
ProNoC
User Manual

Copyright ©2014–2021 Alireza Monemi
This file is part of ProNoC
ProNoC (stands for Prototype Network-on-Chip) is free software: you can redistribute it
and/or modify it under the terms of the GNU Lesser General Public License as published
by the Free Software Foundation, either version 2 of the License, or (at your option) any
later version.
ProNoC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
without even the implied warranty of MERCHANTABILITY or FITNESS FOR A
PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public License along with
ProNoC. If not, see <http:**www.gnu.org/licenses/>.
This document may include technical inaccuracies or typographical errors.

Contents

1 Installation Manual for the Ubuntu Linux Environment 4
1.1 ProNoC Source Code . 4
1.2 Installation . 5

2 Interface Generator 8
2.1 Introduction . 8
2.2 Generate New Interface . 10
2.3 Defined Interfaces . 10

2.3.1 interrupt cpu . 11
2.3.2 interrupt peripheral . 11
2.3.3 clk . 12
2.3.4 reset . 12
2.3.5 Enable . 12
2.3.6 Wb master . 12
2.3.7 Wb slave . 13

3 IP Generator 14
3.1 Introduction . 14
3.2 Generate a New IP . 14
3.3 List of available Variables in ProNoC 18
3.4 List of available IP cores in ProNoC 19

3.4.1 Bus . 19
3.4.2 Communication . 19
3.4.3 DMA . 19
3.4.4 Display . 19
3.4.5 GPIO . 19
3.4.6 Interrupt . 20
3.4.7 NI . 20
3.4.8 Processor . 20
3.4.9 RAM . 20
3.4.10 Source . 20
3.4.11 Timer . 20

4 Processing Tile Generator 21

1

5 Processing Tile Generator Hello World Tutorial 23
5.1 System Requirements: . 23
5.2 Objectives: . 23
5.3 Desired SoC . 23

5.3.1 Schematic . 23
5.3.2 Application Software . 24

5.4 Create New SoC Using ProNoC Processing Tile Generator 24
5.5 Software Development . 33
5.6 Simulate the generated RTL code using Modelsim software 37
5.7 Simulate the generated RTL code using Verilator software 39
5.8 Compile the generated RTL code using Quartus II/Vivado software . . 43

6 Add Custom IP to Processing Tile Generator Tutorial 47
6.1 System Requirements: . 47
6.2 Objectives: . 47
6.3 Greatest Common Divisor (GCD) Algorithm 47
6.4 GCD RTL code . 48

6.4.1 GCD Simulation . 51
6.5 Add Wishbone bus interface to GCD 55
6.6 Add custom wishbone-based IP core to ProNoC Library 58
6.7 Generate a new SoC enhanced with new IP core (GCD) 63
6.8 Software Development . 66

7 Simple message passing demo on 2×2 MPSoC 69
7.1 System Requirements: . 69
7.2 Generating a custom Processing tile 69
7.3 Generating a 4×4 NoC-based MPSoC 71
7.4 Software Development . 74

8 Software Auto-generation using CAL language (CAL2C) 79
8.1 Cal2C . 79
8.2 ORCC installation . 79
8.3 ORCC Hello word on ProNoC platform 80

8.3.1 Run ORCC inbuilt simulator 81
8.3.2 Run ORCC Compilation . 82
8.3.3 Modifying the generated C code using ProNoC 83

9 NoC Simulator 88
9.1 System Requirements: . 88
9.2 Simulation Example: . 88

9.2.1 Generate first NoC simulation model with XY routing 88
9.2.2 Generate the second NoC simulation model with fully adaptive

routing . 89
9.2.3 Run simulation under Matrix Transposed traffic pattern 89

ProNoC homepage October 15, 2021 2

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

10 NoC Emulator 93
10.1 Summary . 93
10.2 System Requirements . 93
10.3 Emulation Example: . 93

10.3.1 Generate first NoC emulation model with XY routing 93
10.3.2 Generate the second NoC emulation model with fully adaptive

routing . 95
10.3.3 Run Emulation models under Matrix Transposed traffic pattern 95

11 ProNoC Tools 98
11.1 JTAG UART . 98
11.2 UART Terminal . 98
11.3 Add new ALtera FPGA Board . 101
11.4 Add new Xilinx FPGA Board . 102

Appendices 104

A NoC Verilog File Parameters Description 105

B NoC Verilog File Signals Description 110
B.1 Resource allocation units . 110

B.1.1 Flit type . 110
B.1.2 VC filed . 110

B.2 Packet type . 110
B.2.1 single-flit . 110
B.2.2 Multi-flit . 110

B.3 Control fields format . 111
B.3.1 Endpoint addressing format 111
11.3.2 destport . 114
11.3.3 class . 114
11.3.4 weight . 114
11.3.5 header-data . 114

ProNoC homepage October 15, 2021 3

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

CHAPTER 1

Installation Manual
for the Ubuntu
Linux Environment

ProNoC Source
Code

You can download the ProNoC source code from ProNoC homepage or optionally open
the terminal and run:

svn co http://opencores.org/ocsvn/an-fpga-implementation-of-low-
latency-noc-based-mpsoc/an-fpga-implementation-of-low-latency
-noc-based-mpsoc/trunk

Figure 1.1 shows the organization of important directories in ProNoC source code:

.
doc
mpsoc

boards
Altera
Xilinx

perl_gui
remove_cycle
rtl

src_emulate
src_modelsim
src_noc
src_peripheral
src_topolgy

script
src_c
src_processor
src_verilator

mpsoc_work
toolchain

Figure 1.1: ProNoC Directory Structure.

• doc/: Contains the ProNoC documentations.

• mpsoc/: This is the main ProNoC source code directory where all projects source
codes are placed.

• board/: This folder contains the FPGA boards’ configuration setting files. ProNoC
supports both Altera and Xilinx FPGAs.

• perl_gui/: It contains ProNoC’s Graphical User Interface (GUI) source codes.

• remove_cycle/: This directory contains a third party source code for Breaking
Cycles in Noisy Hierarchies. This code is used for removing cyclic turns in
custom typologies’ routing algorithms.

• rtl/: This folder contains all ProNoC’s developed HDL codes including the
RTL code for NoC, peripheral devices, NoC simulator and NoC emulator.

ProNoC homepage October 15, 2021 4

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc
https://github.com/zhenv5/breaking_cycles_in_noisy_hierarchies
http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

• script/: Contains some bash scripting language source codes.

• src_c/: Contains source codes written in C language used for converting mem-
ory files to different formats. This folder also contains codes for communicating
with JTAG interface.

• src_processor/: This folder contains third party open-source soft-processors’
source codes.

• mpsoc_work/: is a working directory for ProNoC. All generated files by ProNoC
GUI will be placed here. This folder also is used as target directory for FPGA
implementation and RTL simulation. The user requiters to install the soft-core
CPUs’ Toolchain in this folder.

Installation

1. Copy the downloaded folder (trunk/) somewhere in your home directory. Make
sure that there is no space in selected path.

2. To give execute permission, open trunk/mpsoc in terminal and run

sudo chmod +x -Rf ./

3. Install required package dependencies

First make sure that your OS is updated by running following commands in ter-
minal

sudo apt-get update
sudo apt-get upgrade

Then open terminal in mpsoc folder and run

sudo sh install.sh

4. Now you should be able to run the ProNoC GUI by running the following com-
mand

cd mpsoc/perl_gui
perl ./ProNoC.pl

5. If it is the first time you are running the ProNoC software, you should see the
setting window shown in Figure 1.2.

(a) Path setting: Here you can set the following path variables:

i. PRONOC WORK: The working directory where the projects’ files
will be created and the toolchains are located. The default location is
the trunk/mpsoc_work folder. Setting this variable is compulsory.

ii. QUARTUS BIN: The path to QuartusII compiler bin directory. Set-
ting of this variable is optional. It is needed only if you are going to
use Altera FPGAs for implementation or emulation.

ProNoC homepage October 15, 2021 5

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

Figure 1.2: ProNoC configuration setting window snapshot.

iii. VIVADO BIN: The path to Xilinx/Vivado/bin compiler directory.
Setting of this variable is optional. It is needed only if you are going
to use Xilinx FPGAs for implementation or emulation.

iv. SDK BIN: The path to Xilinx/SDK/bin directory. Setting of this vari-
able is optional. It is needed if you are going to use Xilinx FPGAs for
implementation or emulation.

v. MODELSIM BIN: The path to Modelsim simulator bin directory.
Setting of this variable is optional. You should set this variable if the
Modelsim simulator is installed on your machine and auto-generation
of the simulation models using Modelsim software is desired.

(b) Toolchain: You can download the soft-core processors’ GNU toolchain by
clicking on the Download Now button. Once the toolchain installation is
done successfully, you will be notified by the icon shown in front of
each toolchain name.
However, in case there is a problem in downloading the files (toolchain sta-
tus is still marked by icon), you can manually download the toolchains
from the following links:

i. aeMB
ii. Lm32 or from Lm32

iii. or1k-elf for mor1k and or1200 OpenRISC CPUs.

Remember that if you downloaded the files manually, it is needed to un-
zip the files and copy the lm32, or1k-elf, and aemb folders in trunk/

mpsoc_work/toolchain directory. Moreover, you should provide the ex-
ecution permission to the GNU toolchains by typing sudo chmod +x -Rf

./ command in terminal inside mpsoc_work/toolchain directory.

ProNoC homepage October 15, 2021 6

http://www.multcloud.com/share/87d0060e-9109-46a5-b170-f874f75fc34c
http://www.multcloud.com/share/aca75bf6-01c5-4559-978f-84cab79d8d53
http://www.ohwr.org/attachments/1301/gcc-4.5.3-lm32.tar.xz
http://www.multcloud.com/share/c2faea3b-9690-4757-a1ba-5a8ed8656bc4
http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

(c) Tools: The required tools can be compiled by clicking on the Make

tools. This button actually run the Makfile inside /mpsoc/src_c directory.

You can modify these setting at any time later via File->setting menu:

Figure 1.3: ProNoC setting menu.

Figure 1.4: ProNoC GUI snapshot.

ProNoC homepage October 15, 2021 7

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

CHAPTER 2

Interface Generator

Introduction The interface generator allows the addition of new interfaces to ProNoC software. An
interface is a port or a group of ports that are common in different IP cores which are
used for doing a specific task. The most common interfaces in ProNoC are the shared
bus (wishbone bus) master/slave, clk and reset interfaces. Each individual interface
is divided into two types of socket and plug interfaces. Two different IP cores can
be connected when one has the socket type of an interface and another one has the
plug type of that interface. While it is optional to select any side of the connection as
socket or plug interface, bellow are some differences between them that help to select
an appropriate type of interface for each IP core:

1. In processing tile generator only the plug interfaces of an IP are shown in the
IP box. The user can select the connection interface from the list of all IP cores
having the socket type of that interface as shown in Figure 2.1.

Figure 2.1: GPO IP box snapshot.

2. The socket interfaces can be defined as single or multi-connection. A socket
interface can be defined as multi-connection only when it consists of only output
ports. As a result, it can be connected to multiple IPs having the plug type of
that interface. Examples of multi-connection socket in PoNoC are clk and reset
interfaces.

Figure 2.2: multi-connection selection snapshot.

3. The number of a socket interface in an IP core can be parameterizable. To do
this, the interfaces’ ports that having the same name must be concatenated as
a single port in the IP core Verilog file. This feature provides flexibility to the
ProNoC Processing tile generator as an IP core now can have variable number
of an interface which can be defined by the user at the generation time. As an
example the interfaces of the Wishbone bus and the interrupt controller are de-
fined as socket with parameterizable number of interfaces. Below is an example
which shows how the interfaces are defined in a Wishbone Bus IP core module:

ProNoC homepage October 15, 2021 8

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

Listing 2.1: bus.v
module wishbone_bus #(
parameter M = 4, //number of master port
parameter S = 4, //number of slave port
parameter Dw = 32,// maximum data width
parameter Aw = 32 // address width
parameter DwS= Dw * S,
parameter AwS= Aw * S,
.
.

)(
//Slaves interface
output [AwS-1 : 0] s_adr_o_all ,
output [DwS-1 : 0] s_dat_o_all ,
input [DwS-1 : 0] s_dat_i_all ,
output [S-1 : 0] s_we_o_all ,
output [S-1 : 0] s_cyc_o_all ,
output [S-1 : 0] s_stb_o_all ,
.
.

(a)

(b)

Figure 2.3: (a) Select Verilog parameters M and S as the number of Wishbone bus
(WB) master & slave interfaces for generating Wishbone Bus IP core. (b) The number
of WB master/slave interfaces can be defined at SoC generation time via GUI.

ProNoC homepage October 15, 2021 9

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

Generate New
Interface

In order to add a new interface to ProNoC, press the browse button and select
the Verilog file containing a module with the desired interface. If there are multiple
modules inside that file, you can select the desired one from Select module menu. To
add ports to the interface press Import Ports button. It opens a pop-up window
as shown in Figure 2.4 where you can select and add the required ports.

Figure 2.4: Interface generator snapshot.

Using swap button, you can define if the selected ports belong to the socket
or plug type of an interface. You are only needed to define one type of an interface,
the other type will be defined automatically. The width of each port can also be a
Verilog code parameter. Note that any Verilog module using this interface must define
the interface ports using the same parameter name.

The socket interfaces can be defined as single or multi connection. If a socket is
defined as single connection, by connecting a new IP to the socket, the last connected
plug to that socket will be disconnected automatically.

Defined
Interfaces

While it is optional to select any side of an interface connection as socket or plug when
defining a new interface, once the definition is done for an IP core, all other IP cores
having that interface must follow the first IP core. Hence, it is important to know
how the defined interfaces (socket and plug) are mapped to the existing IP cores in the
library. This section provides the list of defined interfaces and the IP cores which use
these interfaces.

NI This is the interface connection between Network-on-chip (NoC) router and the NoC
interface adapter module (NI). Figure 2.5 shows this interface.

ProNoC homepage October 15, 2021 10

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

Figure 2.5: NI socket/plug interfaces.

IP cores having NI socket: ni master, ni slave
IP cores having NI plug: NoC

interrupt cpu CPUs that have only one single interrupt pin must be connected to an interrupt con-
troller module to allow combination of several sources of interrupt. The interface be-
tween these CPUs and Interrupt controller is called interrupt cpu.

Figure 2.6: interrupt cpu socket/plug interfaces.

IP core having interrupt cpu socket: aeMB CPU
IP core having interrupt cpu plug: int ctrl (interrupt controller module)

interrupt
peripheral

This is the interrupt interface connection between CPUs having multiple interrupt pins
that can directly be connected to multiple the peripheral devices.

Figure 2.7: interrupt peripheral socket/plug interfaces.

IP cores having interrupt peripheral socket: int ctrl, mor1kx, or1200, and lm32
CPUs.
IP cores having interrupt peripheral plug: dma, timer, ni master, ni slave, ext int
(external interrupt), eth mac100, jtag uart.

ProNoC homepage October 15, 2021 11

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

clk The clock pin interface.

Figure 2.8: clk socket/plug interfaces.

IP core having clk socket: clk source
IP cores having clk plug: All IP cores which have clk pin except clk source

reset The reset pin interface.

Figure 2.9: reset socket/plug interfaces.

IP core having reset socket: clk source
IP cores having reset plug: All IP cores which have reset pin except clk source

Enable The enable pin interface. The enable pin is used for disabling any active module in a
processing tile (e.g CPUs). The Processing tile and NoC-based MCSoC generators au-
tomatically connect all enable plug interfaces to each other and used them for disabling
CPUs during programming mode. The enable pin for each CPU must be defined as IO
in processing tile generator.

Figure 2.10: Enable socket/plug interfaces.

IP core that have enable socket: -
IP core that have enable plug: All CPUs

Wb master The wishbone bus master interface. The Wb master socket interface is mapped to
wishbone bus module. All IP cores’ WB master interface must be mapped to the plug
interface.

ProNoC homepage October 15, 2021 12

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

Figure 2.11: WB master socket/plug interfaces.

IP core having Wb master socket interface: Wishbone Bus module
IP cores having Wb master plug interface: All CPUs, ni master, dma, eth mac100,
jtag wb.

Wb slave The wishbone bus slave interface. The Wb slave socket interface is mapped to wish-
bone bus module. All IP cores’ WB slave interface(s) must be mapped to the plug
interface.
IP core having Wb slave socket interface: Wishbone Bus module
IP core that have Wb slave plug interface: ni master, ni slave, dma, eth mac100,
jtag wb, jtag uart, timer, gpio, gpi, gpo, single port ram, dual port ram, lcd 2x16,
ext int, int ctrl

Figure 2.12: WB slave socket/plug interfaces.

ProNoC homepage October 15, 2021 13

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

CHAPTER 3

IP Generator

Introduction The IP generator allows adding new intellectual properties (IPs) to the ProNoC’s li-
brary. It provides a GUI interface for mapping the IP’s ports to the interfaces, defining
how the IP parameters must be collected from the user at tile generation time, and
getting the location of IP cores’ source files.

Generate a New
IP

For adding a new IP to ProNoC, first you need to have the Verilog file(s) describing the
RTL code of that IP.

1. Click on Browse button and select the Verilog file containing the top level
module.

2. Select a category which this new IP core is belonging to. You can either select it
form the list of available categories or define a new category by typing its name

in . All IPs belonging to the same category are listed
under the same tree branch in processing tile generator.

3. Define an IP name for this module. The IP name will be shown in IP list below
its category name in Processing tile generator.

4. In case the Verilog file contains several Verilog module select the top-level mod-
ule in Select Module field.

5. Using IP Description button you can add a short description about the
IP. This description will be shown when the IP is selected in processing tile
generator. You can also add the IP-core documentation in PDF format here.
This generates a short key for opening the IP documentation in processing tile
generator.

Note: In order to make the copy of your ProNoC software portable palace the
documentation files somewhere inside mpsoc folder.

6. The button allows the addition of the necessarily files and fold-

ers to the generated processing tile software directory ([PRONOC_WORK]/SOC/[PT
-name]/sw). By pressing this button you will have three notebook pages:

• Add existing files/folders: In this page you can add the list of files and
folders which you want to copy them exactly into the mpsoc/SOC/[PT-name
]/sw folder.

• Add files contain variables: In this page you can add the list of files which
contain some variables that can be replaced at the processing tile generation
time. Variables must be written in the source file with ${variable_name}

format. You can use any of available variables in ProNoC as variable name.

• Add to tile.h: Define the header file for this peripheral device including
peripheral device functions’ deceleration, memory-mapped register address
definition, definitions of data types, and C preprocessor commands. Do not
include function definitions in the header file. Functions should be defined
in add to tile.c section. These definitions are added to the processing

ProNoC homepage October 15, 2021 14

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

tile header file at generation time. You can use any of available variables
in ProNoC with ${variable_name} format. A header file example is as
follows:

#define ${IP}_REG_0 (*((volatile unsigned int *)(${BASE})))
#define ${IP}_REG_1 (*((volatile unsigned int *)(${BASE}+4)

))

#define ${IP}_WRITE_REG1(value) ${IP}_REG_1 = value
#define ${IP}_READ_REG1 () ${IP}_REG_1

#define ${IP}_is_busy(n) ((${IP}_REG_0 >> n) & 0x1)

A sample generated header file by ProNoC assuming the IP instance name
is defined as foo by the user and the WB slave address is defined as 0

X96000000 by ProNoC automatically is as follows:

/* foo */
#define foo_REG_0 (*((volatile unsigned int *)(0X96000000)))
#define foo_REG_1 (*((volatile unsigned int *)(0X96000000+4))

)

#define foo_WRITE_REG1(value) foo_REG_1 = value
#define foo_READ_REG1 () foo_REG_1

#define foo_is_busy(n) ((foo_REG_0 >> n) & 0x1)

• Add to tile.c: You can define the peripheral device’s functions in this file.
You can use any of available variables in ProNoC with ${variable_name}

format in this file.

7. Add the list of all required HDL files for this new IP core by clicking on
button. All files listed here will be copied in the generated processing tile in-
side mpsoc/SOC/[PT-name]/src_verilog folder. If you tick simulation only op-
tion for any of entered file/folder, they will be copied in mpsoc/SOC/[PT-name]/

src_sim folder instead and will only be used for simulation.

8. By pressing button, all parameters inside the top module Verilog

file are extracted. This menu allows you to add, remove or define how to get the
parameter values from the user. Below is an example for setting parameter M in
wishbone bus.

Figure 3.1: Parameter setting snapshot.

ProNoC homepage October 15, 2021 15

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

• Parameter name: It is the parameter name which has been read from the
Verilog file.

• Default value: when an IP is selected for the first time in processing tile
generator, the parameters are loaded by their default values.

• Widget type: It defines how the parameter value must be taken from the
user when calling the IP in processing tile generator. There are four ways
to define a widget type:

– Fixed: The parameter is a fixed value and get the default value. User
will not see the parameter and cannot change it in GUI.

– Entry: The parameter value is received via entry widget. The user
can type anything as parameter value.

– Combo-box: The parameter value can be selected from a list of pre-
defined values.

– Spin-box: The parameter is a numeric value and is taken using spin-

box widget.

• Widget content: For Fixed and Entry leave it empty. For Combo box
define the parameters which must be shown in combo box. Use following
format: "VALUE1","VALUE2",...,"VALUEn". For Spin box define it with
this format minimum,maximum,step (e.g 0,10,1).

• Type: Here you can define that how any specific IP-core parameter is de-
fined in the generated processing tile Verilog file. You have three options
localparam, Parameter, and Don't include. If you select it as Parameter
then all processing tile parameters are also defined as parameter in the pro-
cessing tile Verilog file. Hence, they can be changed during NoC-based
MPSoC generation time. This allows calling same tile in different places
with different parameter values. In case the parameter is a software pa-
rameter which must be used in software code variables define it as Don't
include.

• Redefine: If it is check marked, the defined parameter/localparam in pro-
cessing tile Verilog file will be passed to the IP core during instantiating.
Remove the check mark if you only have added a parameter using parame-
ter setting GUI which does not exist in the IP-core Verilog file.

parameter PARAM1= n; //redefined is on
localparam PARAM2=m; //redefined is off

ip_name #(
// redefined parameters
.PARAM1(PARAM1)

) instance_name(
//ports definition starts here

);

• info: The parameter description for the user can be added here.

ProNoC homepage October 15, 2021 16

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

9. Add interface: You can add interfaces to the IP library by double-clicking on
an interface name located at the left top corner. After adding the interface, it
appears in the interface box where you can adjust the interface setting such as,
interface name, type, and the number of that interface which appears in the new
IP core.

For wishbone slave interface you can select the wishbone address setting by
pressing button and do the following settings:

• Interface name: define a name for this interface.

• Address Range: select the address range for WB slave port. These ad-
dresses are defined in mpsoc/perl_gui/lib/perl/wb_addr.pm file. You
can add your own address range by modifying this file.

• Block address width: It defines the maximum memory size required for
this interface in byte which is defined as 2 power of block address width

(see Figure 3.2 caption as an example). The width can be defined as a fixed
number when the number of memory mapped registers inside the interface
is predefined as a fixed number. In case, that the number of required regis-
ters is dependent on a Verilog parameter (e.g. a memory block that its size
is parameterizable) and it is aimed to be defined by the user at processing
tile generation time then you can define it as parametrizable then select
the corresponding parameter as address width.

Figure 3.2: Slave WB address setting snapshot. The size of memory mapped registers
in this example is 25 = 32 bytes. For a 32-width WB it is equal to 32/4 = 8 individual
registers. In case, you have parameterizable number (e.g. M) to indicate memory
mapped register width in words in your IP module Verilog file, you need to add another
parameter such as N=M+2 in parameter setting window and select its type as Don'
t include to be used as address width parameter in bytes.

For socket interfaces, there is an option to define the interface number as pa-
rameter by selecting concatenate condition or a fixed number by selecting

separate condition. See socket interface specification for more information.

10. After adding the interfaces, you must mapped the top module ports to the in-
terfaces ports. For each top-level module port you need to select the interface
name and interface port. Figure 3.3 illustrates a snapshot of interface mapping
for Wishbone Bus module.

11. Finally, by pressing you can generate the IP. You can also modify
the existing IPs by using button.

ProNoC homepage October 15, 2021 17

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

Figure 3.3: Wishbone Bus module interface mapping snapshot.

See Add Custom IP Tutorial for observing an example of adding a custom IP core
to the ProNoC library.

List of available
Variables in
ProNoC • ${[parameter_name]}: The IP core parameter value. The actual value is de-

fined by the user when calling IP core at processing tile generation time. The
parameter had to be added in GUI parameter using parameter setting button.

• ${CORE_ID}: Each Wishbone bus-based processing tile will have a unique CORE_ID
that represents its location in NoC topology.

If the generated tile is used as top-level module CORE_ID will take the default
value of zero.

• ${IP}: is the peripheral device instance name which is defined by the user when
calling IP core using Processing tile generator.

• ${CORE}: is the peripheral device IP core name.

• ${BASE}: is the wishbone base address(es) and will be added during process-
ing tile generation to processing tile C header file (mpsoc/SOC/[PT-name]/sw/[
Tile_name].h). If more than one slave wishbone bus exist in the IP core, the
variables are define as ${BASE0}, ${BASE1}... .

ProNoC homepage October 15, 2021 18

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

List of available
IP cores in
ProNoC

This section provides a brief description about the available IP core modules in ProNoC
library. Most IP cores that are developed with ProNoC software come with a separate
documentation PDF file. These files are accessible by clicking on the IP core modules’
name in following section. For the other IP cores which are adopted from OpenCores
website the project homepage URL address is linked to the IP core name.

Bus

• Wishbone bus (WB): is an open source hardware computer bus released by
OpenCores. ProNoC’s WB is fully parameterizable in terms of number of mas-
ter/slave interfaces and data/address width.

Communication

• ProNoC jtag uart: A JTAG based Universal Asynchronous Receiver-Transmitter
(UART) module with Wishbone-bus interface. The communication to the host
PC is handled using Altera Virtual JTAG Tab or Xilinx BSCANE2 Tab. ProNoC
has an in-build GUI with the ability of monitoring multiple UART terminals at
the same time (See ProNoC UART GUI).

• ProNoC jtag wb: Altera JTAG to Wishbone bus interface. This module al-
lows reading/writing data to the IP cores connected to the wishbone bus (e.g.
memory cores). For Altera FPGAs, the communication between the host PC
is done using mpsoc/src_c/jtag/jtag_libusb via USB Blaster I and mpsoc/

src_c/jtag/jtag_quartus_stp via USB Blaster II. For XILINX FPGAs, it is
done using mpsoc/src_c/jtag/jtag_xilinx_xsct. The communication with
the FPGA board also can be done using a GUI interface called Run time JTAG
debuger.

• altera jtag uart: The Altera (Qsys) JTAG UART core with Wishbone bus inter-
face.

• Etmach 100: The Ethernet MAC (Media Access Control) 10/100 Mbps. This
IP core is adopted from OpenCores/ethmac.

DMA

• dma: A wishbone bus round robin-based multi channel DMA (no byte enable is
supported yet). The dma supports burst data transaction.

Display

• lcd 2×16: 2×16 Character Alphabet Liquid Crystal Display (LCD) driver mod-
ule.

GPIO

• gpi: General purpose Wishbone bus-based input port.

• gpo: General purpose Wishbone bus-based output port.

• gpio: General purpose Wishbone bus-based bidirectional port.

ProNoC homepage October 15, 2021 19

https://opencores.org
https://cdn.opencores.org/downloads/wbspec_b3.pdf
https://opencores.org
https://opencores.org/websvn,filedetails?repname=ethmac&path=%2Fethmac%2Ftrunk%2Fdoc%2Feth_design_document.pdf
https://opencores.org/project,ethmac
http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

Interrupt

• ext int: External interrupt module.

• int ctrl: Interrupt controller. CPUs that have only one single interrupt pin (e.g.
aeMB) must be connected to an interrupt controller module to allow combination
of several sources of interrupt.

NI

• ni master: ni master is a Wishbone bus (WB)-based interface for the network-
on-chip (ProNoC) router. This module has two WB master interfaces, one for
sending and another for receiving data packets.

• ni slave: ni slave is an extension of NI master module connected to two input
and output buffers. There are three WB slave interfaces in this module, one for
writing on output buffer, one for reading input buffer and one for controlling the
NI.

Processor

• Or1200: OR1200 is the original implementation of the OpenRISC 1000 archi-
tecture. Its source code has been adopted from github at openrisc/or1200.

• aeMB: the EDK3.2 compatible Microblaze core. This IP core is adopted from
OpenCores/aemb.

• lm32: LatticeMico32 is a soft processor originally developed by Lattice Semi-
conductor. The source code of this IP core is adopted from github/soc-lm32.

• mor1kx: The mor1kx is a replacement for the original or1200 processor. The
source code is adopted from github at openrisc/mor1kx

RAM

• single port ram: A Wishbone bus-based single port Random Access Memory
(RAM).

• dual port ram: A Wishbone bus-based dual port RAM.

Source

• clk source: This module provides the clk and reset (socket) interfaces for all
other IPs. It also synchronizes the reset signal.

Timer

• timer: A simple, general purpose, Wishbone bus-based, 32-bit timer.

ProNoC homepage October 15, 2021 20

https://openrisc.io/implementations.html#OR1200
https://github.com/openrisc/or1200
http://www.codelooker.com/dfilec/8310labmicsoc/aeMB_datasheet.pdf
https://opencores.org/project,aemb
http://www.latticesemi.com/-/media/LatticeSemi/Documents/UserManuals/JL/LatticeMico32ProcessorReferenceManual37.ashx?document_id=51558
https://github.com/jbornschein/soc-lm32/tree/master/rtl/lm32
https://openrisc.io/implementations.html#OR1200
https://github.com/openrisc/mor1kx
http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

CHAPTER 4

Processing Tile
Generator

A Processing Tile (PT) is a set of several IPs (processors and peripheral devices) con-
necting via interfaces. Figure 4.1 illustrate a snapshot of PT generator. PT generator
facilitates the RTL code generation of a custom PT by providing following features:

1. Allows addition of any arbitrary number of IP cores to the PT.

2. Provides a simple GUI for connection IP cores.

3. Provides a GUI for setting IP core parameters.

4. Auto-generates the Wishbone Bus slave interface addresses.

5. PT functional block diagram viewer.

6. PT RTL code generator.

7. Comes with an in-built text editor for software development and compilation.

8. Facilitate RTL code synthesizing using one of the Verilator, Modelsim, Vivado
or QuartusII compilers.

For more information about PT generator, please refer to Processing Tile Generator
Tutorial.

ProNoC homepage October 15, 2021 21

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

Figure 4.1: PT generator snapshot.

ProNoC homepage October 15, 2021 22

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

CHAPTER 5

Processing Tile
Generator Hello
World Tutorial

Summary This tutorial teaches how to develop a shared bus (Wishbone bus) based system on chip
(SoC) and a simple software implementation using ProNoC Processing Tile Genera-
tor. The desired SoC will be generated by connecting open-source IP cores on Altera
or Xilinx FPGA board.

System
Requirements:

You will need an Altera or Xilinx FPGA development board and a computer system
running Linux OS with:

1. Installed the ProNoC GUI software and its dependency packages.

2. Installed/Pre-built GNU toolchain of the Mor1kx soft-core processor.

3. Installed Quarts II (Web-edition or full) compiler in case of having Altera FPGA
Board or Vivado Design Suite compiler in case of using Xilinx FPGA board.

For more information about the GNU toolchain installation please refer to the In-
stallation Manual for the Ubuntu. In case your FPGA board is not included in the
ProNoC FPGA board list please follow the instructions given in Adding a New Alter-
a/Xilinx FPGA Board to ProNoC, to add your board to the ProNoC library.

Objectives:

1. To design a Wishbone bus-based system-on-chip hardware architecture using
ProNoC Electronic Design Automation (EDA) software.

2. To develop a simple software application running on generated SoC.

3. To interact with on-board memory units using JTAG to wishbone interface mod-
ule.

Desired SoC

Schematic Figure 5.1 illustrates the desired hardware architecture in this tutorial. This architecture
consists of:

1. Four LEDs connected to 4-bit general purpose output (GPO)

2. A 32-bit timer.

3. A mor1kx processor (You can use any of other available processors).

4. A single port RAM.

5. A JTAG UART.

6. A Wishbone Bus.

7. A Clock source (not shown in Figure 5.1).

ProNoC homepage October 15, 2021 23

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

Figure 5.1: The schematic of desired SoC in this tutorial.

Application
Software

The aim of this tutorial is to design a simple SoC for running ”Hello world” and ”blink-
ing LED” programs on the desired SoC.

Create New SoC
Using ProNoC
Processing Tile
Generator

Open mpsoc/perl_gui in terminal and run ProNoC GUI application:
./ProNoC.pl

It should open The GUI interface as illustrated in Figure 5.2.

Figure 5.2: ProNoC GUI first page snapshot.

Then select the Processing Tile Generator tab:

ProNoC homepage October 15, 2021 24

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

Figure 5.3: ProNoC New Processing Tile generator snapshot.

At the left Tree-View window you can see the list of all available IP categories.
Clicking on each category expand the associated list of IP cores. Each IP core can
be added to GUI by double clinking on its name. The added IP core has three setting
columns:

(a) In first column you can shift IP core box position up/down in GUI interface,
remove the IP core or set its parameters (if any).

(b) In the second column you can rename the IP core instance name.

(c) Third column shows all (Plug) interfaces of this module. here you can connect
each plug to one appropriate (socket) interface. (Each interface is categorized
into two types of plug and socket. See Interface Generator chapter for more in-
formation about interfaces. You can also export the interface as SoC’s input/out-
put (IO) ports here.

Now let start calling required IPs. We start with clk_source:

ProNoC homepage October 15, 2021 25

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

Add clk source This module provides clk and reset interfaces for all other IPs. It also synchronizes the
reset signal.

1. Click on Source category, then double-click on clk_source.

2. Rename the clk_source instance name as source. Leave the interfaces as IO.

Figure 5.4: Adding clock source.

ProNoC homepage October 15, 2021 26

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

Add Wishbone
Bus: 1. Click on Bus category and double-click on Wishbone_bus.

2. In parameter setting set M (master interfaces number) as 2 and S (slave interfaces
number) as 4. These values are obtained from Figure 5.1. You can change them
later if you want to add/remove any IPs.

3. Rename the instance name as bus.

4. Connect the clock and source interfaces to clk_source module.

Figure 5.5: Adding Wishbone bus.

Add the rest of
IPs:

Add the rest of IP cores according to Table 5.1.

• Note that the parameters which are needed to be assigned differently for Altera
& Xilinx FPGA board are footnoted.

• Note that the socket interface has the following format:
connection-IP-instance-name : interface-name [interface number].
Hence, bus:wb_slave[0] means that the wb interface of GPO IP is connected to
the bus via zeroth wb interface. Note that you can optionally connect it to any of
other wb interfaces number as WB has a round-robin arbitration scheduler.

• In case of using other processor note that some softcore processor such as aeMB
may need interrupt controller. Table 5.2 lists the IP core setting for this CPU.

• It is not necessarily to connect Wishbone bus Master/Slave interface according
to the given port number in Table 5.1and 5.2. Any arbitrary order will work.

ProNoC homepage October 15, 2021 27

http://www.codelooker.com/dfilec/8310labmicsoc/aeMB_datasheet.pdf
http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

Table 5.1: IP core list and setting for Mor1kx SoC.

Category IP name Parameter Instance name Interface connection

Source clk source FPGA VENDOR → ”ALTERA”1 source
clk
reset

→
→

IO
IO

Bus wishbone bus

M
S
Dw
Aw

→
→
→
→

2
4
32
32

bus
clk
reset

→
→

source:clk
source:reset

Processor Mor1kx

OPTION DCACHE SNOOP
FEATURE INSTRUCTIONCACHE
FEATURE DATACACHE
FEATURE IMMU
FEATURE DMMU

→
→
→
→
→

”NONE”
”ENABLED”
”ENABLED”
”ENABLED”
”ENABLED”

cpu

clk
reset
snoop
iwb
dwb
enable

→
→
→
→
→
→

source:clk
source:reset
bus:snoop
bus:wb master[0]
bus:wb master[1]
IO

RAM single port ram

Dw
Aw
BYTE WR EN
FPGA VENDOR
JTAG CONNECT
JTAG INDEX
BURST MODE
MEM CONTENT
FILE NAME
INITIAL EN
JTAG CHAIN

→
→
→
→
→
→
→
→

→
→

32
14
”YES”
”ALTERA”1

”ALTERA JTAG WB”2

CORE ID
”ENABLED”
”ram0”

”YES”
4

ram
clk
reset
wb

→
→
→

source:clk
source:reset
bus:wb slave[0]

Timer timer PRESCALE WIDTH → 8 timer

clk
reset
wb
intrp

→
→
→
→

source:clk
source:reset
bus:wb slave[1]
cpu:interrupt peripheral[0]

Communication ProNoC jtag uart

BUFF Aw
JTAG INDEX
JTAG CHAIN
JTAG CONNECT
INCLUDE SIM PRINTF

→
→
→
→
→

4
126-CORE ID
3
”ALTERA JTAG WB” 2

SIMPLE PRINTF

uart
clk
reset
wb

→
→
→

source:clk
source:reset
bus:wb slave[2]

GPIO gpo PORT WIDTH → 4 led
clk
reset
wb

→
→
→

source:clk
source:reset
bus:wb slave[3]

1 → ”XILINX” For Xilinx FPGA
2→ ”XILINX JTAG WB” For Xilinx FPGA

ProNoC homepage October 15, 2021 28

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

Table 5.2: IP core list and setting for aeMB SoC.

Category IP name Parameter Instance name Interface connection

Source clk source FPGA VENDOR → ”ALTERA”3 source
clk
reset

→
→

IO
IO

Bus wishbone bus

M
S
Dw
Aw

→
→
→
→

2
5
32
32

bus
clk
reset

→
→

source:clk
source:reset

Processor aeMB
STACK SIZE
HEAP SIZE

→
→

0X400
0X400 aeMB

clk
reset
iwb
dwb
enable

→
→
→
→
→

source:clk
source:reset
bus:wb master[0]
bus:wb master[1]
IO

RAM single port ram

Dw
Aw
BYTE WR EN
FPGA VENDOR
JTAG CONNECT
JTAG INDEX
BURST MODE
MEM CONTENT
FILE NAME
INITIAL EN
JTAG CHAIN

→
→
→
→
→
→
→
→

→
→

32
14
”YES”
”ALTERA” 3

”ALTERA JTAG WB”4

CORE ID
”ENABLED”
”ram0”

”YES”
4

ram
clk
reset
wb

→
→
→

source:clk
source:reset
bus:wb slave[0]

Interrupt int ctrl INT NUM → 1 int ctrl

clk
reset
interrupt cpu
wb

→
→
→
→

source:clk
source:reset
aeMB:interrupt cpu
bus:wb slave[4]

Timer timer PRESCALE WIDTH → 8 timer

clk
reset
wb
intrp

→
→
→
→

source:clk
source:reset
bus:wb slave[1]
in ctrl:int periph[0]

Communication ProNoC jtag uart

BUFF Aw
JTAG INDEX
JTAG CHAIN
JTAG CONNECT
INCLUDE SIM PRINTF

→
→
→
→
→

4
126-CORE ID
3
”ALTERA JTAG WB” 4

SIMPLE PRINTF

uart
clk
reset
wb

→
→
→

source:clk
source:reset
bus:wb slave[2]

GPIO gpo PORT WIDTH → 4 led
clk
reset
wb

→
→
→

source:clk
source:reset
bus:wb slave[3]

Check wishbone
bus(es)
addresses:

After adding all required IP cores, now you can check the auto-assigned Wishbone
bus addresses by clicking on Wishbone-bus addr button. Note that the assigned
addresses are also modifiable.

3 → ”XILINX” For Xilinx FPGA
4→ ”XILINX JTAG WB” For Xilinx FPGA

ProNoC homepage October 15, 2021 29

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

Figure 5.6: Wishbone bus addresses of the tutorial SoC.

These addresses are automatically set based on IP cores library setting, inserted pa-
rameters and numbers of repeating same IP cores in the system. However, you are free
to adjust them to the new values as while as there is no conflict in inserted addresses.

View SoC
functional block
diagram:

Click on the Diagram button to observe the SoC functional block diagram.

Figure 5.7: The tutorial SoC diagram.

CLK setting: In case that the SoC is desired to be the top-level module in FPGA implementation
(e.g. in this example), you may need to generate the SoC clock signal from the FPGA
incoming reference clock.

To do that click on the CLK Setting button. It will open a new window where
you can connect your SoC top module to some clk sources. As an example Xilinx
Kintex-7 FPGA KC705 has a differential reference clock. The differential FPGA input

ProNoC homepage October 15, 2021 30

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

clocks are first needed to be converted into a single clk using IBUFGDS module. The
output of IBUFGDS (diff:clk) is 200 MHz which is too high for the desired SoC to
meet the timing constraints. This clock can be divided by half using a PLL. To do so
set the PLL multiplication (CLKFBOUT_MULT) and division factor (CLKOUT0_DEVIDE) to
9 and 18, respectively;

Figure 5.8: Example of clock setting for Xilinx Kintex-7 FPGA KC705 Evaluation Kit.

• Note that in case you directly want to connect the FPGA reference clock to the
SoC you can omit this configuration. The TOP module clk and reset signals left
as output by default.

• If the processing tile is planed to be used in an internal module inside an MPSoC,
the clock setting can be ignored.

Generate SoC
RTL Code:

1. Set Tile name as tutorial.

2. Press Generate RTL button.

ProNoC homepage October 15, 2021 31

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

Figure 5.9: Generating the tutorial SoC.

If the generation is successful, you must have two new folders in your mpsoc/soc/
tutorial path:

• sw: This folder contains the required software files including the programming
header files, in-system memory editing files and Makefile.

– tutorial.h: The SoC header file containing peripheral device functions
deceleration, memory-mapped register address definition, definitions of
data types, and C preprocessor commands (some IPs may have additional
header files).

– tutorial.c: Contains all peripheral devices functions definition.
– README: This file contains SoC parameters, IP connection and wishbone

bus addresses. This file also explain how to work with Jtag_wb IP core.
– program.sh: A sample bash file that can be used for programming the SoC

RAMs at run time using JTAG interface.

• src_verilog: contains three Verilog files and a folder:

– tutorial.v: the generated SoC RTL code. This file contains all IPs in-
stances and connections.

– tutorial_top.v: this file contains the tutorial SoC module instance con-
nected to a JTAG controllers and clock convertor modules.

– Top.v: Contains the highest top module where the SoC ports are connected
to the target FPGA pins.

– lib: This folder contains all IP cores HDL files.

ProNoC homepage October 15, 2021 32

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

Software
Development

1. Click on the Software button to open the software development window.

2. In the left Tree-View window, you can select any file in project sw directory to
open and then edit it. Click on tutorial.h file to see the file contents. This file
contains all generated SoC functions and WB addresses.

Figure 5.10: The software edit window snapshot.

3. Now click on main.c file. Replace the contents of this file with the following
C code. This code writes the ”Hello worlds!” on JTAG UART port once, and
then controls the LEDs using the timer interrupt service routine. Each time an
interrupt happens the LED which is on is turned off and the neighboring one
is turned on. The timer asserts an interrupt in every 500 clock cycles. The
interrupt time is deliberately chosen too small to speed up the simulation. In
FPGA implementation which comes later we will increase the interrupt time to
observe the blinking LEDs on the target FPGA board.

ProNoC homepage October 15, 2021 33

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

#include "tutorial.h"

// a simple delay function
void delay (unsigned int num){

while (num>0){
num--;
nop(); // asm volatile ("nop");

}
return;

}

char i=1;
void timer_isr(void){

//write your interrupt code here
i*=2;
if((i&0xF)==0) i=1;
led_WRITE(i);
timer_TCSR=timer_TCSR; //ack int
return;

}

int main(){
printf("hello world!\n");
delay(500);

general_int_init();
general_int_add(timer_INT_PIN, timer_isr, 0);
general_int_enable(timer_INT_PIN);
general_cpu_int_en();

timer_int_init(500);
while(1){

delay(500);
}
return 0;

}

ProNoC homepage October 15, 2021 34

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

4. Now press the Compile button. This will compile the C code using Mor1kx
GNU toolchain. If everything runs ok, you must see ”compilation finished suc-
cessfully” message as shown in Figure 5.11. Otherwise, check the error message
to fix your code and press the compile button again. If every thing runs success-
fully you must have ram0.bin, ram0.hex, and ram0.mif files in your sw/RAM
directory.

Figure 5.11: Compile the software code.

(a) In case you got region (ram or rom) overflowed such as the one shown in

ProNoC homepage October 15, 2021 35

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

Figure 5.12, you need to configure the linker (LD) size variables by clicking
on the LD linker button.

Figure 5.12: LD Linker error example.

This opens a new window shown in Figure 5.13 where you can redefine
the ROM/RAM regions in the executable output file. This file contains the
following sections:

• .vectors: contains exceptions’ handling addresses. This section is
mapped to ROM region.

• .text: holds instructions and is mapped to ROM region.
• .rodata: contains read only data (constants) and is mapped to ROM

region.
• .data: hols initialized writable data. As the data in this sections is

writable its value may change during execution time. So after resetting
the CPU data should get back its intile value again. To do that, this
section has two addresses: The actual section is loaded in ROM on
load address (LMA) address. The second address is reserved in RAM
which is called virtual address (VMA) regions. At the boot time the
entire .data section is copied from ROM to RAM. And the executable
program only changes the values in RAM section.

• .bss: contains uninitialized data and is mapped to RAM.
• .stack: contains stack and is mapped in RAM.

As a result the RAM and ROM area size should be defined in such a way
that the mentioned sections can be fitted in them.
By default, 75% of memory is dedicated for ROM area and the rest of
25% is reserved for RAM. Depending on which area is overflowed you can
change these ratios here and retry compilation process. In case both areas
are overflowed, you need to increase your memory size. Don’t forget that
you also need to increase the memory width parameter in memory IP in
processing tile generator window later as well (i.e: RAMs’ Aw parameter
in Table 5.1).

Figure 5.13: LD Linker configuration window snapshot.

ProNoC homepage October 15, 2021 36

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

Simulate the
generated RTL
code using
Modelsim
software

If you have installed Modelsim software on your system, you can simulate your SoC
working with your developed software. To do this, follow these instructions:

1. Press the Compile RTL button in right down corner. This should open ”select
compiler window” as shown in Figure 5.14.

2. Select Modelsim as compiler tool.

3. Enter the path to your installed Modelsim bin directory.

4. Press the Next button.

Figure 5.14: Select Modelsim as simulator.

ProNoC homepage October 15, 2021 37

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

5. Now you must have the testbech.v opened in text editor window as shown in
Figure 5.15. This is the minimum testbench file for running the simulation of the
generated SoC in Modelsim software. It has the SoC instance module connected
to the clock and reset signals. You can edit this file as you wish.

6. Press the run button to run the simulation in Modelsim software.

Figure 5.15: testbech.v file snapshot.

7. Figure 5.16 shows the Modelsim simulation output snapshot. You must see the
”hello world!” in the Modelsim terminal. The output LEDs also must be seen as
cyclic shift to the left of a one-hot code in the Signal Waveform Window.

ProNoC homepage October 15, 2021 38

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

Figure 5.16: Modelsim output snapshot.

Simulate the
generated RTL
code using
Verilator
software

If you have installed Verilator software on your system, you can simulate your SoC
when it is running your developed software. To do this follow these instructions:

1. Press the Compile RTL button in right down corner. This should open ”select
compiler window” as shown in Figure 5.17. Select Verilator as compiler tool then
press Next.

Figure 5.17: Select Verilator compiler.

ProNoC homepage October 15, 2021 39

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

2. The Verilator Model of your SoC should be generated now. If the model is
generated successfully, you must see ”Veriator model has been generated suc-
cessfully!” in the Textview window as shown in Figure 5.18.

Figure 5.18: Verilator model generation snapshot.

3. Press Next.

4. Now you must have the testbech.c opened in software code edit window as
shown in Figure 5.19. This is the minimum testbench file for running the gen-
erated SoC. It has the SoC instance module connected to the clock and reset
signals. You can edit this file as you wish.

ProNoC homepage October 15, 2021 40

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

Figure 5.19: Verilator model testbench edit snapshot.

5. We would like to monitor the value of LEDs when running the simulation model.
To do this, add the following lines to the testbech.c file:

ProNoC homepage October 15, 2021 41

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

6. Press Compile button to generate the executable binary file. If the file is gener-
ated successfully you must see the ”compilation finished successfully” message
as shown in Figure 5.20.

Figure 5.20: Verilator compilation successful snapshot.

7. Now press the Run button. In the successful simulation you must observe the
”Hello world!” sentence in terminal and each time you press the Enter button
you must observe the printed value of LED output port change to one of ”1,2,4,8”
numbers in order as show in Figure 5.21.

ProNoC homepage October 15, 2021 42

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

Figure 5.21: Verilator simulation results snapshot.

Compile the
generated RTL
code using
Quartus
II/Vivado
software

If you have installed Quartus II/Vivado software on your system and you have an Alter-
a/Xilinx FPGA development board, you can prototype your SoC on your target FPGA
and change its software code at runtime using following instructions:

1. Press Compile RTL button in right down corner. This should open ”select
compiler window” as shown in Figure 5.22. Select QuartusII or Vivado as the
compiler tool depend on your FPGA vendor.

Figure 5.22: Select QuartusII as compiler.

2. Enter the path to your installed QuartusII/Vivado bin directory.

ProNoC homepage October 15, 2021 43

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

3. In Targeted Board search for your FPGA board name. If the board exist select
it, press the Next button and continue from step 5. Otherwise, select Add
New Board.

4. Press the Next button. If you selected Add New Board, follow instructions
in Add new FPGA board to ProNoC to add your new board to ProNoC library.

5. Assign your SoC pins to your FPGA boards pins as shown in Figure 5.23.

Figure 5.23: SoC pin assignment.

Here, we have a DE10 nano FPGA board which we have used its FPGA CLK1 50,
KEY[0], and LED[3:0] ports. The enable pin is connected to logic 1, led port
[3:0] to LED[3:0], the clk signal to FPGA CLK1 50 and reset to negate KEY[0].
In DE10 nano FPGA board the KEY[1:0] are push-button switches and are
active-high. Hence, to use them as active-high reset sources we have to negate
their value.

6. Press the Next button.

7. Press the Compile button. Then wait for QuartusII compilation tasks to
complete.

ProNoC homepage October 15, 2021 44

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

Figure 5.24: QuartusII compilation snapshot.

8. If Quartus compilation is finished successfully, power on your FPGA board and
connect it to your PC then press Program the Board button to program your
FPGA board using the generated sof file.

9. Press Ctrl+U to run the UART terminal GUI. Follow instructions on UART ter-
minal GUI chapter to monitor the UART output.

In case you have Altera FPGA and you have preferred to used altera_jatag_uart

instead of ProNoC_JTAG_UART, open Terminal and type $QUARTUS_BIN/nios2-

terminal. You must be able to observe the ”Hello world!” Sentence in the ter-
minal as shown in Figure 5.25.

Figure 5.25: nios2-terminal output snapshot.

10. As we mentioned in step 3, the interrupt time is too short to observe the LEDs
blinking. To change the interrupt time click on Software button and change
the timer interrupt time from 500 to 5000000. Then press the compile

button. By clicking on Program the Board button you can reprogram your

ProNoC homepage October 15, 2021 45

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

SoC memory contents at run time. You should be able to observe the blinking
LEDs now.

Figure 5.26: Increase timer interrupt time.

ProNoC homepage October 15, 2021 46

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

CHAPTER 6

Add Custom IP to
Processing Tile
Generator Tutorial

Summary This tutorial teaches how to add a custom intellectual property (IP) core to ProNoC
Processing Tile Generator using IP Generator. This tutorial uses a custom Verilog
module for calculating the greatest common divisor (GCD) as an example hardware
accelerator to be added to ProNoC IP library. The desired system is a Wishbone bus
based SoC that is enhanced with GCD accelerator. This SoC will be generated by
connecting open-source IP cores on Altera FPGA board.

System
Requirements:

You will need an Altera FPGA development board having USB blaster I or II and a
computer system running Linux OS with:

1. Installed the ProNoC GUI software and its dependency packages.

2. Installed/Pre-built GNU toolchain of the aeMB soft-core processor.

3. Installed Quarts II (Web-edition or full) compiler.

For more information about the GNU toolchain installation please refer to the In-
stallation Manual for the Ubuntu. In case your FPGA board is not included in ProNoC
FPGA board list please follow the instruction given in Adding a New Altera FPGA
Board to ProNoC, to add your board to ProNoC.

Objectives:

1. To develop a Wishbone bus based custom Hardware Accelerator (HA) IP core.

2. To extend ProNoC IP core library with a new IP core and its required software
header file.

Greatest
Common
Divisor (GCD)
Algorithm

The Greatest Common Divisor (GCD) of two integers p and q, is the largest integer
that divides both p and q. GCD can be obtained using Euclidean algorithm as follow:

Data: (p, q): A pair of 8-bit binary positive numbers.
Result: gcd: greatest common divisor
INITIALIZE;
while p 6= q do

if p > q then
p = p− q;

end
else if p < q then

q = q − p;
end
else

gcd = p;
end

end

Algorithm 1: Greatest Common Divisor algorithm.

ProNoC homepage October 15, 2021 47

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

The GCD flow chart:

Figure 6.1: GCD flow chart.

GCD RTL code The GCD Verilog RTL code is as follows:

Listing 6.1: gcd.v
/************************
* GCD

*************************/

module gcd #(
parameter GCDw=32

)(clk, reset, enable, in1, in2, done, gcd);
input clk, reset;
input [GCDw-1 : 0] in1, in2;
output [GCDw-1 : 0] gcd;
input enable;
output done;
wire ldG, ldP, ldQ, selP0, selQ0, selP, selQ;
wire AeqB, AltB;

gcd_cu CU(
.clk (clk),
.reset (reset),
.AeqB (AeqB),
.AltB (AltB),
.enable (enable),
.ldG (ldG),
.ldP (ldP),
.ldQ (ldQ),
.selP0 (selP0),

ProNoC homepage October 15, 2021 48

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

.selQ0 (selQ0),

.selP (selP),

.selQ (selQ),

.done (done)
);

gcd_dpu #(
.GCDw(GCDw)

)DPU(
.clk (clk),
.reset (reset),
.in1 (in1),
.in2 (in2),
.gcd (gcd),
.AeqB (AeqB),
.AltB (AltB),
.ldG (ldG),
.ldP (ldP),
.ldQ (ldQ),
.selP0 (selP0),
.selQ0 (selQ0),
.selP (selP),
.selQ (selQ)
);

endmodule

/************************
* gcd_cu

*************************/

module gcd_cu (clk, reset, ldG, ldP, ldQ, selP0, selQ0, selP, selQ, AeqB,
AltB, done, enable);

input clk, reset;
input AeqB, AltB, enable;
output ldG, ldP, ldQ, selP0, selQ0, selP, selQ, done;
reg ldG, ldP, ldQ, selP0, selQ0, selP, selQ, done;

//State encoding
parameter S0 = 2'b00, S1 = 2'b01, S2 = 2'b10;
reg [1:0] y;
always @ (posedge reset or posedge clk) begin

if (reset == 1) y <= S0;
else begin

case (y)
S0: begin if (enable == 1) y <= S1;

else y <= S0;
end
S1: begin if (AeqB == 1) y <= S2;

else y <= S1;

ProNoC homepage October 15, 2021 49

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

end
S2: begin if (enable == 0) y <= S0;

else y <= S2;
end
default: y <= S0;

endcase
end

end

always @ (y or enable or AeqB or AltB) begin
ldG = 1'b0; ldP = 1'b0; ldQ = 1'b0;
selP0 = 1'b0;
selQ0 = 1'b0;
selP = 1'b0;
selQ = 1'b0;
done = 1'b0;
case (y)
S0: begin

done = 1'b1;
if (enable == 1)begin

selP0 = 1; ldP = 1; selQ0 = 1; ldQ = 1; done = 0;
end

end

S1: begin
if (AeqB == 1) begin

ldG = 1;
done = 1;

end
else if (AltB == 1) begin

ldQ = 1;
end
else begin

ldP = 1; selP = 1; selQ = 1;
end

end
S2: begin

ldG = 1;
done = 1;

end
default: ;
endcase
end

endmodule

/************************
* gcd_dpu

*************************/

module gcd_dpu #(
parameter GCDw=32

)(clk, reset, in1, in2, gcd, ldG, ldP, ldQ, selP0, selQ0, selP, selQ,

ProNoC homepage October 15, 2021 50

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

AeqB, AltB);
input clk, reset;
input [GCDw-1:0] in1, in2;
output [GCDw-1:0] gcd;
input ldG, ldP, ldQ, selP0, selQ0, selP, selQ;
output AeqB, AltB;
reg [GCDw-1:0] reg_P, reg_Q;
wire [GCDw-1:0] wire_ALU;
reg [GCDw-1:0] gcd;
wire AeqB, AltB;
//RegP with Multiplex 2:1
always @ (posedge clk or posedge reset)begin

if (reset == 1) reg_P <= 0;
else begin

if (ldP == 1)begin
if (selP0==1) reg_P <= in1;
else reg_P <= wire_ALU;

end
end

end

//RegQ with Multiplex 2:1
always @ (posedge clk or posedge reset) begin

if (reset == 1) reg_Q <= 0;
else begin

if (ldQ == 1)begin
if (selQ0==1) reg_Q <= in2;
else reg_Q <= wire_ALU;

end
end

end

//RegG with enable signal
always @ (posedge clk or posedge reset)begin

if (reset == 1) gcd <= {GCDw{1'b0}};
else begin

if (ldG == 1) gcd <= reg_P;
end

end

//Comparator
assign AeqB = (reg_P == reg_Q)? 1'b1 : 1'b0;
assign AltB = (reg_P < reg_Q) ? 1'b1 : 1'b0;

//Subtractor
assign wire_ALU = ((selP == 1) & (selQ == 1)) ? (reg_P - reg_Q) : (

reg_Q - reg_P);
endmodule

Create mpsoc/src_peripheral/other directory and then copy the above gcd.v file
inside it.

GCD
Simulation

In order to verify GCD hardware module, we use Verilator simulator. Optionally you
can use Modelsim as well.

1. If you have not yet installed Verilator simulator on your system run the following

ProNoC homepage October 15, 2021 51

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

command in terminal
sudo apt-get install verilator

2. Open terminal in the folder which you have created gcd.V file and run:
verilator --cc gcd.v

If your code is successfully verilated, you will have an obj_dir directory that
includes all generated GCD object files.

3. Open obj_dir folder and create testbench.cpp inside it:

Listing 6.2: testbench.cpp
#include <stdlib.h>
#include <stdio.h>
#include <unistd.h>
#include <verilated.h>
#include "Vgcd.h" // From Verilating "gcd.v"

unsigned int input1[10] ={136, 25, 33220, 3627, 3450, 9375, 199317,
157620, 5694235, 199307 };

unsigned int input2[10] ={248, 50, 2200, 4581, 6540, 61575, 103443,
238844, 239871, 903443};

unsigned int expt_gcd[10] ={8, 25, 220, 9, 30, 75, 2523, 284, 2161,
1};

Vgcd *gcd // Instantiation of module

unsigned int main_time = 0; // Current simulation time
int run;
unsigned int i=0,passed=1;

int main(int argc, char** argv) {
Verilated::commandArgs(argc, argv); // Remember args
gcd = new Vgcd;
/********************
* initialize input

*********************/
gcd->reset=1;
gcd->enable=0;

gcd->in1=0;
gcd->in2=0;

main_time=0;
run=0;

while (!Verilated::gotFinish() && i<10) {

if (main_time & 0x1) {
gcd-> clk = 0;
if(gcd-> done==1 && run>6){

printf("%u : GCD(%u,%u)= %d\t",main_time,gcd->in1, gcd->
in2, gcd->gcd);

if(gcd->gcd == expt_gcd[i]) printf(" Matched\n");
else {passed=0; printf(" Error:Miss-matched\n");}

ProNoC homepage October 15, 2021 52

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

i++;
run=0;

}
if(gcd-> enable == 1 && run==5){

gcd-> enable = 0;
}
if(run==4 && gcd->reset==0){

gcd-> enable = 1;
gcd-> in1 = input1[i];
gcd-> in2 = input2[i];

}
if (main_time >= 10) {

gcd->reset=0;
run++;

}

}//if
else {

gcd-> clk = 1; // Toggle clock

}//else

gcd->eval();
main_time++;

}
if(passed) printf(" ********** GCD Testing passed ************\n

") ;
else printf(" ********** GCD Testing failed ************\n");
gcd->final();

}

double sc_time_stamp () { // Called by $time in Verilog
return main_time;

}

ProNoC homepage October 15, 2021 53

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

4. Now create a Makefile inside obj_dir:

Listing 6.3: Makefile
-*- Makefile -*-

default: sim

MUDUL = Vgcd

include Vgcd.mk

lib:
$(MAKE) -f $(MUDUL).mk

##################################
Compile flags

CPPFLAGS += -DVL_DEBUG=1
ifeq ($(CFG_WITH_CCWARN),yes) # Local... Else don't burden users
CPPFLAGS += -DVL_THREADED=1
CPPFLAGS += -W -Werror -Wall
endif
##############################
Linking final exe -- presumes have a sim_main.cpp

sim: testbench.o $(VK_GLOBAL_OBJS) $(MUDUL)__ALL.a
$(LINK) $(LDFLAGS) -g $ˆ $(LOADLIBES) $(LDLIBS) -o testbench $(LIBS) -

Wall -O3 2>&1 | c++filt

testbench.o: testbench.cpp $(MUDUL).h

clean:
rm *.o *.a main

5. Now to compile the testbench code open terminal in obj_dir directory and run:

make

Sample output:

g++ -I. -MMD -I/usr/local/share/verilator/include -I/usr/local/
share/verilator/include/vltstd -DVL_PRINTF=printf -DVM_TRACE=0
-DVM_COVERAGE=0 -DVL_DEBUG=1 -c -o testbench.o testbench.cpp

g++ -g testbench.o verilated.o Vgcd__ALL.a -o testbench -lm -lstdc
++ -Wall -O3 2>&1 | c++filt

This must generate a binary executable file inside obj_dir named as testbench.

ProNoC homepage October 15, 2021 54

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

6. To run the simulation run:
./testbench

Expected output:
37 : GCD(136,248)= 8 Matched
51 : GCD(25,50)= 25 Matched
109 : GCD(33220,2200)= 220 Matched
177 : GCD(3627,4581)= 9 Matched
217 : GCD(3450,6540)= 30 Matched
263 : GCD(9375,61575)= 75 Matched
305 : GCD(199317,103443)= 2523 Matched
365 : GCD(157620,238844)= 284 Matched
445 : GCD(5694235,239871)= 2161 Matched
557 : GCD(199307,903443)= 1 Matched

********** GCD Testing passed ************

Add Wishbone
bus interface to
GCD

After the GCD core is functionality verified, next is to add Wishbone bus interface
to GCD hardware. This interface module provides memory-mapped access of GCD
module’s input/output ports for the processor. The memory-mapped addresses are il-
lustrated in Table 6.1:

Table 6.1: GCD IP internal register addresses.

Offset
Address Name Description Mode

0 DONE Holds the value of done output port Read-only
1 IN1 Write on GCD’s module first input variable Write-only
2 IN2 Write on GCD’s module second input vari-

able. Writing on this register will trigger
the GCD’s enable port

Write-only

3 GCD Holds the generated GCD value Read-only

Create the following file inside mpsoc/src_peripheral/other directory

Listing 6.4: gcd ip.v
module gcd_ip#(

parameter GCDw=32,
parameter Dw =GCDw,
parameter Aw =5,
parameter TAGw =3,
parameter SELw =4

)
(

clk,
reset,
//wishbone bus interface
s_dat_i,
s_sel_i,
s_addr_i,

ProNoC homepage October 15, 2021 55

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

s_tag_i,
s_stb_i,
s_cyc_i,
s_we_i,
s_dat_o,
s_ack_o,
s_err_o,
s_rty_o

);
input clk;
input reset;

//wishbone bus interface
input [Dw-1 : 0] s_dat_i;
input [SELw-1 : 0] s_sel_i;
input [Aw-1 : 0] s_addr_i;
input [TAGw-1 : 0] s_tag_i;
input s_stb_i;
input s_cyc_i;
input s_we_i;

output [Dw-1 : 0] s_dat_o;
output reg s_ack_o;
output s_err_o;
output s_rty_o;

//Wishbone bus registers address
localparam DONE_REG_ADDR=0;
localparam IN_1_REG_ADDR=1;
localparam IN_2_REG_ADDR=2;
localparam GCD_REG_ADDR=3;

assign s_err_o = 1'b0;
assign s_rty_o = 1'b0;

wire[GCDw-1 :0] gcd;
reg [GCDw-1 :0] readdata,in1,in2;
wire done;

assign s_dat_o =readdata;

always @ (posedge clk or posedge reset) begin
if(reset) begin

s_ack_o <= 1'b0;
end else begin

s_ack_o <= (s_stb_i & ~s_ack_o);
end //reset

end//always

always @ (posedge clk or posedge reset) begin
if(reset) begin

readdata <= 0;
in1 <= 0;
in2 <= 0;

end else begin

ProNoC homepage October 15, 2021 56

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

if(s_stb_i && s_we_i) begin //write regiters
if(s_addr_i==IN_1_REG_ADDR[Aw-1: 0]) in1 <= s_dat_i;
else if(s_addr_i==IN_2_REG_ADDR[Aw-1: 0]) in2 <= s_dat_i;

end //sa_stb_i && sa_we_i
else begin //read registers

if (s_addr_i==DONE_REG_ADDR) readdata<={{GCDw{1'b0}},done};
if (s_addr_i==GCD_REG_ADDR) readdata<=gcd;

end
end //reset

end//always

// start gcd calculation by writiing on in2 register
wire start=(s_stb_i && s_we_i && (s_addr_i==IN_2_REG_ADDR[Aw-1: 0]));
reg ps,ns;
reg gcd_reset,gcd_reset_next;
reg gcd_en,gcd_en_next;

always @ (posedge clk or posedge reset) begin
if(reset) begin

ps<=1'b0;
gcd_reset<=1'b1;
gcd_en<=1'b0;

end else begin
ps<=ns;
gcd_en<=gcd_en_next;
gcd_reset<=gcd_reset_next;

end
end

always @(*)begin
gcd_reset_next=1'b0;
gcd_en_next=1'b0;
ns=ps;
case(ps)

1'b0:begin
if(start) begin

ns=1'b1;
gcd_reset_next=1'b1;

end
end
1'b1:begin

gcd_en_next=1'b1;
ns=1'b0;

end
endcase

end

gcd #(
.GCDw(GCDw)

) the_gcd
(

.clk (clk),

.reset (gcd_reset),

.enable (gcd_en),

.in1 (in1),

ProNoC homepage October 15, 2021 57

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

.in2 (in2),

.done (done),

.gcd (gcd)
);

endmodule

Add custom
wishbone-based
IP core to
ProNoC Library

In this section, we show how to add previously generated GCD IP core to ProNoC
library. However, this can be applied to any other wishbone based IP core.

1. Open mpsoc/perl_gui in the terminal and run ProNoC GUI application:

./ProNoC.pl

2. Then select the IP generator. The IP Generator snapshot is shown in Figure 6.2.

Figure 6.2: ProNoC New IP Generator snapshot.

3. Click on Browse and select gcd_ip.v file.

4. Enter Other as category name.

5. Enter gcd as IP name.

ProNoC homepage October 15, 2021 58

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

Figure 6.3: Select gcd_ip.v file.

6. The gcd_ip.v file has one parameter named as GCDw which we want to be rede-
fined by the user during IP call time. To define the appropriate GUI interface for
this parameter click on parameter setting button.

7. In the newly open window, select Combo-box as widget type.

8. Enter 8,16,32 as widget content. It will allow the user to select one of these
three values for this parameter during Processing tile generation.

9. In the next Combo-box define it as Localparam. You can optionally select it as
Parameter. See here to understand the differences.

10. Click on IP Description button to add parameter information.

11. Enter parameter information as GCD's Input/output width in bits then press
ok.

12. In parameter setting window press ok to save your setting.

ProNoC homepage October 15, 2021 59

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

Figure 6.4: GCD IP core parameter setting.

13. In Interface list window expand source and wishbone categories. Then dou-
ble click on clk, reset and wishbone to add them to the GCD IP library.

14. In Wishbone bus interface row, click on button.

15. Select custom devices as wishbone address range category.

16. Set block address range as 5. This results in allocating 32 Bytes for each instance
of this module. The memory size must be selected equal or greater than the actual
IP’s internal register size. (GCD has four 32-bit internal registers which are equal
to 16 Bytes memory space).

17. Press ok.

Now we need to map each module individual port to its appropriate interface
port. By selecting the interface name, the port with the most similar name is
matched with module port name, automatically . For this example the software
can match all ports correctly. However in general, you may also needed to adjust
the port name as well.

18. Select plug:clk for clk interface.

19. Select plug:reset for reset interface.

20. Connect all other ports to plug:wb_slave interface.

ProNoC homepage October 15, 2021 60

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

Figure 6.5: GCD Core interface setting.

21. Click on Add HDL Files button.

22. In front of Select file(s) click on Browse button.

23. Select gcd.v and gcd_ip.v files and press ok.

Figure 6.6: Adding GCD core HDL files.

24. Click on Add software files button. In the newly opened window, you

ProNoC homepage October 15, 2021 61

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

can add IP core’s software library/header files. The listed files/folder here will
be copied in generated SoC project folder inside sw directory.

25. Click on Add to tile.h tab.

26. Copy following text on the new tab, then click on Save button.

#define ${IP}_DONE_ADDR (*((volatile unsigned int *) ($BASE)))
#define ${IP}_IN_1_ADDR (*((volatile unsigned int *) ($BASE+4)))
#define ${IP}_IN_2_ADDR (*((volatile unsigned int *) ($BASE+8)))
#define ${IP}_GCD_ADDR (*((volatile unsigned int *) ($BASE+12)))

#define ${IP}_IN1_WRITE(value) ${IP}_IN_1_ADDR=value
#define ${IP}_IN2_WRITE(value) ${IP}_IN_2_ADDR=value
#define ${IP}_DONE_READ() ${IP}_DONE_ADDR
#define ${IP}_READ() ${IP}_GCD_ADDR

unsigned int gcd_hardware (unsigned int, unsigned int);

27. Click on Add to tile.c tab.

28. Copy following text on the new tab, then click on Save button.

unsigned int gcd_hardware (unsigned int p, unsigned int q){
${IP}_IN1_WRITE(p);
${IP}_IN2_WRITE(q);
while (${IP}_DONE_READ()!=1);
return ${IP}_READ();

}

The entered text here will be added to the [SoC_name].h and [SoC_name].c file.
These files contain all IP cores’ wishbone bus addresses, functions and header
files. You can use some global variables with $[variable_name] format here
such as all IP core parameters and IP core Verilog instance name (see the list of
complete available variables in ProNoC). These variables will be replaced with
their exact values during SoC generation time. In this example, we used variable
${IP} which is the IP core’s instance name. Hence, in case this IP core is called
more than once in any SoC, each instance has its own unique WB addresses and
functions.

29. Click on Generate to add the GCD IP core to the library.

ProNoC homepage October 15, 2021 62

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

Figure 6.7: Add GCD software files.

Generate a new
SoC enhanced
with new IP
core (GCD)

In this section, we aim to generate an embedded SoC enhanced using generated GCD
IP core. The desired SoC schematic is shown in Figure 6.8.

Figure 6.8: Desired SoC with GCD IP core.

ProNoC homepage October 15, 2021 63

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

1. In ProNoC GUI Click on Processing Tile Generator. Use Table 6.2 and fol-
low instruction in Create New SoC Using ProNoC Processing Tile Generator to
generate a processing tile.

Table 6.2: GCD SoC IP core list and setting.

Category IP name Parameter Instance name Interface connection

Source clk source FPGA VENDOR → ”ALTERA”1 source
clk
reset

→
→

IO
IO

Bus wishbone bus

M
S
Dw
Aw

→
→
→
→

2
4
32
32

bus
clk
reset

→
→

source:clk
source:reset

Processor Mor1kx

OPTION DCACHE SNOOP
FEATURE INSTRUCTIONCACHE
FEATURE DATACACHE
FEATURE IMMU
FEATURE DMMU

→
→
→
→
→

”NONE”
”ENABLED”
”ENABLED”
”ENABLED”
”ENABLED”

cpu

clk
reset
snoop
iwb
dwb
enable

→
→
→
→
→
→

source:clk
source:reset
bus:snoop
bus:wb master[0]
bus:wb master[1]
IO

RAM single port ram

Dw
Aw
BYTE WR EN
FPGA VENDOR
JTAG CONNECT
JTAG INDEX
BURST MODE
MEM CONTENT
FILE NAME
INITIAL EN
JTAG CHAIN

→
→
→
→
→
→
→
→

→
→

32
14
”YES”
”ALTERA” 1

”ALTERA JTAG WB”2

CORE ID
”ENABLED”
”ram0”

”YES”
4

ram
clk
reset
wb

→
→
→

source:clk
source:reset
bus:wb slave[0]

Timer timer PRESCALE WIDTH → 8 timer

clk
reset
wb
intrp

→
→
→
→

source:clk
source:reset
bus:wb slave[1]
cpu:interrupt peripheral[0]

Communication ProNoC jtag uart

BUFF Aw
JTAG INDEX
JTAG CHAIN
JTAG CONNECT
INCLUDE SIM PRINTF

→
→
→
→
→

4
126-CORE ID
3
”ALTERA JTAG WB” 2

SIMPLE PRINTF

uart
clk
reset
wb

→
→
→

source:clk
source:reset
bus:wb slave[2]

1 → ”XILINX” For Xilinx FPGA
2 → ”XILINX JTAG WB” For Xilinx FPGA

ProNoC homepage October 15, 2021 64

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

2. Add the new GCD IP to the SoC.

Table 6.3: GCD SoC IP core list and setting.

Category IP name Parameter Instance name Interface connection

Other gcd GCDw → 32 gcd
clk
reset
wb

→
→
→

source:clk
source:reset
bus:wb slave[3]

Figure 6.9: Add the generated GCD IP core to gcd_soc.

3. Set the tile name as gcd_soc.

4. Press the Generate RTL button. This must generate a new folder: mpsoc_work
/SOC/gcd_soc.

ProNoC homepage October 15, 2021 65

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

Figure 6.10: Generate the gcd_soc RTL codes.

Software
Development 1. Click on Software button to open the software development window. Now

click on main.c file. Replace the contents of main.c file with the following C
code then press compile button. Check software edit terminal output to make
sure that compilation ran successfully. If you got RAM or ROM overflow error
follows instruction in linker LD setting to fix this error.

#include "gcd_soc.h"

unsigned int gcd_software (unsigned int p, unsigned int q){
while (p != q) {

if (p > q) p=p-q;
else if (p < q) q=q-p;

}
return p;

}

int main(){
int A,B,C,D;
unsigned int t_hw,t_sw;
unsigned int speed;
printf ("GCD test application\n");
while(1){

printf ("Enter number #1:\n");

ProNoC homepage October 15, 2021 66

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

jtag_scanint(&A);
printf ("Enter number #2:\n");
jtag_scanint(&B);
timer_reset();
timer_start();
C=gcd_hardware (A, B);
timer_stop();
t_hw=timer_read();
timer_reset();
timer_start();
D=gcd_software (A, B);
timer_stop();
t_sw=timer_read();
speed=(t_sw*10)/(t_hw);
printf ("GCD_hardware (%d,%d) = %d\t clock_num=%d\n",A,B,C,

t_hw);
printf ("GCD_software (%d,%d) = %d\t clock_num=%d\n",A,B,D,

t_sw);
printf ("spead up=%d.%d times\n",speed/10,speed%10);

}
return 0;
}

2. Follow instructions in Compile the generated RTL code using Quartus II soft-
ware to compile and run the desired SoC on an FPGA board. For instance the
pin assignment on DE10-Nano FPGA and a snapshot of a sample result on UART
terminal is shown in Figures 6.11 and 6.12, respectively. You can test the GCD
IP core by entering different values.

Figure 6.11: DE10-Nano FPGA board pin assignment.

ProNoC homepage October 15, 2021 67

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

Figure 6.12: Nios2-terminal output snapshots.

ProNoC homepage October 15, 2021 68

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

CHAPTER 7

Simple message
passing demo on
2×2 MPSoC

Summary This chapter demonstrates a simple message passing on a 2×2 NoC based MPSoC.
This includes developing a custom shared bus (Wishbone bus) based processing tile
using ProNoC Processing Tile Generator. The generated tile is used then for generating
a multicore using ProNoC NoC based MPSoC generator.

System
Requirements:

You will need an Altera or Xilinx FPGA development board and a computer system
running Linux OS with:

1. Installed the ProNoC GUI software and its dependency packages.

2. Installed/Pre-built GNU toolchain. (or1k-elf) for compiling the Mor1kx soft-
core processor software code.

3. Installed Quarts II (Web-edition or full) or Vivado compiler.

For more information about the GNU toolchain installation please refer to the In-
stallation Manual for the Ubuntu. In case your FPGA board is not included in the
ProNoC FPGA board list please follow the instructions given in Adding a New FPGA
Board to ProNoC, to add your board to the ProNoC library.

Generating a
custom
Processing tile

Follow the instructions in Processing tile generator tutorial up to the Software Devel-
opment section and generate a processing tile according to the tile setting listed in
Table 7.1. Set the tile name as mor1k_tile. Remember to press Generate RTL

button at the end to generate the processing tile RTL code.

• Note that the desired tile in this chapter has a network interface (NI) IP to be
connected to a NoC.

• The NI has a master interface which can automatically write the arrived packets
from the NoC to the main memory. Hence, for the CPUs with enabled Data
cache, you need to have either the snoop support (to invalidate the Data cache
memory location where the NI writes on it) or map the NI receiver buffer on
an uncachebale memory location. For this example we have enabled the snoop
support of Mor1kx processor. The snoop interface of the CPU must be connected
to the WB to inform about the main memory data changes.

ProNoC homepage October 15, 2021 69

http://www.multcloud.com/share/c2faea3b-9690-4757-a1ba-5a8ed8656bc4
http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

Table 7.1: Desired Processing core IP list and setting.

Category IP name Parameter Instance name Interface connection

Source clk source FPGA VENDOR → ”ALTERA”1 source
clk
reset

→
→

IO
IO

Bus wishbone bus

M
S
Dw
Aw

→
→
→
→

4
4
32
32

bus
clk
reset

→
→

source:clk
source:reset

Processor mor1kx

OPTION DCACHE SNOOP
FEATURE INSTRUCTIONCACHE
FEATURE DATACACHE
FEATURE IMMU
FEATURE DMMU

→
→
→
→
→

”ENABLED”
”ENABLED”
”ENABLED”
”ENABLED”
”ENABLED”

cpu

clk
reset
snoop
iwb
dwb
enable

→
→
→
→
→
→

source:clk
source:reset
bus:snoop
bus:wb master[0]
bus:wb master[1]
IO

RAM single port ram

Dw
Aw
BYTE WR EN
FPGA VENDOR
JTAG CONNECT
JTAG INDEX
BURST MODE
MEM CONTENT FILE NAME
INITIAL EN
JTAG CHAIN

→
→
→
→
→
→
→
→
→
→

32
14
”YES”
”ALTERA” 1

”ALTERA JTAG WB”2

CORE ID
”ENABLED”
”ram0”
”YES”
4

ram
clk
reset
wb

→
→
→

source:clk
source:reset
bus:wb slave[0]

NoC ni master

MAX TRANSACTION WIDTH
MAX BURST SIZE
Dw
CRC EN
HDATA PRECAPw

→
→
→
→
→

13
16
32
”NO”
0

ni

clk
reset
interrupt
wb send
wb receive
wb slave

→
→
→
→
→

source:clk
source:reset
cpu:interrupt peripheral[0]
bus:wb master[2]
bus:wb master[3]
bus:wb slave[1]

Timer timer PRESCALE WIDTH → 8 timer

clk
reset
wb
intrp

→
→
→
→

source:clk
source:reset
bus:wb slave[2]
cpu:interrupt peripheral[1]

Communication ProNoC jtag uart

BUFF Aw
JTAG INDEX
JTAG CHAIN
JTAG CONNECT
INCLUDE SIM PRINTF

→
→
→
→
→

4
126-CORE ID
3
”ALTERA JTAG WB” 2

SIMPLE PRINTF

uart
clk
reset
wb

→
→
→

source:clk
source:reset
bus:wb slave[2]

1 → ”XILINX” For Xilinx FPGA
2 → ”XILINX JTAG WB” For Xilinx FPGA

ProNoC homepage October 15, 2021 70

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

Figure 7.1 illustrates the functional block diagram the Mor1k tile module.

Figure 7.1: Mor1k tile functional block diagram.

Generating a
4×4 NoC-based
MPSoC 1. Click on NoC based MPSoC generator

2. Set the NoC configuration setting as stated in Table 7.2. Here we have defined
two Virtual Networks (VNs) by defining two message classes and separating
message class permitted VCs in such a way that each message class can only
use its own dedicated VC. For more information regarding the NoC parameters
please refer to NoC Verilog File Parameter Description.

Table 7.2: 4×4 NoC configuration setting.

Parameter Value Parameter Value
Router Type ”VC BASED” Topology ”MESH”
Router per row 2 Router per column 2
VC number per port 2 Buffer flits per VC 4
payload Width 32 Routing Algorithm ”XY”
SSA Enable ”NO” VC reallocation type ”NONATOMIC”
VC/SW combination type ”COMB NONSPEC” Crossbar mux type ”BINARY”
Class number 2 Class 0 Permitted VCs
Class 1 Permitted VCs Debug enable 0
Add pipeline register
after crossbar 0

Swich allocator first level
arbiters external priority enable 1

SW allocator arbitration type ”RRA” Byte Enable 1

ProNoC homepage October 15, 2021 71

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

Figure 7.2: NoC-based MPSoC generator snapshot.

3. In Tile configuration setting, you should be able to see the list of all process-
ing tile modules which have NI IP core in their shared bus.

(a) You can change the processing tile default parameters by clicking on its tile
name. For this example, we leave the default parameters values unchanged.

(b) You can enter the tile numbers (location) where this processing tile should
be placed in the NoC. Set the Mor1k_tile tile numbers as 0,1,2,3 or sim-
ply as 1:3.

Figure 7.3: Tile Configuration snapshot.

4. You can also map the generated processing tiles on their locations by simply
clicking on the tile location in the NoC.

ProNoC homepage October 15, 2021 72

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

(a) You can select the Processing tile name here.
(b) If you wish this processing tile has a custom parameter setting you can

select it here. In case you select the parameter setting as custom, after
pressing the OK button, it shows a window where you can change the de-
fault parameters values.The tile which has a custom parameter setting is
marked by * on its name.

Figure 7.4: Custom Tile setting.

5. You can press the Diagram to see the actual location of each tile in the
selected topology. In this example:

Figure 7.5: 4x4 mesh topology.

6. Set MPSoC name as mor1k_mpsoc.

7. In case the MPSoC clk should be generated using FPGA clk pin, click on the CLK

Setting button then follow in CLK setting to generate the MPSoC clk.

ProNoC homepage October 15, 2021 73

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

8. Click on Generate RTL button to generate the MPSoC RTL code.

Software
Development

1. Click on Software button to open the software development window.

2. In the left Tree-View window, you can select any file in project sw directory to
open and then edit it. Replace the content of main.c files in all tiles with the
following C codes.

In this example, tile 0 to 2 send each 3 packets to tile 3. Tiles 3 shows the
packets’ content in serial port terminal.

main.c

#define MULTI_CORE
#include "mor1k_tile.h"

unsigned char pck1[10]={"first data"};
unsigned char pck2[11]={"second data"};
unsigned char pck3[6]={"123456"};
unsigned char receive_buff[ni_NUM_VCs][16];

// a simple delay function
void delay (unsigned int num){

while (num>0){ num--; nop();}
}

void error_handelling_function(){
unsigned int i;
for (i=0;i<ni_NUM_VCs;i++){

if(ni_got_buff_ovf(i)) {
printf ("VC%u:The receiver allocated buffer size is smaller

than the received packet size in core%u\n",i,COREID);
ni_ack_buff_ovf_isr(i);

}
if(ni_got_send_dsize_err(i)) {

printf ("VC%u:The send data size is not set in core%u\n",i
,COREID);

ni_ack_send_dsize_err_isr(i);
}
if(ni_got_burst_size_err(i)){

printf ("VC%u:The burst size is not set in core%u\n",i,
COREID);

ni_ack_burst_size_err_isr(i);
}
if(ni_got_invalid_send_req(i)){

printf("VC%u:A new send request is received while the DMA
is still busy sending previous packet in core%u\n",i,
COREID);

ni_ack_invalid_send_req_isr(i);
}
if(ni_got_crc_mismatch(i)){

printf("VC%u:CRC miss-matched in core%u\n",i,COREID);
ni_ack_crc_mismatch_isr(i);

ProNoC homepage October 15, 2021 74

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

}
}//for

}//error_handle

void got_packet_funtion(void){
unsigned int i ;
unsigned char iport;
for (i=0;i<ni_NUM_VCs;i++){

if(ni_got_packet(i)) {
iport =ni_RECEIVE_PRECAP_DATA_REG(i);
//different destination can be targeted according to iport

value
//E.g if(iport==0) ini_receive (i, (unsigned int)&

receive_buff_p0[i][0], 16, 0);
//E.g else if(iport==1) ini_receive (i, (unsigned int)&

receive_buff_p1[i][0], 16, 0);
ni_receive (i, (unsigned int)& receive_buff[i][0] , 16, 0);
ni_ack_got_pck_isr(i);

}//If ni got packet
}//for

}// got_packet_funtion

void check_packet_funtion (void){
unsigned char iport;
unsigned int i,j ,size ;
struct SRC_INFOS src_info;
for (i=0;i<ni_NUM_VCs;i++){

if(ni_packet_is_saved(i)) {
src_info=get_src_info(i);
size=ni_RECEIVE_DATA_SIZE_REG(i); //size in byte
iport= src_info.r;
//run a function on the recieved packet according to the

destination port
//E.G func_on_recived_packe (iport);
// but here we just print the recived packet in terminal
printf("A message of %u bytes is recived from core (%x) in

vc%u:", size,src_info.addr,i);
for (j=0;j<size;j++){

printf("%c", receive_buff[i][j]);
}
printf("\n");
ni_ack_save_done_isr(i);

}//If ni_packet_is_saved
}//for

}// check_packet_funtion

void sent_packet_done_funtion (void){
unsigned char oport;
unsigned int i;
for (i=0;i<ni_NUM_VCs;i++){

if(ni_packet_is_sent(i)) {
ni_ack_send_done_isr(i);

}//If ni_packet_is_sent
}//for

}//sent_packet_done_funtion

ProNoC homepage October 15, 2021 75

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

// NI interrupt function
void ni_isr(void){

//place your interrupt code here
if(ni_any_err_isr_is_asserted()){

// An error occure
error_handelling_function();

}
if(ni_any_sent_done_isr_is_asserted()){

//check which VC has finished sending the packet.
sent_packet_done_funtion();

}
if(ni_any_save_done_isr_is_asserted()){

//check which VC has finished saving the packet. This function
must be called before got_packet_funtion

check_packet_funtion();
}
if(ni_any_got_pck_isr_is_asserted()){

//check which VC got packet
got_packet_funtion();

}
return;

}

int main(){
printf("Hi from core %u\n",COREID);
general_int_init();
general_int_add(ni_INT_PIN, ni_isr, 0); //ni_INT_PIN
// Enable ni interrupt (its connected to inttruupt pin 0)
general_int_enable(ni_INT_PIN);
general_cpu_int_en();
// hw interrupt enable function:
// ni_initial (burst_size, errors_int_en, send_int_en,

save_int_en, got_pck_int_en)
ni_initial (16,1,1,1,1); //enable the intrrupt when a packet is

recived, saved or got any error
if(COREID == 3) while(1); //Core 3 only receives packets from

other cores
//ni_transfer (w, v, class_num, dest_port , start_addr_pointer,

data_size, dest_phy_addr);
ni_transfer (1,0, 0, 0,(unsigned int)&pck1[0], 10,

PHY_ADDR_ENDP_3);
ni_transfer (1,1, 1, 0,(unsigned int)&pck2[0], 11,

PHY_ADDR_ENDP_3);
ni_transfer (1,0, 0, 0,(unsigned int)&pck3[0], 6, PHY_ADDR_ENDP_3

);
//printf("core %u sent packet to (%u,%u)",CORID,rnd_dest_x[i],

rnd_dest_y[i]);
printf("total sent packets by core%u is %u\n",COREID,3);
while(1){

}
return 0;

}

ProNoC homepage October 15, 2021 76

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

3. Now press the Compile button. This compiles the C codes using Mor1kx
GNU toolchain. If everything runs ok, you must see ”compilation finished suc-
cessfully” message. Otherwise, check the error message to fix your code and
press the compile button again. Note that in case you got RAM or ROM over-
flow errors you can fix them following linker LD setting. If every thing runs
successfully you must have ram0.bin, ram0.hex, and ram0.mif files in your
sw/tile[n]/RAM directory, where n is the tile number.

4. Follow bellows instruction to see the simulation/compilation results:
Simulate the generated RTL code using Modelsim software
Simulate the generated RTL code using Verilator software
Compile the generated RTL code using Quartus II software

ProNoC homepage October 15, 2021 77

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

Figure 7.6: Verilator simulation output snapshot.

Figure 7.7: Modelsim simulation output snapshot.

ProNoC homepage October 15, 2021 78

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

CHAPTER 8

Software
Auto-generation
using CAL
language (CAL2C)

Cal2C CAL2C is a tool that can auto-generate application C code from that application CAL
actor Data-flow model. The generated C/C++ code is multi-threaded and can be run
in parallel on a multicore system. However, to compile/execute the generated C code
requires an operating system (OS) to be installed on the target platform. Meanwhile,
the generated multicore by PRONoC has the lack of OS and can only run the bare metal
application.

PRONoC comes with a tool that takes the generated C/C++ codes and automati-
cally converts them to several multi bare-metal C/C++ codes that each can be run on a
single core. It provides the user a GUI to speed-up the actor mapping process. Several
actors can be grouped to be run on a single core. Grouped actors then can be mapped
on any custom-defined MPSoC using a drag-and-drop interface or optimally using an
application mapping algorithm.

This chapter explains the steps needed to be taken for running an application written
in CAL data flow language on a Custom MPSoC.

ORCC
installation

To convert an application from CAL to C, you can use the Open RVC-CAL Compiler
(ORCC). ORCC can be installed on eclipse IDE as a plugin.

1. Download the eclipse with pre-installed ORCC plugin from: eclipse-orcc. Down-
load and unzip the eclipse in your home directory.

2. Download orc-apps by running the following command in terminal:

git clone https://github.com/orcc/orc-apps.git

3. This version of eclipse works fine with JDK 8. For higher JDK version it may
raise an error. You can use SDKMAN to switch between different JDK versions
on your system. To do so open terminal and type:

curl -s "https://get.sdkman.io" | bash
source "$HOME/.sdkman/bin/sdkman-init.sh"

Now run following command to list all available different JDK versions for your
system.

sdk list java

From the given list, install a java 8. It is not needed to be defined as the default
java version at the end of the installation operation. E.g:

sdk install java 8.0.265-open

4. Now to run the Eclipse open eclispe-orcc folder in terminal then run the fol-
lowing commands. It should ask you to set a workplace directory then open the
Eclipse IDE.

ProNoC homepage October 15, 2021 79

https://drive.google.com/file/d/1YAOAyAk8PA6LXwIPz3aIy-Mongh__WBW/view?usp=sharing
http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

sdk use java 8.0.265-open
./eclipse

ORCC Hello
word on
ProNoC
platform

1. From Eclipse menu select File->import->General->Exsiting Projects into

Workspace

*

2. Select the path to orc-app/Hello word:

ProNoC homepage October 15, 2021 80

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

Run ORCC
inbuilt
simulator 3. On the Package Explore click on Example.xdf -> Run As -> 2 Orcc Simulation

.

Figure 8.1: ORCC Run as Menu Snapshot.

4. Select a file as input stimulu

Figure 8.2: ORCC Run as Menu Snapshot.

5. By default, the FIFO width in ORCC is set to 512-bytes (the minimum page-size
desktop PC OS). However, this value may be too large for the targeted FPGA
platform due to limited memory resources. You can set a smaller value for FIFO
width in Simulation Options as shown in Figure 8.3.

ProNoC homepage October 15, 2021 81

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

Figure 8.3: Reducing FIFO width.

6. Now you can click on ”Run” button and observe the simulation results in Eclipse
console terminal:

Figure 8.4: Reducing FIFO width.

Run ORCC
Compilation 7. On the Package Explore click on Example.xdf -> Run As -> 1 Orcc Compilation

. (see figure 8.1).

8. It now asks you to choose an output folder where the generated C codes will be
stored there. Then select C as backend and reduce the FIFO width as shown in

ProNoC homepage October 15, 2021 82

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

the bellow figures: . Create a new folder with the name of orcc-out and define
it as the output directory in this step.

*

9. Click on the Run button to compile the code:

Modifying the
generated C
code using
ProNoC

The generated C code by ORCC can only be run on the desktop PC having OS. To run
them on the ProNoC custom embedded multicore hardware, they needed to be modified
using ProNoC tools.

1. Follow instructions on Simple message passing demo on 2×2 MPSoC Chapter
up to Software Development Section and generate a Multicore system in RTL.

• Note that you need to set a value larger than zero (e.g. 4) for header
data pre-captured width (HDATA PRECAPw) parameter in NI configura-
tion setting. This value defines the maximum number of input FIFOs in a
processing tile source code that is 2(HDATA PRECAPw). In case that the
number of FIFOs exceeds this limitation, an error is asserted during the
compilation time.

ProNoC homepage October 15, 2021 83

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

• You need to connect the NI interrupt pin to the processing core as the com-
munication between actors located in different processing tiles is handled
using interrupt service routine.

• Note that you can target a larger number of processing cores by changing
NoC configuration setting.

2. Click on the Software button to open the software development window.
Then click on the Auto-generate software using ORCC tab to open ORCC
converter page.

3. To load the generated C codes in step 8 on select a file page click on
button and load orcc-outdir/src/Example.csv. It should load the actors in the
GUI window as shown in the bellow figure. You can also click on button to
see the actor communication graph.

4. Now click on Group Actors page. Here you can make different actor groups
and put several actors in one group. All actors that are in the same group will

ProNoC homepage October 15, 2021 84

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

be run on the same processing core. In this example, we have 5 actors and want
to run them on a 4-cores processing platform. To do that, we need to make an
actor-group containing at least two actors to fit in this target. You can drag any
actor icon and drop it in any group window. Let’s drag-and-drop Copy-TokenA

and Copy-TokenB in the same group and rename the group as Copy, as shown in
the bellow figure.

5. Now click on Map Actors. Here you can map actors/Grouped actors to process-
ing tiles. Each processing tile can get only one actor or one actor-group. You
can drag-and-drop actors to processing tiles or use a mapping algorithm (recom-
mended Nmap) to do the mapping tasks automatically.

6. Click on Generate button to generate the bare-metal C codes for each pro-
cessing core.

ProNoC homepage October 15, 2021 85

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

7. If everything goes correctly, you must have the new generated codes in your tar-
get MpSoC/SW folder. Click on Software Editor to compile the generated
codes.

8. Now press the Compile button. This compiles the C codes using Mor1kx
GNU toolchain. If everything runs ok, you must see the ”Compilation finished
successfully” message. Otherwise, check the error message to fix your code and
press the compile button again. Note that in case you got RAM or ROM overflow
errors, you can fix them by following the linker LD setting. If everything runs
successfully, you must have ram0.bin, ram0.hex, and ram0.mif files in your
sw/tile[n]/RAM directory, where n is the tile number.

9. Follow bellow instructions to see the simulation/compilation results:
Simulate the generated RTL code using Modelsim software
Simulate the generated RTL code using Verilator software
Compile the generated RTL code using Quartus II software

ProNoC homepage October 15, 2021 86

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

Figure 8.5: The Modelsim simulation snapshot of ORCC hello world example.

Figure 8.6: Verilaor simulation snapshot of ORCC hello wold example.

ProNoC homepage October 15, 2021 87

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

CHAPTER 9

NoC Simulator

Summary The ProNoC NoC is developed in RTL using Verilog HDL and it can be simulated using
Verilator simulator. The ProNoC simulator provides the graphical user interface (GUI)
for simulating different NoC configuration under different synthetic traffic patterns.

System
Requirements:

You will need a computer system running Linux OS with:

1. Installed the ProNoC GUI software and its dependency packages.

2. Installed Verilator simulator.

Simulation
Example:

In this example we simulate two 8×8 Mesh NoCs, one with fully adaptive routing and
another with DoR routing algorithms.

Generate first
NoC simulation
model with XY
routing

1. Open mpsoc/perl_gui in terminal and run ProNoC GUI application:

./ProNoC.pl

It should open The GUI interface as illustrated in Figure 9.1.

2. Click on to open ProNoC simulator tabs.

3. Click on NoC Simulator tab to open simulator GUI interface:

Figure 9.1: NoC simulator snapshot.

4. Click on Generate NoC Simulation Model tab to open NoC configuration set-
ting page.

5. Change the default NoC parameters as shown in below table:

ProNoC homepage October 15, 2021 88

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

Parameter name Value Parameter Name Value
Router Type ”VC BASED” Router per row 8
Router per column 8 VC number per port 2
Buffer Flits per VC 2 Payload width 32
Topology ”Mesh” Routing Algorithm ”xy”
SSA Enable ”NO” SW allocator arbitration type ”RRA”

6. Enter a name for this NoC configuration (e.g. mesh_8x8_xy).

7. Press the generate button.

Figure 9.2: Generate NoC simulation model.

Generate the
second NoC
simulation
model with fully
adaptive routing

8. In NOC configuration tab, keep the previously set parameters and only change
the routing algorithm to ”DUATO”.

9. Enter a new name for this NoC configuration (e.g. mesh8x8_full).

10. press Generate button and wait for compilation to be done.

Run simulation
under Matrix
Transposed
traffic pattern

11. Click on Run simulator tab.

12. Click on to add a NoC simulation model.

13. Set following configurations for the simulation model. For flit injection ratios,
you can define individual ratios separated by comma (’,’) or optionally you can
define a range of injection ratios with [min]:[max]:[step] format.

ProNoC homepage October 15, 2021 89

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

* Note that you can also add more injections ratios later. Each time you run
the simulation the simulation results of new injection ratios are added to the
previously plotted results.

Parameter name Value Parameter Name Value
Verilated Model ”mesh 8x8 xy” Traffic Type Synthetic
Configuration Name xy Traffic name transposed 1
Min pck size 2 Max ock size 10
Total packet number limit 200000 Simulation clock limits 100000
Injection ratios 2:32:2

Figure 9.3

14. Click on to add the second NoC simulation model. Fill the NoC configura-
tion as shown in following table.

Parameter name Value Parameter Name Value
Verilated Model ”mesh 8x8 full” Traffic Type Synthetic
Configuration Name fully Traffic name transposed 1
Min pck size 2 Max ock size 10
Total packet number limit 200000 Simulation clock limits 100000
Injection ratios 2:32:2

15. Save the simulation. You can save the simulation at any time during run time.
Hence, later you can continue the rest of simulation.

ProNoC homepage October 15, 2021 90

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

16. To start the simulation press Run all button. You can also run each indi-

vidual simulation by pressing the Run button in its simulation row.

17. After the simulation is done, if your graph is not yet completed you can enter a
new injection ratio range and press the Run key again.

18. You can edit the generated graph and then save it from graph editing toolbox. By
saving the simulation graph, the simulation results is also provided in a text file
as well.

Figure 9.4

For each simulation experiment five simulation results are obtained:

(a) Average latency per average desired flit injection ratio

(b) Average throughput per average desired flit injection ratio

(c) send/received packets number for each router at different injection ratios

(d) send/received worst-case delay for each router at different injection ratios

(e) Simulation execution clock cycles

ProNoC homepage October 15, 2021 91

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

(a) Load-latency (b) Load-throughput

(c) Injected packets per router at 32% injection
ratio.

(d) Worst-case delay per router at 32% injec-
tion ratio.

(e) Simulation time in clock cycles.

Figure 9.5: Simulation sample results.

ProNoC homepage October 15, 2021 92

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

CHAPTER 10

NoC Emulator

Summary ProNoC comes up with a GUI for emulating an actual NoC on Altera FPGAs. The
ProNoC emulator is a programmable packet injector module that can be programmed
at run time using Altera JTAG interface. These modules inject/sink packets to the
prototype NoC according to the traffic patterns.

System
Requirements

You will need an Altera FPGA development board having USB blaster I or II and a
computer system running Linux OS with:

1. Installed the ProNoC GUI software and its dependency packages.

2. Installed Quarts II (Web-edition or full) compiler.

For more information about the GNU toolchain installation please refer to the
Installation Manual for the Ubuntu. In case your FPGA board is not included in
ProNoC FPGA board list please follow the instruction given in Add new FPGA board
to ProNoC, to add your board to ProNoC.

Emulation
Example:

In this example we simulate two 5×5 Mesh NoCs, one with fully adaptive routing and
another with DoR routing algorithms using DE10-nano Altera FPGA board.

Generate first
NoC emulation
model with XY
routing

1. Open mpsoc/perl_gui in terminal and run ProNoC GUI application:

./ProNoC.pl

It should open The GUI interface as illustrated in Figure 10.1.

2. Click on to open ProNoC simulator tabs.

3. Click on NoC Emulator tab to open the emulator GUI interface:

Figure 10.1

ProNoC homepage October 15, 2021 93

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

4. Click on Generate NoC Emulation Model tab to open NoC configuration setting
page.

5. Change the default NoC parameters as shown in below table:

Parameter name Value Parameter Name Value
Router Type ”VC BASED” Router per row 5
Router per column 5 VC number per port 2
Buffer Flits per VC 2 Payload width 32
Topology ”Mesh” Routing Algorithm ”xy”
SSA Enable ”NO” SW allocator arbitration type ”RRA”

6. Enter a name for this NoC configuration e.g. mesh_5x5_xy.

7. Press the generate button.

Figure 10.2: Generate NoC model

8. Follow instructions in Compile the generated RTL code using Quartus II soft-
ware to compile the desired emulation model for an Altera FPGA board. For
this example we used the DE10-Nano FPGA board which its pin assignment is
shown in Figures 10.3.

ProNoC homepage October 15, 2021 94

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

Figure 10.3: DE10-Nano FPGA board pin assignment.

Generate the
second NoC
emulation
model with fully
adaptive routing

9. In NOC configuration tab, keep the previously set parameters and only change
the routing algorithm to ”DUATO”.

10. Enter a new name for this NoC configuration e.g. mesh5x5_full.

11. Generate the NoC emulation model in similar way to step 8.

Run Emulation
models under
Matrix
Transposed
traffic pattern

12. Click on Run Emulator tab.

13. Click on to add a NoC emulation model.

14. Set following configurations for the emulation model. For flit injection ratios,
you can define individual ratios separated by comma (’,’) or optionally you can
define a range of injection ratios with [min]:[max]:[step] format.

* Note that you can also add more injections ratios later. Each time you run the
emulation the emulation results of new injection ratios are added to the previ-
ously plotted results.

Parameter name Value Parameter Name Value
FPGA Board [Your FPGA board name] Sram Object file ”mesh 5x5 xy”
Configuration Name xy Traffic name transposed 2
Packet size in flits 5 Packet number limit per node 1000000
Emulation clock limits 25000000 Injection ratios 2:50:2

15. Click on to add the second NoC emulation model. Fill the NoC configura-
tion as shown in following table.

ProNoC homepage October 15, 2021 95

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

Parameter name Value Parameter Name Value
FPGA Board [Your FPGA board name] Sram Object file ”mesh 5x5 full”
Configuration Name fully Traffic name transposed 2
Packet size in flits 5 Packet number limit per node 1000000
Emulation clock limits 25000000 Injection ratios 2:50:2

16. Save the emulation. You can save the emulation at any time during run time.
Hence, later you can continue the rest of emulation.

17. To start the emulation, Power on your FPGA board and connect it to your PC
then press Run all button. You can also run each individual emulation by

pressing the Run button in its emulation row.

18. After the emulation is done, if your graph is not yet completed you can enter a
new injection ratio range and press the Run key again.

19. The emulator generates similar results as NoC simulator generates.

ProNoC homepage October 15, 2021 96

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

(a) Load-latency (b) Load-throughput

(c) Injected packets per router at 50% injection
ratio.

(d) Worst-case delay per router at 50% injec-
tion ratio.

(e) Emulation time in clock cycles.

Figure 10.4: Emulator sample results.

ProNoC homepage October 15, 2021 97

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

CHAPTER 11

ProNoC Tools

JTAG UART ProNoC support including several JTAG based Universal Asynchronous Receiver-Transmitter
(UART) in a SoC/MPSoC. A unique JTAG_INDEX should be assigned to each UART to
avoid conflict.

UART Terminal ProNoC includes an in-built GUI for UARTs terminal. To run the UART terminal run
ProNoC and press Ctrl+U. You can also directly run this tool by running following
commands in in linux terminal.

cd mpsoc/perl_gui/lib/perl
perl uart.pl

Figure 11.1 illustrates the snapshot of the UART GUI.The following settings are re-
quired in order to connect to UART modules:

1. UART name: Select one of ProNoC_XILINX_UART or ProNoC_AlTERA_UART accord-
ing to your FPGA device.

2. Define the total number of UART modules in your SoC/MPSoC design. Each
UART module will have its own output window on the left side of the main
window.

3. For each UART module set the corresponding JTAG_INDEX. This value is given
as an input parameter to each UART module. The default value for each UART
is 126-CORE ID. In case you have left the default values for an MPSoC where
each of its tile has its own UART module, these indexes are 126,125,124 and so
on.

4. You need to set the FPGA device configuration on JTAG chain now. Click on
browse button will guide you about this task.

(a) For Xilinx FPGAs you need to set the JTAG TAP chain number. This
parameter has been passed to the UART module as global parameter. The
default value is 3.

(b) For Xilinx FPGAs you need to set the FPGA device target number in the
JTAG chain. Figure 11.1 shows an example for Digilent Arty-Z7 XILINX
FPGA board. The FPGA device is xc7z020 which is the 3rd target in jtag
chain.

(c) For Altera FPGAs (see Figure 11.2) set the Hardware name.

(d) For Altera FPGAs you need to set the FPGA device target number in the
JTAG chain. Figure 11.2 shows an example for DE10-Nano Altera FPGA
board. The FPGA device is 5CSEBA6U23I7 which is the 2nd target in jtag
chain.

5. you can now connect/disconnect the JTAG UART terminal by pressing clicking
on OFF/ON button.

ProNoC homepage October 15, 2021 98

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

Figure 11.1: Uart terminal snapshot (Xilinx FPGA configuration).

Figure 11.2: Altera FPGA configuration setting.

ProNoC homepage October 15, 2021 99

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

For Xilinx FPGAs you can also use mpsoc/src_c/jtag/uart_xsct_terminal/

uart to monitor UART output ports on linux terminal.Remember you need to add the
path to xilinx/SDK/bin to your PATH variable first. Run ./uart without any option
to see the usage info. Following is the example command for monitoring Digilent
Arty-Z7 XILINX FPGA with four UART modules:

./uart -a 3 -b 36 -t 3 -n 126,125,124,123

Figure 11.3: Linux terminal-based UART terminal.

ProNoC homepage October 15, 2021 100

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

Add new
ALtera FPGA
Board

On ProNoC GUI window click on Tools then select Add new ALtera FPGA Board. A
new window as shown in Figure 11.4 must appear. Fill the required fields as follows:

1. Enter your board name. Do not use any space in the given name

2. Enter the path to FPGA board QSF file. In your Altera board installation CD
or in the Internet search for a QSF file containing your FPGA device name
with other necessary global project setting including the pin assignments (e.g
DE10_Nano_golden_top.qsf).

3. Enter the path to [FPGA board top].v file. In your Altera board installation CD
or in the Internet search for a Verilog file containing all your FPGA device IO
ports (e.g DE10_Nano_golden_top.v).

4. Power on your FPGA board and connect it to your PC then press the Auto

Fill button to auto-fill the JTAG configuration setting.

5. Press the Add button.

Figure 11.4: Add new FPGA board to ProNoC.

ProNoC homepage October 15, 2021 101

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

Add new Xilinx
FPGA Board

On ProNoC GUI window click on Tools then select Add new Xilinx FPGA Board. A
new window as shown in Figure 11.5 must appear. Fill the required fields as follows:

1. FPGA board display name: Enter a name for your FPGA Board. Do not use any
space in the given name.

2. Set the path to Vivado board files repository.
E.g. for ArtyZ7 FPGA board you can download its corresponding repo from
https://github.com/Digilent/vivado-boards and save in ${ProNoC_work

}/toolchain/board_files folder.

3. FPGA board part name: Your Board name (Board PART). You can click on its
adjacent to get the list of all available boards in your Vivado software.

4. FPGA part name: Enter your FPGA device name (PART). If you have selected
Board PART in last step you can click on its adjacent to get this parameter.

5. FPGA Hardware device name: The target hardware name in JTAG chain. Con-
nect your FPGA board to your PC and click on its adjacent to get the list of
all available targets in your FPGA board.

6. Target device JTAG chain order number:The order number of target device in the
jtag chain.Connect your FPGA board to your PC and click on its adjacent to
get this value.

7. FPGA board xdc file: Path to FPGA board xdc file. In your Xilinx board instal-
lation CD or on the Internet, search for an xdc file containing your FPGA device
pin assignment constrain.

8. FPGA board golden top Verilog file: (Path to FPGA board top.v file) A Verilog
file containing all your FPGA device IO ports.

ProNoC homepage October 15, 2021 102

https://github.com/Digilent/vivado-boards
http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

Figure 11.5: Add new Xilinx FPGA board to ProNoC.

ProNoC homepage October 15, 2021 103

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

Appendices

104

APPENDIX A

NoC Verilog File
Parameters
Description

V V ∈ N, V > 1.

Number of VC per router port. Defining
V as 1 results in a simple non-VC based
router.

B B ∈ N, B > 2
Buffer size per VC in flit for ports con-
nected to other routers.

LB LB ∈ N, LB > 2
Buffer size per VC in flit for ports con-
nected to endpoints (local ports).

PCK TYPE
"MULTI FLIT",
"SINGLE FLIT"

Refer to Packet type for more informa-
tion.

TOPOLOGY

"MESH"

"TORUS"

"RING"

"LINE"

"FATTREE"

"TREE"

The NoC topology.

T1,T2,T3,T4 T1,T2,T3,T4 ∈ N

A desired topology can be defined using
at most four parameters:
e.g: in mesh:

• T1: NX, number of node in x di-
mension.

• T2: NY, number of node in y di-
mension.

• T3: NL: number of individual
router local ports

• T4: is not used.

e.g: in Tree, Fattree:

• T1: K, umber of last level individ-
ual router‘s endpoints.

• T2:L layer number.
• T2,T3 are not used.

ROUTE NAME

"XY",
"DUATO",
"WEST FIRST",
"NORTH LAST",
"NEGETIVE FIRST",
"ODD EVEN"

NoC routing algorithm for mesh topol-
ogy. "XY" is deterministic routing (DoR),
"DUATO" is fully adaptive and the rest are
partially adaptive routing algorithms.

"TRANC XY",
"TRANC DUATO",
"TRANC WEST FIRST",
"TRANC NORTH LAST",
"TRANC NEGETIVE FIRST"
"TRANC ODD EVEN"

NoC routing algorithm for torus topol-
ogy. See [rahmati:2012] for more infor-
mation.

ProNoC homepage October 15, 2021 105

https://www.sciencedirect.com/science/article/pii/S0141933111000755
http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

"NCA RND UP",
"NCA DST UP",
"NCA STRAIGHT UP",

NoC routing algorithm for Fatree topol-
ogy. Nearest common ancestor (NCA)
where the up port is selected randomly
(RND), based on destination endpoint ad-
dress (DST) or it is the top port that is lo-
cated in front of the the port which has
received the packet (STRAIGHT).

C C ∈ N

The number of message classes. Packets
that belong to different message classes
can have access to a different subset of
VCs. The subset of VCs for each class is
defined using CLASS SETTING parame-
ter.

Fpay
Fpay ∈ N,
Fpay > 32

Flit payload size in bit.

MUX TYPE
"BINARY",
"ONE HOT"

Crossbar’s multiplexer type in a NoC
router. Binary and one-hot multiplexers
are preferable for FPGA and ASIC im-
plementation, respectively.

VC

REALLOCATION

TYPE

"ATOMIC",
"NONATOMIC"

"ATOMIC": only an empty output VC can
be reallocated for a new header flit.
"NONATOMIC": A VC can be reallocated
when it has received the tail flit of the last
packet and has at least one empty buffer
space. See [monemi:2016a] for more in-
formation.

COMBINATION

TYPE

"COMB NONSPEC",
"COMB SPEC1",
"COMB SPEC2",
"BASELINE"

VC/SW combination type. Note that us-
ing "BASELINE" is not recommended.

FIRST

ARBITER

EXT P EN

0,
1

If it is set as 0, then the first level arbiters’
priority registers in switch allocator are
updated whenever any request is granted
at first level otherwise the priority regis-
ters are updated only if they also receive
the second level arbitration grants.

BYTE EN 0,1

0: Disabled
1: Enabled. Adds a byte enable (BE) filed
to header flit which shows the location of
last valid byte in tail flit. It is needed once
the sent data unit is smaller than Fpay.

CONGESTION

INDEX

CONGESTION INDEX ∈ N,
0 6 CONGESTION INDEX 6 7

Define how congestion metrics is se-
lected. See Table A.2 for more informa-
tion.

ProNoC homepage October 15, 2021 106

https://dl.acm.org/citation.cfm?id=2994134
http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

DEBUG EN 0,1

If is defined as 1, the simulation will
be run using extra debugging codes.
The debugger dose several faults detec-
tion such as out of order flits receiving,
packet miss-routing and VC status miss-
matching.

ADD PIPREG

AFTER

CROSSBAR

0,1

If is defined as 1, a pipeline register
will be added after the crossbar switch
which add one clock cycle latency for
link traversal stage. It may be needed for
ASIC NoC where routers are connected
using long wires. However, in FPGA im-
plementation it may not be required.

CLASS

SETTING
{V’bX,...,V’bX}

It defines how each message class can
have access to VCs. For each class a V-
bit access-VC value is defined in such a
way that each asserted bit represents the
VC which this message class can request
for. The CLASS SETTING is concatenate
of all message class access-VC values.

ESCAP VC MASK V’bX

It is a V-bit value and its asserted bit(s)
represent the escape VC(s) (EVC). It is
valid only for fully adaptive routing. You
must make sure that each message class
have access to at least one EVC to prevent
deadlock in fully adaptive routing.

SSA EN "YES" , "NO"

If set as ”YES”, packets which are travel-
ing to the same dimension bypass router
pipeline stages using Static straight allo-
cator. See [monemi:2016b] for more in-
formation.

SMART MAX
SMART MAX ∈ N,
SMART MAX > 0

If Max Straight Bypass (SMART MAX)
is defined as n¿0 then packets are al-
lowed to bypass Maximum of n routers
in straight direction in single cycle. See
[monemi:2021] for more information.

ProNoC homepage October 15, 2021 107

https://ieeexplore.ieee.org/abstract/document/7892399/
https://doi.org/10.1145/3479876.3481601
http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

SWA ARBITER

TYPE

"RRA",
"WRRA"

Switch allocator’s output ports arbiters
type: RRA: Round Robin Arbiter. Pro-
vides only local fairness in a router.
WRRA: Weighted Round Robin Arbiter.
Results in global fairness in the NoC. Us-
ing WRRA the switch allocation requests
are granted according to their weights
which increases dynamically due to con-
tention.Refer to [monemi:2020] for more
information.

WEIGHTw
WEIGHTw ∈ N,
2 6 WEIGHTw 6 7

WRRA weights’ maximum width in bits.

MIN PCK SIZE
MIN PCK SIZE ∈ N,
MIN PCK SIZE > 1

The minimum packet size in flits. In
atomic VC re-allocation, it is just im-
portant to define if the single-flit sized
packets are allowed to be injected to the
NoC by defining this parameter value as
one. Setting any larger value than one
results in the same architecture and the
NoC works correctly even if it receives
smaller packets size as while as they are
not single-flit sized packets. However, for
non-atomic VC reallocation NoCs, you
have to define the exact value as it de-
fines the NoC control registers’ internal
buffers. The NoC may crash once it re-
ceives packets having smaller size than
the defined minimum packet size.

SELF LOOP EN "YES" , "NO"

If the self loop is enabled, it allows a
router input port sends packet to its own
output port. Enabling it allows a tile to be
able to sent packet to itself too.”;

ProNoC homepage October 15, 2021 108

https://doi.org/10.1145/3391442
http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

Table A.2: Congestion metrics.

Index Description pin overhead
0 Number of unavailable VCs in the neighboring router

adjacent input port.
1 Number of consumed credit in all VCs of the neighbor-

ing router adjacent input port.
2 Number of active switch allocation requests in all ports

of the neighboring router.
2-bit

3 Number of active switch allocation requests in all ports
of the neighboring router.

3-bit

4 Number of active switch allocation requests in all ports
of the neighboring router that are not granted.

2-bit

5 Number of active switch allocation requests in all ports
of the neighboring router that are not granted.

3-bit

6 Number of unavailable VC in all ports of the neighbor-
ing router

2-bit

7 Number of unavailable VC in all ports of the neighbor-
ing router

3-bit

ProNoC homepage October 15, 2021 109

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

APPENDIX B

NoC Verilog File
Signals Description

Resource
allocation units

A packet is the unit of data that is routed between a source and a destination cores. Packets
contain control signals such as routing data, destination address, message classes in addition to
the data. Flits (flow control units) are the atomic units that form packets. A packet consists of
three types of flit; it starts with a header flit, followed by an optional number of body flits, and
ends with a tail flit. Phit (physical unit), is the smallest unit of data transmitted in a single cycle
on a communication link. In ProNoC flits are single phit size. The NoC resource allocation units
is shown in Figure B.1.

Figure B.1: Units of resource allocation in NoC.

Flit type Type is a 2-bit signal indicates the type of its respective flit (header,body or tail). The first bit is
asserted for header flits. The second flit is asserted if the flit is a tail. For body flits neither of
these two bits are asserted. For single flit packets both of type bits are asserted.

VC filed VC filed is coded in one-hot format and the asserted bit indicates the packet VC number.

Packet type ProNoC supports two types of single or multi flit packet format. The packet format is defined by
setting PCK_TYPE parameter to one of SINGLE_FLIT or MULTI_FLIT values.

single-flit : In this configuration all packets injected to the NoC must consist of only single-flit. The packet
control fields are added to packet Data filed as shown in Figure B.2.

Figure B.2: Single-flit type packet format.

Multi-flit : In multi-flit format a packet can consist any arbitrary number of flits. In this format the header
flit carries the control fields as part of its payload filed as shown if Figure B.3.

ProNoC homepage October 15, 2021 110

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

Figure B.3: Muti-flit type packet format.

Control fields
format

The header flit carries some necessarily information which is required by the flow control. The
header flit format varies depending on ho NoC parameter are selected.

Bit 0
destport dst-endpoint-addr src-endpoint-addr

Size (bits) DSTPw EAw EAw
Fpay

header-data weight class
Size (bits) HDw Ww Cw

Endpoint
addressing format

ProNoC encodes the endpoint addresses according to the topology parameters:

Line,Ring : {L,X}
X: connected router index number.
L: index of router local port connected to the endpoint node.

Mesh,Torus : {L,Y,X}
X: Index of the first dimension (column) of the connected router.
Y: index of the second dimension (row) of the connected router.
L: index of a router local port connected to the endpoint node.

ProNoC homepage October 15, 2021 111

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

Figure B.4: 2×2 CMESH endpoint coding example.

The endpoint address size in Line,Ring,Mesh and, Torus is obtained using the following
equations:

NXw = log 2NX;

NY w = (NY > 1)? log 2NY : 0;

NLw = (NL > 1)? log 2NL : 0;

EAw = NLw +NY w +NXw; (B.1)

where NX is the maximum number of routers in first dimension, NY is maximum number of
router in second dimension,NL is maximum number of individual router’s local port, NXw is
router first dimension size in bits, NY w is router second dimension size in bits, NLw is router
local port index width in bits, and EAw is the endpoint address width.

In Fatree/tree each individual endpoint address is coded based on port number of parent
routers: {P0,P1,...,Pk−1}
where K is the height of tree and Pn is the router’s bellow port number located at the nth layer
which can receives a packet from that endpoint (note that nroot=0). Figure B.5 shows an example
of endpoint encoding in a fattree (k=3,n=3). As an example a packet which sent from T7 to any
of root nodes will always received from port number 1,2,0 in each layer respectively.

ProNoC homepage October 15, 2021 112

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

Figure B.5: Fattree (k=3,l=3) endpoint coding example.

Kw = log 2K

EAw = L×Kw (B.2)

where L is length of three and K is the number of endpoints connected to each individual router
in last tree level.

Once you press Generate RTL button in NoC-based MPSoC using NoC based

MPSoC generator, the endpoint addresses are generated in [PRONOC_WORK]/mpsoc/[PT-

name]/sw/phy_addr.h file.

phy addr.h contains 2×2 CMESH endpoint adresses.

#ifndef PHY_ADDR_H
#define PHY_ADDR_H

#define PHY_ADDR_ENDP_0 0x0
#define PHY_ADDR_ENDP_1 0x4
#define PHY_ADDR_ENDP_2 0x8
#define PHY_ADDR_ENDP_3 0xc
#define PHY_ADDR_ENDP_4 0x1
#define PHY_ADDR_ENDP_5 0x5
#define PHY_ADDR_ENDP_6 0x9
#define PHY_ADDR_ENDP_7 0xd
#define PHY_ADDR_ENDP_8 0x2
#define PHY_ADDR_ENDP_9 0x6
#define PHY_ADDR_ENDP_10 0xa
#define PHY_ADDR_ENDP_11 0xe
#define PHY_ADDR_ENDP_12 0x3
#define PHY_ADDR_ENDP_13 0x7
#define PHY_ADDR_ENDP_14 0xb
#define PHY_ADDR_ENDP_15 0xf

ProNoC homepage October 15, 2021 113

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

#endif

destport ProNoC routers use look-ahead routing algorithm i.e. the destination port is calculated
one router ahead and the result is attached to the header flit in destport filed. The
destport format varies dependent on topology and routing algorithm. Once a packet
is injected into the NoC this field is automatically updated by each router at packet
departure time. However, it is the duty of endpoints to update the destport filed of
packets which are injected to the router’s local ports. Endpoints are supposed to use
ni_conventional_routing Verilog module to obtain the destport filed. The size of
destport filed is shown in Table 11.1.

Table 11.1: DSTPw for different typologies. Note that K is the tree height.

TOPOLOGY RING, LINE MESH, TORUS FATTREE TREE
DSTPw (bits) 2 4 K+1 log2(K+1)

class This filed indicates the message class binary number. Each specific class can use dif-
ferent set of VCs. The permitted VCs which can be used by each individual class is
given to the RTL code using CLASS_SETTING Verilog parameter.

Cw = (C > 0)? log 2C : 0 (11.3)

where C is number of defined class and Cw is class width filed in bits.

weight This filed carries packets weight which increases dynamically inside the NoC at pres-
ence of congestion. weight filed is only valid once the router is configured with
weighted round robin arbitration.

Ww = (SWA_ARBITER_TYPE == "WRAA")? WEIGHTw : 0 (11.4)

where C is number of defined class and Cw is class width filed in bits.

header-data The header flit can optionally carries some data. The size of data which a header flit
can carries. The number of data bits which a header flit can carry (HDw):

HDw = Fpay − 2EAw −DSPTw −Ww (11.5)

ProNoC homepage October 15, 2021 114

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

	Installation Manual for the Ubuntu Linux Environment
	ProNoC Source Code
	Installation

	Interface Generator
	Introduction
	Generate New Interface
	Defined Interfaces
	interrupt_cpu
	interrupt _peripheral
	clk
	reset
	Enable
	Wb_master
	Wb_slave

	IP Generator
	Introduction
	Generate a New IP
	List of available Variables in ProNoC
	List of available IP cores in ProNoC
	Bus
	Communication
	DMA
	Display
	GPIO
	Interrupt
	NI
	Processor
	RAM
	Source
	Timer

	Processing Tile Generator
	Processing Tile Generator Hello World Tutorial
	System Requirements:
	Objectives:
	Desired SoC
	Schematic
	Application Software

	Create New SoC Using ProNoC Processing Tile Generator
	Software Development
	Simulate the generated RTL code using Modelsim software
	Simulate the generated RTL code using Verilator software
	Compile the generated RTL code using Quartus II/Vivado software

	Add Custom IP to Processing Tile Generator Tutorial
	System Requirements:
	Objectives:
	Greatest Common Divisor (GCD) Algorithm
	GCD RTL code
	GCD Simulation

	Add Wishbone bus interface to GCD
	Add custom wishbone-based IP core to ProNoC Library
	Generate a new SoC enhanced with new IP core (GCD)
	Software Development

	Simple message passing demo on 22 MPSoC
	System Requirements:
	Generating a custom Processing tile
	Generating a 44 NoC-based MPSoC
	Software Development

	Software Auto-generation using CAL language (CAL2C)
	Cal2C
	ORCC installation
	ORCC Hello word on ProNoC platform
	Run ORCC inbuilt simulator
	Run ORCC Compilation
	Modifying the generated C code using ProNoC

	NoC Simulator
	System Requirements:
	Simulation Example:
	Generate first NoC simulation model with XY routing
	Generate the second NoC simulation model with fully adaptive routing
	Run simulation under Matrix Transposed traffic pattern

	NoC Emulator
	Summary
	System Requirements
	Emulation Example:
	Generate first NoC emulation model with XY routing
	Generate the second NoC emulation model with fully adaptive routing
	Run Emulation models under Matrix Transposed traffic pattern

	ProNoC Tools
	JTAG UART
	UART Terminal
	Add new ALtera FPGA Board
	Add new Xilinx FPGA Board

	Appendices
	NoC Verilog File Parameters Description
	NoC Verilog File Signals Description
	Resource allocation units
	Flit type
	VC filed

	Packet type
	single-flit
	Multi-flit

	Control fields format
	Endpoint addressing format
	destport
	class
	weight
	header-data

