files/folder here will
be copied in generated SoC project folder inside sw directory.

25. Click on add to tile.h tab.

26. Copy following text on the new tab, then click on 9 save button.

#define ${IP}_DONE_ADDR (* ((volatile unsigned int =*) (S$BASE))
#define ${IP}_IN_1_ADDR (* ((volatile unsigned int =*) ($SBASE+4
#define S${IP}_IN_2_ADDR (* ((volatile unsigned int *) (SBASE+8
#define ${IP}_GCD_ADDR (x((volatile unsigned int x) ($BASE+12

)
)))
)))
)))
#define ${IP}_INl1_WRITE (value) ${IP}_IN_1_ADDR=value

#define ${IP}_IN2_WRITE (value) ${IP}_IN_2_ ADDR=value

#define ${IP}_DONE_READ() ${IP}_DONE_ADDR

#define ${IP}_READ() ${IP}_GCD_ADDR

unsigned int gcd_hardware (unsigned int p, unsigned int g) {
S{IP}_INI_WRITE (p);
$S{IP}_IN2_WRITE (q);
while ($S{IP}_DONE_READ () !=1);
return ${IP}_READ();

The entered text here will be added to the [soc_name] .h file. This file contains
all IP cores’ wishbone bus addresses, functions and header files. You can use
some global variables with $[variable_name] format here such as all IP core
parameters and IP core Verilog instance name (see the list of complete available
variables in ProNoC). These variables will be replaced with their exact values
during SoC generation time. In this example, we used variable s {1p} which is
the IP core’s instance name. Hence, in case this IP core is called more than once
in any SoC, each instance has its own unique WB addresses and functions.

27. Click on @ Generate to add the GCD IP core to the library.

ProNoC homepage December 13, 2018 64

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

’. Interface generator | 8 TP generator Processing tile generator == NoC based MPSoC generator

Add software File(s)

Interfaces list
IP name: |ged

> NoC J G —
imtempt) P Add Software ||| = Add HDL
v source Slonal "a“mes\o\ e | ‘gDesmptmn‘ | b e I[| = fies |
ex Add exsiting file/folder | Add files contain variables | Add totile.n | S5 24
enable | —

reset @J | €D Remave |

pgatec Lt #define ${IP}_DONE_ADDR (*{{volatile unsigned int *) ($BASE)))
wh_addr_mag #define ${IP}_IN_1_ADDR (*({volatile unsigned int +) ($BASE+4))) i@ | igl
wh_master #define ${IP}_IN_2_ADDR (*((volstile unsigned int +) ($BASE+8])) -
wh_siave | ||edefine ${1P)_GCD_ADDR (*((volatile unsigned int *) ($BASE+12))) | Remove|

tterface port Port Range

#define ${IP}_IN1_WRITE(value) ${IP}_IN_1_ADDR=value

1 T
#define ${IP}_IN2_WRITE(value) ${IP}_IN_2_ADDR=value # L

= I

#define ${IP}_DONE_READ() ${IP}_DONE_ADDR | |
dat i sllow1 i o0 |

= J

J

#define ${IP}_READ() ${IP}_GCD_ADDR

unsigned int ged_hardware (unsigned int p, unsigned int q }{ —
${IP}_IN1_WRITE(p); El |[SELw-1 : 0

i
${IP}_IN2_WRITE(q); e
while (${IP}_DONE_READ{)!=1); 26 gl =Y il)
return §{IP}_READ();

4
Please select the veril{

—
‘Q S| Generate || 27

Figure 6.8: Add GCD software files.

Generate a new In this section, we aim to generate an embedded SoC enhanced using generated GCD
SoC enhanced IP core. The desired SoC schematic is shown in Figure 6.9.

with new IP

core (GCD)

USB Blaster
Rov.e —@Ds xer(D)

]

il
So S3 M3
Wishbone Bus

So Sq M1 Mo

Figure 6.9: Desired SoC with GCD IP core.

ProNoC homepage December 13, 2018 65

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

&% interface generator | 1P generator PR Frocessing tile generator :;:; NoC: basexl MPSoC generatar
st & b clk_source Instance name clk 10 =
A | @ setting souree reset 0 =
» Communication
b oma ¥ | remone
P Display
> GPIO wishbone_bus Instance name dk source:clic .
» Interrupt f
- e ~ o[| pe——
b Other r " -
Parameter setting for wishbone_bus
b Processor ¥ @ Remove |
v RAM —
dual port ram | Parameter name Value Description
e single_port_ram e . El - e dk source:clk 2
¥ Source d E
i A @ Semﬂ 5 4 = g reset source: reset =
b Timer 3
A @ Remw&| Dw L - (7] wh bus:wb_slave[0]
1 Aw 37 |= (7] s
Single port ram with wishbone bus interface.
|) ox E
A2 Load Tile| Tile name: | jenerate RTL oftware e Compile RTL

Figure 6.10

1. In ProNoC GUI Click on Processing Tile Generator. This tool facilitates the
generation of a custom SoC using a list of available IP cores. Add all required
IP cores according to the following stages:

(a) Click on IP core category name to see the list of its containing IP cores.

(b) Double click on each IP core name to add the IP core to the SoC. Add all
IP cores listed in Table 6.2 at first, then continue with the next step.

(c) Click on €) setting button to open each IP core parameter setting win-
dow.

(d) Adjust the IP core parameters according to Table 6.2.
(e) Rename the IP core instance name according to Table 6.2.

(f) Connect the IP cores interfaces as listed in Table 6.2.

ProNoC homepage December 13, 2018 66

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

Table 6.2: GCD SoC IP core list and setting.

Category IP name Parameter Instance name Interface connection
clk — 10
Source clk_source - source
reset — 10
M — 3
Bus wishbone_bus S - 3 bus clk — sourceclk
Dw — 32 reset — source:reset
Aw — 32
clk — source:clk
reset — source:reset
STACK_SIZE — 0X400 .
Processor aeMB HEAP SIZE s 0X400 aeMB iwb — bus:wb_master[0]
dwb — bus:wb_master[1]
enable — 10
Dw — 32
Aw - 12
BYTE_WR_EN — "YES”
FPGA_VENDOR — ”ALTERA” Ik N ree-clk
RAM e bort JTAG.CONNECT ~ — “DISABLED” ¢ . I souree:e .
single_port-ram | 1o\ = NpEY _. CORE.ID ram rels)e - ls)ou.rceb.relse o
BURST_MODE — ”DISABLED” W us-wh-stave
MEM_CONTENT. — ’ram0”
FILE_ZNAME
INITIAL_EN — "YES”
clk : source:clk
Interrupt int_ctrl INT_NUM — 1 int_ctrl ?eset — source:'reset
interrupt_cpu N aeMB:interrupt_cpu
wb N bus:wb_slave[1]
clk — source:clk
Timer timer PRESCALE WIDTH — 8 timer reset — sourceiresel
wb — bus:wb_slave[2]
intrp — in_ctrl:int_periph[0]
clk — source:clk
C icati jt b Dw - 32 jt b reset — source:reset
ommunication) Jtag-w VITAG_INDEX —» CORE.ID yag-w uree:
wbm — bus:wb_master[2]
FPGA_VENDOR — ”ALTERA” fg;et : Zgﬁ;ﬁgfﬁet
Communication | jtag_uart SIM_BUFFER SIZE — 100 uart introt ~ NC ’
SIM_WAIT_.COUNT — 1000 P
wb — bus:wb_slave[3]
ProNoC homepage December 13, 2018 67

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

2. Add the new GCD IP to SoC.

Table 6.3: GCD SoC IP core list and setting.

Category | IP name Parameter Instance name

Interface connection

Other gcd GCDw — 32 | gcd

clk

reset

wb

— source:clk
— source:reset
— bus:wb_slave[4]

= o

”~

] r Processing tile generator | BE s S ra
&¥ interace generstor | # 1P generator | (g g tile g T8 Noc based MPSoC generator
P list]
v Bus
2 Setting timer int
> Communiction AN Dz 2
> DMA
>
> Dislay Y| Qo) g
> GPIO
b Intemupt
i Parameter name . Description
[noc jtag_uart
v oner } e Bl o
dummy_module A O semr\g‘ periphe!
oct —
o X | @ remove
> Processor _ @ o
> RAM
> Source
> Timer ged Instance name dk
A D seting ocd reset
X | @ remove wh_slave
gcd module
2 Load Tie Tile name: [ged_soc @ wishbone-bus addr o34 Diagram

int_ctrizint_periph[0]

source: reset

GCD's Input/output width in bits

bus:wh_slave[3]
source:clk

source: reset

bus:wh_slave[4]

@ Generate RTL

0K

Software e Compile RTL

Figure 6.11: Add the generated GCD IP core to gcd_soc.

3. Set the tile name as gcd_soc.

4. Press the @ Generate RTL button. This must generate a new folder: mpsoc_work

/S0C/gcd_soc.

ProNoC homepage December 13, 2018

68

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

Software
Development

o6 poloc]
= o

& - o e
Interface generator IP generator Processing tile generator ,‘,‘ NoC based MPSoC generator
L2 £ =

Tmer == TNSCANCE Name T SOUTCE TR
TP list bt
P Bus =
R— 2 | €D seting timer intrp int_ctri:int_periph[D]
» DMA
x> .
> Display ~ G Remaove reset source: reset
> GPIO
bus:wb_slave[2]
b Interrupt
b NoC i Processing Tile "gcd_soc" has been created
it successfully at /home/alireza/mywork/mpsoc_worky/ source:dk

¥ Other SOC/ged_soc/.

dummy_module ﬁ‘ - o

god — o =

sim_uart l—J

- A source: reset

b Processor —
> RAM wh_slave bus:wb_slave[3]
> Source
> Timer ged Instance name clk source:clk
ged module

/= Load Tile| Tile name: 1 @ wishbone-bus adar| | & Disgram | |{@3) Generate RTL 2 Software a Compile RTL

Figure 6.12: Generate the gcd_soc RTL codes.

1. Click on H Software button to open the software development window. Now
click on main.c file. Replace the contents of main.c file with the following C
code then press compile button. Check software edit terminal output to make
sure that compilation ran successfully.

#include "gcd_soc.h"

unsigned int gcd_software (unsigned int p, unsigned int g) {
while (p != q) {
if (p > q) p=p-q;
else if (p < gq) g=g-p;
}

return p;

int main () {

int A,B,C,D;

unsigned int t_hw,t_sw;

unsigned int speed;

printf ("GCD test application\n");

while (1) {
printf ("Enter number #1:\n");
jtag_scanint (&A) ;

ProNoC homepage December 13, 2018 69

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

printf ("Enter number #2:\n");
jtag_scanint (&B) ;
timer_reset ();
timer_start ();
C=gcd_hardware (A, B);
timer_stop () ;
t_hw=timer_read();
timer_reset ();
timer_start ();
D=gcd_software (A, B);
timer_stop () ;
t_sw=timer_read();
speed=(t_sw*10) / (t_hw) ;

printf ("GCD_hardware (%d,%d) = %d\t clock_num=%d\n",2,B,C,
t_hw) ;

printf ("GCD_software (%d,%d) = %d\t clock_num=%d\n",A,B,D,
t_sw);

printf ("spead up=%d.%d times\n", speed/10, speed%$10) ;
}

return 0;

}

2. Follow instructions in Compile the generated RTL code using Quartus II soft-
ware to compile and run the desired SoC on an Altera FPGA board. The DE10-
Nano FPGA board pin assignment and a snapshot of a sample result on UART
terminal is shown in Figures 6.13 and 6.14, respectively. You can test the GCD
IP core by entering different values.

B Step 2: Pin Assignment

Port Direction Port Range Port name Assigment Type Board Port name Board Port Range
input aeMB_sys_ena_i Diirect = *WVCC =
input source_clk_in Diirect = FPGA_CLK1_50 =
input source_reset_in MNegate(~) = | KEY = | o =
4= Previous y Next

Figure 6.13: DE10-Nano FPGA board pin assignment.

ProNoC homepage December 13, 2018 70

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

(< alireza@alireza: ~/mywork/mpsoc/perl_gui/lib/perl

alireza@alireza:~/mywork/mpsoc/perl_gui/lib/perl$ SQUARTUS_BIN/nios2-terminal

nios2-terminal: connected to hardware target using JTAG UART on cable
terminal: "DE-SoC [1-2]", device 2, instance @

nios2-terminal: (Use the IDE stop button or Ctrl-C te terminate)

GCD test application
Enter number #1:

clock_num=842
clock_num=18182
spead up=12.0 times
Enter number #1:
45585
Enter number #2:
75
GCD_hardware (45585,75) = clock_num=
GCD_software (45585,75) clock_num=8672
spead up=12.0 times
Enter number #1:
311
Enter number #2:

_hardware (311 = clock_num=158
GCD_software (311,222) = clock_num=966
spead up=6.1 times

Figure 6.14: Nios2-terminal output snapshots.

ProNoC homepage December 13, 2018 71

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

CHAPTER 7

Simple message
passing demo on
4x4 MPSoC

Summary

System

Requirements:

Generating a
custom
Processing tile

This chapter demonstrates a simple message passing on a 4x4 NoC based MPSoC.
This includes developing a custom shared bus (Wishbone bus) based processing tile
using ProNoC Processing Tile Generator. The generated tile is used then for generating
a multicore using ProNoC NoC based MPSoC generator.

You will need an Altera FPGA development board having USB blaster I or II and a
computer system running Linux OS with:

1. Installed the ProNoC GUI software and its dependency packages.

2. Installed/Pre-built GNU toolchain (or1k-elf) for compiling the Mor1kx soft-core
processor software code.

3. Installed Quarts I (Web-edition or full) compiler.

For more information about the GNU toolchain installation please refer to the In-
stallation Manual for the Ubuntu. In case your FPGA board is not included in the
ProNoC FPGA board list please follow the instructions given in Adding a New Altera
FPGA Board to ProNoC, to add your board to the ProNoC library.

Follow the instructions in Processing tile generator tutorial up to the Software Devel-
opment section and generate a processing tile according to the tile setting listed in
Table 7.1. Set the tile name as morik_tile. Remember to press @ Generate RTL
button at the end to generate the processing tile RTL code.

* Note that the desired tile in this chapter has a network interface (NI) IP to be
connected to a NoC.

* The NI has a master interface which can automatically write the arrived packets
from the NoC to the main memory. Hence, for the CPUs with enabled Data
cache, you need to have either the snoop support (to invalidate the Data cache
memory location where the NI writes on it) or map the NI receiver buffer on
an uncachebale memory location. For this example we have enabled the snoop
support of Morlkx processor. The snoop interface of the CPU must be connected
to the WB to inform about the main memory data changes.

ProNoC homepage December 13, 2018 72

http://www.multcloud.com/share/c2faea3b-9690-4757-a1ba-5a8ed8656bc4
http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

Table 7.1: Desired Processing core IP list and setting.

Category IP name Parameter Instance name Interface connection
Source clk_source - source clk - 10
reset 10
M — 4
Bus wishbone_bus S - 4 bus clk — sourceiclk
Dw - 32 reset — source:reset
Aw — 32
OPTION_DCACHE_SNOOP — ”ENABLED” fél;et j nggziﬁet
FEATURE_INSTRUCTIONCACHE — ”ENABLED” 100 . i)uS'sng)o
Processor morlkx FEATURE_DATACACHE — ”ENABLED” | cpu o P R nfaster[O]
FEATURE_IMMU — "ENABLED” dwb . bu‘szwbimaster[l]
FEATURE_DMMU — "ENABLED” T
enable — 10
Dw — 32
Aw — 14
BYTE_WR_EN — "YES”
FPGA_VENDOR — ”ALTERA” oIk o sourcesclk
RAM single_port_ram JTAG-CONNECT — DISABLED ram reset — sosrce:reset
‘ B JTAG_INDEX — CORE.ID ’
BURST_MODE - ”ENABLED” wh = busiwbslave[0]
MEM_CONTENT_ — ram0”
FILE.NAME
INITIAL_EN — ”YES”
clk 5 source:clk
MAX _TRANSACTION_WIDTH — 13 reset N source:reset
L MAX_BURST_SIZE — 16 . interrupt cpu:interrupt_peripheral[0]
NoC ni-master Dw — 32 o wb_send : bus:wb_master[2]
CRC_EN — ”NO” wb_receive 5 bus:wb_master([3]
wb_slave bus:wb_slave[1]
clk — source:clk
Timer timer PRESCALE.WIDTH ~ 8 timer reset — sourceireset
wb — bus:wb_slave[2]
intrp — cpuw:interrupt_peripheral[1]
FPGA_VENDOR — ”ALTERA” i];et : :gﬁzzifl]:et
Communication | jtag uart SIM_BUFFER_SIZE — 1000 uart intrpt o NC ’
SIM_WAIT_COUNT — 1000 P
wb — bus:wb_slave[3]
ProNoC homepage December 13, 2018 73

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

Figure 7.1 illustrates the functional block diagram the Morlk_tile module.

clk

reset

interrupt

ni
wb_send

\

™~

snoop_0

clk
interrupt_peripheral_0 reset
cpu | snoop
interrupt_peripheral _1 iwh
dwb

wh_master_0

clk

wh_receive

wb_slave

clk

reset

timer [—
intrp

wh

Generating a

4 x4 NoC-based

MPSoC

1. Click on

wb_master_1

wb_master_2

whb_master_3 | bus

source

wh_slave_0
wh_slave_1
reset
wh_slave_2
clk_0
wh_slave_3
clk reset_0
ram | reset
wb
clk
uart reset
wh_slave

Figure 7.1: Morlk_tile functional block diagram.

me
’:r: NoC based MPSoC generator

2. Set the NoC configuration setting as stated in Table 7.2. Here we have defined
two Virtual Networks (VNs) by defining two message classes and separating
message class permitted VCs in such a way that each message class can only
use its own dedicated VC. For more information regarding the NoC parameters
please refer to NoC Verilog File Parameter Description.

Table 7.2: 4x4 NoC configuration setting.

Parameter Value Parameter Value
Router Type "VC_BASED” Topology "MESH”
Router per row 2 Router per column 2
VC number per port 2 Buffer flits per VC 4
payload Width 32 Routing Algorithm ”XY”
SSA Enable "NO” VC reallocation type "NONATOMIC”
VC/SW combination type “COMB_NONSPEC” | Crossbar mux type "BINARY”
Class number 2 Class 0 Permitted VCs ™
Class 1 Permitted VCs & Debug enable 0
Add pipeline register 0 Swich allocator first level |
after crossbar arbiters external priority enable
SW allocator arbitration type | "RRA”

ProNoC homepage December 13, 2018 74

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

0 ProNoC
5
&¥ nterrace generstor | 1P generstor 5 Processing tile generator | P18 NoC based MPSoC generator

NoC Configuration

Router Type 2 "VC_BASED" = 4

[Topology "MESH"
Tile 0 (0,0) Tile 1 (1,0)
3 morlk_tile mor1k_tile

Routers per row
[Routers per column
VC number per port
[Buffer fits per VC
Payload width

[Routing Algorithm ki = Tile 2 (0,1) Tile 3 (1,1)

= = mortk_tile morlk_tile

QOO OO OO OO

SSA Ebable

@) Noc Paremeters

/2 Load MPSOC MPSoC name: |mor1k_mpsoc @ cenerote R

& compite T

Figure 7.2: NoC-based MPSoC generator snapshot.

3. InTile configuration setting, you should be able to see the list of all process-
ing tile modules which have NI IP core in their shared bus.

(a) You can change the processing tile default parameters by clicking on its tile
name. For this example, we leave the default parameters values unchanged.

(b) You can enter the tile numbers (location) where this processing tile should
be placed in the NoC. Set the Mor1k_tile tile numbers as 0, 1, 2, 3 or sim-

plyas 1:3.
Tile Configuration
Tiles path: lib/soc ,:
Tile name Tile numbers
3a g

Q[3b —
morlk_tile @ ID:3 I —

Figure 7.3: Tile Configuration snapshot.

4. You can also map the generated processing tiles on their locations by simply
clicking on the tile location in the NoC.

(a) You can select the Processing tile name here.

ProNoC homepage December 13, 2018 75

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

(b) If you wish this processing tile has a custom parameter setting you can
select it here. In case you select the parameter setting as custom, after
pressing the OK button, it shows a window where you can change the de-
fault parameters values.The tile which has a custom parameter setting is
marked by * on its name.

o Parameter setting for Tile 0

Processing tile name: | mor1k_tile

4a
Parameter secing: || ©
4b Custom

Figure 7.4: Custom Tile setting.

5. Set MPSoC name as morlk_mpsoc.

6. Press @ Generate RTL button to generate the MPSoC RTL code.

Software

Development .
1. Press Software button to open the software development window.

2. In the left Tree-View window, you can select any file in project sw directory to
open and then edit it. Replace the content ofmain.c files in tile 0,1 and 2 with
the following first and second C codes, respectively.

In this example, tile O to 2 send each 3 packets to tile 3. The NI interrupt function
is enabled in tile 3 which is responsible for packet collection from NoC and
showing the packet content using serial port.

ProNoC homepage December 13, 2018 76

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

main.c file of tile 0,1 & 2

This code send packets to tile 3 (1,1)
#include "morlk_tile.h"
#define TOTAL_CORE (MAX_X_ ADDR % MAX_Y_ ADDR)

unsigned char pckl[10]={"first data"};
unsigned char pck2[1ll]={"second data"};
unsigned char pck3[6]={"123456"};
unsigned char recive_buffer[15];

a simple delay function
void delay (unsigned int num) {
while (num>0) {

num--;
nop () ; asm volatile ("nop");

}

return;

void error_handelling_ function () {
unsigned int i;
for (i=0;i<ni_NUM_VCs;i++) {
if (ni_ERROR_FLAGS_REG (1)) {
printf ("Error in vc %u\n",i);
if (ni_ERROR_FLAGS_REG (i) & BUFF_OVER_FLOW_ERR) printf ("
The receiver allocated buffer size is smaller than
the received packet size in core%u\n",CORID);
if (ni_ERROR_FLAGS_REG (i) & SEND_DATA_SIZE_ERR) printf ("
the send data size is not set in core%u\n",CORID) ;
if (ni_ERROR_FLAGS_REG (i) & BURST_SIZE_ERR) printf (" the
burst size is not set in core%u\n",CORID) ;
if (ni_ERROR_FLAGS_REG (i) & ILLEGAL_SEND_REQ) printf("A
new send request is received while the DMA is still
busy sending previous packet in core%u\n",CORID);
if (ni_ERROR_FLAGS_REG (i) & CRC_MISS_MATCH) printf("CRC
missmatch in core%u\n",CORID) ;

unsigned int reseived_counter=0;
void got_packet_funtion () {
unsigned int i;
for (i=0;i<ni_NUM_VCs;i++) {
if (ni_got_packet (1)) {
ni_receive (i, (unsigned int)recive_buffer, 4);
reseived_counter++;

NI interrupt function
void ni_isr (void) {
place your interrupt code here

ProNoC homepage December 13, 2018 77

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

if(ni_STATUS2_REG & ERRORS_ISR) {
error_handelling_function();
ni_ack_errors_isr();

return;

int main() {
int 1i;

printf ("Hi from core %u: (%u, %u)\n",CORID,X_ADDR ,Y_ADDR);
int_init ();
int_add (0, ni_isr, 0);

int_enable (0) ;
cpu_enable_user_interrupts();

ni_initial (16,1,0,0,1);

ni_transfer (0, 0, (unsigned int)é&pckl([0], 3, 1,1);
ni_transfer (1, 1, (unsigned int)&pck2[0], 3, 1,1);
ni_transfer (0, 0, (unsigned int) &pck3[0], 2, 1,1);
printf ("total sent packets by core%u is %u\n",CORID, 3);

while (1) {

}

return 0;

ProNoC homepage December 13, 2018

78

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

main.c file of tile 3

/This code just recives packets and shows the packet contents
#include "morlk_tile.h"
#define TOTAL_CORE (MAX_X_ADDR % MAX_Y ADDR)

if there is a data chach make sure the snoop protocol is supportec

opy of the recive_buffer once the NI update the main

memor
volatile unsigned char recive_buffer[2][16];
a simple delay function
void delay (unsigned int num) {
while (num>0) {
num--;
nop(); // asm volatile ("nop");
}

return;

void error_handelling_ function () {
unsigned int i;
for (i=0;i<ni_NUM_VCs;i++) {
if (ni_ERROR_FLAGS_REG (1)) {
printf ("Error in vc %u\n",i);
if (ni_ERROR_FLAGS_REG (i) & BUFF_OVER_FLOW_ERR) printf ("
The receiver allocated buffer size is smaller than
the received packet size in core%u\n",CORID);
if (ni_ERROR_FLAGS_REG(i) & SEND_DATA_SIZE_ERR) printf ("
the send data size is not set in core%ul\n",CORID) ;
if (ni_ERROR_FLAGS_REG (i) & BURST_SIZE_ERR) printf (" the
burst size is not set in core%u\n",CORID) ;
if (ni_ERROR_FLAGS_REG (i) & ILLEGAL_SEND_REQ) printf("A
new send request is received while the DMA is still
busy sending previous packet in core%u\n",CORID);
if (ni_ERROR_FLAGS_REG(i) & CRC_MISS_MATCH) printf ("CRC
missmatch in core%u\n", CORID);

unsigned int reseived_counter=0;
void got_packet_funtion () {
et ; .

cket saving

unsigned int i;
for (i=0;i<ni_NUM_VCs;i++) {
if (ni_got_packet (1)) {
ni_receive (i, (unsigned int) (&recive_buffer[i][0]), 4);
reseived_counter++;

ProNoC homepage December 13, 2018 79

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

void check_packet_funtion () { in
packet content
unsigned int i, size, j;
struct SRC_INFOS src_info;
for (i=0;i<ni_NUM_VCs;i++) {
if (ni_packet_is_saved(i)) {
src_info=get_src_info(i);
size=ni_RECEIVE_DATA_SIZE_REG (1) ;
printf ("A message of %$u words is recived from(%u, %u) in vc%
u:", size,src_info.x,src_info.y,1i);
for (3=0; j<sizex4; j++){
printf ("$c", recive_buffer[i][]j]);

printf ("\n");

void ni_isr (void) {

olace your interrupt code here
if(ni_STATUS2_REG & ERRORS_ISR) {
An error ocures

error_handelling_function () ;
ni_ack_errors_isr();

}
if (ni_STATUS2_REG & SAVE_DONE_ISR) {
check which VC has finished saving the packe Th function
must be called befor got ot_ funt
check_packet_funtion();
ni_ack_save_done_isr();
}
if (ni_STATUS2_REG & GOT_PCK_ISR) {
check which VC got a packet and send t 5a mmand t NI
start saving the p
got_packet_funtion();
Ple 1ote that the whole the packet may not e in the
T when = C I 1
pletely be n 1g
SAVE_DONE_ISR flag
ni_ack_got_pck_isr();
}
return;

int main () {
int i, j;
unsigned int send_counter=0;
printf ("Hi from core %u: (%u, %u) \n",CORID,X_ADDR ,Y_ADDR);
int_init ();
int_add (0, ni_isr, 0);
Enable ni interrupt (its
int_enable (0) ;
cpu_enable_user_interrupts();
hw interrupt nable function:

ed to inttruupt pin 0)

ProNoC homepage December 13, 2018 80

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

ni_initial (16,1,0,1,1);

delay (2000+CORID) ;

printf ("total reseived packets by core%u is %$u\n",CORID,
reseived_counter) ;

while (1) {

}

return 0;

3. Now press the @ compile button. This compiles the C codes using Morlkx
GNU toolchain. If everything runs ok, you must see “compilation finished suc-
cessfully” message. Otherwise, check the error message to fix your code and
press the compile button again. If every thing runs successfully you must have
ram0.bin, ram0.hex, and ram0.mif files in your sw/tile[n]/RAM dhectory
where n is the tile number.

4. Follow bellows instruction to see the simulation/compilation results:
Simulate the generated RTL code using Modelsim software
Simulate the generated RTL code using Verilator software
Compile the generated RTL code using Quartus II software

ProNoC homepage December 13, 2018 81

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

Lthe 3
D_FEEDIBAL
t

0_FEETERI

Figure 7.5: Verilator simulation output snapshot.

A Transeript
Cestheach uut.the_meclk_Eile_0.cpu.moclknl.ous_gea.deus_beidge: Wishseas bus [f i3 B]_AEGISIERED_[ELDBACK

1.cpu.morLkx 0 bus_gen . dbus_bridge: Wisibone bus IF is B1_RECISTERED_FEEDBACK
estbeach .t .the morlk_Eile 2 .cpu.morlkx0.ous_gea. ibus_bridge: Wisibone bus IE is B_AEGISTERED_FEEDBACK
2 .cpu.moclkxl.ous_gea.dous_bridge: Wishbons bus If is BI_AECISTERED_FELDACK
3 .epu uorlkr 0 ous_gea. ibus_bridge: HisWsoas bus If s BI_RECISTERED_FEEDSACK
3 cpu.moclkn 0 ous_gea.dous_bridge: Wisiooas bus 1 fs BI_REGISTERED_FEEDBACK

Ecomtl, 1) in velcEirst daca
Eeoall, 1) ia velesacoad dara
Eeoml, 1) in veOcficst data

Eeoall, 1) ia ve0el21¢58
froml, 1) in vclisecond dara
Eeom{0, 1) in veO:sl21438

Erom(L, 1) in we0l21435
¥ tonal ceseived packens by corsl is 3

Figure 7.6: Modelsim simulation output snapshot.

ProNoC homepage December 13, 2018

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

CHAPTER 8

NoC Verilog File
Parameters
Description

Number of VC per router port. Defining

v vEN,v>1. V as 1 results in a simple non-VC based
router.

B BEN,B>2 Buffer size per VC in flit .

The number of node in x axis of a mesh or
torus topology. For ring and line topolo-

NX Nx € N,nx > 2 gies, it is total number of nodes in the
ring.

The number of node in y axis of mesh or

NY NY € N, Ny > 2 tgrus. Not used in ring and line topolo-
gies.

The number of message classes. Packets
that belong to different message classes

c ceN can have access to a different subset of
VCs. The subset of VCs for each class is
defined using CLASS_SETTING parame-
ter.

Fpay € N, . o
F Flit payload size in bit.
pay Fpay > 32 pay

Crossbar’s multiplexer type in a NoC

B "BINARY", router. Binary and one-hot multlplex.ers

- "ONE_HOT" are prefergble for FRGA and ASIC im-

plementation, respectively.
"ATOMIC": only an empty output VC can
be reallocated for a new header flit.

ve- "NONATOMIC": A VC can be reallocated

"ATOMIC", . . A

REALLOCATION. when it has received the tail flit of the last

"NONATOMIC"

TYPE packet and has at least one empty buffer
space. See [monemi:2016a] for more in-
formation.

"COMB_NONSPEC", o
COMBINATION. | "COMB_SPECL", YC/SW combmat}on type. Note that us-
TYPE "COMB_SPEC2", ing "BASELINE" is not recommended.
"BASELINE"
If it is set as O, then the first level arbiters’
FIRST priority registers in switch allocator are
- 0, updated whenever any request is granted

ARBITER- . o .

1 at first level otherwise the priority regis-

EXT_P_EN . .
ters are updated only if they also receive
the second level arbitration grants.

"MESH" s
" T R n
TOPOLOGY ORUS The NoC topology.
"RING"
" L INE "
ProNoC homepage December 13, 2018 83

https://dl.acm.org/citation.cfm?id=2994134
http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

"Yy",

"DUATO", NoC routing algorithm for mesh topol-
"WEST_FIRST", ogy. "Xy" is deterministic routing (DoR),
ROUTE_NAME . .
"NORTH_LAST", "DUATO" is fully adaptive and the rest are
"NEGETIVE_FIRST", partially adaptive routing algorithms.
"ODD_EVEN"
"TRANC_XY",
"TRANC.DUATO", NoC routing algorithm for torus topol-
"TRANC.WEST-FIRST", ogy. See [rahmati:2012] for more infor-
"TRANC_NORTH_LAST", mation.
"TRANC.NEGETIVE_FIRST"
"TRANC_ODD_EVEN"
Define how congestion metrics is se-
CONGESTION- CONGESTION-INDEX € N, lected. See Table 8.2 for more informa-
INDEX 0 < CONGESTION_INDEX < 7| tion.
If is defined as 1, the simulation will
be run using extra debugging codes.
The debugger dose several faults detec-
DEBUG.EN 0,1 tion such as out of order flits receiving,
packet miss-routing and VC status miss-
matching.
If is defined as 1, a pipeline register
will be added after the crossbar switch
ADD_PIPREG. which add one clock cycle latency for
AFTER. 0,1 link traversal stage. It may be needed for
CROSSBAR ASIC NoC where routers are connected
using long wires. However, in FPGA im-
plementation it may not be required.
It defines how each message class can
have access to VCs. For each class a V-
bit access-VC value is defined in such a
CLASS- {V'bX, ...,V bx} way that each asserted bit represents the
SETTING VC which this message class can request
for. The CLASS_SETTING is concatenate
of all message class access-VC values.
It is a V-bit value and its asserted bit(s)
represent the escape VC(s) (EVC). It is
valid only for fully adaptive routing. You
ESCAP_VCMASK | V’'bX

must make sure that each message class
have access to at least one EVC to prevent
deadlock in fully adaptive routing.

ProNoC homepage

December 13, 2018 84

https://www.sciencedirect.com/science/article/pii/S0141933111000755
http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

If set as "YES”, packets which are travel-
ing to the same dimension bypass router
SSAEN nYES™ , "NO pipeline stages using Static straight allo-
cator. See [monemi:2016b] for more in-
formation.
Switch allocator’s output ports arbiters
type: RRA: Round Robin Arbiter. Pro-
vides only local fairness in a router.
SWA_ARBITER. "RRA", WRRA: Weighted Round Robin Arbiter.
TYPE "WRRA" Results in global fairness in the NoC. Us-
ing WRRA the switch allocation requests
are granted according to their weights
which increases due to contention.
WEIGHTw WEIGHTw € N, WRRA weights’ maximum width in bits.
2 <WEIGHTw < 7
Table 8.2: Congestion metrics.
Index Description pin overhead
0 Number of unavailable VCs in the neighboring router -
adjacent input port.
1 Number of consumed credit in all VCs of the neighbor- -
ing router adjacent input port.
2 Number of active switch allocation requests in all ports 2-bit
of the neighboring router.
3 Number of active switch allocation requests in all ports 3-bit
of the neighboring router.
4 Number of active switch allocation requests in all ports 2-bit
of the neighboring router that are not granted.
5 Number of active switch allocation requests in all ports 3-bit
of the neighboring router that are not granted.
6 Number of unavailable VC in all ports of the neighbor- 2-bit
ing router
7 Number of unavailable VC in all ports of the neighbor- 3-bit
ing router

ProNoC homepage

December 13, 2018 85

https://ieeexplore.ieee.org/abstract/document/7892399/
http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

CHAPTER 9

NoC Simulator

Summary

System
Requirements:

Simulation
Example:

Generate first
NoC simulation
model with XY
routing

The ProNoC NoC is developed in RTL using Verilog HDL and it can be simulated using Verilator
simulator. The ProNoC simulator provides the graphical user interface (GUI) for simulating
different NoC configuration under different synthetic traffic patterns.

You will need a computer system running Linux OS with:

1. Installed the ProNoC GUI software and its dependency packages.

2. Installed Verilator simulator.

In this example we simulate two 8 x8 Mesh NoCs, one with fully adaptive routing and another
with DoR routing algorithms.

1. Open mpsoc/perl_gui in terminal and run ProNoC GUI application:

./ProNoC.pl

It should open The GUI interface as illustrated in Figure 9.1.
2. Click on B to open ProNoC simulator tabs.

3. Click on NoC Ssimulator tab to open simulator GUI interface:

P

Routers per column

VC number per port

Buffer fits per VC

payload width

QOO OO0 OO

Routing Algorithm.

"VC_BASED"

T

Latency (clock}

875.0

736,08

625.0

508.0

375.0

256.0

125.0

Avg. throughput/latency | Injected Packet | Worst-Case Delay || Executaion Time

Desired Avg. Injected Load Per Router (flits/clock ()}

1 see O wna

Figure 9.1: NoC simulator snapshot.

T (e [0/¢]

4. Click on Generate NoC Simulation Model tab to open NoC configuration setting

page.

5. Change the default NoC parameters as shown in below table:

Parameter name Value Parameter Name Value
Router Type ”VC_BASED” | Router per row 8
Router per column 8 VC number per port 2
Buffer Flits per VC 2 Payload width 32
Topology ”Mesh” Routing Algorithm ”xy”
SSA Enable "NO” SW allocator arbitration type | "RRA”
ProNoC homepage December 13, 2018 86

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

Generate the
second NoC
simulation model
with fully
adaptive routing

Run simulation
under Matrix
Transposed traffic
pattern

6. Enter a name for this NoC configuration (e.g. mesh_8x8_xy).

7. Press the generate button.

10.

11.

13.

¢g Trace generstor NoC simutator | 85 NoC emulator
e e w | (= verilator --cc traffic_gen_verilator.v --profile-cfuncs --prefix "Vtraffic’ -03 -CFLAGS -03
*RETCODE == 0
Generete NoC | Routing Algoithm Q
Configuration
Ssa Epsble Q| o I v

=] {_rt/obj_dir///"

@) oC Parameters make lib

make -f Vnoc.mk

_l“" e

e 2= The simulation binary file has been successfully generated in /
6 home/alireza/ mywork/mpsoc_work/simulate!

& Advance Parameters

Pek. injector FIFO Wiath: |)| [16

Save as; @[t s | 6 ‘
Project directory @ [fromeralirezamywork/mpso| S o
|
g liis
Fome

el
250.8

125,8

8.0
8

Desired Avg. Injected Load Per Router (flits/clock

Q runan

I sae

A2 Load Save as:

Figure 9.2: Generate NoC simulation model.

In NOC configuration tab, keep the previously set parameters and only change the routing
algorithm to "DUATO”.

Enter a new name for this NoC configuration (e.g. mesh8x8_full).

press Generate button and wait for compilation to be done.

Click on Run simulator tab.

Click on “ to add a NoC simulation model.

Set following configurations for the simulation model. For flit injection ratios, you can
define individual ratios separated by comma (’,”) or optionally you can define a range of
injection ratios with [min]: [max]: [step] format.

* Note that you can also add more injections ratios later. Each time you run the simulation
the simulation results of new injection ratios are added to the previously plotted results.

Parameter name Value Parameter Name Value
Verilated Model “mesh_8x8_xy” | Traffic Type Synthetic
Configuration Name Xy Traffic name transposed 1
Min pck size 2 Max ock size 10
Total packet number limit 200000 Simulation clock limits 100000
Injection ratios 2:32:2

ProNoC homepage December 13, 2018 87

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

e ProNoC D S NoC configuration setting

E Search Path: 9 /home/alireza/ mywork/mpso|| g
:‘ Trace generator NoC simulator Veribdid Model 9 T 13 -
11 Traffic Type @ | svnetic &
Generate NoC Name Add/Remov.
Simulation Model 12 GO 9 S
Traffic name 9 transposed 1 2
Min pck size : 0 2 -
Max pck size 9 10 =
Avg. Packet size: 0 6 o
Total packet number limit: 9 200000 =
Simulator clocks limit: 9 100000 -
Injection ratios: 9 2:20:2 =y Check
4~ Load @ ox
Figure 9.3

14. Click on “ to add the second NoC simulation model. Fill the NoC configuration as
shown in following table.

Parameter name Value Parameter Name Value
Verilated Model “"mesh_8x8_full” | Traffic Type Synthetic
Configuration Name fully Traffic name transposed 1
Min pck size 2 Max ock size 10
Total packet number limit 200000 Simulation clock limits 100000
Injection ratios 2:32:2

15. Save the simulation. You can save the simulation at any time during run time. Hence,
later you can continue the rest of simulation.

16. To start the simulation press e Run all button. You can also run each individual
simulation by pressing the :yj Run button in its simulation row.

17. After the simulation is done, if your graph is not yet completed you can enter a new
injection ratio range and press the U Run key again.

18. You can edit the generated graph and then save it from graph editing toolbox. By saving
the simulation graph, the simulation results is also provided in a text file as well.

ProNoC homepage December 13, 2018 88

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

ProNoC

€3 Troce generotor Noc simutator | £ NoC emuietor
[y Not. Simulater Stat Simuation

Run /home/alireza/ mywork/mpsoc_work/simulate/mesh_8x8_xy with injction ratio of 20 %
/home/alireza/mywork/mpsoc_work/simulate/mesh_8x8_xy -t "transposed 1' 52 -m 10 -n 200000 -c 100000

Simution Mode S -
o 8 © | 12001000000
o @) Smoaion s do

w @ e B o|ev
@ 21

Generate NoC | Name Add/Remove Sefting Line's color Clear _Run

Avg. throughput/latency | Injected Packet | Worst-Case Delay | Executaion Time
_ Latency

102.4

2
a
A

Latency (clock)
o
I
b

NjEe o€

2 4 6 8 18 12 14 16 18 20 22 24 26 28 30 %2
Desired fivg. Injected Load Per Router (flits/clock (%)}

@2

20 Wy Sfull

B Lo save as: |mm CED |

Figure 9.4

For each simulation experiment five simulation results are obtained:

(a) Average latency per average desired flit injection ratio

(b) Average throughput per average desired flit injection ratio

(c) send/received packets number for each router at different injection ratios
(d) send/received worst-case delay for each router at different injection ratios

(e) Simulation execution clock cycles

ProNoC homepage December 13, 2018

89

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

119.5 20,9
M
g
102.4 Loz
] <
2 as5.4 4 20,6
5 2
s g
68.3 165
=
g =
g]
3 512 B12.a
& S
5 2
34.1 2 8.2
£
£
17.1 = > 4.1
&
0.0 0.0
2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32
Desired Avg. Injected Load Per Router (flits/clock (%)) Desired Avg. Injected Load Per Router (flits/clock (%)}
Wy Sfull Wy Sfull
(a) Load-latency (b) Load-throughput
5466,8
va ;
4858.7 | | r |
| |
4251,3
g |
3644.8 [|
Z [|
2 3036,7 | |
s 3
9 2420.3
8
T 1822.8
L
@
£ 1214.7
2
687.3
0.8
Core ID Core ID
Wy Efull -y Efull

(c) Injected packets per router at 32% injection
ratio.

1100172

(d) Worst-case delay per router at 32% injec-
tion ratio.

94300.5

78563.8

62867.8

47150.2

31433.5

Total Simnulation Tine {clk}

15716.8

2 4 6 8

10 12 14 16 16 20 22 24 26 23 30 32

Desired Avg, Injected Load Per Router {flits/clock (>}

(e) Simulation time in clock cycles.

Figure 9.5: Simulation sample results.

ProNoC homepage

December 13, 2018

90

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

CHAPTER 10

NoC Emulator

Summary ProNoC comes up with a GUI for emulating an actual NoC on Altera FPGAs. The ProNoC
emulator is a programmable packet injector module that can be programmed at run time using
Altera JTAG interface. These modules inject/sink packets to the prototype NoC according to the
traffic patterns.

System You will need an Altera FPGA development board having USB blaster I or II and a computer
Requirements system running Linux OS with:

1. Installed the ProNoC GUI software and its dependency packages.
2. Installed Quarts II (Web-edition or full) compiler.

For more information about the GNU toolchain installation please refer to the Installation
Manual for the Ubuntu. In case your FPGA board is not included in ProNoC FPGA board list
please follow the instruction given in Adding a New Altera FPGA Board to ProNoC, to add your

board to ProNoC.
Emulation In this example we simulate two 5x5 Mesh NoCs, one with fully adaptive routing and another
Example: with DoR routing algorithms using DE10-nano Altera FPGA board.

Generate first
NoC emulation

model with XY
routing ./ProNoC.pl

1. Open mpsoc/perl_gui in terminal and run ProNoC GUI application:

It should open The GUI interface as illustrated in Figure 10.1.
2. Click on B to open ProNoC simulator tabs.

3. Click on NoC Emulator tab to open the emulator GUI interface:

5]

=]

NoC C

“VC_BASED"

“MESH"

Avg. throughput/latency | Injected Packet | Worst-Case Delay | Executaion Time

2
2
VC number per port 2 R Lateng

875.0
a

Buffer fiits per VC 750.0

payload width 625,0

DOO0OOOO OO

500.0
Routing Algorithm

@900

Latency Cclock)

373.0

250.0

125.0

0.0

b
Desired Aivg. Tnjected Load Per Router (flits/clock (X))

B i S 8 s Q

Figure 10.1

4. Clickon Generate NoC Emulation Model tab to open NoC configuration setting page.

ProNoC homepage December 13, 2018 91

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

5. Change the default NoC parameters as shown in below table:

Parameter name Value Parameter Name Value
Router Type ”VC_BASED” | Router per row 5
Router per column 5 VC number per port 2
Buffer Flits per VC 2 Payload width 32
Topology ”Mesh” Routing Algorithm ’xy”
SSA Enable "NO” SW allocator arbitration type | "RRA”

6. Enter a name for this NoC configuration e.g. mesh_5x5_xy.

7. Press the generate button.

Pck. injector FIFO Width: 9 16 -

Save as: 9 [mesh_SxS_xﬂ 6

Project directory 9 /fhome/alireza/ mywaork/ mpso ,'..'

@ Generate | 7/

Figure 10.2: Generate NoC model

8. Follow instructions in Compile the generated RTL code using Quartus II software to com-
pile the desired emulation model for an Altera FPGA board. For this example we used
the DE10-Nano FPGA board which its pin assignment is shown in Figures 10.3.

B Step 2: Pin Assignment

Port Direction Port Range Port name Assigment Type Board Port name Board Port Range
input dk Direct s || FPGA_CLK1_50 =
output done_led LED = o :
output jtag_reset_led LED =) F—
output noc_reset_led LED - p—
input reset Negate(~) = KEY = o
&= Previous =y Next

Figure 10.3: DE10-Nano FPGA board pin assignment.

ProNoC homepage December 13, 2018 92

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

Generate the
second NoC
emulation model
with fully
adaptive routing

Run Emulation
models under
Matrix
Transposed traffic
pattern

10.
11.

12.
13.

14.

In NOC configuration tab, keep the previously set parameters and only change the routing
algorithm to "DUATO”.

Enter a new name for this NoC configuration e.g. mesh5x5_full.

Generate the NoC emulation model in similar way to step 8.

Click on Run Emulator tab.

Click on “ to add a NoC emulation model.

Set following configurations for the emulation model. For flit injection ratios, you can
define individual ratios separated by comma (’,”) or optionally you can define a range of
injection ratios with [min]: [max]: [step] format.

* Note that you can also add more injections ratios later. Each time you run the emulation
the emulation results of new injection ratios are added to the previously plotted results.

Parameter name Value Parameter Name Value
FPGA Board [Your FPGA board name] | Sram Object file “mesh_5x5_xy”
Configuration Name Xy Traffic name transposed 2
Packet size in flits 5 Packet number limit per node 1000000
Emulation clock limits 25000000 Injection ratios 2:50:2

15. Click on “ to add the second NoC emulation model. Fill the NoC configuration as

shown in following table.

Parameter name Value Parameter Name Value
FPGA Board [Your FPGA board name] | Sram Object file “mesh_5x5_full”
Configuration Name fully Traffic name transposed 2
Packet size in flits 5 Packet number limit per node 1000000
Emulation clock limits 25000000 Injection ratios 2:50:2

16.

17.

18.

19.

Save the emulation. You can save the emulation at any time during run time. Hence, later
you can continue the rest of emulation.

To start the emulation, Power on your FPGA board and connect it to your PC then press
@ Run all button. You can also run each individual emulation by pressing the L P
Run button in its emulation row.

After the emulation is done, if your graph is not yet completed you can enter a new
injection ratio range and press the W run key again.

The emulator generates similar results as NoC simulator generates.

ProNoC homepage

December 13, 2018 93

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

66.5 T a9.9
%
g
57.8 g7
2 <
B 47,5 &35.6
S E
s g
38.8 To8.5
o
g =
H 5
S28.5 Aot
& e
3 2
19.8 214.2
£
=
9.5 PRt
¥
0.8 © oo
" 2 4 6 8 101214 16 18 20 22 24 26 28 30 32 34 36 33 40 42 44 46 48 50 "7 2 4 6 8 10121416 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50
Desired Avg, Injected Load Per Router (flits/clock (%)) Desired Avg. Injected Load Per Router (Flits/clock (X))
Way Sfull Wy B Full
(a) Load-latency (b) Load-throughput
T dididd _dadddd _dddid _dadda
1eee617.6 -] & r r
i 1 1
888084.0 " | [| [
5 i 1 [|
5 777raL.e 1] 1 1
g] [[]
% 566678.8 | | | 1
5 u [i
L 555565] 1 [
a] []
& 444452 i 1 [|
% i 1 1
£ 333339, 1 [| [
- i 1 [|
2 222226,] [I
& i 1 [|
111113 i 1 1
44 pA S

(c) Injected packets per router at 50% injection
ratio.

. 52324161,3
=

i}
£ a4849281.1

@
g
g
S
i
2
g
2
©

ion Tine

.S 29899520,8

22424646.6

149497604

Total Enulat.

7474880.2

(d) Worst-case delay per router at 50% injec-
tion ratio.

8.8

2 4 6 8 1012 141616 20 22 2426 26 30 32 34 36 36 40 42 44 46 46 50
Desired Avg, Injected Load Per Router {flits/clock {%}}

xy Hfull

(e) Emulation time in clock cycles.

Figure 10.4: Emulator sample results.

ProNoC homepage

December 13, 2018

94

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

	Installation Manual for the Ubuntu Linux Environment
	Installation

	Interface Generator
	Introduction
	Generate New Interface
	Defined Interfaces
	interrupt_cpu
	interrupt _peripheral
	clk
	reset
	Enable
	Wb_master
	Wb_slave

	IP Generator
	Introduction
	Generate a New IP
	List of available Variables in ProNoC
	List of available IP cores in ProNoC
	Bus
	Communication
	DMA
	Display
	GPIO
	Interrupt
	NI
	Processor
	RAM
	Source
	Timer

	Processing Tile Generator
	Processing Tile Generator Hello World Tutorial
	System Requirements:
	Objectives:
	Desired SoC
	Schematic
	Application Software

	Create New SoC Using ProNoC Processing Tile Generator
	Software Development
	Simulate the generated RTL code using Modelsim software
	Simulate the generated RTL code using Verilator software
	Compile the generated RTL code using Quartus II software

	Add Custom IP to Processing Tile Generator Tutorial
	System Requirements:
	Objectives:
	Greatest Common Divisor (GCD) Algorithm
	GCD RTL code
	GCD Simulation

	Add Wishbone bus interface to GCD
	Add custom wishbone-based IP core to ProNoC Library
	Generate a new SoC enhanced with new IP core (GCD)
	Software Development

	Simple message passing demo on 44 MPSoC
	System Requirements:
	Generating a custom Processing tile
	Generating a 44 NoC-based MPSoC
	Software Development

	NoC Verilog File Parameters Description
	NoC Simulator
	System Requirements:
	Simulation Example:
	Generate first NoC simulation model with XY routing
	Generate the second NoC simulation model with fully adaptive routing
	Run simulation under Matrix Transposed traffic pattern

	NoC Emulator
	Summary
	System Requirements
	Emulation Example:
	Generate first NoC emulation model with XY routing
	Generate the second NoC emulation model with fully adaptive routing
	Run Emulation models under Matrix Transposed traffic pattern

