ProNoC

User Manual

Copyright ©2014-2022 Alireza Monemi

This file is part of ProNoC

ProNoC (stands for Prototype Network-on-Chip) is free software: you can redistribute it
and/or modify it under the terms of the GNU Lesser General Public License as published
by the Free Software Foundation, either version 2 of the License, or (at your option) any
later version.

ProNoC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
without even the implied warranty of MERCHANTABILITY or FITNESS FOR A
PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public License along with
ProNoC. If not, see <http:**www.gnu.org/licenses/>.

This document may include technical inaccuracies or typographical errors.

Contents

1 Installation Manual for the Ubuntu Linux Environment

1.1 ProNoCSourceCode
1.2 Installation

2 Interface Generator

2.1 Introduction
2.2 Generate New Interface
2.3 DefinedInterfaces
2.3.1 AnterruptCpuo e e e e
2.3.2 interrupt _peripheral
233 ck. ..o
234 reset. e e
235 Enable
23.6 Wbomaster
237 Whbsslave
3 IP Generator
3.1 Introduction
3.2 GenerateaNewlIP
3.3 List of available Variables in ProNoC
3.4 List of available IP cores in ProNoC
341 Bus ...
342 Communication
343 DMA
344 Display
345 GPIO
34.6 Interrupt.
347 NI
348 Processor
349 RAM
3410 Source
3411 Timer

4 Processing Tile Generator

&~ A

Processing Tile Generator Hello World Tutorial

23

5.1 System Requirements: 23
5.2 Objectives: i e e e e e 23
53 DesiredSoC e 23
53.1 Schematic. 23
5.3.2 Application Software 24
5.4 Create New SoC Using ProNoC Processing Tile Generator 24
5.5 Software Development 33
5.6 Simulate the generated RTL code using Modelsim software 37
5.7 Simulate the generated RTL code using Verilator software 39
5.8 Compile the generated RTL code using Quartus II/Vivado software . . 43
Add Custom IP to Processing Tile Generator Tutorial 47
6.1 System Requirements: 47
6.2 Objectives: e 47
6.3 Greatest Common Divisor (GCD) Algorithm 47
64 GCDRTLcode, 48
6.4.1 GCD Simulation 51
6.5 Add Wishbone bus interfacetoGCD 55
6.6 Add custom wishbone-based IP core to ProNoC Library 58
6.7 Generate a new SoC enhanced with new IP core (GCD) 63
6.8 Software Development 66
Simple message passing demo on 2x2 MPSoC 69
7.1 System Requirements: 69
7.2 Generating a custom Processingtile 69
7.3 Generating a 4x4 NoC-based MPSoC 71
7.4 Software Development 74
Software Auto-generation using CAL language (CAL2C) 79
8.1 Cal2C e 79
8.2 ORCCinstallation 79
8.3 ORCC Hello word on ProNoC platform 80
8.3.1 Run ORCC inbuilt simulator 81
8.3.2 Run ORCC Compilation 82
8.3.3 Modifying the generated C code using ProNoC 83
NoC Simulator 88
9.1 System Requirements: 88
9.2 Simulation Example: 88
9.2.1 Generate first NoC simulation model with XY routing . 88

9.2.2 Generate the second NoC simulation model with fully adaptive
TOULING o oL 89
9.2.3 Run simulation under Matrix Transposed traffic pattern 89
ProNoC homepage June 23, 2022 2

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

10 NoC Emulator 93

10.1 Summary e 93
10.2 System Requirements 93
10.3 Emulation Example: 93
10.3.1 Generate first NoC emulation model with XY routing 93

10.3.2 Generate the second NoC emulation model with fully adaptive
TOULING o oot e e 95

10.3.3 Run Emulation models under Matrix Transposed traffic pattern 95

11 ProNoC Tools 98
11.1 JTAGUART e e e e 98
11.2 UART Terminal et 98
11.3 Add new ALtera FPGA Board 101
11.4 Addnew Xilinx FPGABoard 102

Appendices 104

A NoC Verilog File Parameters Description 105

B NoC Verilog File Signals Description 110
B.1 Resource allocationunits 110

B.1.1 Flittype o oo 110
B.1.2 VCfiled. 110

B.2 Packettype 110
B.2.1 single-flit 110
B.22 Multi-flit 110

B.3 Control fields format L. 111
B.3.1 Endpoint addressing format 111
B.3.2 destport 114
B33 class. 114
B34 weight. 114
B.3.5 header-data 114

C Multiple physical NoCs with different configuration 115

ProNoC homepage June 23, 2022 3

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

CHAPTER 1

Installation Manual
for the Ubuntu
Linux Environment

ProNoC Source You can download the ProNoC source code from ProNoC homepage or optionally open
Code the terminal and run:
svn co http://opencores.org/ocsvn/an-fpga-implementation-of-low—

latency-noc-based-mpsoc/an-fpga-implementation-of-low-latency
-noc-based-mpsoc/trunk

Figure 1.1 shows the organization of important directories in ProNoC source code:

Xilinx
—— perl_gui
—— remove_cycle
— rtl
src_emulate
src_modelsim
src_noc
src_peripheral
src_topolgy
script
src_c

Src_processor
src_verilator
—— mpsocC_work

I— toolchain

Figure 1.1: ProNoC Directory Structure.

¢ doc/: Contains the ProNoC documentations.

* mpsoc/: This is the main ProNoC source code directory where all projects source
codes are placed.

* board/: This folder contains the FPGA boards’ configuration setting files. ProNoC
supports both Altera and Xilinx FPGAs.

* perl_gui/: It contains ProNoC’s Graphical User Interface (GUI) source codes.

* remove_cycle/: This directory contains a third party source code for Breaking
Cycles in Noisy Hierarchies. This code is used for removing cyclic turns in
custom typologies’ routing algorithms.

* rt1/: This folder contains all ProNoC’s developed HDL codes including the
RTL code for NoC, peripheral devices, NoC simulator and NoC emulator.

ProNoC homepage June 23, 2022 4

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc
https://github.com/zhenv5/breaking_cycles_in_noisy_hierarchies
http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

Installation

* script/: Contains some bash scripting language source codes.

* src_c/: Contains source codes written in C language used for converting mem-

ory files to different formats. This folder also contains codes for communicating
with JTAG interface.

* src_processor/: This folder contains third party open-source soft-processors’

source codes.

* mpsoc_work/: is a working directory for ProNoC. All generated files by ProNoC

GUI will be placed here. This folder also is used as target directory for FPGA
implementation and RTL simulation. The user requiters to install the soft-core
CPUs’ Toolchain in this folder.

. Copy the downloaded folder (t runk/) somewhere in your home directory. Make

sure that there is no space in selected path.

. To give execute permission, open trunk/mpsoc in terminal and run

sudo chmod +x -Rf ./

. Install required package dependencies

First make sure that your OS is updated by running following commands in ter-
minal

sudo apt-get update
sudo apt—-get upgrade

Then open terminal in mpsoc folder and run

sudo sh install.sh

. Now you should be able to run the ProNoC GUI by running the following com-

mand

cd mpsoc/perl_gui
perl ./ProNoC.pl

. If it is the first time you are running the ProNoC software, you should see the

setting window shown in Figure 1.2.

(a) Path setting: Here you can set the following path variables:

i. PRONOC_WORK: The working directory where the projects’ files
will be created and the toolchains are located. The default location is
the trunk/mpsoc_work folder. Setting this variable is compulsory.

ii. QUARTUS_BIN: The path to QuartusIl compiler bin directory. Set-
ting of this variable is optional. It is needed only if you are going to
use Altera FPGAs for implementation or emulation.

ProNoC homepage June 23, 2022 5

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

Configuration setting - o =

Path setting

PRONOC_WORK e /home/alireza/ProNoG|| 4 .JApply
QUARTUS BIN @ £

VIVADO_BIN y.

(7}
SDK_BIN (7] /
(7}

MODELSIM_BIN /

Toolchain
@) aemB | size:21MB @ Download Now
@ m3z sizesTMB | @ Download Now
@) orik-elf | size: 219 MB g Download Now
Tools

@ The tools directory is empty! You need to run the Make tools first. 9 Make tools

@ ok

Figure 1.2: ProNoC configuration setting window snapshot.

iii. VIVADO_BIN: The path to xilinx/Vivado/bin compiler directory.
Setting of this variable is optional. It is needed only if you are going
to use Xilinx FPGAs for implementation or emulation.

iv. SDK_BIN: The path to xi1inx/spk/bin directory. Setting of this vari-
able is optional. It is needed if you are going to use Xilinx FPGAs for
implementation or emulation.

v. MODELSIM_BIN: The path to Modelsim simulator bin directory.
Setting of this variable is optional. You should set this variable if the
Modelsim simulator is installed on your machine and auto-generation
of the simulation models using Modelsim software is desired.

(b) Toolchain: You can download the soft-core processors’ GNU toolchain by
clicking on the Download Now button. Once the toolchain installation is
done successfully, you will be notified by the & icon shown in front of
each toolchain name.

However, in case there is a problem in downloading the files (toolchain sta-
tus is still marked by) icon), you can manually download the toolchains
from the following links:

i. aecMB

ii. Lm32 or from Lm32
iii. orlk-elf for morlk and or1200 OpenRISC CPUs.
Remember that if you downloaded the files manually, it is needed to un-
zip the files and copy the 1m32, orik-elf, and aemb folders in trunk/
mpsoc_work/toolchain directory. Moreover, you should provide the ex-

ecution permission to the GNU toolchains by typing sudo chmod +x -Rf
./ command in terminal inside mpsoc_work/toolchain directory.

ProNoC homepage June 23, 2022 6

http://www.multcloud.com/share/87d0060e-9109-46a5-b170-f874f75fc34c
http://www.multcloud.com/share/aca75bf6-01c5-4559-978f-84cab79d8d53
http://www.ohwr.org/attachments/1301/gcc-4.5.3-lm32.tar.xz
http://www.multcloud.com/share/c2faea3b-9690-4757-a1ba-5a8ed8656bc4
http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

(c) Tools: The required tools can be compiled by clicking on the @ Make
tools. This button actually run the Makfile inside /mpsoc/src_c directory.

You can modify these setting at any time later via File->setting menu:

File View Help

Setting

Quik

Figure 1.3: ProNoC setting menu.

e
W

&% Interface generator | 3 1P generator | [l Processing tile generator | B8 NoC based MPSoC generator

Select file: A Browse| | @@ pescription
Select module: & 1mport Ports Select Category: Q '
Interface name: Select soket type: | single connection - e

About ProNoC

ProNoC 1.8.0

MNoC based MPSoC generator.

http://opencores.org/project an-fpga-implementation -of-low-latency-noc-based-mpsoc

Credits License Close

Please select the verilog file containig the interfacd

/2 Load Interface @ Generate

Figure 1.4: ProNoC GUI snapshot.

ProNoC homepage June 23, 2022 7

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

CHAPTER 2

Interface Generator

Introduction

The interface generator allows the addition of new interfaces to ProNoC software. An
interface is a port or a group of ports that are common in different IP cores which are
used for doing a specific task. The most common interfaces in ProNoC are the shared
bus (wishbone bus) master/slave, clk and reset interfaces. Each individual interface
is divided into two types of socket and plug interfaces. Two different IP cores can
be connected when one has the socket type of an interface and another one has the
plug type of that interface. While it is optional to select any side of the connection as

socket

or plug interface, bellow are some differences between them that help to select

an appropriate type of interface for each IP core:

1.

gpo

R
¥

2.

In processing tile generator only the plug interfaces of an IP are shown in the
IP box. The user can select the connection interface from the list of all IP cores
having the socket type of that interface as shown in Figure 2.1.

Instance name clk ss:clk

@ setting apo reset ss:reset

€ remove wb 10
bus0: wb_slave[0]
bus0: wb_slave[1]
bus:wb_slave[0]
bust:wb_slave[1]
NC

Plug interfaces Socket interfaces

Figure 2.1: GPO IP box snapshot.

The socket interfaces can be defined as single or multi-connection. A socket
interface can be defined as multi-connection only when it consists of only output
ports. As a result, it can be connected to multiple IPs having the plug type of
that interface. Examples of multi-connection socket in PoNoC are clk and reset
interfaces.

Select soket type: | single connection 9
” swap JwFplug

Figure 2.2: multi-connection selection snapshot.

The number of a socket interface in an IP core can be parameterizable. To do
this, the interfaces’ ports that having the same name must be concatenated as
a single port in the IP core Verilog file. This feature provides flexibility to the
ProNoC Processing tile generator as an IP core now can have variable number
of an interface which can be defined by the user at the generation time. As an
example the interfaces of the Wishbone bus and the interrupt controller are de-
fined as socket with parameterizable number of interfaces. Below is an example
which shows how the interfaces are defined in a Wishbone Bus IP core module:

ProNoC homepage June 23, 2022 8

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

Listing 2.1: bus.v

module wishbone_bus # (

parameter M = 4, //number of
parameter S = 4, //number

parameter Dw = 32, // maximur
parameter Aw = 32 // address

parameter DwS= Dw x S,
parameter AwS= Aw * S,

//Slaves interface

output [AwS-1 0] s_adr_o_all ,
output [DwS-1 0] s_dat_o_all ,
input [DwS-1 : 0] s_dat_i_all ,
output [S-1 : 0] s_we_o_all ,
output [S-1 : 0] s_cyc_o_all ,
output [S-1 0] s_stb_o_all ,

s
T
tor | # 1P generator | [Processin ot for | B NoC based MPSoC generator
Select file: /homefalireza/Mywo SELw __peripheral/bus/wishbane_bus.v
Interface name Type = e Num
wb_master socket * Dw (7 1] £y concatenate

wh_slave socket O s H 9 ®© (7 concatenate

whb_addr_map | socket © B 2 =) {/ separate
ak pug 3 ERE 7 i)
ee

(a)

B ©60 rarmecer ceting for wishbone.bus

reset plug = 1

| clk clk_source0 :clk
Parameter name Value Description
2} M 4 = e intrp int_ctri0:int_periph[0]
3 s 4 = (7] reset clk_source0:reset
Dw 32 (2] wb 10
. wishbone_bus0:wb_slave[0]
1Po Aw 32 |- (7] dk
wishbone_bus0:wb_slave[1]
2 ® reset wishbone_bus0:wb_slave[2]
| OK
wishbone_bus0:wb_slave[3]
] wh

(b)

Figure 2.3: (a) Select Verilog parameters M and S as the number of Wishbone bus
(WB) master & slave interfaces for generating Wishbone Bus IP core. (b) The number

of WB master/slave interfaces can be defined at SoC generation time via GUL

ProNoC homepage June 23, 2022

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

Generate New
Interface

Defined
Interfaces

NI

In order to add a new interface to ProNoC, press the ,C browse button and select
the Verilog file containing a module with the desired interface. If there are multiple
modules inside that file, you can select the desired one from select module menu. To
add ports to the interface press ,% Import Ports button. It opens a pop-up window
as shown in Figure 2.4 where you can select and add the required ports.

6:33PM {3

Bt)
R

TEERTCET 1 1= Tl s EELT)

input [(aw-1):0] addr_a]
input : [ow-1)0

nput [(aw-1):0] addr b
output : [ow10

input . nput [(ow-1):0] data s

output [(ow-1):0] ab

I
I
I
nput [©w-1):01 dta b
ouput [©w-1):0] aa]

iy en_Us . UTF . Ready NormalMode W H B

Figure 2.4: Interface generator snapshot.

Using <=% swap button, you can define if the selected ports belong to the socket
or plug type of an interface. You are only needed to define one type of an interface,
the other type will be defined automatically. The width of each port can also be a
Verilog code parameter. Note that any Verilog module using this interface must define
the interface ports using the same parameter name.

The socket interfaces can be defined as single or multi connection. If a socket is
defined as single connection, by connecting a new IP to the socket, the last connected
plug to that socket will be disconnected automatically.

While it is optional to select any side of an interface connection as socket or plug when
defining a new interface, once the definition is done for an IP core, all other IP cores
having that interface must follow the first IP core. Hence, it is important to know
how the defined interfaces (socket and plug) are mapped to the existing IP cores in the
library. This section provides the list of defined interfaces and the IP cores which use
these interfaces.

This is the interface connection between Network-on-chip (NoC) router and the NoC
interface adapter module (NI). Figure 2.5 shows this interface.

ProNoC homepage June 23, 2022 10

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

interrupt_cpu

interrupt
_peripheral

Socket Plug

EAw
current_e_addr |« current_e_addr

RAw
7

current_r_addr [« current_r_addr

. Fw -
flit_out e flit_in
. 1 -
flit_out_wr e flit_in_wr
Y
credit_in [«+—# credit_out
L Fw :
flit_in [e—# flit_out
1
flit_in_wr [«—# flit_out_wr
\
credit_out a credit_in

Figure 2.5: NI socket/plug interfaces.

IP cores having NI socket: ni_master, ni_slave
IP cores having NI plug: NoC

CPUs that have only one single interrupt pin must be connected to an interrupt con-
troller module to allow combination of several sources of interrupt. The interface be-
tween these CPUs and Interrupt controller is called interrupt_cpu.

Socket Plug

C. ; 1 j
int_i [«—# int_o

Figure 2.6: interrupt_cpu socket/plug interfaces.

IP core having interrupt_cpu socket: acMB CPU
IP core having interrupt_cpu plug: int_ctrl (interrupt controller module)

This is the interrupt interface connection between CPUs having multiple interrupt pins
that can directly be connected to multiple the peripheral devices.

Socket Plug

C. : 1 j
int_i [«—# int_o

Figure 2.7: interrupt_peripheral socket/plug interfaces.

IP cores having interrupt_peripheral socket: int_ctrl, morlkx, or1200, and Im32
CPUs.

IP cores having interrupt_peripheral plug: dma, timer, ni_master, ni_slave, ext_int
(external interrupt), eth_mac100, jtag_uart.

ProNoC homepage June 23, 2022 11

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

clk

reset

Enable

‘Whb_master

The clock pin interface.

Socket Plug

1 -
(clk o + clk_i >

Figure 2.8: clk socket/plug interfaces.

Y

IP core having clk socket: clk_source
IP cores having clk plug: All IP cores which have clk pin except clk_source

The reset pin interface.

Socket Plug

1
< reset_o va reset_i)

Figure 2.9: reset socket/plug interfaces.

Y

IP core having reset socket: clk_source
IP cores having reset plug: All IP cores which have reset pin except clk_source

The enable pin interface. The enable pin is used for disabling any active module in a
processing tile (e.g CPUs). The Processing tile and NoC-based MCSoC generators au-
tomatically connect all enable plug interfaces to each other and used them for disabling
CPUs during programming mode. The enable pin for each CPU must be defined as IO
in processing tile generator.

Socket Plug

1
< enable_o + enable_i >

Figure 2.10: Enable socket/plug interfaces.

Y

IP core that have enable socket: -
IP core that have enable plug: All CPUs

The wishbone bus master interface. The Wb_master socket interface is mapped to
wishbone bus module. All IP cores’ WB master interface must be mapped to the plug
interface.

ProNoC homepage June 23, 2022 12

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

Socket Plug

ack o
adr_i
bte_i

cti_i
cyc_i
dat_i

dat o
err_o
ry o
sel_i |«
stb_i [
tag_i
we_i

Figure 2.11: WB master socket/plug interfaces.

IP core having Wb_master socket interface: Wishbone Bus module
IP cores having Wbh_master plug interface: All CPUs, ni_master, dma, eth_mac100,

jtag-wb.

Wh_slave The wishbone bus slave interface. The Wb_slave socket interface is mapped to wish-
bone bus module. All IP cores’ WB slave interface(s) must be mapped to the plug
interface.

IP core having Wb _slave socket interface: Wishbone Bus module

IP core that have Wb_slave plug interface: ni_master, ni_slave, dma, eth_mac100,
jtag_wb, jtag_ uart, timer, gpio, gpi, gpo, single_port_ram, dual_port_ram, lcd_2x16,
ext_int, int_ctrl

Socket Plug

ack_o —|ack_i

adr_i |- adr_o
bte_i [« bte_o
cti_i [cti_o
cycC_i [cyc_o
dat_i [dat_o

dat o [—|dat_i
err_of——|err_i

rty o [——|rty_i

sel_i|= sel_o
sth_i [«— stb_o
tag_i [tag_o
we_| [« we_o

Figure 2.12: WB slave socket/plug interfaces.

ProNoC homepage June 23, 2022 13

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

CHAPTER 3

IP Generator

Introduction

Generate a New
P

The IP generator allows adding new intellectual properties (IPs) to the ProNoC’s li-
brary. It provides a GUI interface for mapping the IP’s ports to the interfaces, defining
how the IP parameters must be collected from the user at tile generation time, and
getting the location of IP cores’ source files.

For adding a new IP to ProNoC, first you need to have the Verilog file(s) describing the
RTL code of that IP.

1.

Click on = Browse button and select the Verilog file containing the top level
module.

Select a category which this new IP core is belonging to. You can either select it
form the list of available categories or define a new category by typing its name

Select

in Gin. (o -| . All IPs belonging to the same category are listed

under the same tree branch in processing tile generator.

Define an 1P name for this module. The IP name will be shown in IP list below
its category name in Processing tile generator.

In case the Verilog file contains several Verilog module select the top-level mod-
ule in select Module field.

. Using 0 IP Description button you can add a short description about the

IP. This description will be shown when the IP is selected in processing tile
generator. You can also add the IP-core documentation in PDF format here.
This generates a short key for opening the IP documentation in processing tile
generator.

Note: In order to make the copy of your ProNoC software portable palace the
documentation files somewhere inside mpsoc folder.

The h ﬁ.du:rlllisoﬁ'.-.'are button allows the addition of the necessarily files and fold-

ers to the generated processing tile software directory ([PRONOC_WORK] /SOC/ [PT
-name] /sw). By pressing this button you will have three notebook pages:

* Add existing files/folders: In this page you can add the list of files and
folders which you want to copy them exactly into the mpsoc/soc/ [PT-name
1/sw folder.

* Add files contain variables: In this page you can add the list of files which
contain some variables that can be replaced at the processing tile generation
time. Variables must be written in the source file with $ {variable_name}
format. You can use any of available variables in ProNoC as variable name.

* Add to tile.h: Define the header file for this peripheral device including
peripheral device functions’ deceleration, memory-mapped register address
definition, definitions of data types, and C preprocessor commands. Do not
include function definitions in the header file. Functions should be defined
in add to tile.c section. These definitions are added to the processing

ProNoC homepage June 23, 2022 14

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

tile header file at generation time. You can use any of available variables
in ProNoC with ${variable_name} format. A header file example is as
follows:

#define ${IP}_REG_0 (x((volatile unsigned int x) (${BASE})))

#define ${IP}_REG_1 (*((volatile unsigned int) (${BASE}+4)
))

#define S${IP}_WRITE_REGI (value) S${IP}_REG_1 = value
#define S${IP}_READ_REG1 () S$S{IP}_REG_1

#define ${IP}_is_busy(n) ((${IP}_REG_0 >> n) & Oxl)

A sample generated header file by ProNoC assuming the IP instance name
is defined as foo by the user and the WB slave address is defined as o
%x96000000 by ProNoC automatically is as follows:

#define foo_REG_O0 (% ((volatile unsigned int =x) (0X96000000)))
#define foo_REG_1 (x((volatile unsigned int =x) (0X96000000+4))
)

#define foo_WRITE_REGI (value) foo_REG_1 = value
#define foo_READ_REGLl () foo_REG_1

#define foo_is_busy(n) ((foo_REG_0 >> n) & 0x1)

* Add to tile.c: You can define the peripheral device’s functions in this file.
You can use any of available variables in ProNoC with $ {variable_name}
format in this file.

7. Add the list of all required HDL files for this new IP core by clickingon = #dHbL

— files
button. All files listed here will be copied in the generated processing tile in-

side mpsoc/socC/ [PT-name] /src_verilog folder. If you tick simulation only op-
tion for any of entered file/folder, they will be copied in mpsoc/soc/ [PT-name]/
src_sim folder instead and will only be used for simulation.

8. By pressing @ "7 button, all parameters inside the top module Verilog
file are extracted. This menu allows you to add, remove or define how to get the

parameter values from the user. Below is an example for setting parameter M in
wishbone bus.

Parameter name Default value Widget type g Widget content g Type e 0 info e add/remove

M 4 Spin-button I ||1,256,1 Localparam * | B Redefine @ @remove

Figure 3.1: Parameter setting snapshot.

ProNoC homepage June 23, 2022 15

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

* Parameter name: It is the parameter name which has been read from the
Verilog file.

* Default value: when an IP is selected for the first time in processing tile
generator, the parameters are loaded by their default values.

* Widget type: It defines how the parameter value must be taken from the
user when calling the IP in processing tile generator. There are four ways
to define a widget type:

— Fixed: The parameter is a fixed value and get the default value. User
will not see the parameter and cannot change it in GUL

— Entry: The parameter value is received via entry widget. The user
can type anything as parameter value.

— Combo-box: The parameter value can be selected from a list of pre-
defined values.

— Spin-box: The parameter is a numeric value and is taken using spin-
box widget.

* Widget content: For Fixed and Entry leave it empty. For Combo box
define the parameters which must be shown in combo box. Use following
format: "vALUE1", "VALUE2", ..., "VALUEn". For Spin box define it with
this format minimum, maximum, step (e.g 0,10,1).

* Type: Here you can define that how any specific IP-core parameter is de-
fined in the generated processing tile Verilog file. You have three options
localparam,Parameter,andDon't include.IfyousekxﬁitaSParameter
then all processing tile parameters are also defined as parameter in the pro-
cessing tile Verilog file. Hence, they can be changed during NoC-based
MPSoC generation time. This allows calling same tile in different places
with different parameter values. In case the parameter is a software pa-
rameter which must be used in software code variables define it as pon't

include.

* Redefine: If it is check marked, the defined parameter/localparam in pro-
cessing tile Verilog file will be passed to the IP core during instantiating.
Remove the check mark if you only have added a parameter using parame-
ter setting GUI which does not exist in the IP-core Verilog file.

parameter PARAM1l= n; //redefined is on
localparam PARAM2=m; //redefined is off

ip_name # (
// redefined parameters
.PARAM1 (PARAM1)

) instance_name (
//ports definition starts here

)i

* info: The parameter description for the user can be added here.

ProNoC homepage June 23, 2022 16

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

9.

Add interface: You can add interfaces to the IP library by double-clicking on
an interface name located at the left top corner. After adding the interface, it
appears in the interface box where you can adjust the interface setting such as,
interface name, type, and the number of that interface which appears in the new
IP core.

For wishbone slave interface you can select the wishbone address setting by
pressing | button and do the following settings:

¢ Interface name: define a name for this interface.

* Address Range: seclect the address range for WB slave port. These ad-
dresses are defined in mpsoc/perl_gui/lib/perl/wb_addr.pnm file. You
can add your own address range by modifying this file.

* Block address width: It defines the maximum memory size required for
this interface in byte which is defined as 2 power of block address width
(see Figure 3.2 caption as an example). The width can be defined as a fixed
number when the number of memory mapped registers inside the interface
is predefined as a fixed number. In case, that the number of required regis-
ters is dependent on a Verilog parameter (e.g. a memory block that its size
is parameterizable) and it is aimed to be defined by the user at processing
tile generation time then you can define it as parametrizable then select
the corresponding parameter as address width.

() N L ryY oxal00_0000 Oxalfr_fmT HDLC Controller _

0x9100_0000 0x91fT_fr1r General-Purpose 1/0

EEH D 0x9600_0000 0x96rT_frTr PWM/Timer/Counter Ctri block adress width| @
0xa400_0000 Oxa4fr_frit Digital Camera Ctrl

0xa600_0000 Oxb7fr_frT Reserved1 Fred | B20v=l 5

0xa500_0000 Oxasfr_ffit Debug

0x9300_0000 0xO3fF_frff Memory Controller

0xa300_0000 Oxa3fr_fit 12€ Controller

Figure 3.2: Slave WB address setting snapshot. The size of memory mapped registers
in this example is 2° = 32 bytes. For a 32-width WB it is equal to 32/4 = 8 individual
registers. In case, you have parameterizable number (e.g. M) to indicate memory
mapped register width in words in your IP module Verilog file, you need to add another
parameter such as N=M+2 in parameter setting window and select its type as pon'
t include to be used as address width parameter in bytes.

10.

11.

For socket interfaces, there is an option to define the interface number as pa-
rameter by selecting £ concatenate condition or a fixed number by selecting
{¥ separate condition. See socket interface specification for more information.

After adding the interfaces, you must mapped the top module ports to the in-
terfaces ports. For each top-level module port you need to select the interface
name and interface port. Figure 3.3 illustrates a snapshot of interface mapping
for Wishbone Bus module.

Finally, by pressing @ Generate| yOu can generate the IP. You can also modify

the existing IPs by using | J= [oad 1p button.

ProNoC homepage June 23, 2022 17

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

List of available
Variables in
ProNoC

%06
&¥ mtertace generator | # 1P generator | [Processing tile generator | B NoC based MPSOC generator
Interfaces list
> NoC Select file: hor /mpsoc/src_peripher :_bus.v /2 Browse| IP name: wishbone_bus
> interrupt
> source
Select ” Parameter| Select - P Add Software | | = Add HDL
¥ wishbone module: | Msmbone bus 2| @ setting category: |2U° (2) @Desmmon h s = flles
wh_addr_map
wh_master
wh_slave Interface name Type Interface Num
wh_master socket 3 M I 1) £/ concatenate Q remove
wb_slave socket % s =) {Y/ concatenate € remove
wb_addr_map socket % PR 2 i) {/ separate @ Remove
Type Port name Interface name Interface port Port Range
output s_adr_o_all socket:wb_slave = adr_o 2 |[awss1 o
output s_dat_o_all enrsntosin eiaun S dat_o slfows1 o
10
output s sel_o_al cocketh, master sel_o :|[setwrs1 : o
output s taa o al taa o 2 l[aGw*s1 : 0

Please select the verilog file containig the ip module

plug:reset
A2 Load1p plug:clk @ cenerate

Figure 3.3: Wishbone Bus module interface mapping snapshot.

See Add Custom IP Tutorial for observing an example of adding a custom IP core

to the

ProNoC library.

${ [parameter_name]}: The IP core parameter value. The actual value is de-
fined by the user when calling IP core at processing tile generation time. The
parameter had to be added in GUI parameter using parameter setting button.

${core_1D}: Each Wishbone bus-based processing tile will have a unique core_1p
that represents its location in NoC topology.

If the generated tile is used as top-level module core_1p will take the default
value of zero.

${1p}: is the peripheral device instance name which is defined by the user when
calling IP core using Processing tile generator.

${core}: is the peripheral device IP core name.

${BasE}: is the wishbone base address(es) and will be added during process-
ing tile generation to processing tile C header file (mpsoc/soc/ [PT-name] /sw/ [
Tile_name] .h). If more than one slave wishbone bus exist in the IP core, the
variables are define as $ {BASEO}, ${BASELl}... .

ProNoC homepage June 23, 2022 18

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

List of available
IP cores in
ProNoC

Bus

Communication

DMA

Display

GPIO

This section provides a brief description about the available IP core modules in ProNoC
library. Most IP cores that are developed with ProNoC software come with a separate
documentation PDF file. These files are accessible by clicking on the IP core modules’
name in following section. For the other IP cores which are adopted from OpenCores
website the project homepage URL address is linked to the IP core name.

Wishbone_bus (WB): is an open source hardware computer bus released by
OpenCores. ProNoC’s WB is fully parameterizable in terms of number of mas-
ter/slave interfaces and data/address width.

ProNoC_jtag uart: A JTAG based Universal Asynchronous Receiver-Transmitter
(UART) module with Wishbone-bus interface. The communication to the host
PC is handled using Altera Virtual JTAG Tab or Xilinx BSCANE2 Tab. ProNoC
has an in-build GUI with the ability of monitoring multiple UART terminals at
the same time (See ProNoC_UART GUI).

ProNoC_jtag_wb: Altera JTAG to Wishbone bus interface. This module al-
lows reading/writing data to the IP cores connected to the wishbone bus (e.g.
memory cores). For Altera FPGAs, the communication between the host PC
is done using mpsoc/src_c/jtag/jtag_libusb via USB Blaster I and mpsoc/
src_c/jtag/jtag_quartus_stp via USB Blaster II. For XILINX FPGAs, it is
done using mpsoc/src_c/jtag/jtag_xilinx_xsct. The communication with
the FPGA board also can be done using a GUI interface called Run time JTAG
debuger.

altera_jtag_uart: The Altera (Qsys) JTAG UART core with Wishbone bus inter-
face.

Etmach_100: The Ethernet MAC (Media Access Control) 10/100 Mbps. This
IP core is adopted from OpenCores/ethmac.

dma: A wishbone bus round robin-based multi channel DMA (no byte enable is
supported yet). The dma supports burst data transaction.

led 2x16: 2x16 Character Alphabet Liquid Crystal Display (LCD) driver mod-
ule.

gpi: General purpose Wishbone bus-based input port.
gpo: General purpose Wishbone bus-based output port.

gpio: General purpose Wishbone bus-based bidirectional port.

ProNoC homepage June 23, 2022 19

https://opencores.org
https://cdn.opencores.org/downloads/wbspec_b3.pdf
https://opencores.org
https://opencores.org/websvn,filedetails?repname=ethmac&path=%2Fethmac%2Ftrunk%2Fdoc%2Feth_design_document.pdf
https://opencores.org/project,ethmac
http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

Interrupt

NI

Processor

RAM

Source

Timer

ext_int: External interrupt module.

int_ctrl: Interrupt controller. CPUs that have only one single interrupt pin (e.g.
aeMB) must be connected to an interrupt controller module to allow combination
of several sources of interrupt.

ni_master: ni_master is a Wishbone bus (WB)-based interface for the network-
on-chip (ProNoC) router. This module has two WB master interfaces, one for
sending and another for receiving data packets.

ni_slave: ni_slave is an extension of NI_master module connected to two input
and output buffers. There are three WB slave interfaces in this module, one for
writing on output buffer, one for reading input buffer and one for controlling the
NL

Or1200: OR1200 is the original implementation of the OpenRISC 1000 archi-
tecture. Its source code has been adopted from github at openrisc/or1200.

aeMB: the EDK3.2 compatible Microblaze core. This IP core is adopted from
OpenCores/aemb.

Im32: LatticeMico32 is a soft processor originally developed by Lattice Semi-
conductor. The source code of this IP core is adopted from github/soc-Im32.

morlkx: The morlkx is a replacement for the original or1200 processor. The
source code is adopted from github at openrisc/morlkx

single_port_ram: A Wishbone bus-based single port Random Access Memory
(RAM).

dual_port_ram: A Wishbone bus-based dual port RAM.

clk_source: This module provides the clk and reset (socket) interfaces for all
other IPs. It also synchronizes the reset signal.

timer: A simple, general purpose, Wishbone bus-based, 32-bit timer.

ProNoC homepage June 23, 2022 20

https://openrisc.io/implementations.html#OR1200
https://github.com/openrisc/or1200
http://www.codelooker.com/dfilec/8310labmicsoc/aeMB_datasheet.pdf
https://opencores.org/project,aemb
http://www.latticesemi.com/-/media/LatticeSemi/Documents/UserManuals/JL/LatticeMico32ProcessorReferenceManual37.ashx?document_id=51558
https://github.com/jbornschein/soc-lm32/tree/master/rtl/lm32
https://openrisc.io/implementations.html#OR1200
https://github.com/openrisc/mor1kx
http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

CHAPTER 4

Processing Tile
Generator

A Processing Tile (PT) is a set of several IPs (processors and peripheral devices) con-
necting via interfaces. Figure 4.1 illustrate a snapshot of PT generator. PT generator
facilitates the RTL code generation of a custom PT by providing following features:

1.
2.

N o

Allows addition of any arbitrary number of IP cores to the PT.

Provides a simple GUI for connection IP cores.

Provides a GUI for setting IP core parameters.

Auto-generates the Wishbone Bus slave interface addresses.

PT functional block diagram viewer.

PT RTL code generator.

Comes with an in-built text editor for software development and compilation.

Facilitate RTL code synthesizing using one of the Verilator, Modelsim, Vivado
or Quartusll compilers.

For more information about PT generator, please refer to Processing Tile Generator
Tutorial.

ProNoC homepage June 23, 2022 21

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

& &

L4 = i &
&Y interface generator 4 P generaror | [Processing tile generator g

P list
> Bus

> Communication

> DMA 1
Display

GPIO

Intermupt

NoC

Other

Processor

RAM

Source

F v v Y vvVYwvw

]

NoC based MPSoC generator

morLioc Instance name

IR @ Setting | [cpu
~
] (@ e
gpe Instance name
S @ Setting | |1ed
~ R
| @ e

alk

enable

reset.

reset.

wb

ssiclk

ssireset 2 2
| |

| busiwb_master{0] =

| busiwb_master{1]

| ssiclk

ssreset =
|)

Step 1: Select Compiler

Parameter name Value Description .
M : i@
. &) Verilator
_ Torgeted Boara:| fg) | | DE10_nano_ve2
s 3 @ stance name Interface name Bus name Base address End address JIEZ == Modelsim
- | 1
LB .]
. 0: led wb bus |0x21000000 | |ox9100001¢ J Quartus bi [/hemeyalireza/intelFPGA_ite)| J& | -
ow 2 i@ e i Bt sl | [g
. b2
. o 1:sim uart wb_siave bus | oxasooo000 | | oxaso00001 |
Aw 2 1@
E bl
@ ok 2: ram wp bus | 0xo0000000 | |oxoo003rr |
| | 3 :
1
8 5a 6 @ -
Load il il 1k Wishbone-bus §dd Di Generate RTL Compile RTL
| &2 Load Tile| fle name: | morik_soc | @ wishbone-bus paar | | can Diarem| | enerate | ompile RTL |

Makefile
> RAM
README
define_printf.n
image
image.ihex
image.lst
image.map
jtag_intfe.sh
link.Id
main.c
morik_soch
» morlix
program.sh
simple-printf

v

write_memory.sh

¥ /homefalireza/mywork/mpsoc_work/SOC/mort. [

| 7] regExp [Case

1
2 #include "morlk_soc.h”

3 // a simple delay function

4 void delay (unsigned int num){

wi

(num>0){

5
6
7 num
8 nop(); /f asm volatile ("nop”);
a1

10 return;|
11

sim_uart_putstring ("hello\n",8);
19 delay(100);

20 sim_uart_putstring("by!\n",4);
21 delay(200);

22 sim_uart_putstring ("\n",1);

23 sim_uart_putchar(i);

24 sim_uart_putstring ("\n",1);

25 }

26
27 return 0;

29
30
y psoc_work/toolchain/orl k-elffbin/orl k-elf-objdump -h -S image > image.Ist
mkdir -p ./RAM
¥ p: rk/toolchain/orl 1k-elf-objcopy -O ihex image image.ihex
¥ psoc_work/tool -f image.ihex -& 3FFF -0 RAM/ram0.mif
Loaded 6388 bytes between: 0000 to 1AD7
y p: ri/tool -i image.ihex -0 RAM/ram0.bin
Y psoc_work/tool 2str -f RAM/ram0.bin -h

™ *.0*.a
Compilation finished successfully.

»

| W Regenerate main.c|

@ Compile
J

Program the memory
| |

Figure 4.1: PT generator snapshot.

ProNoC homepage

June 23, 2022

22

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

CHAPTER 5

Processing Tile
Generator Hello
World Tutorial

Summary

System

Requirements:

Objectives:

Desired SoC

Schematic

This tutorial teaches how to develop a shared bus (Wishbone bus) based system on chip
(SoC) and a simple software implementation using ProNoC Processing Tile Genera-
tor. The desired SoC will be generated by connecting open-source IP cores on Altera
or Xilinx FPGA board.

You will need an Altera or Xilinx FPGA development board and a computer system
running Linux OS with:

1. Installed the ProNoC GUI software and its dependency packages.
2. Installed/Pre-built GNU toolchain of the Morlkx soft-core processor.

3. Installed Quarts I (Web-edition or full) compiler in case of having Altera FPGA
Board or Vivado Design Suite compiler in case of using Xilinx FPGA board.

For more information about the GNU toolchain installation please refer to the In-
stallation Manual for the Ubuntu. In case your FPGA board is not included in the
ProNoC FPGA board list please follow the instructions given in Adding a New Alter-
a/Xilinx FPGA Board to ProNoC, to add your board to the ProNoC library.

1. To design a Wishbone bus-based system-on-chip hardware architecture using
ProNoC Electronic Design Automation (EDA) software.

2. To develop a simple software application running on generated SoC.

3. To interact with on-board memory units using JTAG to wishbone interface mod-
ule.

Figure 5.1 illustrates the desired hardware architecture in this tutorial. This architecture
consists of:

1. Four LEDs connected to 4-bit general purpose output (GPO)

2. A 32-bit timer.

3. A morlkx processor (You can use any of other available processors).
4. A single port RAM.

5. AJTAG UART.

6. A Wishbone Bus.

7. A Clock source (not shown in Figure 5.1).

ProNoC homepage June 23, 2022 23

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

0000

Sy S1 S3
Wishbone Bus
So M1 Mg
Data’ Instruction

Figure 5.1: The schematic of desired SoC in this tutorial.

Application The aim of this tutorial is to design a simple SoC for running “Hello world” and blink-
Software ing LED” programs on the desired SoC.

Create New SoC Open mpsoc/perl_gui in terminal and run ProNoC GUI application:

USiIlg ProNoC ./ProNoC.pl

Processing Tile

It should open The GUI interface as illustrated in Figure 5.2.

ecoponec |
(¥ =

\d -~]
&Y Interface generator #- 1P generator | [Processing tile generator | 88 NoC based MPSoC generstor

Generator

Select file: A2 Browse 9 Description
Select module: & 1mport Ports Select Category: e
Interface name: Select soket type: | single connection = e
Please select the verilog file containig the interface
/2 Load Interface @ Generate

Figure 5.2: ProNoC GUI first page snapshot.

Then select the Processing Tile Generator tab:

ProNoC homepage June 23, 2022 24

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

= &

& - . —or | BB i B8 . based MPSO ator
& Interface generator # IP generator -] Processing tile generator 55 NoC based MPSoC generator

1P list

» Bus

P Communication
» DMA

P Display
> GFIO

» Interrupt
B NoC

P Other

P Processor
P> RAM

¥ Source

» Timer

clk source. This module provides the dk and reset (socket) interfaces for all other IPs. It also synchronizes the reset signal.

. X . .
& Load Tile| Tile name: @ Wishbone-bus addr T Diagram @ Generate RTL Software e Compile RTL

Figure 5.3: ProNoC New Processing Tile generator snapshot.

At the left Tree-View window you can see the list of all available IP categories.
Clicking on each category expand the associated list of IP cores. Each IP core can
be added to GUI by double clinking on its name. The added IP core has three setting
columns:

(a) In first column you can shift IP core box position up/down in GUI interface,
remove the IP core or set its parameters (if any).

(b) In the second column you can rename the IP core instance name.

(c) Third column shows all (Plug) interfaces of this module. here you can connect
each plug to one appropriate (socket) interface. (Each interface is categorized
into two types of plug and socket. See Interface Generator chapter for more in-
formation about interfaces. You can also export the interface as SoC’s input/out-
put (IO) ports here.

Now let start calling required IPs. We start with c1k_source:

ProNoC homepage June 23, 2022 25

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

Add clk source This module provides clk and reset interfaces for all other IPs. It also synchronizes the
reset signal.

1. Click on source category, then double-click on c1k_source.

2. Rename the c1k_source instance name as source. Leave the interfaces as 10.

(l o
] [1]
'Y Interface generator # IP generator s Processing tile generator 1] NoC based MPSoC generator

IP list clk_source Instance name clk 10 =

@Remwe

Bus
Communication
DMA

« D

Display

GPIO

Interrupt

NoC

Other

Processor

RAM

Source 1
dlk_source

P Timer

4 ¥ ¥ v ¥V V¥ VTV VYV

clk source. This module provides the clk and reset (socket) interfaces for all other IPs. It also synchronizes the reset signal.

/2 Load Tile| Tile name @ wishoone-bus addr | | By Disgrem |) Generate RTL Software | | @@ Compile RTL

Figure 5.4: Adding clock source.

ProNoC homepage June 23, 2022 26

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

Add Wishbone

Bus: 1. Click on Bus category and double-click on wishbone_bus.

2. In parameter setting set M (master interfaces number) as 2 and s (slave interfaces
number) as 4. These values are obtained from Figure 5.1. You can change them
later if you want to add/remove any IPs.

3. Rename the instance name as bus.

4. Connect the clock and source interfaces to c1k_source module.

060 Povcc |
s

~ L e -
*‘. Interface generator # IP generator .| Processing tile generator .;.;: NoC based MPSoC generator

IP list clk_source Instance name dk 0 =
¥ Bus

1 2 @ seting source reset | IO =
» Communication
> DMA - @ Remove
b Display
- GFIO) wishbone_bus Instance name dk source:clk =
P Interrupt - 14 i

Parameter setting for wishbone_b
> NoC 3 ||bus reset4 source:reset *
P Other
Parameter name Value Description
» Processor
> RAM M 2 = g
P Source
> Timer s 4 - e
wishbone bus | Dw 32 = e i
| A 2 31| @ r

= L] A

#— Load Tile| Tile ﬂ oK [E-bus addr | | g5 Diagram ﬁ; Generate RTL | ||F4| Seftware e Compile RTL

Figure 5.5: Adding Wishbone bus.

Add the rest of Add the rest of IP cores according to Table 5.1.

IPs: * Note that the parameters which are needed to be assigned differently for Altera

& Xilinx FPGA board are footnoted.

* Note that the socket interface has the following format:
connection-IP-instance-name : interface-name [interface number].
Hence, bus:wb_slave [0] means that the wb interface of cpo IP is connected to
the bus via zeroth wb interface. Note that you can optionally connect it to any of
other wb interfaces number as WB has a round-robin arbitration scheduler.

¢ In case of using other processor note that some softcore processor such as acMB
may need interrupt controller. Table 5.2 lists the IP core setting for this CPU.

* It is not necessarily to connect Wishbone bus Master/Slave interface according
to the given port number in Table 5.1and 5.2. Any arbitrary order will work.

ProNoC homepage June 23, 2022 27

http://www.codelooker.com/dfilec/8310labmicsoc/aeMB_datasheet.pdf
http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

Table 5.1: IP core list and setting for Morlkx SoC.

Category IP name Parameter Instance name Interface connection
Source clk_source FPGA_VENDOR — ”ALTERA”™! source clk - 10
reset — 10
M —- 2
Bus wishbone_bus S - 4 bus clk = sourceiclk
Dw — 32 reset — source:reset
Aw - 32
OPTION_DCACHE_SNOOP — ”NONE” clk - Soumfcuf
FEATURE_INSTRUCTIONCACHE — “ENABLED” reset = ;Oufce'rmt
Processor Morlkx FEATURE_DATACACHE — ”ENABLED” cpu is\‘;‘l’;’p : bﬂ:j:‘g";ﬁaster[o]
FEATURE_IMMU — ”ENABLED” dwb N bus:wbimaster[1
FEATURE _DMMU — 7ENABLED” T
enable — IO
Dw - 32
Aw - 14
BYTE_WR_EN — ”YES”
FPGA_VENDOR — ”ALTERA™!
JTAG_CONNECT — ”ALTERA_JTAG_WB’? clk — source:clk
RAM single_port_ram JTAG_INDEX — CORE_ID ram reset — source:reset
BURST_MODE — 7ENABLED” wb — bus:wb_slave[0]
MEM_CONTENT_ — “ram0”
FILE_NAME
INITIAL_EN — ”YES”
JTAG_CHAIN — 4
clk — source:clk
Timer timer PRESCALE_WIDTH - 8 timer reset — sourceireset
wb — bus:wb_slave[1]
intrp — cpu:interrupt_peripheral[0]
BUFF_Aw — 4
JTAG_INDEX — 126-CORE_ID clk — source:clk
Communication | ProNoC_jtag_uart | JTAG_.CHAIN — 3 uart reset — source:reset
JTAG_CONNECT — ”ALTERA_JTAG_WB”? wb — bus:wb_slave[2]
INCLUDE _SIM_PRINTF — SIMPLE_PRINTF
clk — source:clk
GPIO gpo PORT_WIDTH — 4 led reset — source:reset
wb — bus:wb_slave[3]
! — »XILINX” For Xilinx FPGA
2 "XILINX_JTAG_WB” For Xilinx FPGA
ProNoC homepage June 23, 2022 28

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

Table 5.2: IP core list and setting for aeMB SoC.

Category IP name Parameter Instance name Interface connection
Source clk_source FPGA_VENDOR — ”ALTERA™? source clk - 10
reset — 10
M - 2
Bus wishbone_bus S - 3 bus clk = sourceclk
Dw — 32 reset — source:reset
Aw — 32
clk — source:clk
reset — source:reset
Processor aeMB IS-I’II:ZIZ(;IEEEE : 8§388 aeMB iwb — bus:wb_master[0]
dwb — bus:wb_master[1]
enable — 10
Dw — 32
Aw — 14
BYTE_WR_EN — ”YES”
FPGA_VENDOR — ”ALTERA”3
JTAG_CONNECT — ”ALTERA_JTAG_WB™* clk — source:clk
RAM single_port_ram JTAG_INDEX — CORE_ID ram reset — source:reset
BURST_MODE — ”ENABLED” wb — bus:wb_slave[0]
MEM _CONTENT_ — “ram0”
FILE_ZNAME
INITIAL_EN — "YES”
JTAG_CHAIN — 4
clk — source:clk
Interrupt int_ctrl INT_NUM — 1 int_ctrl Feset - source.:.reset
interrupt. cpu — aeMB:interrupt_cpu
wb — bus:wb_slave[4]
clk — source:clk
Timer timer PRESCALE_WIDTH ~ 8 timer reset — sourceireset
wb — bus:wb_slave[l]
intrp — in_ctrl:int_periph[0]
BUFF_Aw — 4
JTAG_INDEX — 126-CORE_ID clk — source:clk
Communication | ProNoC_jtag_uart | JTAG_.CHAIN - 3 uart reset — source:reset
JTAG_CONNECT — “ALTERA_JTAG_WB” * wb — bus:wb_slave[2]
INCLUDE_SIM_PRINTF — SIMPLE_PRINTF
clk — source:clk
GPIO gpo PORT_WIDTH - 4 led reset — source:reset
wb — bus:wb_slave[3]

Check wishbone After adding all required IP cores, now you can check the auto-assigned Wishbone
bus addresses by clicking on @ Wishbone-bus addr button. Note that the assigned
addresses are also modifiable.

bus(es)
addresses:

3 — ”"XILINX” For Xilinx FPGA

4 ”XILINX_JTAG_WB” For Xilinx FPGA

ProNoC homepage

June 23, 2022

29

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

e Wishbone slave port address sektting

Instance name Interface name Bus name Base address End address Size (Bytes)

0: led wb bus 0x91000000 0x9100001f 32 n

1: uart wb_slave bus 0x9000001F 32 6

2: ram wh bus 0x00000000 0xD000fF sk (B

3: timer wb bus 0x96000000 0x9600001F 32 ﬂ
W Revert @ ox

Figure 5.6: Wishbone bus addresses of the tutorial SoC.

These addresses are automatically set based on IP cores library setting, inserted pa-
rameters and numbers of repeating same IP cores in the system. However, you are free
to adjust them to the new values as while as there is no conflict in inserted addresses.

View SoC Click on the ”:i Diagram button to observe the SoC functional block diagram.
functional block
diagram: 0 Processing Tile functional block diagram

@ & | removeunconnected interfaces @ Remove Clk Interfaces [Remove Reset Interfaces | &

iwb

interrupt_peripheral_0 | cpu
/ dwb
intrp
timer led | wb

wb e wh_slave_0
bus
wb_slave_ 1
source wb_slave_2
/ W b75 l avc73
whb_slave

ram | wb

wb_master_0

7

whb_master_1

uart

Figure 5.7: The tutorial SoC diagram.

CLK setting: In case that the SoC is desired to be the top-level module in FPGA implementation
(e.g. in this example), you may need to generate the SoC clock signal from the FPGA
incoming reference clock.

To do that click on the £ cLk setting button. It will open a new window where
you can connect your SoC top module to some clk sources. As an example Xilinx
Kintex-7 FPGA KC705 has a differential reference clock. The differential FPGA input

ProNoC homepage June 23, 2022 30

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

clocks are first needed to be converted into a single clk using IBUFGDS module. The
output of IBUFGDS (diff:clk) is 200 MHz which is too high for the desired SoC to
meet the timing constraints. This clock can be divided by half using a PLL. To do so
set the PLL multiplication (cLxFBoUT_MULT) and division factor (CLKOUTO_DEVIDE) to
9 and 18, respectively;

CLK setting .

IP list xilinx_IBUFGDS Instance name clk_p 10 =
¥ Source
clk_source 23| | setting diff ckn |10 =
xilinx_IBUFGDS
xilinx_pll z @ Remove
xilinx_pll Instance name clk_in diff:clk -
23| | (@ setting pll reset_in |10 =
X @ Remove
TOP Instance name clk0 pll:clk[0] =
22| | @ setting TOP resetd | pllreset =
A @ Remove
o] —:—i Diagram ﬂ OK

Figure 5.8: Example of clock setting for Xilinx Kintex-7 FPGA KC705 Evaluation Kit.

* Note that in case you directly want to connect the FPGA reference clock to the
SoC you can omit this configuration. The TOP module clk and reset signals left
as output by default.

* If the processing tile is planed to be used in an internal module inside an MPSoC,
the clock setting can be ignored.

Generate SoC

RTL Code:
1. Set Tile name as tutorial.

2. Press @Generate RTL button.

ProNoC homepage June 23, 2022 31

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

\J ' - i BB ¢ pased MPSO '
&¥ Interface generator | 4 17 generator | [Processing tile generator f5 6 VoC based MPSoC generator
IP list wb bus:wb_slave[1]
P Bus
b G " jtag_uart Instance name ck source:clk.
ommunication
>
DHA = 0 Setting uart interrupt_peripheral NC
P Display e S — | —
> GPIO
reset source: reset
> Interrupt
b NoC 255 Processing Tile "tutorial” has been created
successfully at fhome/alireza/mywork/mpsoc_work/ |Wb_slave bus:wb_slave[2]
P Other SOC/tutorial/.
P Processor
clk source:clk
> RAM
> Source oK J
b reset source: reset
imer
x> @ Remove wb bus:whb_slave[3]
Single port ram with wishbone bus interface.
e Load Tile Tile name: |tutorial @ Wishbone-bus addr ":i Diagram @ Generate RTL Software e Compile RTL

Figure 5.9: Generating the tutorial SoC.

If the generation is successful, you must have two new folders in your mpsoc/soc/
tutorial path:

* sw: This folder contains the required software files including the programming
header files, in-system memory editing files and Makefile.

— tutorial.h: The SoC header file containing peripheral device functions’
deceleration, memory-mapped register address definition, definitions of
data types, and C preprocessor commands (some IPs may have additional
header files).

— tutorial.c: Contains all peripheral device’s functions definition.

— reapMe: This file contains SoC parameters, IP connection and wishbone
bus addresses. This file also explain how to work with stag_wb IP core.

— program.sh: A sample bash file that can be used for programming the SoC
RAMs at run time using JTAG interface.
* src_verilog: contains three Verilog files and a folder:
— tutorial.v: the generated SoC RTL code. This file contains all IPs in-
stances and connections.

— tutorial_top.v: this file contains the tutorial SoC module instance con-
nected to a JTAG controllers and clock convertor modules.

— Top.v: Contains the highest top module where the SoC ports are connected
to the target FPGA pins.

— 1ib: This folder contains all IP cores HDL files.

ProNoC homepage June 23, 2022 32

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

Software

Development
1. Click on the

Software button to open the software development window.

2. In the left Tree-View window, you can select any file in project sw directory to
open and then edit it. Click on tutorial.h file to see the file contents. This file
contains all generated SoC functions and WB addresses.

0 fhome/alireza/mywork/mpsoc_work/SOC/tutorial/sw/tutorial.h - Otec
¥ fhome/alirezafmywork/1 | € (] RegExp [] Case
Makefile 1 #ifndef TUTORIAL_SYSTEM_H s
README 2 #define TUTORIAL_SYSTEM_H
‘ : 3
define_printf.h 4 j* source % & bus:wh_slave[1]
link.Id 5 /% led ¥/ =
main.c 6 #defineled_WRITE_REG (*((volatile unsigned int *) (0X91000000+4)))
- 7 #define led_WRITE(value) led_WRITE_REG=value source: dk
> morlke 8|
- *
program.sh 9 /* uart “/ 2 k. e
10 #incude "define_printf.n" // This file must be available in processor folder which define the prii [
Silady 11
2 tutorial.h 12 #define uart DATA _REG (*((volatile unsigned int *) (0X90000000)))
13 #define uart_CONTROL_REG (*((volatile unsigned int *) (0X90000000+4))) source: reset
= i 14 #define uart_CONTROL_WSPACE_MSK OxFFFFO000
15 #define uart_DATA_RVALID_MSK Ox00008000 e
16 #define uart_DATA_DATA_MSK 0x00DDDOFF i
17
LB [T 1000011+ basic function For Stag_uart®/// /11 HTTTTEEEE AR EETEEE T R

19 void jtag_putchar(char ch);
20 char jtag_getchar(void);

21 void outbyte(char c){jtag_putchar(c};} /fcalled in printf(};

23 char inbyte(}{return jtag_getchar(); } source: reset

23

24 void jtag_putchar(char ch}{ //print one char from jtag_uart R —_—
) I_ Software le Compile RTL
- Regenerate main.c @ Compile # Program the memory

Figure 5.10: The software edit window snapshot.

3. Now click on main.c file. Replace the contents of this file with the following
C code. This code writes the “Hello worlds!” on JTAG UART port once, and
then controls the LEDs using the timer interrupt service routine. Each time an
interrupt happens the LED which is on is turned off and the neighboring one
is turned on. The timer asserts an interrupt in every 500 clock cycles. The
interrupt time is deliberately chosen too small to speed up the simulation. In
FPGA implementation which comes later we will increase the interrupt time to
observe the blinking LEDs on the target FPGA board.

ProNoC homepage June 23, 2022 33

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

#include "tutorial.h"

void delay (unsigned int num) {

while (num>0) {

num--;
nop () ;

}

return;

char i=1;
void timer_isr (void) {

ix=2;

if ((i&0xF)==0) i=1;
led_WRITE (i) ;

timer_ TCSR=timer_TCSR;
return;

int main () {
printf ("hello world!\n");
delay (500);

general_int_init ();
general_int_add(timer_INT_PIN, timer_isr,
general_int_enable (timer_ INT_PIN);
general_cpu_int_en();

timer_int_init (500);
while (1) {

delay (500) ;
}

return 0;

ProNoC homepage June 23, 2022

34

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

4. Now press the @ compile button. This will compile the C code using Morlkx
GNU toolchain. If everything runs ok, you must see “compilation finished suc-
cessfully” message as shown in Figure 5.11. Otherwise, check the error message
to fix your code and press the compile button again. If every thing runs success-
fully you must have ram0.bin, ram0.hex, and ram0.mif files in your sw/Ram
directory.

[home falireza/work fgit/hca_git/mpsoc_work/SOC/mor1k_tile/sw/main.c - Otec

¥ /homefalirezajwork/t " (ISl]

Makefile Q [] RegExp [Case
3 MM é B ST T R L S) 7
README 9 return;
SOURCE_LIB 10 }
h 11
Latnes 12 char i=1;
crt.0 13 void timer_isr(veid}{
exceptions.o i; :’j\igte your interrupt code here
file_ist 16 ifl(i&0xF)==0) i=1:
image 17 led WRITE(i); _
. . 18 timer_TCSR=timer_TCSR; jfack int
AL 2 19 return;
image.lst 20}
image.map 2t
. 2|
int.o 23 int main(){
liborlib.a 24 printf("hello world'\n");
) 25 delay(500);
link.Id 26 general_int_init();
linkvar.ld 27 general_int_add(timer_INT_PIN, timer _isr, 0);
e 28 general_int_enable(timer_INT_PIN);
29 general_cpu_int_en();
mmu.o 30 timer_int_init(500);
morlk _tile.c 31 W;"ilh(('l}[}
32 delay(500);
morlk_tile.h 3}
morlk_tile.o » |34 return 0;
N |35}

JITGTITE dIT E£d/ WOrKgILiLd_YIgTigoue WUNKLUUILTTaniyur LREENTOINur LRSCIFULLORY =W IneR gy e mdy e inea
fhome/alirezajwork/git/hca_git/mpsoc_work/toolchain/bin/ihex2bin -i image.ihex -o RAM/ram0.bin
fhome/alireza/work/git/hca_git/mpsec_workftoelchain/bin/bin2mif -f RAM/ram0.bin -0 RAM{ram0.mif -w 32
fhome/alireza/work/git/hca_git/mpsoc_work/toolchain/bin/bin2mem -f RAM/ram0.bin -0 RAM/ram0.mem -w 32
fhomeyalireza/work/git/hca_git/mpsec_workftoelchain/bin/bin2str -f RAM/ram0.bin -h

rm*.o*a

Compilation finished successfully. 4
a 4

0Required BRAMs' size 2 Regenerate main.c @ LD Linker |@ Compile || & # Program the memory

Figure 5.11: Compile the software code.

(a) In case you got region (ram or rom) overflowed such as the one shown in

ProNoC homepage June 23, 2022 35

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

Figure 5.12, you need to configure the linker (LD) size variables by clicking
onthe €) 1D linker button.

/homefalirezajwork/git/hca_git/mpsoc_work/toolchainforlk-elfibinjorlk-elfld: image section *.stack' will not fit in region “ram’
/homefalirezajwork/git/hca_git/mpsoc_work/toolchainforlk-elffbinjorlk-elfld: region ‘ram' overflowed by 472 bytes
make: *** [image] Error 1

Compilation failed.

Figure 5.12: LD Linker error example.

This opens a new window shown in Figure 5.13 where you can redefine
the ROM/RAM regions in the executable output file. This file contains the
following sections:

* .vectors: contains exceptions’ handling addresses. This section is
mapped to ROM region.

e .text: holds instructions and is mapped to ROM region.

* .rodata: contains read only data (constants) and is mapped to ROM
region.

e .data: hols initialized writable data. As the data in this sections is
writable its value may change during execution time. So after resetting
the CPU data should get back its intile value again. To do that, this
section has two addresses: The actual section is loaded in ROM on
load address (LMA) address. The second address is reserved in RAM
which is called virtual address (VMA) regions. At the boot time the
entire .data section is copied from ROM to RAM. And the executable
program only changes the values in RAM section.

* .bss: contains uninitialized data and is mapped to RAM.

* .stack: contains stack and is mapped in RAM.

As a result the RAM and ROM area size should be defined in such a way
that the mentioned sections can be fitted in them.

By default, 75% of memory is dedicated for ROM area and the rest of
25% is reserved for RAM. Depending on which area is overflowed you can
change these ratios here and retry compilation process. In case both areas
are overflowed, you need to increase your memory size. Don’t forget that
you also need to increase the memory width parameter in memory IP in
processing tile generator window later as well (i.e: RAMs’ Aw parameter

in

Table 5.1).

BRAM info (-]

Tile Memory Addr
Width

o (@ Iz

32 KB

ROM/(ROM-+RAM) ROM index addr (hex) RAM index addr (hex)
(%) Beginning End Size Beginning End Size
75.00 2 pul | 00000000 % || oooocooo $ | a8ke|oo00c000 Z || ooo10000 2 [16kB
® ox

Figure 5.13: LD Linker configuration window snapshot.

ProNoC homepage June 23, 2022 36

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

Simulate the
generated RTL
code using
Modelsim
software

If you have installed Modelsim software on your system, you can simulate your SoC
working with your developed software. To do this, follow these instructions:

1. Press the e Compile RTL button in right down corner. This should open “’select
compiler window” as shown in Figure 5.14.

2. Select Modelsim as compiler tool.
3. Enter the path to your installed Modelsim bin directory.

4. Press the wp Next button.

B Step 1: Select Compiler QuartusIl .

Verilator

Compiler tool 21t

Modelsim bin: g I;'homefalirezafaltemfrnodelteI,...'-

3

4 B Next

Figure 5.14: Select Modelsim as simulator.

ProNoC homepage June 23, 2022 37

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

5. Now you must have the testbech.v opened in text editor window as shown in
Figure 5.15. This is the minimum testbench file for running the simulation of the
generated SoC in Modelsim software. It has the SoC instance module connected
to the clock and reset signals. You can edit this file as you wish.

6. Press the {g run button to run the simulation in Modelsim software.

/home/alireza/mywork/mpsoc_work/SOC/tutorial/src_verilog/testbench. - Otec

P /home/alireza/mywork/m | Q 7] RegExp [] Case

17 ** Public License for more details.

18 +*

19 ** You should have received a copy of the GNU Lesser General Public

20 ** License along with ProNoC. If not, see <http: **www.gnu.org/licenses/>.
21
22 “timescale 1ns/1ps

23 module testbench;

24 /f tutorial.v 10 definition

25 wire [4 -1 0] led_port_o;
26 reg source_dk_in;

27 reg cpu_cpu_en;

28 reg source_reset_in;

29
30 tutorial uut

31 .led_port_o{led_port o),

32 .source_clk_in(source_clk_in),
33 .cpu_cpu_en(cpu_cpu_en),

34 .source_reset_in(source_reset_in)
35)

36

37 /fclock defination
38 initial begin

39 forever begin

40 #5 source_clk_in=0;

41 #5 source_clk_in=1;

42 end

43 end|

44

45 initial begin

46 // reset tutorial module at the start up
47 source_reset_in=1;

48 cpu_cpu_en=1;

49 // deasert the reset after 200 ns

50 #200

51 source_reset_in=0;

52 // write your testbench here

creat Modelsim dir in /home/alireza/mywork/mpsoc_work/SOC/tutorial
Get the list of all verilog files in src_verilog folder
Create run.tdl file

&= Previous . Regenerate testbench.v @

Figure 5.15: testbech.v file snapshot.

7. Figure 5.16 shows the Modelsim simulation output snapshot. You must see the
“hello world!” in the Modelsim terminal. The output LEDs also must be seen as
cyclic shift to the left of a one-hot code in the Signal Waveform Window.

ProNoC homepage June 23, 2022 38

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

Simulate the
generated RTL
code using
Verilator
software

ModelSim SE-64 6.5¢

Eile Edit View Compile Simulate Add Wave Tools Layout Window

Help

|

D-2H@ sRBO A B e #3423

| @4«

&) sim s

T b || LW By

100 ps

JEHEBE BPABRONY | RQaar
[war

El

¥ Instance = [xnams [

E

||

|

=
H

S8R Looufmne vl || L LA L F f > ®

¥ hello wocld!

¥ Break in Statemeat instouctioncache ctel at /homefalirera/mywork/mpsoc_wock/SOC/tutorial/sec_vecilog/lib/maclks_ctcl_cappuccico. Line 1345
Simulation Brealpoint: Areak in Statemeat [astructiomcache_ctzl at /home/alicer/mywoctk/mpsoc_wock/SOC/tuterial/sce_verilog/Lib/mozlkx_ctel_cappuccino.v line 1143

|Mow: 1,152,690 ns Detta: 4 im 1 ka0/mor kx_c 1ke_opuimor ke _ctrl_c 345

Figure 5.16: Modelsim output snapshot.

If you have installed Verilator software on your system, you can simulate your SoC
when it is running your developed software. To do this follow these instructions:

1. Press the @ compile RTL button in right down corner. This should open "select
compiler window” as shown in Figure 5.17. Select Verilator as compiler tool then
press wp Next.

X Step 1: Select Compiler

Quartusll

Modelsim

=y Next

Figure 5.17: Select Verilator compiler.

ProNoC homepage June 23, 2022 39

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

2. The Verilator Model of your SoC should be generated now. If the model is
generated successfully, you must see “’Veriator model has been generated suc-
cessfully!” in the Textview window as shown in Figure 5.18.

AT GO IO ¥ TR0 A _CE G PO 0 v - LU0+ Ty S0 aSSIg e TCS (= T 0N~ CIUCRed {10 T10p T 1@eo - D10CR; SOy est oToaeiimy
assignments (=).

%Warning-COMBDLY: morlkx_ctd_cappuccino.v: 1067: Delayed assignments (<=) in non-clocked (non flop or latch) block; suggest blocking
assignments (=).

OWarming-COMBDLY: morlkx_ctrl_cappuccin.v:1070: Delayed assignments (<=} in non-clocked (non flop or latch) block; suggest blocking
assignments (=).

S%Waming-UNOPTFLAT: merlkx_icache.v:162: Signal unoptimizable: Feedback to dock or circular legic
V.CpU.morLkx0.morLkx_Cpu.cappucting. morlio:_cpu->morlks_fetch_cappuccino.icache_gen.morlkx_icache.next_iru_history
%Wamning-UNOPTFLAT: Example path: morlkx_icache.w: 162! v.cpu.morlkx0.morlkx_cpu.cappuccino.morlky_cpu-

>morl kx_fetch_cappuctino.icache_gen.morl kx_icache.next_Iru_history

O9%Waming-UNOPTFLAT: Example path: morlkx_icache.v:324: ALWAYS

O%Waming-UNOPTFLAT: Example path: morlkx_icache.v:157: v.cpu.morlkx.morl kx_cpu.cappuecino.mordkx_cpu-
>mortloc_fetch_cappuccing.icache_gen.morlkx_icache.access

9%Waming-UNOPTFLAT: Example path: morlkx_cache Inu.v:i173: ALWAYS

SWaming-UNOPTFLAT: Example path: morlkx_icache.v:162; v.cpu.morlkxD.morlkx_cpu.cappuccino.marlkx_cpu-
>morlix_fetch_cappuccino.icache_gen.morLkx_icache.next_Iru_history

9Warming-UNOPTFLAT: morlko_dcache.v:181: Signal unoptimizable: Feedback to dock or circular logic:

v.cpu. mor1 kxD.mord kx_cpu.cappuccino.merl kx_cpu->moriks_lsu_cappuccino.dcache_gen.morl kx_deache.next_lru_history
O%Waming-UNOPTFLAT: Example path: morlkx_dcache.v:181: v.cpu.morlkxd.morlkx_cpu.cappuccing. mord kx_cpu-
>morlioc_Isu_cappuccino.deache_gen.morlkx_dcache.next_lnu_history

95Waming-UNOPTFLAT: Example path: morlkx_dcache.v:461: ALWAYS

9Waming-UNOPTFLAT: Example path: morlkx_dcache.v:176: v.CpU.MOrLkx0.morlkx_cpu.cappuccing. morlkx_cpu-
>morl kx_lsu_cappuccino.deache_gen.morlkx_dcache.access

O9%Waming-UNOPTFLAT: Example path: morlkx_cache_lru.v:173: ALWAYS

O%Waming-UNOPTFLAT: Example path: morlkx_dcache.v:181: v.cpu.morlkxd.morlkx_cpu.cappuccing. mord kx_cpu-
>marlkx_Isu_cappuccino.deache_gen.marlkx_dcache.next_Inu_history

SErar: Exiting due to 126 waming(s)

SErrar: Command Failed /usrbin/verilator_bin --cc tutorial.w --profile-cfuncs --prefix Vtop -03 -CFLAGS -03

Veriator model has been generated successfully]

&= Previous W Next

Figure 5.18: Verilator model generation snapshot.

3. Press Next.

4. Now you must have the testbech.c opened in software code edit window as
shown in Figure 5.19. This is the minimum testbench file for running the gen-
erated SoC. It has the SoC instance module connected to the clock and reset
signals. You can edit this file as you wish.

ProNoC homepage June 23, 2022 40

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

x J/home falireza/mywork/mpsoc_work/SOC/tutorial/verilator/testbench.cpp - Otec

P /home/alireza/ Q 7] RegExp [| Case

** File: testbench.cpp
*

** Copyright (C) 2014-2018 Alireza Monemi
*

** This file is part of ProNoC 1.8.0
*

[-- IOV T I SR
#

9 ** ProNoC (stands for Prototype Network-on-chip) is free software:
10 **you can redistribute it and/or modify it under the terms of the GNU
11 ** Lesser General Public License as published by the Free Software Foundation,
12 *=*either version 2 of the License, or (at your option) any later version.

14 ** ProNoC is distributed in the hope that it will be useful, but WITHOUT

15 ** ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
16 ** or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General
17 ** Public License for more details.

19 ** You should have received a copy of the GNU Lesser General Public
20 ** License along with ProNoC. If not, see <http: * *www.gnu.org/licenses/>.

23 #indude <stdlib.hz=
24 #indude <stdio.h>

25 #indude <unistd.h=
26 #incdude <string.h>

27 #indude <verilated.h> /{ Defines common routines
28 #indude "Vtop.h" [From Verilating "tutorial.v" file
29
30 Vtop *top;
31 /*
32 IO type port_size port_name
33 output led_PORT_WIDTH-1 : 0 top->led_port_o
%= Previous 2 Regenerate Testbench.cpp @ Compile u Run

Figure 5.19: Verilator model testbench edit snapshot.

5. We would like to monitor the value of LEDs when running the simulation model.
To do this, add the following lines to the testbech.c file:

=43 int led=0;]
44 int main{int argc, char** argv) {
45 Verilated: :commandArgs{argc, argv); // Remember args
46 top = new Viop;
47

ProNoC homepage June 23, 2022 41

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

66 if ((main_time & 1) == 0) {

67 top->source_clk_in=1;

68 // Toggle clock

] // you can change the inputs and read the cutputs here in case they are
70 // captured at posedge of clock

71

72

73 if{led!=top-=led_port_o){
mPp74 led = top-=led_port_o ;
w75 printf("%X ",top->led_port_o);
w75 getchar();

=77}
78
79
80 Hif
81 else

6. Press Compile button to generate the executable binary file. If the file is gener-
ated successfully you must see the "compilation finished successfully” message
as shown in Figure 5.20.

il
*RETCODE == 0

ar: creating Vtop__ ALL.a

Compilation finished successfully.

6 7

&= Previous 2 Regenerate Testbench.cpp |@ Compile | | W Run

Figure 5.20: Verilator compilation successful snapshot.

7. Now press the Run button. In the successful simulation you must observe the
“Hello world!” sentence in terminal and each time you press the Enter button
you must observe the printed value of LED output port change to one of ’1,2,4,8”
numbers in order as show in Figure 5.21.

ProNoC homepage June 23, 2022 42

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

Compile the
generated RTL
code using
Quartus
II/Vivado
software

0 o RO OO e O 5
oo

1
‘

[

Figure 5.21: Verilator simulation results snapshot.

If you have installed Quartus II/Vivado software on your system and you have an Alter-
a/Xilinx FPGA development board, you can prototype your SoC on your target FPGA
and change its software code at runtime using following instructions:

1. Press @ Compile RTL button in right down corner. This should open “’select
compiler window” as shown in Figure 5.22. Select QuartuslI or Vivado as the
compiler tool depend on your FPGA vendor.

“) Step 1: Selectc

DEOD_nano
s | QuartusIl & I

DE1_SoC

Targeted Board: g DE2 115

Quartus bin: () ||/nomesalirezasinteiFPGa_iite]|

2

-y Next

Figure 5.22: Select QuartuslI as compiler.

2. Enter the path to your installed QuartusIl/Vivado bin directory.

ProNoC homepage June 23, 2022 43

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

3. In Targeted Board search for your FPGA board name. If the board exist select
it, press the w=p Next button and continue from step 5. Otherwise, select add

New Board.

4. Press the wp Next button. If you selected add New Board, follow instructions
in Add new FPGA board to ProNoC to add your new board to ProNoC library.

5. Assign your SoC pins to your FPGA boards pins as shown in Figure 5.23.

(] Step 2: Pin Assignment

Port Direction Port Range Port name Assigment Type Board Port name Board Port Range

input Cpu_cpu_en Direct ~ *JCC =
output [4-1:0] led_port_o LED ~ 3 2|10 =
input source_dk_in Direct - FPGA_CLK1 50 =

input source_reset_in Negate(~) - KEY - o =

&= Previous =y Next
Figure 5.23: SoC pin assignment.

Here, we have a DE10_nano FPGA board which we have used its FPGA_CLK1_50,
KEY[0], and LED[3:0] ports. The enable pin is connected to logic 1, led_port
[3:0] to LED[3:0], the clk signal to FPGA_CLK1_50 and reset to negate KEY[O].
In DE10_nano FPGA board the KEY[1:0] are push-button switches and are
active-high. Hence, to use them as active-high reset sources we have to negate
their value.

6. Press the mp Next button.

7. Press the @ compile button. Then wait for QuartusIl compilation tasks to
complete.

ProNoC homepage June 23, 2022 44

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

J/home/alireza/mywork/mpsoc_work/SOC/tutorial/src_verilog/fTopv - Otec

¥ /home/alireza/mywork/mpsoc_werk | RegExp [| Case
Top.v ==
> lib
testbench.v 22
23 module Top (
ey, 24 FPGA_CLK1 50,
tutorial_top.v 25 KEY,
26 LED
53

xterm -& sh -c '/home/alireza/intelFPGA_lite/17.1/quartus/binfquartus_fit --64bit tutorial --re:

od "/home/alirez:

xterm - sh - '/home/alireza/intelFPGA_lite/17. 1/quartus/bin/quartus_asm --64bit tutorial -

cd "/home/alirez;

28 input FPGA_CLK1_50;
29 input [1 : 0] KEY;
30 output [7:0] LED;

32

33 tutorial_top uut(

34 .cpu_cpu_en(1'b1),

35 .led_port_o{ LED [3 : 0]),
36 .source_dk_in{ FPGA_CLK1_50),
37 .source_reset_in(~ KEY [0])
38)

39

40

41 endmodule

42

T Ty oy sy

a/mywork/mpsoc_work/SOC/ tutorial/”

a/mywork/mpsoc_work/SOC/tutorial/”

xterm -& sh -c '/home/alireza/intelFPGA_lite/17.1/quartus/bin/quartus_sta --64bit tutorial;echo $? > status'
Quartus compilation is done successfully in /homealireza/mywork/ mpsoc_work/ SOC/ tutorial!

10.

—— TE—— 7 - [—

Figure 5.24: Quartusll compilation snapshot.

If Quartus compilation is finished successfully, power on your FPGA board and
connect it to your PC then press £¥ program the Board button to program your
FPGA board using the generated sof file.

. Press ctr1+u to run the UART terminal GUI. Follow instructions on UART ter-

minal GUI chapter to monitor the UART output.

In case you have Altera FPGA and you have preferred to used altera_jatag_uart
instead of ProNoC_JTAG_UART, open Terminal and type $QUARTUS_BIN/nios2-
terminal. You must be able to observe the Hello world!” Sentence in the ter-
minal as shown in Figure 5.25.

alireza@alireza: ~

alireza@alireza:~$ SQUARTUS_BIN/nios2-terminal
i terminal: connected to hardware target using JTAG UART on cable
terminal: "DE-SoC [1-3]", device 2, instance @

terminal: (Use the IDE stop button or Ctrl-C to terminate)

hello world!

Figure 5.25: nios2-terminal output snapshot.

As we mentioned in step 3, the interrupt time is too short to observe the LEDs
blinking. To change the interrupt time click on Software button and change
the timer interrupt time from 500 to 5000000. Then press the @ compile
button. By clicking on £ program the Board button you can reprogram your

ProNoC homepage June 23, 2022 45

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

SoC memory contents at run time. You should be able to observe the blinking
LEDs now.

fhome/: za/mywork/mpsoc_work/SOC/tutorial/sw/ma
¥ /homefalireza/mywark/mpsoc_worll | &y [Regexp [case
Makefile I5 M((&OxF)==0) 1=1;

16 led_WRITE(();
N X
RAM 17 timer TCSR=timer_TCSR; //ack int
README 18 return;

define_printf.h L

20
image 21 Int main(){
image.ihex 22 printf(’hello world!\n"
) 23 delay(500);
image.Ist 24 int_init (5000);
image.map 25 int_init();

26 //assume hw interrupt pin is connected to cpu intrrupt pin 0
27 int_add(0, timer_isr, 0);

link.1d 28 // Enable this interrupt

29 int_enable(0);

jtag_intfc.sh

main.c
30 cpu_enable_user_interrupts();
P morlkx mmilpr31 timer_int_initfi5000000);
program.sh 32 while(1){
33 delay(500);
P simple-printf 34 3
tutorial.h 35 return0;
36 3
e tiite memeorv,sh =
write is verified
index num=127
Initial Vitag for DE-SoC & @2+
send 1:1,D0:2:0,1:0 to jtag
*RETCODE ==
Memory is programed successfully!
> Regenerate main.c @ Compile {f Program the memory

Figure 5.26: Increase timer interrupt time.

ProNoC homepage June 23, 2022 46

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

CHAPTER 6

Add Custom IP to
Processing Tile
Generator Tutorial

Summary

System

Requirements:

Objectives:

Greatest
Common
Divisor (GCD)
Algorithm

This tutorial teaches how to add a custom intellectual property (IP) core to ProNoC
Processing Tile Generator using IP Generator. This tutorial uses a custom Verilog
module for calculating the greatest common divisor (GCD) as an example hardware
accelerator to be added to ProNoC IP library. The desired system is a Wishbone bus
based SoC that is enhanced with GCD accelerator. This SoC will be generated by
connecting open-source IP cores on Altera FPGA board.

You will need an Altera FPGA development board having USB blaster I or II and a
computer system running Linux OS with:

1. Installed the ProNoC GUI software and its dependency packages.
2. Installed/Pre-built GNU toolchain of the aeMB soft-core processor.

3. Installed Quarts IT (Web-edition or full) compiler.

For more information about the GNU toolchain installation please refer to the In-
stallation Manual for the Ubuntu. In case your FPGA board is not included in ProNoC
FPGA board list please follow the instruction given in Adding a New Altera FPGA
Board to ProNoC, to add your board to ProNoC.

1. To develop a Wishbone bus based custom Hardware Accelerator (HA) IP core.

2. To extend ProNoC IP core library with a new IP core and its required software
header file.

The Greatest Common Divisor (GCD) of two integers p and ¢, is the largest integer
that divides both p and q. GCD can be obtained using Euclidean algorithm as follow:

Data: (p, q): A pair of 8-bit binary positive numbers.
Result: gcd: greatest common divisor
INITIALIZE;
while p # g do
if p > g then
| P=p—¢
end
else if p < g then
l 9=q—p;
end
else
| ged=p;
end

end

Algorithm 1: Greatest Common Divisor algorithm.

ProNoC homepage June 23, 2022 47

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

GCD RTL code

The GCD flow chart:

T

Figure 6.1: GCD flow chart.

The GCD Verilog RTL code is as follows:

Listing 6.1: ged.v

[%k kK k kK ok Kok kok ok ok ok ok ok ok ok ok ok ok ok ok

module gcd #(
parameter GCDw=32

) (clk, reset, enable, inl, in2, done, gcd);
input clk, reset;
input [GCDw-1 : 0] inl, in2;
output [GCDw-1 : 0] gcd;
input enable;
output done;
wire 1dG, 1dP, 1dQ, selP0O, selQ0O, selP, selQ;
wire AegB, AltBj;

gcd_cu CU(
.clk (clk),
.reset (reset),
.AegB (AegB),
.AltB (AltB),
.enable (enable),

.1dG (1dg),
.1dp (1dp),
.1dQ (1dQ),

.selP0 (selPO),

ProNoC homepage June 23, 2022

48

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

.selQ0

.selP

.selQ

.done
)i

(selQ0),
(selP),
(selQ),
(done)

gcd_dpu # (

.GCDw (GCDw)
) DPU (

.clk (clk),

.reset (reset),
(inl),
(in2),
.ged (ged),
.AegB (AegB),
.AltB (AltB),
.1dG (1dG),
.1dp (1dP),
.1do (1dQ),
selP0 (selPO),
.selQ0 (selQO),
.selP (selP),
.selQ (selQ)
) i

.inl
.in2

endmodule

module gcd_cu (clk,
AltB, done,
input clk, reset;
input AegB, AltB,
output 1dG, 1dP,

reg 1dG, 1dp, 1dQ,

parameter SO0 =
reg [1:0] y;

always @
if (reset

else begin

case (y)

S0: begin

else y

end

Si:

== 1)

begin
else y

reset,
enable) ;

2'b00,

if
<=
if
<=

1dG, 1dP, 1dQ, selP0O, selQ0, selP, selQ,

enable;
1dQ,
selPO,

selP0, selQO,
selQ0, selpP,

selP, selQ, done;
selQ, done;

S1 = 2'b01, S2 = 2'b10;

(posedge reset or posedge clk) begin
y <= SO0;

(enable == 1)
S0p

y <= S1;

(AegB == 1)
Sip

y <= S2;

AeqgB,

ProNoC homepage

June 23, 2022

49

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

end

S2: begin if (enable == 0) y <= S0;
else y <= S52;
end
default: y <= S0;
endcase
end
end

always @ (y or enable or AegB or AltB) begin
1dG = 1'b0; 1dP = 1'b0; 1dQ = 1'bO;
selP0 = 1'b0;
selQ0 = 1'b0;
selP = 1'b0;
selQ = 1'b0;
done = 1'b0;

case (y)
S0: begin
done = 1'bl;
if (enable == 1l)begin
selP0 = 1; 1dP = 1; selQ0 = 1; 1dQ = 1; done = 0;
end
end
Sl: begin
if (AegB == 1) begin
1dG = 1;
done = 1;
end
else if (AltB == 1) begin
1dQ = 1;
end

else begin
1dP = 1; selP = 1; selQ = 1;

end

end

S2: begin
1dG = 1;
done = 1;

end

default: ;

endcase

end

endmodule

module gcd_dpu # (
parameter GCDw=32

) (clk, reset, inl, in2, gcd, 1dG, 1dP, 1dQ, selP0, selQ0O, selP, selQ,

ProNoC homepage June 23, 2022

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

GCD
Simulation

AegB, AltB);
input clk, reset;
input [GCDw-1:0] inl, in2;
output [GCDw-1:0] gcd;
input 1dG, 1dP, 1dQ, selP0O, selQ0, selP, selQ;
output AegB, AltB;
reg [GCDw-1:0] reg_P, reg_Q;
wire [GCDw-1:0] wire_ALU;
reg [GCDw-1:0] gcd;
wire AegB, AltB;

always @ (posedge clk or posedge reset)begin

if (reset == 1) reg_P <= 0;
else begin
if (1dP == 1)begin
if (selP0==1) reg_P <= inl;
else reg P <= wire_ALU;
end
end
end

always @ (posedge clk or posedge reset) begin

if (reset == 1) reg_Q <= 0;
else begin
if (1dQ == 1)begin
if (selQ0==1) reg_Q <= in2;
else reg_Q <= wire_ALU;
end
end
end

always Q@ (posedge clk or posedge reset)begin

if (reset == 1) gcd <= {GCDw{l1l'bO}};
else begin
if (1dG == 1) gcd <= reg_P;
end
end
assign AegB = (reg_ P == reg_Q)? 1'bl : 1'bO;
assign AltB = (reg_P < reg_Q) ? 1'bl : 1'bO;
assign wire_ALU = ((selP == 1) & (selQ == 1)) ? (reg_ P - reg_Q) : (
reg_Q - reg_P);
endmodule

Create mpsoc/src_peripheral/other directory and then copy the above gcd. v file
inside it.

In order to verify GCD hardware module, we use Verilator simulator. Optionally you
can use Modelsim as well.

1. If you have not yet installed Verilator simulator on your system run the following

ProNoC homepage June 23, 2022 51

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

command in terminal

sudo apt-get install verilator

2. Open terminal in the folder which you have created gcd. v file and run:

verilator --cc gcd.v

If your code is successfully verilated, you will have an ob3_dir directory that
includes all generated GCD object files.

3. Open obj_dir folder and create testbench.cpp inside it:

Listing 6.2: testbench.cpp

#include <stdlib.h>
#include <stdio.h>
#include <unistd.h>
#include <verilated.h>
#include "Vgcd.h"

unsigned int inputl[10] ={136, 25, 33220, 3627, 3450, 9375, 199317,
157620, 5694235, 199307 };

unsigned int input2[10] ={248, 50, 2200, 4581, 6540, 61575, 103443,
238844, 239871, 903443};

unsigned int expt_gcd[10] ={8, 25, 220, 9, 30, 75, 2523, 284, 2161,
1};

Vgcd *gcd

unsigned int main_time = 0;
int run;
unsigned int i=0,passed=1;

int main (int argc, char** argv) {
Verilated: :commandArgs (argc, argv);
gcd = new Vgcd;

gcd->reset=1;
gcd->enable=0;
gcd->inl=0;
gcd->in2=0;
main_time=0;
run=0;

while (!Verilated::gotFinish() && 1i<10) {

if (main_time & O0x1) {
gcd-> clk = 0;
if (gcd-> done==1 && run>6) {
printf ("$u : GCD(%u, %u)=
in2, gcd->gcd);
if (gcd->gcd == expt_gcd[i]) printf (" Matched\n");
else {passed=0; printf (" Error:Miss-matched\n");}

$d\t",main_time,gcd->inl, gcd->

ProNoC homepage June 23, 2022 52

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

i++;
run=0;

}

if (gcd-> enable == 1 && run==5) {
gcd-> enable = 0;

}

if (run==4 && gcd->reset==0) {
gcd-> enable = 1;
gcd-> inl = inputl([i];
gcd-> in2 = input2[i];

}

if (main_time >= 10) {
gcd->reset=0;
run++;

gcd->eval () ;
main_time++;

}

if (passed) printf(" x*x*xxxxxxx GCD Testing passed Kk % Kok kK ok ok ok ok ok \ N
else ;rintf(" kkkkkkkkk GCD Testing failed sxxxxxxxxxxx\n");
gcd->final () ;

}

double sc_time_stamp () {

return main_time;

ProNoC homepage June 23, 2022 53

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

4. Now create a Makefile inside obj_dir:

Listing 6.3: Makefile

default: sim

MUDUL = Vgcd

include Vgcd.mk

lib:
$ (MAKE) —-f $(MUDUL) .mk

CPPFLAGS += -DVL_DEBUG=1
ifeq ($(CFG_WITH_CCWARN),yes)
CPPFLAGS += -DVL_THREADED=1
CPPFLAGS += -W -Werror -Wall
endif

sim: testbench.o $(VK_GLOBAL_OBJS) $(MUDUL)_ ALL.a
$(LINK) $(LDFLAGS) -g $° $(LOADLIBES) $(LDLIBS) -o testbench $(LIBS) -
Wall -03 2>&1 | c++filt

testbench.o: testbench.cpp $(MUDUL) .h

clean:
rm *.0 *.a main

5. Now to compile the testbench code open terminal in ob3_dir directory and run:

make

Sample output:

g++ —-I. -MMD -I/usr/local/share/verilator/include -I/usr/local/
share/verilator/include/vltstd -DVL_PRINTF=printf -DVM_TRACE=0
-DVM_COVERAGE=0 -DVL_DEBUG=1 -c -o testbench.o testbench.cpp
gt++ —-g testbench.o verilated.o Vgcd__ALL.a -o testbench -1m -lstdc
++ -Wall -03 2>&1 | c++filt

This must generate a binary executable file inside obj_dir named as testbench.

ProNoC homepage June 23, 2022 54

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

Add Wishbone
bus interface to
GCD

6. To run the simulation run:

./testbench

Expected output:

37 : GCD(136,2
51 : GCD (25,50
109 : GCD (3322
177 : GCD(3627
217 : GCD (3450
263 : GCD (9375
305 : GCD (1993
365 : GCD(1576

48)= 8 Matched

)= 25 Matched

0,2200)= 220 Matched
,4581)= 9 Matched
,6540)= 30 Matched
,61575)= 75 Matched
17,103443)= 2523 Matched
20,238844)= 284 Matched

445 : GCD(5694235,239871)= 2161 Matched

557 : GCD (1993

07,903443)= 1 Matched

*kkkkxkkxkx GCD Testing passed Kk kk ok ok ok ok ok kk Kk

After the GCD core is functionality verified, next is to add Wishbone bus interface
to GCD hardware. This interface module provides memory-mapped access of GCD
module’s input/output ports for the processor. The memory-mapped addresses are il-

lustrated in Table 6.1:

Table 6.1: GCD_IP internal register addresses.

ggfsreéss Name Description Mode
0 DONE | Holds the value of done output port Read-only
1 IN1 Write on GCD’s module first input variable | Write-only
2 IN2 Write on GCD’s module second input vari- | Write-only
able. Writing on this register will trigger
the GCD’s enable port
3 GCD | Holds the generated GCD value Read-only

Create the following file inside mpsoc/src_peripheral/other directory

module gcd_ip# (
parameter GCDw=32

Listing 6.4: gcd_ip.v

’

parameter Dw =GCDw,

parameter Aw =5,
parameter TAGw =3
parameter SELw =4

clk,
reset,

s_dat_1i,
s_sel_i,
s_addr_1i,

’

ProNoC homepage

June 23, 2022

55

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

s_tag_1i,
s_stb_1i,
s_cyc_i,
s_we_1i,

s_dat_o,
s_ack_o,
s_err_o,
s_rty_o

input clk;
input reset;

input [Dw-1 : 0] s_dat_i;
input [SELw-1 : 0] s_sel_i;
input [Aw-1 : 0] s_addr_i;
input [TAGw-1 : 0] s_tag_i;
input s_stb_i;

input s_cyc_ij;

input s_we_i;

output [Dw-1 : 0] s_dat_o;
output reg s_ack_o;

output s_err_o;

output s_rty_o;

localparam DONE_REG_ADDR=0;
localparam IN_1_REG_ADDR=1;
localparam IN_2_REG_ADDR=2;
localparam GCD_REG_ADDR=3;

assign s_err_o = 1'b0;
assign s_rty_o = 1'b0;

wire[GCDw-1 :0] gcd;
reg [GCDw-1 :0] readdata,inl,in2;
wire done;

assign s_dat_o =readdata;

always Q@ (posedge clk or posedge reset) begin
if (reset) begin
s_ack_o <= 1'b0;
end else begin
s_ack_o <= (s_stb_i & ~.s_ack_o);
end
end

always @ (posedge clk or posedge reset) begin
if (reset) begin
readdata <= 0;
inl <= 0;
in2 <= 0;
end else begin

ProNoC homepage June 23, 2022

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

if (s_stb_i && s_we_1i) begin
if (s_addr_i==IN_1_REG_ADDR[Aw-1: 0]) inl <= s_dat_i;
else if(s_addr_i==IN_2_REG_ADDR[Aw-1: 0]) in2 <= s_dat_1i;

end

else begin
if (s_addr_i==DONE_REG_ADDR) readdata<={{GCDw{1l'b0}},done};
if (s_addr_i==GCD_REG_ADDR) readdata<=gcd;

end

end
end

wire start=(s_stb_1i && s_we_1i && (s_addr_i==IN_2_REG_ADDR[Aw-1: 0]));
reg ps,ns;

reg gcd_reset,gcd_reset_next;

reg gcd_en,gcd_en_next;

always Q@ (posedge clk or posedge reset) begin
if (reset) begin
ps<=1'b0;
gcd_reset<=1'bl;
gcd_en<=1'b0;
end else begin
ps<=ns;
gcd_en<=gcd_en_next;
gcd_reset<=gcd_reset_next;
end
end

always Q@ (x)begin
gcd_reset_next=1'b0;
gcd_en_next=1'b0;
ns=ps;
case (ps)
1'b0:begin
if (start) begin
ns=1"'bl;
gcd_reset_next=1'bl;
end
end
1'bl:begin
gcd_en_next=1'bl;
ns=1"'b0;
end
endcase
end

gcd #(
.GCDw (GCDw)

) the_gcd

(
.clk (clk),
.reset (gcd_reset),
.enable (gcd_en),
.inl (inl),

ProNoC homepage June 23, 2022 57

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

.in2 (in2),
.done (done),
.gcd (gcd)

) i

endmodule

Add custom In this section, we show how to add previously generated GCD IP core to ProNoC

wishbone-based library. However, this can be applied to any other wishbone based IP core.
IP core to

ProNoC Library 1. Open mpsoc/perl_gui in the terminal and run ProNoC GUI application:
./ProNoC.pl

2. Then select the # IP generator. The IP Generator snapshot is shown in Figure 6.2.

[
&¥ interface generstor | 3 1P generator 5 Processing tile generator | (B8 NoC based MPSoC generstor
Interfaces list
Select file: A2 Browse TP name:
b intermupt Select Parameter | select [- @ |@.F Add Software| | — Add HDL
b source module: setting Categary: Deseription files = files
» wishbane
Interface name Type Interface Num
Type Port name Interface name Interface port Port Range

Please select the verilog file containig the ip module

4~ load P @ Generate

Figure 6.2: ProNoC New IP Generator snapshot.
3. Click on ,C Browse and select ged_ip.v file.
4. Enter other as category name.

5. Enter gcd as IP name.

ProNoC homepage June 23, 2022 58

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

BE
&¥ interface generstor | 1P generator 3 Processing tile generator | B8 NoC based MPSoC generstor
=%
Interfaces list
Select file: | /homeyalireza/mywork/mpsoc/src_peripheral/Other/gad_ip.v | 3 #— Browse 1P name: |jgcd|
> NoC
> intermupt Select ™ Parameter ® Add Software| | = Add HDL
> module: = - setting ategory: escription iles = iles
source dule: |99-P i = Other | 4 & e 9 Descripti h fil fil
> wishbone
Interface name Type Interface Num
Type Port name Interface name Interface port Port Range
input clic 0 0 z
input reset 0 0 z
input s_dat_i joie 10 + | [ow-1 0
input s sel_i Tap = 10 = | [sELw-1 0
input s_addr_i Tap = 10 2 [[aw-1 0
Please select the verilog file containig the ip module
& Load IP @ Generate

Figure 6.3: Select gcd_ip.v file.

6. The gcd_ip.v file has one parameter named as ccow which we want to be rede-
fined by the user during IP call time. To define the appropriate GUI interface for
this parameter click on €€) parameter setting button.

7. In the newly open window, select combo-box as widget type.

8. Enter 8,16, 32 as widget content. It will allow the user to select one of these
three values for this parameter during Processing tile generation.

9. In the next Combo-box define it as Localparam. You can optionally select it as
parameter. See here to understand the differences.

10. Click on @) ¢ pescription button to add parameter information.

11. Enter parameter information as Gcp's Input/output width in bits then press

\'9 ok.

12. In parameter setting window press %9 ok to save your setting.

ProNoC homepage

June 23, 2022 59

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

o Add description
P 2

BE
&¥ interface generator | 2 1P generator 'j Processing tile generator | 38 NoC basﬂ

Interfaces list . : |
Select file: /home/alireza/mywork/mpsoc/src_peripheral/Other/ged_i

= @ o«
P i o arameter Select B | b4
> source module: | 9P < itoi 6 carsgory: [0

Parameter name Default value widget type, g widget content (g Type @ (7] info @G| adayremove
Gow 32 Localparam | @ Redefine10 @ remove

Dw GCOwW Fixed ! & & Localparem [2 | @ Redefine @) €D remowe

Aw 5 Fixed & Locaiparam [2 | @ Rederine (@) €D remove
TAGW 3 Fixed - Locsiparsm [2 | @ redetine @) @ remove
SELw 4 Fixed 2 Localparem | 2 | @ Rederine | @) | remove

Fixed B pon@indude = [reefine | @) & 2o
@ o«
=Y I
2 Load @ cenerat=

Figure 6.4: GCD IP core parameter setting.

13. In Interface 1list window expand source and wishbone categories. Then dou-
ble click on c1k, reset and wishbone to add them to the GCD IP library.

14. In Wishbone bus interface row, click on € button.
15. Select custom devices as wishbone address range category.

16. Set block address range as 5. This results in allocating 32 Bytes for each instance
of this module. The memory size must be selected equal or greater than the actual
IP’s internal register size. (GCD has four 32-bit internal registers which are equal
to 16 Bytes memory space).

17. Press @ ox.

Now we need to map each module individual port to its appropriate interface
port. By selecting the interface name, the port with the most similar name is
matched with module port name, automatically . For this example the software
can match all ports correctly. However in general, you may also needed to adjust
the port name as well.

18. Select p1ug:cik for c1k interface.
19. Select plug:reset for reset interface.

20. Connect all other ports to plug:wb_slave interface.

ProNoC homepage June 23, 2022 60

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

Interface generator

Interfaces list

gabios interface name address range: (start end name) block address wmthl
P interrupt
v source whb_slave 0xb800_0000 Oxbfff_ffff custom devices Fixed =

enable

Interface parameter setting

15b

(LD -

wb_addr_map Interface name Type Interface Num
wb_master
reset plug 2 1 @ Remove
clk plug 2 I @ Remove
wb_slave plug = 1 @ Remove ﬂ

21. Click on

Type Port name Interface name Interface port Port Range
input clk 18 |plug:clk = clk_i E

input reset 19 |plug:reset z reset | <

input s_dat_i plug:wb_slave : dat_i S| |Dw-1 0
input s_sel_i plug:wb_slave 2 sel_i 2| [sEw-1 0
input s_addr_i plug:wb_slave 2 adr_i Aw-1 1]
input s_tag_i plug:wb_slave tag i TAGW-1 4]
input s_stb_| plug:wb_slave < stb_i :

. . 20 . = i

input s_cyc i plug:wb_slave 2 cyc_i

input s_we_| plug:wb_slave we_i -

outout s dat o nlugwh <l - dat o * 1iDw-1 (1]

Figure 6.5: GCD Core interface setting.

Add HDL Files button.

22. In front of select file(s) clickon /= Browse button.

23. Select gcd.v and gcd_ip.v files and press @ ok.

select file: ywork/mpsoc_d r _ip.v 2 Browse IP name: |ged 21
Select < Parameter Select I Add Software Add HDL
modute: (94IP - (] setting Category: |SP - @ 0 Description hy files files

Interface naf

Add HDL file(s)

clk

Add exsiting HDL file/folder

reset —
@ 23 selecetiiegs): Selecet folder(s): A Browse
wh_slave

/mpsoc/src_peripheral/GCD/gcd.v (%]
S /mpsoc/src_peripheral/GCD/gcd_ip.v @
input —

Figure 6.6: Adding GCD core HDL files.

24. Click on h 2add software files button. In the newly opened window, you

ProNoC homepage June 23, 2022 61

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

can add IP core’s software library/header files. The listed files/folder here will
be copied in generated SoC project folder inside sw directory.

25. Click on add to tile.h tab.

26. Copy following text on the new tab, then click on 9 save button.

#define ${IP}_DONE_ADDR (* ((volatile unsigned int =*) (S$BASE))
#define ${IP}_IN_1_ADDR (= ((volatile unsigned int =) ($BASE+4
#define ${IP}_IN_2_ ADDR (* ((volatile unsigned int =*) ($SBASE+8
#define ${IP}_GCD_ADDR (x((volatile unsigned int x) ($BASE+12

))
))
))

#define S${IP}_INI1_WRITE (value) ${IP}_IN_1_ADDR=value
#define ${IP}_IN2_WRITE (value) ${IP}_IN_2_ADDR=value
#define ${IP}_DONE_READ() ${IP}_DONE_ADDR

#define ${IP}_READ() ${IP}_GCD_ADDR

unsigned int gcd_hardware (unsigned int, unsigned int);

27. Click on add to tile.c tab.

28. Copy following text on the new tab, then click on 9 save button.

unsigned int gcd_hardware (unsigned int p, unsigned int g) {
${IP}_INI1_WRITE (p);
S{IP}_IN2_WRITE (q);
while (${IP}_DONE_READ() !=1);
return ${IP}_READ();

The entered text here will be added to the [SoC_name] .h and [SoC_name] .c file.
These files contain all IP cores’ wishbone bus addresses, functions and header
files. You can use some global variables with $ [variable_name] format here
such as all IP core parameters and IP core Verilog instance name (see the list of
complete available variables in ProNoC). These variables will be replaced with
their exact values during SoC generation time. In this example, we used variable
${1p} which is the IP core’s instance name. Hence, in case this IP core is called
more than once in any SoC, each instance has its own unique WB addresses and
functions.

29. Click on @ Generate to add the GCD IP core to the library.

ProNoC homepage June 23, 2022 62

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

O
.. Interface generator # IP generator Processing tile generator EE NoC based MPSoC generator

Add software File(s)

Interfaces list

1P name: |ged

> NoC
imtempt) y P Add Software ||| = Add HDL
¥ source Slonal Va"ames\o‘ ¥ | | Description | || files || = files |
HE Add exsiting file/folder | Add files contain variables | Add to tile.h | 25 24
enable | —

reset lQJ |@ REH‘WE.

pgatec Lt #define ${IP}_DONE_ADDR (*{{volatile unsigned int *) ($BASE)))
wh_addr_mg ‘#define ${IP}_IN_1_ADDR (*((volatile unsigned int *) (SBASE+4))} @ HEran| ,Q,
wh_master l#define §{1P}_IN_2_ADDR (*((volatile unsigned int *) ($BASE+8))) o
wh_slave | ||#define ${1P}_GCD_ADDR (*((volatile unsignad int +) ($BASE+12))) | € Remove |

terface port Port Range

‘#define ${IP}_IN1_WRITE(value) ${IP}_IN_1_ADDR=value

1 =
#define ${IP}_IN2_WRITE(value) ${IP}_IN_2_ADDR=value E = =1 |
#define ${IP}_DONE_READ() ${IP}_DONE_ADDR |

#define ${IP}_READ() ${IP}_GCD_ADDR

at_i “llow-1 : 0 |

unsigned int ged_hardware { unsigned int p, unsigned int g }{ ;
${IP}_IN1_WRITE(p); e - |[ser 0 J
${IP}_IN2_WRITE(q); F— |
while (§{IP}_DONE_READ(}!=1); 26 1)
return §{IP}_READ();

i =

=
Please select the veril{

W | s é Generate | 27

Figure 6.7: Add GCD software files.

Generate a new In this section, we aim to generate an embedded SoC enhanced using generated GCD
SoC enhanced IP core. The desired SoC schematic is shown in Figure 6.8.

with new IP

core (GCD)

S S1 S3
Wishbone Bus
So M1 Mg
Data

Instruction

Figure 6.8: Desired SoC with GCD IP core.

ProNoC homepage June 23, 2022 63

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

1. In ProNoC GUI Click on Processing Tile Generator. Use Table 6.2 and fol-
low instruction in Create New SoC Using ProNoC Processing Tile Generator to

generate a processing tile.

Table 6.2: GCD SoC IP core list and setting.

Category IP name Parameter Instance name Interface connection
Source clk_source FPGA_VENDOR — ”ALTERA”™! source clk - [0
reset — 10
M - 2
Bus wishbone_bus S - 4 bus clk = sourceiclk
Dw — 32 reset — source:reset
Aw - 32
OPTION_DCACHE_SNOOP — ”NONE” clk — sourceclk
FEATURE_INSTRUCTIONCACHE — “ENABLED” feset -~ sourceireset
» » snoop — bus:snoop
Processor Morlkx FEATURE_DATACACHE — ”ENABLED cpu iwh ~» busiwb.master[0]
FEATURE_IMMU — 7ENABLED” dwb N bus:wbimacter[1
FEATURE_DMMU — 7ENABLED” T
enable — IO
Dw — 32
Aw - 14
BYTE_WR_EN — "YES”
FPGA_VENDOR — ”ALTERA™!
JTAG_CONNECT — ”ALTERA_JTAG_WB™? clk — source:clk
RAM single_port_ram JTAG_INDEX — CORE.ID ram reset — source:reset
BURST_MODE — 7ENABLED” wb — bus:wb_slave[0]
MEM_CONTENT_ — ”ram0”
FILE_ NAME
INITIAL_EN — ”YES”
JTAG_CHAIN — 4
clk — source:clk
Timer timer PRESCALE_WIDTH - 8 timer reset — sourceireset
wb — bus:wb_slave[1]
intrp — cpuinterrupt_peripheral[0]
BUFF_Aw — 4
JTAG_INDEX — 126-CORE_ID clk — source:clk
Communication | ProNoC_jtag_uart | JTAG_.CHAIN - 3 uart reset — source:reset
JTAG_CONNECT — ”ALTERA_JTAG_WB” ? wb — bus:wb_slave[2]
INCLUDE _SIM_PRINTF — SIMPLE_PRINTF

I — "XILINX” For Xilinx FPGA

2 — ”XILINX_JTAG_WB” For Xilinx FPGA

ProNoC homepage

June 23, 2022

64

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

2. Add the new GCD IP to the SoC.

Table 6.3: GCD SoC IP core list and setting.

Category | IP name Parameter Instance name Interface connection

clk — source:clk

Other gcd GCDw — 32 | gcd reset — source:reset
wb — bus:wb_slave[3]

0 = BB . boced MPSoC genera
& Interface generator # 1P generator M Processing tile genertor | B8 NoC based MPSoC generator
P list] %
> Bus
Ea— A D setting timer intrp int_ctrizint_periph[0] =
> DMA
x> -
- iy ¥ O Remove | g Source: reset =
> Intemupt | e e =
b NoC TEIEEIELY 16 ot = GCD's Input/output width in bits
jtag_uart =
- one Sl w v
dummy._module A O semr\g‘ periphe! =
ocd 4
sim_uart XZ| D remove OK e
L i e @ o i
P AM | bus:wh_slave[3] =
> Source
> Timer gcd Instance name dk source:dk &
A D seting acd reset source: reset E
XZ| D remove wh_slave busiwb_slave[4] =
gcd module
=
/> Load Tie Tile name: |ged_soc € wishbone-bus adar caa Diagram @ Generate RTL Software e Compile RTL

Figure 6.9: Add the generated GCD IP core to gcd_soc.

3. Set the tile name as gcd_soc.

4. Pressthe) cenerate RrTL button. This must generate a new folder: mpsoc_work
/S0OC/gcd_soc.

ProNoC homepage June 23, 2022 65

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

[o¢® Pove]
& o

S [~
’. Interface generator # IP generator rg Processing tile generator T:T‘; NoC based MPSoC generator |

Tmer " TNSCANCE Name K SOUTCE: TR
1P list hd
P Bus Ry
R 2 | €D seting timer intrp int_ctrizint_periph[0]
> DMA
o
» Display ~~ source: reset
b GPIO
bus:wb_slave[2]
b Interrupt
b NoC i v Processing Tile "gcd_soc" has been created
it successfully at fhome/alireza/mywork/mpsoc_work/ e
¥ Other SOC/god_soc/.
dummy_module ﬁ‘ - NC
gal N oK
i [P S
=R z source: reset
» Processor —
> RAM whb_slave bus:wb_slave[3]
> Source
P Timer god Instance name clk source:clk
god module

/= Load Tile| Tile name: 1) wishbone-bus addr —:1 Diagram 2 Software e Compile RTL

Figure 6.10: Generate the gcd_soc RTL codes.

Software

Development . .
P 1. Click on Software button to open the software development window. Now

click on main.c file. Replace the contents of main.c file with the following C
code then press compile button. Check software edit terminal output to make
sure that compilation ran successfully. If you got RAM or ROM overflow error
follows instruction in linker LD setting to fix this error.

#include "gcd_soc.h"

unsigned int gcd_software (unsigned int p, unsigned int g) {
while (p != q) {
if (p > 9) p=p-q;
else if (p < g) g=g-p;
}

return p;

int main () {
int A,B,C,D;
unsigned int t_hw,t_sw;
unsigned int speed;
printf ("GCD test application\n");
while (1) {
printf ("Enter number #1:\n");

ProNoC homepage June 23, 2022 66

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

jtag_scanint (&A);
printf ("Enter number #2:\n");
jtag_scanint (&B);
timer_reset ();
timer_start ();
C=gcd_hardware (A, B);
timer_stop();
t_hw=timer_read();
timer_reset ();
timer_start () ;
D=gcd_software (A, B);
timer_stop();
t_sw=timer_read() ;
speed= (t_sw*10) / (t_hw) ;

printf ("GCD_hardware (%d,%d) = %d\t clock_num=%d\n",A,B,C,
t_hw) ;

printf ("GCD_software (%d,%d) = %d\t clock_num=%d\n",A,B,D,
t_sw);

printf ("spead up=%d.%d times\n", speed/10,speed%10);
}
return 0;

}

2. Follow instructions in Compile the generated RTL code using Quartus II soft-
ware to compile and run the desired SoC on an FPGA board. For instance the
pin assignment on DE10-Nano FPGA and a snapshot of a sample result on UART
terminal is shown in Figures 6.11 and 6.12, respectively. You can test the GCD
IP core by entering different values.

B Step 2: Pin Assignment

Port Direction Port Range Port name Assigment Type Board Port name Board Port Range
input aeMB_sys_ena_i Direct - *WCC =
input source_dlk_in Direct - FPGA_CLK1_50 =
input source_reset_in MNegate(~) = | KEY = | o
= Previous =y Next

Figure 6.11: DE10-Nano FPGA board pin assignment.

ProNoC homepage June 23, 2022 67

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

(< alireza@alireza: ~/mywork/mpsoc/perl_gui/lib/perl
alireza@alireza:~/mywork/mpsoc/perl_gui/lib/perl$ SQUARTUS_BIN/nios2-terminal
ios2-terminal: connected to hardware target using JTAG UART on cable
terminal: "DE-SoC [1-2]", device 2, instance @
nios2-terminal: (Use the IDE stop button or Ctrl-C to terminate)

GCD test application
Enter number #1:

GCD_hardware (25684,36) = clock_num=842
_software (25684,36) clock_num=18182
spead up=12.0 times

Enter number #1:

45585

Enter number #2:

75

GCD_hardware (45585,75) = clock_num=722
GCD_software (45585,75) = clock_num=8672
spead up=12.0 times

Enter number #1:

311

Enter number #2:

_hardware (311 = clock_num=158
GCD_software (311,22 = clock_num=966
spead up=6.1 times

Figure 6.12: Nios2-terminal output snapshots.

ProNoC homepage June 23, 2022 68

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

CHAPTER 7

Simple message
passing demo on
2x2 MPSoC

Summary

System

Requirements:

Generating a
custom
Processing tile

This chapter demonstrates a simple message passing on a 2x2 NoC based MPSoC.
This includes developing a custom shared bus (Wishbone bus) based processing tile
using ProNoC Processing Tile Generator. The generated tile is used then for generating
a multicore using ProNoC NoC based MPSoC generator.

You will need an Altera or Xilinx FPGA development board and a computer system
running Linux OS with:

1. Installed the ProNoC GUI software and its dependency packages.

2. Installed/Pre-built GNU toolchain. (orlk-elf) for compiling the Morlkx soft-
core processor software code.

3. Installed Quarts IT (Web-edition or full) or Vivado compiler.

For more information about the GNU toolchain installation please refer to the In-
stallation Manual for the Ubuntu. In case your FPGA board is not included in the
ProNoC FPGA board list please follow the instructions given in Adding a New FPGA
Board to ProNoC, to add your board to the ProNoC library.

Follow the instructions in Processing tile generator tutorial up to the Software Devel-
opment section and generate a processing tile according to the tile setting listed in
Table 7.1. Set the tile name as morik_tile. Remember to press @ Generate RTL
button at the end to generate the processing tile RTL code.

* Note that the desired tile in this chapter has a network interface (NI) IP to be
connected to a NoC.

* The NI has a master interface which can automatically write the arrived packets
from the NoC to the main memory. Hence, for the CPUs with enabled Data
cache, you need to have either the snoop support (to invalidate the Data cache
memory location where the NI writes on it) or map the NI receiver buffer on
an uncachebale memory location. For this example we have enabled the snoop
support of Morlkx processor. The snoop interface of the CPU must be connected
to the WB to inform about the main memory data changes.

ProNoC homepage June 23, 2022 69

http://www.multcloud.com/share/c2faea3b-9690-4757-a1ba-5a8ed8656bc4
http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

Table 7.1: Desired Processing core IP list and setting.

Category IP name Parameter Instance name Interface connection
Source clk_source FPGA_VENDOR — ”ALTERA™! source clk - 0
reset — 10
M — 4
Bus wishbone_bus S - 4 bus clk — sourceiclk
Dw — 32 reset — source:reset
Aw — 32
OPTION_DCACHE_SNOOP —» ”ENABLED” :ik . : 2°ui°effui .
FEATURE_INSTRUCTIONCACHE — “ENABLED” ose T e
Processor morlkx FEATURE DATACACHE —» “ENABLED” cpu ;fv‘]’;’p - bs:;:‘g’jﬁasterm]
FEATURE_IMMU — "ENABLED” dwb N bu@zwb master[1]
FEATURE_DMMU — ”ENABLED” 5+ WD
enable — 10
Dw - 32
Aw — 14
BYTE_WR_EN — ”YES”
FPGA_VENDOR — ”ALTERA”! Ik v source:clk
. JTAG_CONNECT — ”ALTERA_JTAG_WB™? i ’
RAM single_port_ram JTAG_INDEX s CORE.ID ram reset — source:reset
BURST_MODE — ”ENABLED” wb = busiwbslave[0]
MEM_CONTENT_FILE_.NAME — “ram0”
INITIAL_EN — "YES”
JTAG_CHAIN — 4
MAX_TRANSACTION.WIDTH ~ — 13 clk . _, sourcexclk .
MAX_BURST._SIZE - 16 fi::rm .- ”“fcetme oerioherall0
NoC ni_master Dw — 32 ni P -, Spunnierrupt-periphera 10]
T s wb_send bus:wb_master[2]
CRC_EN — "NO b . ~ bus-wh. mast 3]
HDATA PRECAPwW 500 wh.receive _ bus:wb_master
wb_slave bus:wb_slave[1]
clk — source:clk
Timer timer PRESCALE_WIDTH = 8 timer reset — sourceireset
wb — bus:wb_slave[2]
intrp — cpuw:interrupt_peripheral[1]
BUFF_Aw — 4
JTAG_INDEX — 126-CORE_ID clk — source:clk
Communication | ProNoC_jtag_uart | JTAG_.CHAIN - 3 uart reset — source:reset
JTAG_CONNECT — ”ALTERA_JTAG_WB” 2 wb — bus:wb_slave[2]
INCLUDE_SIM_PRINTF — SIMPLE_PRINTF

I' 5 "XILINX” For Xilinx FPGA
2 5 "XILINX_JTAG_WB” For Xilinx FPGA

ProNoC homepage

June 23, 2022

70

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

Figure 7.1 illustrates the functional block diagram the Morlk_tile module.

clk
clk interrupt_petipheral 0 resel \
cpu | snoop
reset — ™~ p—
interrupt interrupt_peripheral_1
ni dwb whb_master_0
whb_send clk
whb_master_1
b i
Wh recefve wb_master_2
wh_slave whb_master_3 | bus
o whb_slave_0
wh_slave_1
reset reset
timer wb_slave_2
intrp — — clk_0
wh_slave_3 source
wh oIk reset_0
ram | reset
wb
clk
vart reset
wh_slave
Figure 7.1: Morlk_tile functional block diagram.
Generating a
4x4 NoC-based : =r
1. Clickon 22

=% NoC based MPSoC generator

MPSoC

2. Set the NoC configuration setting as stated in Table 7.2. Here we have defined
two Virtual Networks (VNs) by defining two message classes and separating
message class permitted VCs in such a way that each message class can only
use its own dedicated VC. For more information regarding the NoC parameters
please refer to NoC Verilog File Parameter Description.

Table 7.2: 4x4 NoC configuration setting.

Parameter Value Parameter Value
Router Type ”VC_BASED” Topology "MESH”
Router per row 2 Router per column 2
VC number per port 2 Buffer flits per VC 4
payload Width 32 Routing Algorithm ”XY”
SSA Enable "NO” VC reallocation type "NONATOMIC”
VC/SW combination type ”COMB _NONSPEC” | Crossbar mux type "BINARY”
Class number 2 Class 0 Permitted VCs &
Class 1 Permitted VCs & Debug enable 0
Add pipeline register 0 Swich allocator first level |
after crossbar arbiters external priority enable
SW allocator arbitration type | "RRA” Byte Enable 1

ProNoC homepage June 23, 2022 71

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

&¥ Interface generator | 3 1P generator | [Processing tile generator

2 NoC Configuration
Router Type @ | 'vcsaseD = 4
Topology @ | "meEsH
=== Tile 0 Tile 1
Routers per row e 2 = morlk tile morlk_tile
Routers per column 2 E
Router's endpoint number | (g | [1
VC number per port 2 E
Buffer flits per vC Q-
Payload width 32
4 9 Tile 2 Tile 3
morlk tile morlk tile
Routing Algorithm @ xr
Minimum packet size 2 ME
Bute Enahla £ n

/2 Load MPSoC I MPSaC name: [morlk_mpsoc HI | 2, Diagram I I_ﬂ_ CLKsettmgI r@Generate RTLI [Fd] software @ compile 1L

Figure 7.2: NoC-based MPSoC generator snapshot.

3. InTile configuration setting, you should be able to see the list of all process-
ing tile modules which have NI IP core in their shared bus.

(a) You can change the processing tile default parameters by clicking on its tile
name. For this example, we leave the default parameters values unchanged.

(b) You can enter the tile numbers (location) where this processing tile should
be placed in the NoC. Set the Mor1k_tile tile numbers as 0, 1, 2, 3 or sim-

ply as 1:3.
Tile Configuration
Tiles path: lib/soc ,_
Tile name Tile numbers
3a g

O[3
morlk_tile @ |0:3 I

LA

Figure 7.3: Tile Configuration snapshot.

4. You can also map the generated processing tiles on their locations by simply
clicking on the tile location in the NoC.

ProNoC homepage June 23, 2022 72

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

(a) You can select the Processing tile name here.

(b) If you wish this processing tile has a custom parameter setting you can
select it here. In case you select the parameter setting as custom, after
pressing the OK button, it shows a window where you can change the de-
fault parameters values.The tile which has a custom parameter setting is
marked by * on its name.

o Parameter setting for Tile 0

Processing tile name: | morlk_tile

4a

Parameter Setting @ (7]
4b Custom
@ ox

Figure 7.4: Custom Tile setting.

5. You can press the ~=~. Diagram to see the actual location of each tile in the

selected topology. In this example:

TO T1

T2 T3
Figure 7.5: 4x4 mesh topology.
6. Set MPSoC name as mor1k_mpsoc.

7. In case the MPSoC clk should be generated using FPGA clk pin, click on the 51 c1x
setting button then follow in CLK setting to generate the MPSoC clk.

ProNoC homepage June 23, 2022 73

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

Software
Development

. Click on @ Generate RTL button to generate the MPSoC RTL code.

Software button to open the software development window.

. In the left Tree-View window, you can select any file in project sw directory to

open and then edit it. Replace the content of main.c files in all tiles with the

following C codes.

In this example, tile 0 to 2 send each 3 packets to tile 3. Tiles 3 shows the

packets’ content in serial port terminal.

main.c

#define MULTI_CORE
#include "morlk_tile.h"

unsigned char pckl[10]={"first data"};
unsigned char pck2[11l]={"second data"};
unsigned char pck3[6]={"123456"};

unsigned char receive_buff[ni_ NUM_VCs] [16];

void delay (unsigned int num) {

while (num>0){ num--; nop();}

void error_handelling_function () {

unsigned int 1i;
for (i=0;i<ni_NUM_VCs;i++) {
if (ni_got_buff_ovf(i)) {

printf ("VC%u:The receiver allocated buffer size is smaller
than the received packet size in core%u\n",i, COREID);

ni_ack_buff_ovf_isr(i);

}

if (ni_got_send_dsize_err(i)) {
printf ("VC%u:The send data size is
, COREID) ;

ni_ack_send_dsize_err_isr(i);
}
if (ni_got_burst_size_err(i)) {
printf ("VC%u:The burst size is not
COREID) ;
ni_ack_burst_size_err_isr(i);
}

if (ni_got_invalid_send_reqg(i)) {

printf("VC%u:A new send request is
is still busy sending previous
COREID) ;

ni_ack_invalid_send_req isr(i);
}

if (ni_got_crc_mismatch(i)) {

not set in core%u\n",i

set in core%u\n", i,

received while the DMA
packet in core%u\n", i,

printf("VC%u:CRC miss-matched in core%u\n",i,COREID);

ni_ack_crc_mismatch_isr (i);

ProNoC homepage June 23, 2022

74

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

void got_packet_funtion (void) {
unsigned int i ;
unsigned char iport;
for (i=0;i<ni_NUM_VCs;i++) {
if (ni_got_packet (1)) {
iport =ni_RECEIVE_PRECAP_DATA_REG(i);

vcsu:", size,src_info.addr,i);
for (3=0; j<size; j++) {
printf ("$c", receive_buff[i][j]);
}
printf ("\n");
ni_ack_save_done_isr(i);
If ni_packet_is_saved

k_packet_funtion

void sent_packet_done_funtion (void) {
unsigned char oport;
unsigned int i;
for (i=0;i<ni_NUM_VCs;i++) {
if (ni_packet_is_sent (i)) {
ni_ack_send_done_isr (i) ;
}//If ni_packet_is t

}//sent_packet_done_funtion

/different destination can be targe rding ipor
value
.g
E.g else if (i ~t) ini t) &
receive_buff pl[i] [0], 16
ni_receive (i, (unsigned int)& receive_buff[i] [0] 16, 0);
ni_ack_got_pck_isr(i);
/T 11 got ket
}
}// got_ps on
void check_packet_funtion (void) {
unsigned char iport;
unsigned int i, j ,size ;
struct SRC_INFOS src_info;
for (i=0;1i<ni_NUM_VCs;i++) {
if (ni_packet_is_saved(i)) {
src_info=get_src_info(i);
size=ni_RECEIVE_DATA_SIZE_REG(1i); //size in byte
iport= src_info.r;
run a functio the recieve cket 1g the
F CKe
but S e just nt the 21 vec cket in termina

printf ("A message of %u bytes is recived from core (%x) in

ProNoC homepage June 23, 2022

75

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

I interrupt functior
void ni_isr(void) {

//place your interrupt code here
if (ni_any_err_isr_is_asserted()) {
An error o 1re€
error_handelling_function();
}
if (ni_any_sent_done_isr_is_asserted()) {
//check which VC has finished sending the packet.
sent_packet_done_funtion();
}
if(ni_any_save_done_isr_is_asserted()) {
’/check which VC has finished saving the packet. This function
must be called before got_rx _funtion
check_packet_funtion();
}

if (ni_any_got_pck_isr_is_asserted()) {
//check which VC got packet
got_packet_funtion();

}

return;

int main () {
printf ("Hi from core %u\n",COREID) ;
general_int_init ();
general_int_add(ni_INT_PIN, ni_isr, 0); //ni INT PIN
Enable ni interrupt (its connected to inttruupt pin 0)
general_int_enable (ni_INT_PIN);
general_cpu_int_en();
// hw interrupt enable function:

ni_initia (burst_size, errors_int_en, send_int_en,

t_en, got_pck
ni_initial (16,1,1,1,1); e intrrt when a ¢l is
recived, saved or got a
if (COREID == 3) while(l); //Core 3 only receives packets from
other c > S
/ni_tre N, V, , d _port , start_ ointer,
data_size, dest_p

ni_transfer (1,0, 0, 0, (unsigned int)&pckl1l[0], 10,
PHY_ADDR_ENDP_3);

ni_transfer (1,1, 1, 0, (unsigned int)&pck2[0], 11,
PHY_ADDR_ENDP_3) ;

ni_transfer (1,0, 0, 0, (unsigned int)&pck3[0], 6, PHY_ADDR_ENDP_3
) i

rnd_dest_x[i],

re %u sent packet to (%u,%u)",(
d_c _yl[il);

printf ("total sent packets by core%u is %u\n",COREID, 3);

while (1) {

rn

}

return 0;

ProNoC homepage June 23, 2022 76

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

3. Now press the @ compile button. This compiles the C codes using Morlkx
GNU toolchain. If everything runs ok, you must see “compilation finished suc-
cessfully” message. Otherwise, check the error message to fix your code and
press the compile button again. Note that in case you got RAM or ROM over-
flow errors you can fix them following linker LD setting. If every thing runs
successfully you must have ram0.bin, ram0.hex, and ram0.mif files in your
sw/tile[n]/RAM directory, where n is the tile number.

4. Follow bellows instruction to see the simulation/compilation results:
Simulate the generated RTL code using Modelsim software
Simulate the generated RTL code using Verilator software
Compile the generated RTL code using Quartus II software

ProNoC homepage June 23, 2022 77

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

(1) in

Figure 7.6: Verilator simulation output snapshot.

Bookmatks Window Hep

-3 L @B o.M E
TETTpeTE U0 e TE O TS Tony e
run -all

testbench.uut.the_morlk_tile @.cpu.morlkx@.bus_gen.ibus_bridge: Wishbone bus IF is B3_REGISTERED_FEEDBACK
testbench.uut. the_morlk_tile_8.cpu.morlkx®.bus_gen.dbus_bridge: Wishbone bus IF is B3_REGISTERED_FEEDBACK
testbench.uut. the_morik_tile_1.cpu.morlkx®.bus_gen.ibus_bridge: hbone bus IF is B3_REGISTERED_FEEDBACK
testbench.uut.the_morlk_tile 1.cpu.morlkx@.bus_gen.dbus_bridge: Wishbone bus IF is B3_REGISTERED_FEEDBACK
testbench.uut. the_morlk_tile_2.cpu.morlkx®.bus_gen.ibus_bridge: Wishbone bus IF is B3_REGISTERED_FEEDBACK
testhench.uut. the_morik_tile_2.cpu.morlkx®.bus_gen.dbus_bridge: Wi bus IF is B3_REGISTERED_FEEDBACK

W

W

=

testbench.uut . the_mor1k_tile_3.cpu.mor1lkx@.bus_gen.ibus_bridge: > bus IF is B3_REGISTERED_FEEDBACK
testbench.uut. the_morlk_tile_3.cpu.morlkx®.bus_gen.dbus_bridge: Wishbone bus IF is B3_REGISTERED_FEEDBACK
Hi from core 3

A message of 1@ bytes is recived from core (1) in ve@:first data

A message of 18 bHi from core 1

total sent packets by corel is 3

Hi from core 2

total sent packets by core2 is 3

Hi from core @

total sent packets by core@ is 3

ytes recived from core (8) in vel:first data

A message of 10 bytes is recived from core
message of 11 bytes is recived from core (8) in vel:

message of 6 bytes is recived from core (2) in vc@:123456
message of 11 bytes is recived from core (1) in vcl:second data
message of 11 bytes is recived from core (2) in ve®@:second data
message of 6 bytes is recived from core (@) in vcl:123456
message of 6 bytes is recived from core (1) in vcd:123456

R

A
A
A
A
A
A
VSIM £

Figure 7.7: Modelsim simulation output snapshot.

ProNoC homepage June 23, 2022

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

CHAPTER 8

Software
Auto-generation
using CAL
language (CAL2C)

Cal2C

ORCC
installation

CAL2C is a tool that can auto-generate application C code from that application CAL
actor Data-flow model. The generated C/C++ code is multi-threaded and can be run
in parallel on a multicore system. However, to compile/execute the generated C code
requires an operating system (OS) to be installed on the target platform. Meanwhile,
the generated multicore by PRONoC has the lack of OS and can only run the bare metal
application.

PRONoC comes with a tool that takes the generated C/C++ codes and automati-
cally converts them to several multi bare-metal C/C++ codes that each can be run on a
single core. It provides the user a GUI to speed-up the actor mapping process. Several
actors can be grouped to be run on a single core. Grouped actors then can be mapped
on any custom-defined MPSoC using a drag-and-drop interface or optimally using an
application mapping algorithm.

This chapter explains the steps needed to be taken for running an application written
in CAL data flow language on a Custom MPSoC.

To convert an application from CAL to C, you can use the Open RVC-CAL Compiler
(ORCC). ORCC can be installed on eclipse IDE as a plugin.

1. Download the eclipse with pre-installed ORCC plugin from: eclipse-orcc. Down-
load and unzip the eclipse in your home directory.
2. Download orc-apps by running the following command in terminal:

git clone https://github.com/orcc/orc—apps.git

3. This version of eclipse works fine with JDK 8. For higher JDK version it may
raise an error. You can use SDKMAN to switch between different JDK versions
on your system. To do so open terminal and type:

curl -s "https://get.sdkman.io" | bash
source "S$HOME/.sdkman/bin/sdkman-init.sh"

Now run following command to list all available different JDK versions for your
system.

sdk list java
From the given list, install a java 8. It is not needed to be defined as the default
java version at the end of the installation operation. E.g:

sdk install java 8.0.265-open

Do you want java 8.0.265-open to be set as default? (v/n): [

4. Now to run the Eclipse open eclispe-orcc folder in terminal then run the fol-
lowing commands. It should ask you to set a workplace directory then open the
Eclipse IDE.

ProNoC homepage June 23, 2022 79

https://drive.google.com/file/d/1YAOAyAk8PA6LXwIPz3aIy-Mongh__WBW/view?usp=sharing
http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

sdk use java 8.0.265-open
./eclipse

Select a directory as workspace

Eclipse uses the workspace directory to store its preferences and development artifacts.

workspace: | ~feclipse-workspace

ORCC Hello

v Browse...

word on
ProNoC 1. From Eclipse menu select File->import->General->Exsiting Projects
platform Workspace

New
OpenfFile...

&] Refresh
Convert Line Delimiters To

2 Import...

3 Export...
Switch Workspace
Restart

Exit

2. Select the path t0 orc-app/Hello word:

File Edit Source Refactor Navigat

£ Open Projects from File System...

Select \“
Create new projects from an H

archive file or directory.

Select animport wizard:

¥ (= General
JEArchive File
. File System
ElPreferences
(. Projects from Folder or Archive

» &Git

» = Gradle

» & Install

b =Maven

» = 0omph

» & Run/Debug

¥ (= Tasks

} =Team

b EXML

@ < Back Next >

Import Projects —

/ 7

Select a directory to search for existing Eclipse projects. /4
© select root directory: | :a/work/orcapps/Helloworld| | ~ Browse...

Select archive file:

Projects:

Helloworld (/home/alireza/work/orc-apps/Helloworld) Select All

into

ProNoC homepage

June 23, 2022

80

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

Run ORCC

inbuilt
simulator

3. OnthePackage Explore CliCkOIlExample.xdf -> Run As —-> 2 Orcc Simulation

[# Package Explorer &2 = 8]

2 v New »
fo! -
~ i& Helloworld [orc-apps master] Open 3
~ @ src OpenWith)
b 3 cal ShowIn shift N
% Examplexdf & copy

¢ Example.xdfdiag 2 Copy Qualified Name

<7 Hello.xdF [Paste Chrlav

4 Hello.xdfdiag ® Delete

Build Path 3

Refactor Shift+AlL+T »
ta Import...
e Export...
" Refresh F5

Assign Working Sets...

Validate !

Coyerage As ¥ | console 52

Run As > & 1 0rcc compilation
Debug As 3 @ 2 orcesimulation

Figure 8.1: ORCC Run as Menu Snapshot.

4. Select a file as input stimulu

Select simulator o X

Select simulator:

|
Visitor interpreter and debugger

Cancel Select input stimulus :
0 Recent 4 work | orcapps | Helloworld | src »
G Home Name v Size Type Modified
) @ cal 22:41

- Cancel oK [Desktop B Example.xdf 1,1kB Markup 22:41

Figure 8.2: ORCC Run as Menu Snapshot.

5. By default, the FIFO width in ORCC is set to 512-bytes (the minimum page-size
desktop PC OS). However, this value may be too large for the targeted FPGA
platform due to limited memory resources. You can set a smaller value for FIFO
width in simulation Options as shown in Figure 8.3.

ProNoC homepage June 23, 2022 81

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

Create, manage, and run configurations
simulates a dataflow program with Orcc. @

CEaxX B Name: .Example - Simulation
type Ffilter text @ simulation settings & simulation options [l Common
& Gradle Project SEEh=E
4 Java Applet Debug mode
[T Java Applicatid| || Default FIFO size: 2 to the power of | 6 - +|=64
JrJunit
£ Launch Group
mz Maven Build
M Aree ramnilakil
Revert Appl
Filter matched 10 of Y
@ Close Run

Figure 8.3: Reducing FIFO width.

6. Now you can click on ”Run” button and observe the simulation results in Eclipse
console terminal:

[# PackageExp 2 = 0O |7 Example 2

= i
~ @& Helloworld [orc-apps ma
~ #src
» B cal
|24 Example.xdfdiag
<% Hello.xdf
I4{ Hello.xdfdiag

[#] Problems @ Javadoc [Declaration & Console 52

.Example - Simulation [Orce simulation] Oree virtual process
[Producer (o)

Producer (1)

Producer (2)

CopyToken (first): 1

CopyToken (first): 2

CopyToken (first): 3

CopyToken (second): 1

CopyToken (second): 2

CopyToken (second): 3

PingPong [ppl] :1

PingPong [pp2] :2

PingPong [ppl] :3

Merger (@): 1; 1
Merger (1):
Merger (2):

Figure 8.4: Reducing FIFO width.

Run ORCC

Compllatlon 7. Onthe Package Exploreclick onExample.xdf -> Run As -> 1 Orcc Compilation

. (see figure 8.1).

8. It now asks you to choose an output folder where the generated C codes will be
stored there. Then select c as backend and reduce the FIFO width as shown in

ProNoC homepage June 23, 2022 82

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

the bellow figures: . Create a new folder with the name of orcc-out and define
it as the output directory in this step.

Select backend o X

Select backend:

c Create, manage, and run configurations ~

COMPA (experimental) Compiles a dataflow program with Orcc. @

DAL

HLS (experimental) 2 X B Name: .Example-C

HMPP (experimental) type filter text & compilation settings | & Compilation options !

sade 9 S | 1o

LLVM Debugmode

. 2 Launch Group

OpenMP (experimental) m2 Maven Build Default FIFO size: 2 to the power of | 6| - +|=¢64

PREESM ~ @ orce compilatis

PROMELA
~ @ orccsimulatior

TTA . Revert Apply
Filter matched 11 of

3 ?
(‘2/. Cancel oK % @ Close Run

9. Click on the Run button to compile the code:

[PackageExp 8| = B < Example %
B3 -
~ @ Helloworld [orc-apps ma
- & sic
> & cal

¢ Example.xdfdiag

<5 Hello.xdf

¥ Hello.xdfdiag

22 Problems @ Javadoc (@ Declaration & Console %2

Compilation console

c
Helloworld

* Network: -Exanple

: Library export done in 0.2385
: Network transformations

: Done in 0.1015

: Network validation

: Network generation

: Done in 0.057s. Result: 5 file(s) written - © file(s) cached
: Children transfornations

: Done in 0.05

: Children generation

: Done in 0.065. Result: 5 file(s) written - 0 file(s) cached
: Orcc backend done.

Modifying the = The generated C code by ORCC can only be run on the desktop PC having OS. To run

generated C them on the ProNoC custom embedded multicore hardware, they needed to be modified
code using using ProNoC tools.
ProNoC

1. Follow instructions on Simple message passing demo on 2x2 MPSoC Chapter
up to Software Development Section and generate a Multicore system in RTL.

* Note that you need to set a value larger than zero (e.g. 4) for header
data pre-captured width (HDATA _PRECAPw) parameter in NI configura-
tion setting. This value defines the maximum number of input FIFOs in a
processing tile source code that is 2/ PATA-PRECAPw) Ty case that the
number of FIFOs exceeds this limitation, an error is asserted during the
compilation time.

ProNoC homepage June 23, 2022 83

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

Parameter setting for ni_master

Parameter name Value Type 9

MAX_TRANSACTION_WIDTH | (@ || 13

MAX_BURST SIZE @ 1 -
Dw O =» =
CRC_EN @ o -
HDATA_PRECAPW g 4 =

* You need to connect the NI interrupt pin to the processing core as the com-
munication between actors located in different processing tiles is handled
using interrupt service routine.

* Note that you can target a larger number of processing cores by changing
NoC configuration setting.

2. Click on the Software button to open the software development window.

Then click on the @ Auto-generate software using ORCC tab to open ORCC
converter page.

3. To load the generated C codes in step 8 on select a file page click on %
button and load orcc-outdir/src/Example.csv. It should load the actors in the
GUI window as shown in the bellow figure. You can also click on %. button to
see the actor communication graph.

@ auto-generate Software using ORCC

NP Select v # Source Destination Bandwidth(MB) Initial weight# Virtual channel# Message class#
@ || m L ¥
0 Prod CopyTokenh 1 = 0 = o 2
0 CopyTokenA CopyTokenB 1 = 0 = 0 =
o Prod PingPong 1 = 0 = o 2
0 CopyTokenB Merger 1 : 0 : 0 :
0 PingPong Merger 1 = 0 = o 2

Trace Diagram - g

Save as:

4. Now click on Group Actors page. Here you can make different actor groups
and put several actors in one group. All actors that are in the same group will

ProNoC homepage June 23, 2022 84

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

be run on the same processing core. In this example, we have 5 actors and want
to run them on a 4-cores processing platform. To do that, we need to make an
actor-group containing at least two actors to fit in this target. You can drag any
actor icon and drop it in any group window. Let’s drag-and-drop copy-Tokena
and copy-TokenB in the same group and rename the group as copy, as shown in
the bellow figure.

Software Editor @ Auto-generate Software using ORCC

1-5elect orcc file | rActors: Drag and drop Actors te bottom group list

2-Group Actors @ @ @

3-Map Actors

Merger PingPong Prod

copy group(l)
CopyTokenA
CopyTokenB

5. Now click on Map Actors. Here you can map actors/Grouped actors to process-
ing tiles. Each processing tile can get only one actor or one actor-group. You
can drag-and-drop actors to processing tiles or use a mapping algorithm (recom-
mended Nmap) to do the mapping tasks automatically.

Software Editor @ Auto-generate Software using ORCC

1-Select orcc file | (Actors: Drag and drop Actors/grouped Actors)
2-Group Actors R

3-Map Act
ap Actors Mapping Algorithm | Nmap bt .J

tile(0) tile(1)

coPy Prod Mapping summary

Average distance
Max distance

Min distance
@ @

. Normalized data per hop
Merger PingPong

1
tile(2) tile(3) 1
1
1

6. Click on @ Generate button to generate the bare-metal C codes for each pro-
cessing core.

ProNoC homepage June 23, 2022 85

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

7. If everything goes correctly, you must have the new generated codes in your tar-
get MpSoC/SW folder. Click on Software Editor to compile the generated

codes.
Software Editor | @) Auto-generate Software using ORCC
¥ RAM .
File Search Help
README
SOURCE_LIB Q RegExp | | Case
ﬁl | Z14
e list 275 int main(}{
image 276 schedinfo_t si:
f 277
image.ihex)
9 278 rest_all_fifo_ptr();
image.lst 279 CopyTokenA_init_actor(&si);
image.map 3:? CopyTokenB_init_actor(&si);
link.Id 282 general_int_init();
linkvar.|d 283 general_int_add(ni_INT_PIN, ni_isr, 0); //ni_INT_PIN
284 J/ Enable niinterrupt (its connected to interrupt pin 0)
- 285 general_int_enable(ni_INT_PIN);
morlk_tile_xilinx.c 286 general_cpu_int_en();
morlk tile xilinx.h 287 J/ hw interrupt enable function:
, k_ - 2838 J/ ni_initial (burst_size, errors_int_en, send_int_en, sa
morlksx 289 ni_initial (16,1,1,1,1); //enable the interrupt when a pa
* orcc 290 oport_array[0]=255;
CopyTokenA.c %g; oport_array[11=255;
CopyTokenA.h 293 delay(100);
CopyTokenB.c 294 while(1){)
295 CopyTokenA_run_actor{&si);
CopyTokenB.h 296 CopyTokenB_run_actor{&si);
generic_fifo.h 297
orcc_func.c 298 1}
- . 299 return 0;
orcc_lib.h 300 }
orcc/CopyTokenB.c:247:15: warning: unused variable credit_send_buff [-Wunused-variable]
unsigned int credit_send_buff;
Compilation finished successfully. I
o Required BRAMs' size | €2 LD Linker @ Compile| %" | {f Program FPGA's BRAMs

8. Now press the @ compile button. This compiles the C codes using Morlkx
GNU toolchain. If everything runs ok, you must see the "Compilation finished
successfully” message. Otherwise, check the error message to fix your code and
press the compile button again. Note that in case you got RAM or ROM overflow
errors, you can fix them by following the linker LD setting. If everything runs
successfully, you must have ram0.bin, ram0.hex, and ram0.mif files in your
sw/tile[n]/RaM directory, where n is the tile number.

9. Follow bellow instructions to see the simulation/compilation results:
Simulate the generated RTL code using Modelsim software
Simulate the generated RTL code using Verilator software
Compile the generated RTL code using Quartus II software

ProNoC homepage June 23, 2022 86

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

&1 sim - Defauit
| Instance
=) testbench

& #NTIAL220
S st

| Find |8, o | 1 SeachFor v

. Lorary 8 Memary Lt | g sm <> x|Fic | 88

A Transcript
TES LUETCIT. GO . CITE_H0T TR LI TE_ 1. CPU. 10T IKAU. DUS _EENT. 10US 0T 1UEET WISTDUNE DUS IF IS 53 REGISTEREU TEEUDACN

testbench.uut . the_mor1lk_tile_1.cpu.morlkx@.bus_gen.dbus_bridge: Wishbone bus IF is B3_REGISTERED_FEEDBACK
testbench.uut . the_mor1k_tile_2.cpu.morlkx@.bus_gen.ibus_bridge: Wishbone bus IF is B3_REGISTERED_FEEDBACK
testbench.uut.the_morlk_tile_2.cpu.morlkx®@.bus_gen.dbus_bridge: Wishbone bus IF is B3_REGISTERED_FEEDBACK
testbench.uut . the_morlk_tile_3.cpu.morlkx@.bus_gen. ibus_bridge: Wishbone bus IF is B3_REGISTERED_FEEDBACK
testbench.uut . the_morlk_tile_3.cpu.mor1kx@.bus_gen.dbus_bridge: Wishbone bus IF is B3_REGISTERED_FEEDBACK
Producer (0)
Producer (1)
Producer (2)
PingPong [ppll :1
PingPong [pp2] :2
PingPong [ppll :3
CopyToken (first)
CopyToken (first)
CopyToken (first):
CopyToken (second): 1
CopyToken (second):
CopyToken (second): 3
Merger (@): 1; 1
Merger (1): 2; -2
Merger (2): 3; 3

W

R R R R R R TR R R R R R R R R R R
~

VSIM 2>

Now: 81854018 Deta: 7 0 ed pon o

Figure 8.5: The Modelsim simulation snapshot of ORCC hello world example.

1, ibuz_brid
1, dbus_brid
1, 1buz_brid
1, dbuz_brid

Figure 8.6: Verilaor simulation snapshot of ORCC hello wold example.

ProNoC homepage June 23, 2022

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

CHAPTER 9

NoC Simulator

Summary

System
Requirements:

Simulation
Example:

Generate first
NoC simulation
model with XY
routing

The ProNoC NoC is developed in RTL using Verilog HDL and it can be simulated using
Verilator simulator. The ProNoC simulator provides the graphical user interface (GUI)
for simulating different NoC configuration under different synthetic traffic patterns.

You will need a computer system running Linux OS with:
1. Installed the ProNoC GUI software and its dependency packages.
2. Installed Verilator simulator.

In this example we simulate two 8 x8 Mesh NoCs, one with fully adaptive routing and
another with DoR routing algorithms.

1. Open mpsoc/perl_gui in terminal and run ProNoC GUI application:

./ProNoC.pl
It should open The GUI interface as illustrated in Figure 9.1.
2. Click on [to open ProNoC simulator tabs.

3. Click on NoC simulator tab to open simulator GUI interface:

#[3]2 3

"VC_BASED"

Router Type

T

Avg. throughput/latency | Injected packet | Worst-Case Delay || Executaion Time
Routers per column

875.0
VC number per port

750,0
Buffer fits per VC
625.0

payload width 508,08

QOO OO OO0

Routing Algorithm 375.0

IR

Latency (clock}

258,08

125.0

8
Desired Avg. Tnjected Load Per Router {flits/clock (D)

B Lo S 8 s O rna

Figure 9.1: NoC simulator snapshot.

4. Click on Generate NoC Simulation Model tab to open NoC configuration set-
ting page.

5. Change the default NoC parameters as shown in below table:

ProNoC homepage June 23, 2022 88

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

Generate the
second NoC
simulation
model with fully
adaptive routing

Run simulation
under Matrix
Transposed
traffic pattern

Parameter name Value Parameter Name Value
Router Type "VC_BASED” | Router per row 8
Router per column 8 VC number per port 2
Buffer Flits per VC 2 Payload width 32
Topology ”Mesh” Routing Algorithm ’xy”
SSA Enable "NO” SW allocator arbitration type | "RRA”

6. Enter a name for this NoC configuration (e.g. mesh_8x8_xy).

7. Press the generate button.

€§ Trace generator Noc simulator | {885 NoC emulator
R b Verilator --cc traffic_oen_verilator. v --profile-cfuncs --prefix "Viraffic' -03 -CFLAGS -03
*RETCODE == 0
Ger oC | Routing Algerithm o gy
Co ion
SSA Ebable Q [Veriator model has been generated successfully!

@) noc Parameters

Q) rova

k. imjector o win: | (@ (18

nce Parameters

@ 2 P d_rtl/oby_dir///"

make lib

make -f Vnoe.mk

o[===1

Desired Avg, Injected Load Per Router (Flits/clock

B s

Figure 9.2: Generate NoC simulation model.

© wne

8. In NOC configuration tab, keep the previously set parameters and only change
the routing algorithm to "DUATO”.

9. Enter a new name for this NoC configuration (e.g. mesh8x8_full).

10.

11.
12.

13.

press Generate button and wait for compilation to be done.

Click on Run simulator tab.

Click on “ to add a NoC simulation model.

Set following configurations for the simulation model. For flit injection ratios,

you can define individual ratios separated by comma (’,’) or optionally you can

define a range of injection ratios with [min]:

[max] : [step] format.

ProNoC homepage

June 23, 2022

89

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

* Note that you can also add more injections ratios later. Each time you run
the simulation the simulation results of new injection ratios are added to the
previously plotted results.

Parameter name Value Parameter Name Value
Verilated Model “mesh_8x8_xy” | Traffic Type Synthetic
Configuration Name Xy Traffic name transposed 1
Min pck size 2 Max ock size 10
Total packet number limit 200000 Simulation clock limits 100000
Injection ratios 2:32:2
o ProNoC > NoC configuration setting
#" B Search Path: 9 /home/alireza/mywork/mpso|| g~
f: Trace generator NoC simulator Verilated Model g mesh_Bx8_xy 13 -
11 - e ,
Generate NoC Name Add/Remov freffieTe g ke =
S 12 Configuration name: 9 Xy
Traffic name 9 transposed 1 =
Min pck size @ 9 2 =
Max pck size 9 10 .
Avg. Packet size: g 6 =
Total packet number limit: g 200000 -
Simulator clocks limit: 9 100000 =
Injection ratios: e 2:20:2 = Check
A2 Load @ ok
Figure 9.3

14. Click on “ to add the second NoC simulation model. Fill the NoC configura-
tion as shown in following table.

Parameter name Value Parameter Name Value
Verilated Model “mesh_8x8_full” | Traffic Type Synthetic
Configuration Name fully Traffic name transposed 1
Min pck size 2 Max ock size 10
Total packet number limit 200000 Simulation clock limits 100000
Injection ratios 2:32:2

15. Save the simulation. You can save the simulation at any time during run time.
Hence, later you can continue the rest of simulation.

ProNoC homepage

June 23, 2022

90

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

16. To start the simulation press @ Run all button. You can also run each indi-
vidual simulation by pressing the @‘ Run button in its simulation row.

17. After the simulation is done, if your graph is not yet completed you can enter a
new injection ratio range and press the U rRun key again.

18. You can edit the generated graph and then save it from graph editing toolbox. By
saving the simulation graph, the simulation results is also provided in a text file
as well.

ProNoC

® o
<g Trace generator Noc smutator | 4855 NoC emuiator

Run simulator

ywork/mpsoc_work/simulate/mesh_8x8_xy with injection ratio of 20 %
Jmpsoc_work/simulate/mesh_8x8_xy -t "transposed 1' -s2-m 10 -n 200000 -c 100000
o

Generate NoG | Name Add/Remove

s @
w o (@
(%)

simulation is done!

Avg. throughput/latency | Injected Packet | Worst-Case Delay | Executaion Time
s Latency

102.4

Latency (clock?

r ® g g @
N R
BoboR WA

2 4 6 8 16 12 14 16 18 20 22 24 26 28 30 32
Desired fvg, Injected Load Per Router (Flits/clock (%)}
Wy Sfull

20

v - m =l 21

Figure 9.4

For each simulation experiment five simulation results are obtained:

(a) Average latency per average desired flit injection ratio

(b) Average throughput per average desired flit injection ratio

(c) send/received packets number for each router at different injection ratios
(d) send/received worst-case delay for each router at different injection ratios

(e) Simulation execution clock cycles

ProNoC homepage June 23, 2022 91

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

119.5 20,9
M
g
102.4 Lo
3 $
g 85.4 420,86
K =
) z
Y 68,3 16,5
2
g 2
g]
B 51,2 S12.4
&)
3 i
34.1 £ 8.2
£
£
17.1 e oAt
¥
&
R S S S S S S S gl ooy
2 1 6 8 18 12 14 16 18 28 22 24 26 28 38 32 2 L 6 8 18 12 14 16 18 28 22 24 26 28 38 32
Desired Avg. Injected Load Per Router (flits/clock (22} Desired Avg. Injected Load Per Router (flits/clock (%)}
Wy Sfull Wy Efull
(a) Load-latency (b) Load-throughput
5466.8
yd p
4858.7 | 1
z |
4251,3
2 |
3644,8 | |
Z [|
g 3036.7 [|
S ya
© 2429.3
8
§ 1822.0
L
8
£ 1214.7
2
687.3
0.0
Core ID Core ID
Wy Efull Wy EFull

(c) Injected packets per router at 32% injection
ratio.

1100172

(d) Worst-case delay per router at 32% injec-
tion ratio.

94300.5

78583.8

628678

47150.2

31433.5

Total Simulation Tine {clk}

15716.8

2 4 6 8

10 12 14 16 16 20 22 24 26 23 30 32

Desired Avg, Injected Load Per Router (flits/clock (%))

(e) Simulation time in clock cycles.

Figure 9.5: Simulation sample results.

ProNoC homepage

June 23, 2022

92

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

CHAPTER 10

NoC Emulator

Summary

System
Requirements

Emulation
Example:

Generate first
NoC emulation
model with XY
routing

ProNoC comes up with a GUI for emulating an actual NoC on Altera FPGAs. The
ProNoC emulator is a programmable packet injector module that can be programmed
at run time using Altera JTAG interface. These modules inject/sink packets to the
prototype NoC according to the traffic patterns.

You will need an Altera FPGA development board having USB blaster I or II and a
computer system running Linux OS with:

1. Installed the ProNoC GUI software and its dependency packages.
2. Installed Quarts I (Web-edition or full) compiler.

For more information about the GNU toolchain installation please refer to the
Installation Manual for the Ubuntu. In case your FPGA board is not included in
ProNoC FPGA board list please follow the instruction given in Add new FPGA board
to ProNoC, to add your board to ProNoC.

In this example we simulate two 5x5 Mesh NoCs, one with fully adaptive routing and
another with DoR routing algorithms using DE10-nano Altera FPGA board.

1. Open mpsoc/perl_gui in terminal and run ProNoC GUI application:

./ProNoC.pl
It should open The GUI interface as illustrated in Figure 10.1.
2. Click on [& to open ProNoC simulator tabs.
3. Click on NoCc Emulator tab to open the emulator GUI interface:

#E‘z

e | O noc £ noc
.
Q| | e s
@ |wes
Q |2
fotersper column e 2 roughput/ Y | Injected Packe Del B i
rer—— 1l D —
st s per v Q| ©
aoad wittn Q |=)
Routing Algrtm Q | ©
=
Desired Avg. Injected Load Per Router (flits/clock (X))
——
B o -~ B s Q rna
Figure 10.1
ProNoC homepage June 23, 2022 93

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

4. Click on Generate NoC Emulation Model tab to open NoC configuration setting
page.

5. Change the default NoC parameters as shown in below table:

Parameter name Value Parameter Name Value
Router Type ”VC_BASED” | Router per row 5
Router per column 5 VC number per port 2
Buffer Flits per VC 2 Payload width 32
Topology ”"Mesh” Routing Algorithm ’xy”
SSA Enable "NO” SW allocator arbitration type | "RRA”

6. Enter a name for this NoC configuration e.g. mesh_5x5_xy.

7. Press the generate button.

Pck. injector FIFO Width: 9 16 -

Save as: 9 [mesh_SxS_xﬂ 6

Project directory e fhome/alireza/ mywork/mpso|| g

@ Generate | 7/

Figure 10.2: Generate NoC model

8. Follow instructions in Compile the generated RTL code using Quartus II soft-
ware to compile the desired emulation model for an Altera FPGA board. For
this example we used the DE10-Nano FPGA board which its pin assignment is
shown in Figures 10.3.

ProNoC homepage June 23, 2022 94

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

) Step 2: Pin Assignment

Port Direction Port Range Port name Assigment Type Board Port name Board Port Range
input ck Direct L || FPGA_CLK1_50 =
output done_led LED - o
output jtag_reset_led LED -) F—
output noc_reset_led LED - -
input reset Negate(~) - KEY - o
4= Previous e Next

Figure 10.3: DE10-Nano FPGA board pin assignment.

Generate the

second NoC))
emulation 9. In NOQ conﬁgur.atlon ta’l,), keep tEe previously set parameters and only change
model with fully the routing algorithm to "DUATO”.

adaptiverouting 1 Epter 4 new name for this NoC configuration e.g. mesh5x5_full.

11. Generate the NoC emulation model in similar way to step 8.

Run Emulation
models under

Matrix 12. Click on Run Emulator tab.
Transposed 13. Click on “ to add a NoC emulation model.
traffic pattern

14. Set following configurations for the emulation model. For flit injection ratios,
you can define individual ratios separated by comma (’,”) or optionally you can
define a range of injection ratios with [min] : [max]: [step] format.

* Note that you can also add more injections ratios later. Each time you run the
emulation the emulation results of new injection ratios are added to the previ-
ously plotted results.

Parameter name Value Parameter Name Value
FPGA Board [Your FPGA board name] | Sram Object file “mesh_5x5_xy”
Configuration Name Xy Traffic name transposed 2
Packet size in flits 5 Packet number limit per node 1000000
Emulation clock limits 25000000 Injection ratios 2:50:2

15. Click on “ to add the second NoC emulation model. Fill the NoC configura-
tion as shown in following table.

ProNoC homepage June 23, 2022 95

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

Parameter name Value Parameter Name Value
FPGA Board [Your FPGA board name] | Sram Object file ”mesh_5x5_full”
Configuration Name fully Traffic name transposed 2
Packet size in flits 5 Packet number limit per node 1000000
Emulation clock limits 25000000 Injection ratios 2:50:2

16. Save the emulation. You can save the emulation at any time during run time.
Hence, later you can continue the rest of emulation.

17. To start the emulation, Power on your FPGA board and connect it to your PC
then press @ Run all button. You can also run each individual emulation by

pressing the (g Run button in its emulation row.

18. After the emulation is done, if your graph is not yet completed you can enter a
new injection ratio range and press the (g Run key again.

19. The emulator generates similar results as NoC simulator generates.

ProNoC homepage June 23, 2022 96

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

66.5 L ag.9
~
g
57.8 S dz.7
2 £
ga7.5 435,68
K H
) =
T 3.8 T os.5
o
g 2
H 5
5285 G214
" @
3 g
19.8 £14.2
£
=
9.5 @ 7.1
¥
0 S S S S S S S S S M R < oo P S S S S N A SR S
° 2 4 6 8 1812 14 16 18 28 22 24 26 28 38 32 34 36 38 40 42 44 46 48 58 ° 2 4 6 8 18121416 18 28 22 24 26 28 38 32 34 36 38 48 42 44 46 48 56
Desired Avg. Injected Load Per Router (flits/clock (%)) Desired Avg. Injected Load Per Router (flits/clock (GO
Way Sfull Wry SFull
(a) Load-latency (b) Load-throughput
 AAddd Fdd44 diddd _adadda
10006170 ’I’ I' I' 626.0
888964.8 /l [1 734.2
H i 1 [~
g 777791.0 il 1 1 = 642.4
H N [i c
% 666678.0 /] | 1 [| 5587
5] 1 [7
& 555565.0 (] | 1 [| g 458.9
8 I I I 8
% 4444528 1] 1 [2367.1
H T i I 8
& asasss.e ||} | I T 275.3
- i 1 [@
2 220006.8 /1] 1 1 5183.6
8 [1] 2
111113,8 ,l 1 | 9.8
44 y S
EEE R
TRANER
Core ID Core ID
Mxy Wfull Wiy EFull

(c) Injected packets per router at 50% injection
ratio.

. 52324161,3
=

=
S a4849281,1

@
9
@
b
i
2
3
8
©

dion Tine

.3 29899526.8

22424648.6

14949766.4

Total Enulat.

7474880.2

8.8

(d) Worst-case delay per router at 50% injec-
tion ratio.

2 4 6 8 1012 141616 20 22 2426 26 30 32 34 36 36 40 42 44 46 46 50
Desired Avg, Injected Load Per Router (flits/clock (%))

xy Hfull

(e) Emulation time in clock cycles.

Figure 10.4: Emulator sample results.

ProNoC homepage

June 23, 2022

97

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

CHAPTER 11

ProNoC Tools

JTAG UART

UART Terminal

ProNoC support including several JTAG based Universal Asynchronous Receiver-Transmitter
(UART) in a SoC/MPSoC. A unique gTac_1nDEX should be assigned to each UART to
avoid conflict.

ProNoC includes an in-built GUI for UARTS terminal. To run the UART terminal run
ProNoC and press ctr1+u. You can also directly run this tool by running following
commands in in linux terminal.

cd mpsoc/perl_gui/lib/perl
perl uart.pl

Figure 11.1 illustrates the snapshot of the UART GUILThe following settings are re-
quired in order to connect to UART modules:

1. UART name: Select one of ProNoC_XILINX_UART Of ProNoC_A1TERA_UART accord-
ing to your FPGA device.

2. Define the total number of UART modules in your SoOC/MPSoC design. Each
UART module will have its own output window on the left side of the main
window.

3. For each UART module set the corresponding JTac_inpeX. This value is given
as an input parameter to each UART module. The default value for each UART
is 126-CORE_ID. In case you have left the default values for an MPSoC where
each of its tile has its own UART module, these indexes are 126,125,124 and so
on.

4. You need to set the FPGA device configuration on JTAG chain now. Click on
+- browse button will guide you about this task.

(a) For Xilinx FPGAs you need to set the JTAG TAP chain number. This
parameter has been passed to the UART module as global parameter. The
default value is 3.

(b) For Xilinx FPGAs you need to set the FPGA device target number in the
JTAG chain. Figure 11.1 shows an example for Digilent Arty-Z7 XILINX
FPGA board. The FPGA device is xc7z020 which is the 37 target in jtag
chain.

(c) For Altera FPGAs (see Figure 11.2) set the Hardware name.

(d) For Altera FPGAs you need to set the FPGA device target number in the
JTAG chain. Figure 11.2 shows an example for DE10-Nano Altera FPGA
board. The FPGA device is SCSEBA6U23I7 which is the 2" target in jtag
chain.

5. you can now connect/disconnect the JTAG UART terminal by pressing clicking
on orFr/oN button.

ProNoC homepage June 23, 2022 98

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

UART Terminal)

3 3
INDEX# INDEX# UART name | Pronoc xiumx uarr - || 1
Hi From core 1! Hi from core 2! Number of UART E 2 5
JTAG CHAIN =
JTAG TARGET =
JTAG Connect
SEND_TOINDEX# (126 : | |2
3 3
INDEX# INDEX#
Hi from core 3! Hi from core 4

kargets are:
1 Digilent Arty Z7 003017A4CB29A
2 arm_dap (idcode 4ba00477 irlen 4)

xc?zozo (idcode 23727093 irlen 6 fpga) 4p
done

Figure 11.1: Uart terminal snapshot (Xilinx FPGA configuration).

UART name IProNoC_ALTERA_UART ‘I 1

Number of UART 4 :

Hardware Name 4C 4_
Device Number 4d v

JTAG Connect OFF

Detected Hardware 4c

There are total pf 2 devices in JTAG chain:
1; 4BA00477 SOCVHPS
02D020DD 5CSEBAG(.|ES)/5CSEMAS/.. 4(]

. Select the corresponding Jtag device number which the
serial port is connected to

Figure 11.2: Altera FPGA configuration setting.

ProNoC homepage June 23, 2022 99

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

For Xilinx FPGAs you can also use mpsoc/src_c/jtag/uart_xsct_terminal/
uart to monitor UART output ports on linux terminal.Remember you need to add the
path to xilinx/SDK/bin to your PATH variable first. Run ./uart without any option
to see the usage info. Following is the example command for monitoring Digilent
Arty-Z7 XILINX FPGA with four UART modules:

./uart -a 3 -b 36 -t 3 -n 126,125,124,123

File Edit View Search Terminal Help
JART@(126) : UART1(125):

UART3(123):

ress ESC to quit._

Figure 11.3: Linux terminal-based UART terminal.

ProNoC homepage June 23, 2022 100

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

Add new On ProNoC GUI window click on Tools then select Add new ALtera FPGA Board. A
ALtera FPGA new window as shown in Figure 11.4 must appear. Fill the required fields as follows:

Board
1. Enter your board name. Do not use any space in the given name

2. Enter the path to FPGA board QSF file. In your Altera board installation CD
or in the Internet search for a QSF file containing your FPGA device name
with other necessary global project setting including the pin assignments (e.g
DE10_Nano_golden_top.qsf).

3. Enter the path to [FPGA _board_top].v file. In your Altera board installation CD
or in the Internet search for a Verilog file containing all your FPGA device 10
ports (e.g DE10_Nano_golden_top.v).

4. Power on your FPGA board and connect it to your PC then press the (y Auto
Fill button to auto-fill the JTAG configuration setting.

5. Press the @y add button.

Add New FPGA Board

FPGA Borad name: el DEL0_Nano_VB2 l &l
FPGA board golden top QSF file: e I DE10_Nano_golden_top.qsf ,‘.. l b
FPGA board golden top verilog file el DE10_nano_VB2.v| J l c

FPGA Board JTAG Configuration
FPGA Borad USB Blaster PID: @ [sow
FPGA Borad Programming Hardware Name: e DE-SoC

FPGA Borad Device location in JTAG chain: | (g |2 =

Detected PID: 6010
/home/alireza/intelFPGA_lite/ 17.1/quartus/bin/jtagconfig
1) DE-50C [1-2]

4BADD477 SOCVHPS

02D0Z20DD S5CSEBAG(.|ES)/SCSEMAG/..

*RETCODE == 0
Detected Hardware: DE-50C
Device name in gsf file is: SCSEBAGU23I7

SCSEBAGUZ3I7
has the most similarity with SCSEBAG(.|ES)/SCSEMAE/.. in JITAG chain

Figure 11.4: Add new FPGA board to ProNoC.

ProNoC homepage June 23, 2022 101

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

Add new Xilinx On ProNoC GUI window click on Tools then select Add new Xilinx FPGA Board. A
FPGA Board new window as shown in Figure 11.5 must appear. Fill the required fields as follows:

1. FPGA board display name: Enter a name for your FPGA Board. Do not use any
space in the given name.

2. Set the path to Vivado board files repository.
E.g. for ArtyZ7 FPGA board you can download its corresponding repo from
https://github.com/Digilent/vivado-boards andsavein ${ProNoC_work
} /toolchain/board_files folder.

3. FPGA board part name: Your Board name (Board PART). You can click on its
adjacent £ to get the list of all available boards in your Vivado software.

4. FPGA part name: Enter your FPGA device name (PART). If you have selected
Board PART in last step you can click on its adjacent £ to get this parameter.

5. FPGA Hardware device name: The target hardware name in JTAG chain. Con-
nect your FPGA board to your PC and click on its adjacent {¥ to get the list of
all available targets in your FPGA board.

6. Target device JTAG chain order number:The order number of target device in the
jtag chain.Connect your FPGA board to your PC and click on its adjacent £ to
get this value.

7. FPGA board xdc file: Path to FPGA board xdc file. In your Xilinx board instal-
lation CD or on the Internet, search for an xdc file containing your FPGA device
pin assignment constrain.

8. FPGA board golden top Verilog file: (Path to FPGA _board_top.v file) A Verilog
file containing all your FPGA device 10 ports.

ProNoC homepage June 23, 2022 102

https://github.com/Digilent/vivado-boards
http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

Add New Xilinx FPGA Board

FPGA board display name: .9 I}ar‘ty_z? | I 1
Set board repo: .9 I '\.Ek:'tgclIEI’!_E;IE.;I:Jc}arcl___ﬁES= ,3 | I 2
FPGA board part name: |9| digilentinc.com:arty-z7-20:| = | IVI 3
FPGA part name: ellxﬂznzoc\gmo& | OII 4

FPGA Hardware device name: |6 I xc7z020 1 A (yl 5
Target device JTAG chain order number e I 3 = {yl 6

FPGA board xdc file: e IArty_zT_Zo.xdc_ 2 I 7

FPGA board golden top Verilog file 6 IArtyiz'.[zo.v 2 I 8

e e e e =

3 xc72020 (idcode 23727093 irlen &6 fpga)
done

wr 770201 _matchad with tarast 3 we 72020 it

& Add

Figure 11.5: Add new Xilinx FPGA board to ProNoC.

ProNoC homepage June 23, 2022 103

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

Appendices

104

APPENDIX A

NoC Verilog File
Parameters
Description

Number of VC per router port. Defining
V as 1 results in a simple non-VC based

\% veNv>1.
router.
Buffer size per VC in flit for ports con-
B BeENB>2 nected to other routers.
Buffer size per VC in flit for ports con-
LB 1BEN, 1B > 2 nected to endpoints (local ports).
" Refer to Packet type for more informa-
MULTI_FLIT", .
PCK_TYPE tion.
"SINGLE_FLIT"
"MESH"
"TORUS"
"RING"
The NoC topology.
TOPOLOGY "LINE"
"FATTREE"
"TREE"
"CUSTOM"

T1,T2,T3,T4

T1,T2,73,T4 € N

A desired topology can be defined using
at most four parameters:
e.g: in mesh:

e T1: NX, number of node in x di-

mension.

e T2: NY, number of node in y di-
mension.

e T3: NL: number of individual

router local ports

e T4: is not used.
e.g: in Tree, Fattree:

e T1: K, umber of last level individ-
ual router‘s endpoints.

* T2:L layer number.

* T2,T3 are not used.

ROUTE_NAME

"Xy",

"DUATO", NoC routing algorithm for mesh topol-
"WEST_FIRST", ogy. "xy" is deterministic routing (DoR),
"NORTH_LAST", "DUATO" is fully adaptive and the rest are
"NEGETIVE_FIRST", partially adaptive routing algorithms.
"ODD_EVEN"

"TRANC_XY",

"TRANC_DUATO",
"TRANC_WEST_FIRST",
"TRANC_NORTH._LAST",
"TRANC_NEGETIVE_FIRST"
"TRANC_ODD_EVEN"

NoC routing algorithm for torus topol-
ogy. See [rahmati:2012] for more infor-
mation.

ProNoC homepage

June 23, 2022

105

https://www.sciencedirect.com/science/article/pii/S0141933111000755
http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

"NCA_RND_UP",
"NCA_DST_UP",
"NCA_STRAIGHT.UP",

NoC routing algorithm for Fatree topol-
ogy. Nearest common ancestor (NCA)
where the up port is selected randomly
(RND), based on destination endpoint ad-
dress (DST) or it is the top port that is lo-
cated in front of the the port which has
received the packet (STRAIGHT).

ceN

The number of message classes. Packets
that belong to different message classes
can have access to a different subset of
VCs. The subset of VCs for each class is
defined using CLASS_SETTING parame-
ter.

Fpay

Fpay € N,
Fpay = 32

Flit payload size in bit.

MUX_TYPE

"BINARY",
"ONE_HOT"

Crossbar’s multiplexer type in a NoC
router. Binary and one-hot multiplexers
are preferable for FPGA and ASIC im-
plementation, respectively.

VC._
REALLOCATION._
TYPE

"ATOMIC",
"NONATOMIC"

"ATOMIC": only an empty output VC can
be reallocated for a new header flit.
"NONATOMIC": A VC can be reallocated
when it has received the tail flit of the last
packet and has at least one empty buffer
space. See [monemi:2016a] for more in-
formation.

COMBINATION_
TYPE

"COMB_NONSPEC",
"COMB_SPEC1",
"COMB_SPEC2"

VC/SW combination type. None-
Speculative or Speculative VC/SW com-
bination.

FIRST.
ARBITER.
EXT_P_EN

Ifitis set as O, then the first level arbiters’
priority registers in switch allocator are
updated whenever any request is granted
at first level otherwise the priority regis-
ters are updated only if they also receive
the second level arbitration grants.

BYTE_EN

0: Disabled

1: Enabled. Adds a byte enable (BE) filed
to header flit which shows the location of
last valid byte in tail flit. It is needed once
the sent data unit is smaller than Fpay.

CONGESTION_
INDEX

CONGESTION_INDEX € N,
0 < CONGESTION.INDEX < 7

Define how congestion metrics is se-
lected. See Table A.2 for more informa-
tion.

ProNoC homepage

June 23, 2022

106

https://dl.acm.org/citation.cfm?id=2994134
http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

DEBUG-EN

If is defined as 1, the simulation will
be run using extra debugging codes.
The debugger dose several faults detec-
tion such as out of order flits receiving,
packet miss-routing and VC status miss-
matching.

ADD_PIPREG-
AFTER.
CROSSBAR

If is defined as 1, a pipeline register
will be added after the crossbar switch
which add one clock cycle latency for
link traversal stage. It may be needed for
ASIC NoC where routers are connected
using long wires. However, in FPGA im-
plementation it may not be required.

CLASS_
SETTING

It defines how each message class can
have access to VCs. For each class a V-
bit access-VC value is defined in such a
way that each asserted bit represents the
VC which this message class can request
for. The CLASS_SETTING is concatenate
of all message class access-VC values.

ESCAP_VC_MASK

It is a V-bit value and its asserted bit(s)
represent the escape VC(s) (EVC). It is
valid only for fully adaptive routing. You
must make sure that each message class
have access to at least one EVC to prevent
deadlock in fully adaptive routing.

SSA_EN

0,1

0,1

{v'bx, ...,V bX}
V' bX

"YES", "NO"

If set as "YES”, packets which are travel-
ing to the same dimension bypass router
pipeline stages using Static straight allo-
cator. See [monemi:2016b] for more in-
formation.

SMART_MAX

SMART._MAX € N,
SMART_MAX > 0

If Max Straight Bypass (SMART_-MAX)
is defined as n > O then packets are al-
lowed to bypass Maximum of n routers
in straight direction in single cycle. See
[monemi:2021] for more information.

ProNoC homepage

June 23, 2022

107

https://ieeexplore.ieee.org/abstract/document/7892399/
https://doi.org/10.1145/3479876.3481601
http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

SWA_ARBITER_
TYPE

" RRA n s
"WRRA"

Switch allocator’s output ports arbiters
type: RRA: Round Robin Arbiter. Pro-
vides only local fairness in a router.
WRRA: Weighted Round Robin Arbiter.
Results in global fairness in the NoC. Us-
ing WRRA the switch allocation requests
are granted according to their weights
which increases dynamically due to con-
tention.Refer to [monemi:2020] for more
information.

WEIGHTw

WEIGHTw € N,
2 < WEIGHTw < 7

WRRA weights” maximum width in bits.

MIN_PCK_SIZE

MIN_PCK_SIZE € N,
MIN_PCK_SIZE > 1

The minimum packet size in flits. In
atomic VC re-allocation, it is just im-
portant to define if the single-flit sized
packets are allowed to be injected to the
NoC by defining this parameter value as
one. Setting any larger value than one
results in the same architecture and the
NoC works correctly even if it receives
smaller packets size as while as they are
not single-flit sized packets. However, for
non-atomic VC reallocation NoCs, you
have to define the exact value as it de-
fines the NoC control registers’ internal
buffers. The NoC may crash once it re-
ceives packets having smaller size than
the defined minimum packet size.

SELF_LOOP_EN

"YES™ , "NO"

If the self-loop is enabled, it allows a
router input port sends packets to its own
output port. Enabling it allows a tile to be
able to send packets to itself too.;

ProNoC homepage

June 23, 2022

108

https://doi.org/10.1145/3391442
http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

CAST_TYPE

"UNICAST",
"MULTICAST_PARTIAL",
"MULTICAST_FULL",
"BROADCAST_PARTIAL",
"BROADCAST_FULL"

Configure a NoC as Unicast, Multicast or
broadcast NoC. In Unicast NoC, a packet
can be send to only one destination. In
Multicast, a single packet can have mul-
tiple target destination nodes. The broad-
cast packets are sent to all other destina-
tion nodes. For Multicast and broadcast
NoC only one single copy of a packet
is needed to be injected to the source
router, the routers then fork the packet
to different output ports when it is nec-
essary. Multicast and Broadcast can be
selected as FULL, where all destinations
can be included in packet destination list
or PARTIAL where a user defined subset
of nodes can be targeted in Muticasting.
Note that the Multicast/broadcast pack-
ets size should be equal or smaller than
router input port buffer size.

MCAST_ENDP_
LIST

NE’ bX

MCAST.-ENDP_LIST is an NE bit one-hot
coded number where NE is the total num-
ber of emdpoints and the asserted bit
indicates that the corresponding desti-
nation ID can be targeted in multicas-
t/broadcast packets. The corresponding
destinations with zero bit can only re-
ceive unicast packets. This parameter
is only valid for "BROADCAST_PARTIAL"
and "MULTICAST_PARTIAL" parameters.

ProNoC homepage

June 23, 2022

109

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

Table A.2: Congestion metrics.

Index Description pin overhead
0 Number of unavailable VCs in the neighboring router -
adjacent input port.
1 Number of consumed credit in all VCs of the neighbor- -
ing router adjacent input port.
2 Number of active switch allocation requests in all ports 2-bit
of the neighboring router.
3 Number of active switch allocation requests in all ports 3-bit
of the neighboring router.
4 Number of active switch allocation requests in all ports 2-bit
of the neighboring router that are not granted.
5 Number of active switch allocation requests in all ports 3-bit
of the neighboring router that are not granted.
6 Number of unavailable VC in all ports of the neighbor- 2-bit
ing router
7 Number of unavailable VC in all ports of the neighbor- 3-bit
ing router
ProNoC homepage June 23, 2022 110

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

APPENDIX B

NoC Verilog File
Signals Description

Resource
allocation units

Flit type

VC filed

Packet type

single-flit

Multi-flit

A packet is the unit of data that is routed between a source and a destination cores. Packets
contain control signals such as routing data, destination address, message classes in addition to
the data. Flits (flow control units) are the atomic units that form packets. A packet consists of
three types of flit; it starts with a header flit, followed by an optional number of body flits, and
ends with a tail flit. Phit (physical unit), is the smallest unit of data transmitted in a single cycle
on a communication link. In ProNoC flits are single phit size. The NoC resource allocation units
is shown in Figure B.1.

Message | Packet | || Packet o | PR
~

—

-~ —
~ —~ -
- - — —
Packet | HeaderFlit || Body Flit || BodyFlit || TailFiit |
7
/ . N
\
Flit [type|ve| phic |

Figure B.1: Units of resource allocation in NoC.

Type is a 2-bit signal indicates the type of its respective flit (header,body or tail). The first bit is
asserted for header flits. The second flit is asserted if the flit is a tail. For body flits neither of
these two bits are asserted. For single flit packets both of type bits are asserted.

VC filed is coded in one-hot format and the asserted bit indicates the packet VC number.

ProNoC supports two types of single or multi flit packet format. The packet format is defined by
setting PCK_TYPE parameter to one of SINGLE_FLIT or MULTI_FLIT values.

: In this configuration all packets injected to the NoC must consist of only single-flit. The packet
control fields are added to packet Data filed as shown in Figure B.2.
Fpay-bit
— A
— —~
Pckl Ctrifileds ~ pck-Data |
Pck2 Ctrifileds ~ pck-Data |
Pck3 Ctrifileds ~ pck-Data |

Figure B.2: Single-flit type packet format.

: In multi-flit format a packet can consist any arbitrary number of flits. In this format the header
flit carries the control fields as part of its payload filed as shown if Figure B.3.

ProNoC homepage June 23, 2022 111

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

Fpay-hit

~ —

Pckl

Figure B.3: Muti-flit type packet format.

Control fields The header flit carries some necessarily information which is required by the flow control. The
format header flit format varies depending on ho NoC parameter are selected.
Bit 0
\ destport | dst-endpoint-addr | src-endpoint-addr |
Size (bits) DSTPw EAw EAw
Fpay
\ header-data \ weight \ class \
Size (bits) HDw Ww Cw
Endpoint ProNoC encodes the endpoint addresses according to the topology parameters:

addressing format
Line,Ring : {L,X}
X: connected router index number.
L: index of router local port connected to the endpoint node.

Mesh,Torus : {L,Y,X}

X: Index of the first dimension (column) of the connected router.
Y: index of the second dimension (row) of the connected router.
L: index of a router local port connected to the endpoint node.

ProNoC homepage June 23, 2022 112

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

T2 X=0 T3 T6 X=1 T7

{2,0,0} {3,00} {2,1,0} {3.1,0}

{11110}
TS5
Tl4 T15
{2,1,1} {311}
{1,1,1} {0,1,1}
9 T8 TI3 T12

Figure B.4: 2x2 CMESH endpoint coding example.

The endpoint address size in Line,Ring,Mesh and, Torus is obtained using the following
equations:

NXw =log 2NX;

NYw = (NY > 1)? log 2NY : 0;

NLw = (NL > 1)? log 2NL : 0;

EAw = NLw + NYw + NXw; (B.1)

where VX is the maximum number of routers in first dimension, NY is maximum number of
router in second dimension, NL is maximum number of individual router’s local port, NXw is
router first dimension size in bits, NY w is router second dimension size in bits, NLw is router
local port index width in bits, and FAw is the endpoint address width.

In Fatree/tree each individual endpoint address is coded based on port number of parent
routers: {Po,P1,....Px_1}
where K is the height of tree and P,, is the router’s bellow port number located at the n*" layer
which can receives a packet from that endpoint (note that n,-0,:=0). Figure B.5 shows an example
of endpoint encoding in a fattree (k=3,n=3). As an example a packet which sent from T7 to any
of root nodes will always received from port number 1,2,0 in each layer respectively.

ProNoC homepage June 23, 2022 113

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

i Tl T) T4 5 T6 7 T8 ™ TI0 il TI2 TI3
{000y {001} {002} {0,,0f {011} {012} {020} {021} {022} {1,00} {1,01} {102} {1,1,0} {1,1,1}

Figure B.5: Fattree (k=3,1=3) endpoint coding example.

Kw =log2K
FAw =L x Kw (B.2)

where L is length of three and K is the number of endpoints connected to each individual router
in last tree level.
Once you press @ Generate RTL button in NoC-based MPSoC using :::: NoC based
MPSoC generator, the endpoint addresses are generated in [PRONOC_WORK] /mpsoc/ [PT—
name] /sw/phy_addr.h file.

phy_addr.h contains 2 x2 CMESH endpoint adresses.

#ifndef PHY_ADDR_H
#define PHY_ADDR_H

#define PHY_ADDR_ENDP_0 0x0
#define PHY_ADDR_ENDP_1 0x4
#define PHY_ADDR_ENDP_2 0x8
#define PHY_ADDR_ENDP_3 0xc
#define PHY_ADDR_ENDP_4 0x1
#define PHY_ADDR_ENDP_5 0x5
#define PHY_ADDR_ENDP_6 0x9
#define PHY_ ADDR_ENDP_7 Oxd
#define PHY_ADDR_ENDP_8 0x2
#define PHY_ADDR_ENDP_9 0x6
#define PHY_ADDR_ENDP_10 Oxa
#define PHY_ADDR_ENDP_11 Oxe
#define PHY_ADDR_ENDP_12 0x3
#define PHY_ADDR_ENDP_13 0x7
#define PHY_ ADDR_ENDP_14 Oxb
#define PHY_ADDR_ENDP_15 Oxf

ProNoC homepage June 23, 2022 114

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

destport

class

weight

header-data

#endif

ProNoC routers use look-ahead routing algorithm i.e. the destination port is calculated one
router ahead and the result is attached to the header flit in destport filed. The destport format
varies dependent on topology and routing algorithm. Once a packet is injected into the NoC
this field is automatically updated by each router at packet departure time. However, it is the
duty of endpoints to update the destport filed of packets which are injected to the router’s local
ports. Endpoints are supposed to use ni_conventional_routing Verilog module to obtain
the destport filed. The size of destport filed is shown in Table B.1.

Table B.1: DSTPw for different typologies. Note that K is the tree height.

TOPOLOGY | RING, LINE | MESH, TORUS | FATTREE TREE
DSTPw (bits) 2 4 K+1 log2(K+1)

This filed indicates the message class binary number. Each specific class can use different set of
VCs. The permitted VCs which can be used by each individual class is given to the RTL code
using CLASS_SETTING Verilog parameter.

Cw = (C>0)? log2C: 0 (B.3)
where C' is number of defined class and C'w is class width filed in bits.

This filed carries packets weight which increases dynamically inside the NoC at presence of
congestion. weight filed is only valid once the router is configured with weighted round robin
arbitration.

Ww = (SWA_ARBITER_TYPE == "WRAA")? WEIGHTw : 0 (B.4)

where C is number of defined class and C'w is class width filed in bits.

The header flit can optionally carries some data. The size of data which a header flit can carries.
The number of data bits which a header flit can carry (H Dw):

HDw = Fpay — 2EAw — DSPTw — Ww (B.5)

ProNoC homepage June 23, 2022 115

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

APPENDIX C

Multiple physical
NoCs with different
configuration

In ProNoC the NoC configuration parameters are defined in noc_localparam.v file in mpsoc
/rtl/src_noc/ path. This file is then used inside pronoc_pkg. sv file to define NoC structs,
channels, and interfaces. In SystemVerilog it is not possible to override a parameter inside a
package, so in case you needed to have multiple NoCs with different parameters in a system
you may face a challenge. A hack to fix this issue is to compile each NoC as a separate library.
Following shows the required steps for Modelsim simulation. Assume we need to have three dif-
ferent NoCs (NoC1,NoC2,NoC3) where each NoCs has a different flit payload width (512,72,64
bits).

1. Modify noc_localparam.v as suggested bellow. Here the USE_LIB macro is passed
during compilation time and will determines the payload width.

localparam V=1;

localparam B=16;

localparam PCK_TYPE="SINGLE_FLIT";
localparam MIN_PCK_SIZE=1;
localparam BYTE_EN=0;

localparam SSA_EN="NO";

localparam SMART_MAX=0;

“define STRINGIFY (x) ~"x™"
“ifdef USE_LIB
localparam LIB_STR ="STRINGIFY (TUSE_LIB);

localparam Fpay = (LIB_STR =="nocl_rtl work")? 512
(LIB_STR =="noc2_rtl_work")? 72 : 64 ;
“else
localparam Fpay=32 ;
“endif

2. Create a top module for each NoC in a separate file (nocl.sv,noc2.sv,noc3.sv) and instan-
tiate the noc_top in them. Do not forget to include pronoc_def . v file.

“include "pronoc_def.v"
module nocl
import pronoc_pkg::x*;
(
input clk,
input reset,
input smartflit_chanel_t pronoc_chan_in [NE-1 : 0],
output smartflit_chanel_t pronoc_chan_out [NE-1 : 0]
) i

noc_top the_nocl (
.reset (reset),
.clk (clk),
.chan_in_all (pronoc_chan_in),
.chan_out_all (pronoc_chan_out)) ;
endmodule

ProNoC homepage June 23, 2022 116

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

3. Prepare compilation script, that compile nocl.sv, noc2.sv and noc3.sv with different
USE_LIB values to generate the desired NoCs:

set comp_path [path_to_work_dir]

file mkdir $comp_path
cd $comp_path

set nocl_rtl_work S$comp_path/nocl_rtl_work
set noc2_rtl_work S$comp_path/noc2_rtl_work
set noc3_rtl_work S$comp_path/noc3_rtl_work
set work_path $comp_path/work

if {[file exists $nocl_rtl_work]} {vdel -1lib $nocl_rtl_work -all}
if {[file exists $noc2_rtl_work]} {vdel -1lib $noc2_rtl_work -all}
if {[file exists S$noc3_rtl_work]} {vdel -1lib $noc3_rtl_work -all}
if {[file exists $work_path]} {vdel -1lib $work_path -all}

vlib work

vlib S$nocl_rtl_work

vlog -compile_uselibs -libmap_verbose +acc=rn -work nocl_rtl_work +
define+USE_LIB=nocl_rtl_work -F noc_flist.f nocl.sv

vmap nocl_rtl_work $nocl_rtl_work

vlib $noc2_rtl_work

vlog -compile_uselibs -libmap_verbose +acc=rn -work noc2_rtl_work +
define+USE_LIB=noc2_rtl_work -F noc_flist.f noc2.sv

vmap noc2_rtl_work $noc2_rtl_work

vlib $noc3_rtl_work
vlog -compile_uselibs -libmap_verbose +acc=rn -work noc3_rtl_work +
define+USE_LIB=noc3_rtl_work -F noc_flist.f noc3.sv

vmap noc3_rtl_work $noc3_rtl_work

vlog +acc=rn -compile_uselibs -libmap_verbose -work work -L
nocl_rtl work -L noc2_rtl work -L noc3_rtl work testbench.sv

vsim -t ps -L nocl_rtl work -L noc2_rtl work -L noc3_rtl_work
work.testbench

run 100 ms

quit

ProNoC homepage June 23, 2022 117

http://opencores.org/project,an-fpga-implementation-of-low-latency-noc-based-mpsoc

	Installation Manual for the Ubuntu Linux Environment
	ProNoC Source Code
	Installation

	Interface Generator
	Introduction
	Generate New Interface
	Defined Interfaces
	interrupt_cpu
	interrupt _peripheral
	clk
	reset
	Enable
	Wb_master
	Wb_slave

	IP Generator
	Introduction
	Generate a New IP
	List of available Variables in ProNoC
	List of available IP cores in ProNoC
	Bus
	Communication
	DMA
	Display
	GPIO
	Interrupt
	NI
	Processor
	RAM
	Source
	Timer

	Processing Tile Generator
	Processing Tile Generator Hello World Tutorial
	System Requirements:
	Objectives:
	Desired SoC
	Schematic
	Application Software

	Create New SoC Using ProNoC Processing Tile Generator
	Software Development
	Simulate the generated RTL code using Modelsim software
	Simulate the generated RTL code using Verilator software
	Compile the generated RTL code using Quartus II/Vivado software

	Add Custom IP to Processing Tile Generator Tutorial
	System Requirements:
	Objectives:
	Greatest Common Divisor (GCD) Algorithm
	GCD RTL code
	GCD Simulation

	Add Wishbone bus interface to GCD
	Add custom wishbone-based IP core to ProNoC Library
	Generate a new SoC enhanced with new IP core (GCD)
	Software Development

	Simple message passing demo on 22 MPSoC
	System Requirements:
	Generating a custom Processing tile
	Generating a 44 NoC-based MPSoC
	Software Development

	Software Auto-generation using CAL language (CAL2C)
	Cal2C
	ORCC installation
	ORCC Hello word on ProNoC platform
	Run ORCC inbuilt simulator
	Run ORCC Compilation
	Modifying the generated C code using ProNoC

	NoC Simulator
	System Requirements:
	Simulation Example:
	Generate first NoC simulation model with XY routing
	Generate the second NoC simulation model with fully adaptive routing
	Run simulation under Matrix Transposed traffic pattern

	NoC Emulator
	Summary
	System Requirements
	Emulation Example:
	Generate first NoC emulation model with XY routing
	Generate the second NoC emulation model with fully adaptive routing
	Run Emulation models under Matrix Transposed traffic pattern

	ProNoC Tools
	JTAG UART
	UART Terminal
	Add new ALtera FPGA Board
	Add new Xilinx FPGA Board

	Appendices
	NoC Verilog File Parameters Description
	NoC Verilog File Signals Description
	Resource allocation units
	Flit type
	VC filed

	Packet type
	single-flit
	Multi-flit

	Control fields format
	Endpoint addressing format
	destport
	class
	weight
	header-data

	Multiple physical NoCs with different configuration

