
OpenCores Hyper Pipelined AVR Core 10/16/10

Hyper Pipelined AVR Core
Specification

Author: Tobias Strauch
tobias@EDAptability.com

Rev. 0.1
October 16th, 2010

Preliminary Draft

www.opencores.org Rev 0.1 Preliminary 1 of 17

http://www.opencores.org/

OpenCores Hyper Pipelined AVR Core 10/16/10

Revision History

Rev. Date Author Description
0.1 10/11/10Tobias Strauch First Draft

www.opencores.org Rev 0.1 Preliminary 2 of 17

http://www.opencores.org/

OpenCores Hyper Pipelined AVR Core 10/16/10

Table of Contents
Author: Tobias Strauch..1

Preliminary Draft...1
Table of Contents...3
Table of Figures and Tables...4
1 Introduction...5
2 Theory of Hyper Pipelining..6
3 Hyper Pipelined AVR Core..9
4 Testbench and Test Software..13
5 Directory Structure...16
6 Reference..17

www.opencores.org Rev 0.1 Preliminary 3 of 17

http://www.opencores.org/

OpenCores Hyper Pipelined AVR Core 10/16/10

Table of Figures and
Tables

Figure 1. Simple Sequential Logic..6
Figure 2. Sequential Logic with Intermediate Register Clocked by clk2...........................6
Figure 3. Two Functional Independent Designs...6
Figure 4. Hyper Pipelined Sequential Logic with Distributed Logic.................................7
Figure 5. Hyper Pipelined Core with CMF = 4..7
Figure 6. STA Histogram of Timing Optimization..7
Figure 7. New Clock Inputs..9
Figure 8. Testbench Clocking with CMF = 3..13
Figure 9. Timing of Individual Clocks..13
Figure 10. Instruction Read and Output Comparison..14
Figure 11. Overview of CMF = 3 Programs..14
Figure 12. Switching Off One Core and Restart..15
Figure 13. Directory Structure of Hyper Pipelined AVR Project......................................16

Table 1. Valid and Invalid Paths for CMF == 4...9
Table 2. Area and Timing of Spartan3 Device..10
Table 3. Relative Area and Performance of Spartan3 Device...11
Table 4. Area and Timing of Virtex5 Device..11
Table 5. Relative Area and Performance of Virtex5 Device...12
Talbe 6. Area Ratio for ASICs...12

www.opencores.org Rev 0.1 Preliminary 4 of 17

http://www.opencores.org/

OpenCores Hyper Pipelined AVR Core 10/16/10

1 Introduction
Purpose of this document is to guide the user through the “Hyper Pipelined AVR

Core” project. The project is based on OpenCores' AVR project by Ruslan Lepetenok.
The RTL code is taken from there and run through an automatic hyper pipelining tool.
The modifications are done on RTL.

This document gives a basic overview of the theory of hyper pipelining (“2. Theory of
Hyper Pipelining”). The AVR core results (“2. Hyper Pipelined AVR Core”) and its
testbench and test software (“3. Testbench and Test Software”) are explained. It finishes
with an overview of the directory structure (“4. Directory Structure”) and a list of
references (“5. References”).

www.opencores.org Rev 0.1 Preliminary 5 of 17

http://www.opencores.org/

OpenCores Hyper Pipelined AVR Core 10/16/10

2 Theory of Hyper
Pipelining

This chapter gives an overview of the
theory of hyper pipelining. Figure 1 shows
the basic structure of a simple sequential
logic. Inputs and sequential elements
clocked by clk1 drive the combinatorial
logic. The combinatorial logic drives the
outputs and the data inputs of the registers.

Figure 1. Simplified Sequential Logic

In Figure 2 each sequential element is
duplicated with an intermediate register
clocked by a second clock clk2. If clk2 is
synchronous to clk1 but not edge aligned
and the timing is right (no setup or hold time
violation between clk1 and clk2 registers)
the functional behavior of the sequential
logic doesn't change.

Figure 2. Sequential Logic with Inter-
mediate Register Clocked by clk2

Assuming clk1 and clk2 of Figure 2 are
now identical (clk). This results in 2
functional independent designs in a time
sliced fashion. Figure 3 displays how the
combinatorial logic is used for one design
during T1 and for the second design during
T2. The inputs and outputs are valid at the
active time slice (T1 or T2). The
implemented register set (formally driven by
clk2) is called “pipeline stage register” PSR. Figure 3. Two Functional Independent

Designs

www.opencores.org Rev 0.1 Preliminary 6 of 17

logic

clk1

logic

clk1clk2

logic

clkclk

logic

clkclk

T1:

T2:

http://www.opencores.org/

OpenCores Hyper Pipelined AVR Core 10/16/10

The next step is to distribute the
combinatorial logic between the registers
without modifying the functionality of the
designs. Figure 4 shows one basic rule of
hyper pipelining. There are only paths from
the PSR to the original register set and from
the register to the PSR.

Figure 4. Hyper Pipelined Sequential
Logic with Distributed Logic

The number of pipes can be increased as shown in Figure 5. The resulting number of
independent designs is identical to its multiplication factor, called “core multiplication
factor”, CMF.

Figure 5. Hyper Pipelined Core with CMF = 4

This hyper pipelining is different to the pipelining of instruction decoding known from
RISC processors. The point is, that you can use hyper pipelining on top of any functional
core, for example a RISC processor, independent of its underlying functionality. The
functional pipelined RISC processor can be hyper pipelined to generate CMF individual
RISC processors. For more information see the documentation of the C252 semester
project of the University of Berkeley [1].

The main benefit is the multiplication of the core's functionality by only implementing
registers. This leads to a reduced size compared to the individual instantiation of the
cores. This is a great advantage for ASICs but obviously very attractive for FPGAs with
their already existing registers.

Figure 6. STA Histogram of Timing Optimization

www.opencores.org Rev 0.1 Preliminary 7 of 17

0

50

100

150

200

logic
logic

clkclk

logic

clk

logic

clk

logic
logic

clkclk

Progress

Paths

Timing

http://www.opencores.org/

OpenCores Hyper Pipelined AVR Core 10/16/10

Another issue is the performance of the resulting hyper pipelined design. Assuming
the formally critical path is now “partitioned” into equal parts, the hyper pipelined design
can run theoretically as many times faster as the number of the resulting segments
reduced by the additional setup and hold time for each PSR on the critical path. This
results in the same performance as their individual instantiations, if the critical path is
relatively slow compared to the timing arcs of the registers. If the critical path is only 4
LUT or 4 gates (which is an extreme example), the timing arc of the PSR dominate the
critical path and a CMF-times performance cannot be reached.

In order to achieve the CMF-times faster clock speed, the PSR must be introduced at
the right places in the design. For that a simple algorithm can be used. It starts with
placing the PSR (pipeline stage register) at the inputs of each original register (Figure 2).
The PSR are then moved through the combinatorial logic until the critical path is
partitioned into equal elements. The passing must follow certain rules, so that the overall
functionality of the hyper pipelined core is not broken. Figure 6 shows the individual
STA histograms which are taken from the optimization process of another core. It starts
with the original STA results in the back and shows how the STA results change by
passing the critical PSR through the combinatorial logic.

The used tool does the modifications automatically within seconds, because all
estimations and modifications are done on RTL. If the timing needs further optimizations
it accepts “real” ASIC or FPGA STA results to squeeze out the last picoseconds for a
particular implementation. The main benefit of doing the modification (PSR insertion) on
RTL is next to the short tool runtime of a few seconds the fact, that the new hyper
pipelined core must be used in the testbench of the modified project. Although CMF-
times individual cores exist as before, the surrounding logic must be adapted to the new
core and the complete verification can/must be done on the RTL.

www.opencores.org Rev 0.1 Preliminary 8 of 17

http://www.opencores.org/

OpenCores Hyper Pipelined AVR Core 10/16/10

3 Hyper Pipelined
AVR Core

This section describes the hyper pipelining of the AVR core. The original code is
taken from OpenCores' AVR project. Please refer to the documentation there and on the
web regarding the AVR core in general. This project only verifies the hyper pipelining
aspects. If there are problems with the original source code, they are also reflected (and
most likely not detected) in this project.

After running an RTL modifier tool on
the original source code, the resulting hyper
pipelined AVR core has the same inputs and
outputs plus the new cp2_cml_* clocks,
whereas “cp2” is the original clock name.
The timing is explained in the next chapter.

Figure 7. New Clock Inputs

A hyper pipelined core is very hard to debug even by its creator, when intermediate
signals must be looked at. Fortunately there is a trick to verify the correctness. If all paths
from and to each existing clock are constraint, the STA shows if paths between the
individual clock domains exists or not. Table 1 shows, that in a hyper pipelined core,
there must only exist valid paths from one clock to the “succeeding” clock, or from the
last clock index to the original clock. All other paths (e.g. path from one clock domain to
itself or “trailing” clocks) are invalid and should not exist.

Table 1: Valid and Invalid Paths for CMF == 4

from\to orig. clock cp2 cp2_cml_1 cp3_cml_2 cp2_cml_3
orig. clock cp2 invalid valid invalid invalid
cp2_cml_1 invalid invalid valid invalid
cp2_cml_2 invalid invalid invalid valid
cp2_cml_3 valid invalid invalid invalid

www.opencores.org Rev 0.1 Preliminary 9 of 17

all_inputs

cp2
cp2_cml_1

all_outputs
Hyper

Pipelined
AVR
Corecp2_cml_2

cp2_cml_3

http://www.opencores.org/

OpenCores Hyper Pipelined AVR Core 10/16/10

This one of the reasons, why all introduced PSR get an individual clock. The hyper
pipelined core with all clocks are synthesized and with the right constraint files (e.g.
.ucf), the STA can reflect potential RTL modification bugs. If no false path is reported,
the individual clocks can be merged with the original clock when the hyper pipelined
AVR core is instantiated. For that a avr_core_cm[CMF]_top.vhd file is delivered. Using
this file as top level, the timing of this single clock indicates the performance of the hyper
pipelined AVR core. The avr_core_cm[CMF]_top.vhd file is not used for simulation.

The next tables show the area and timing results for Spartan3 and Virtex5 devices
from Xilinx. In general, ISE 11.1 with the place and route effort option “standard” is
used.

The following results are based on a Spartan3 device (XS3S200a, package FG320,
speed grade -4). This is the smallest device for a single AVR core (occupied slices 59%,
used 4-input-LUTs 48%) and it is not possible to implement 2 or more individual AVR
cores on this device, because the number of slices are with 2012 out of 1792 availabe
slices overmapped (112%). One implemented AVR core reaches 24.914ns (40.1MHz) on
this device. The setup time (Tfck) is set to 0.8ns and the hold time (Tcko) is 0.6ns. The
theoretical achievable timing is (considering the setup and hold times of the PSR):

CMF == 2: (24.9ns + 0.8ns + 0.6ns) / 2 = 13.1ns (76.0MHz = 187% of 40.6MHz)
CMF == 3: (24.9ns + 1.6ns + 1.2ns) / 3 = 9.23ns (108MHz = 269% of 40.6MHz)
CMF == 4: (24.9ns + 2.4ns + 1.8ns) / 4 = 7.27ns (137MHz = 341% of 40.6MHz)

The theoretical achievable timing is relative low compared to 200% when CMF == 2
(or 300% when CMF == 3, ...), because the critical path is relative fast compared to the
additional setup and hold timings of the PSR. Table 2 shows the area and timing results
of the implemented hyper pipelined AVR core.

Table 2: Area and Timing of Spartan3 Device

CMF FF 4-input
LUTs

Occupied
Slices

Theoretical
Timing

Constraint Achieved
Timing

LUT
levels

1
(Orig.)

463 1.748 (48%) 1.062 (59%) n/a 24.0ns
(41.6MHz)

24.914ns
(40.1MHz)

16

2 1.125 2.344 (65%) 1.512 (84%) 13.1ns
(76.0MHz)

14ns
(71.4MHz)

14.763
(67.7MHz)

11

3 1.603 2.691 (75%) 1.790 (99%) 9.23ns
(108MHz)

10ns
(100MHz)

12.400
(80.6MHz)

9

4 1.716 2.990 (83%) 1.790 (99%) 7.27ns
(137MHz)

11.5ns
(86.9MHz)

11.290
(88.5MHz)

8

www.opencores.org Rev 0.1 Preliminary 10 of 17

http://www.opencores.org/

OpenCores Hyper Pipelined AVR Core 10/16/10

Table 3. Relative Area and Performance of Spartan3 Device

CMF 4-input LUTs Occupied Slices Performance Theoretical vs
Achieved Timing

1 (Orig.) 1 1 1 n/a
2 1.34 1.42 1.68 0.88
3 1.53 1.68 2.00 0.74
4 1.71 1.68 2.20 0.64

Table 3 can be read as follows. With CMF == 2, the number of 4-input LUT rises by
34% and the number of occupied slices by 42%. The performance increases by 68%,
which is 88% of the theoretical achievable timing.

Only one AVR can be mapped on this Spartan3 device. The hyper pipelining allows to
implement 4 independent AVR designs. The performance in terms of clock cycles can be
increased by 68%, 100% or even 120%. The utilization of up to 99% (with CMF = 3
already) has an impact on the timing. Additional performance benefit can result from
software partitioning.

Analog to the Spartan3 results, the following numbers are based on a Virtex5 device
(xc5vlx50-3ff324, package FG320, speed grade -4). One implemented AVR core reaches
9.206ns (108MHz) on this device. The setup time (Tas) is set to 0.03ns and the hold time
(Tcko) is 0.346ns. The theoretical achievable timing is:

CMF == 2: (9.20ns + 0.346ns + 0.03ns) / 2 = 4.791ns (208MHz = 192% of 108MHz)
CMF == 3: (9.20ns + 0.692ns + 0.06ns) / 3 = 3.310ns (301MHz = 278% of 108MHz)
CMF == 4: (9.20ns + 1.038ns + 0.09ns) / 4 = 2.582ns (387MHz = 358% of 108MHz)

Table 4. Area and Timing of Virtex5 Device

CMF FF Slice LUTs Occupied
Slices

Theoretical
Timing

Constraint Achieved
Timing

LUT
levels

1
(Orig.)

460 1.258 (3%) 374 (5%) n/a 8ns
(125MHz)

9.206ns
(108MHz)

13

2 1.103 1.584 (5%) 549 (7%) 4.86ns
(205MHz)

5.3ns
(188MHz)

5.092
(196MHz)

6

3 1.467 1.985 (6%) 628 (8%) 3.75ns
(266MHz)

4.5ns
(222MHz)

4.660
(214MHz)

11

4 1.853 2.640 (9%) 838 (11%) 2.582ns
(387MHz)

3
(333MHz)

3.845
(260MHz)

5

www.opencores.org Rev 0.1 Preliminary 11 of 17

http://www.opencores.org/

OpenCores Hyper Pipelined AVR Core 10/16/10

Table 5. Relative Area and Performance of Virtex5 Device

CMF Slice LUTs Occupied Slices Performance Theoretical vs
Achieved Timing

1 (Orig.) 1 1 1 n/a
2 1.25 1.46 1.80 0.95
3 1.57 1.67 1.97 0.80
4 2.09 2.24 2.39 0.67

We have seen at the Spartan3 device, that a hyper pipelined AVR core can be better
packed and occupies lesser slices than the individual implementation of the cores. If the
device is under-utilized (11%), the umber of occupied slices rises to 224% for CMF = 4.
It is still lower than 400% as we can expect it when 4 individual AVR cores are
implemented, but the performance drops to 239% as well.

If the hyper pipelined AVR core is implemented on an ASIC, the size of the
combinatorial logic (gates) remains almost the same, only the number of registers
increases. This number should not be simply multiplied, because the registers of the new
implemented PSR are located at internal signals. Table 6 shows the number of registers
implemented on the AVR core without the FPGA specific timing optimizations.

Table 6. Area Ratio for ASICs

CMF Registers Area Ratio with 45/55 Ratio
1 (Orig.) 460 1
2 1075 1.60
3 1312 1.83
4 1449 1.96

If the ratio of register area and combinatorial logic is set to 45/55 (45% register area
and 55% combinatorial logic), the area increases by 60%, 83% or 96% of the original
area. For ASICs, the performance is much closer to the theoretical timing, because the
place and route as well as the timing optimization algorithms can achieve relatively better
results in general compared to FPGAs.

The hyper pipelined core includes a huge number of shift registers. If a area optimized
shift register cell is use, the overall area can be reduced even further. The logic cones of
the hyper pipelined core are also fundamentally smaller, which leads to a reduced size of
test pattern and test time.

www.opencores.org Rev 0.1 Preliminary 12 of 17

http://www.opencores.org/

OpenCores Hyper Pipelined AVR Core 10/16/10

4 Testbench and
Test Software

This chapter explains the testbench and test software for the hyper pipelined AVR
core. The basic idea is to instantiate CMF- (core multiplication factor) times the original
core in parallel to the hyper pipelined AVR core. They are not part of the design but used
in the testbench only (just to get this right).

They are stimulated at the time their
individual counterparts of the hyper
pipelined AVR core read the inputs and the
outputs are cross-compared at the relevant
time, too. Figure 8 show the testbench
structure with CMF = 3. The input clocks of
the hyper pipelined AVR core are connected
together on top level so that they become
identical to the original clock tree cp2. The
clock inputs of the AVR cores instantiated
in the testbench are active when their
individual counterpart of the hyper pipelined
AVR core is active. Figure 9 shows the
timing.

Figure 8. Testbench Clocking with
CMF = 3

Figure 9. Timing of Individual Clocks

www.opencores.org Rev 0.1 Preliminary 13 of 17

H.P.
AVR

AVR
Core

AVR
Core

AVR
Core

all_inputs

cml0_clk

cp2
cp2_cml_1
cp2_cml_2

cml1_clk

cml2_clk

all_outputs

testbench

http://www.opencores.org/

OpenCores Hyper Pipelined AVR Core 10/16/10

CMLS (core multiplication level selector)
is a counter output which holds the index of
the current active core. This indicator is
used to select the right instruction read
offset and the right program counter
comparison with the output (Figure 10).

More or less to demonstrate the
functionality of the hyper pipelined aspect
rather than to verify the core's functional
behavior (this is subject to the original
testbench), a simple loop program structure
is used.

Figure 10. Instruction Read and Output
Comparison

It has a small reset sequence and then continues with an always forward branching
loop. It does some calculations to use some math-commands. If the result is different than
expected, it jumps to the end. If the result is as expected it continues with a branch by a
few addresses only. After some calculations, the loop stops and the program jumps to the
beginning right after the reset sequence. The point is, that if the program counter of such
a program is displayed in the simulator in an “analog format”, the waveform looks like a
chain saw as can be seen in Figure 11. The program counters (core_pc_0, … _2) show 3
different programs with a slightly bigger loop program. They all start with the reset
sequence and continue with the main loop, whereas the smallest loop program
(core_pc_0) is the first to jump back to the beginning of the loop. It looks as if the other
cores run at lower speed, but this is not right. They run at the same speed, the program
loop is simply longer. The core_pc signal shows the output of the hyper pipelined AVR
core, which handles all 3 programs in a hyper pipelined fashion.

Figure 11. Overview of CMF = 3 Programs

www.opencores.org Rev 0.1 Preliminary 14 of 17

testbench

H.P.
AVR

AVR
Core

AVR
Core

AVR
Core

Memory

Compare

Counter

http://www.opencores.org/

OpenCores Hyper Pipelined AVR Core 10/16/10

Figure 12. Switching Off One Core and Restart

Figure 12 shows, that individual cores can be switched off (100.000ns) by disabling
the relevant clock (cp2) at the relevant time slot. This reduces the activity of the design,
because the inactive core behaves then exactly as its predecessor. By applying a reset
impulse at the right timeslot, the core can be individually restarted (200.000ns) and
continues with the reset sequence.

It is important to notice, that the core does not store its values when switched off. It
starts with the reset sequence. If a core is switched off, the clocks can also be gated to
reduce activity. This is the second reason, why the PSR get their individual clock trees.

The WinAVR software is used to compile the C programs.

The avr_core_cm[CMF]_top.vhd files in the “rtl” sub-directories are not used for
simulation. The individual CMF and device (S3, V5) simulations need the corresponding
top level testbench in the “bench” directory, the individual CMF and device RTL sub-
directory and the original RTL source code (in the “rtl_orig” directory) for comparison.

www.opencores.org Rev 0.1 Preliminary 15 of 17

http://www.opencores.org/

OpenCores Hyper Pipelined AVR Core 10/16/10

5 Directory
Structure

The next Figure 13 gives an overview of the directory structure of this Hyper
Pipelined AVR project.

/AVR_hp
/bench // testbench files
/doc // contains this document
/c_code

/program_*.cpp // C source code for test programs
/program_*.dec // memory read files
/convert_hex2dec // trivial C program converts hex to dec
/compile // trivial WinAVR compile batch file

/ise
/ise_cm2 // constrain file (.ucf) for invalid paths detection
/...
/ise_s3 // Spartan 3 results of original code
/ise_s3_cm2 // Spartan 3 results of code with CMF = 2, ...
/...
/ise_v5 // Virtex 5 results of original code
/...

/rtl
/CommonPacks // copied original code of AVR package
/rtl_orig // copied original code of AVR source code
/rtl_s3_cm2 // modified RTL code, Spartan 3 with CMF = 2
/...

/syneda // SynEDA CoreMultiplier files

Figure 13. Directory Structure of Hyper Pipelined AVR Project

www.opencores.org Rev 0.1 Preliminary 16 of 17

http://www.opencores.org/

OpenCores Hyper Pipelined AVR Core 10/16/10

6 Reference
References:

[1] Y. Markovskiy, Y. Patel, “C-slow Retiming of a Microprocessor Core”, UC Berkeley,
CA, CS252, Semester Project, http:// www.cs.berkeley.edu/~yatish/cs252/252slides.ppt

Tools used:

Compiler: WinAVR 20100110
http://winavr.sourceforge.net/index.html

Simulator: Modelsim XE, Mentor Graphics, CA, USA
http://www.xilinx.com/tools/mxe.htm

FPGA Compiler: ISE 12.1, Xilinx, CA, USA
http://www.xilinx.com/tools/webpack.htm

Core Multiplier: SynEDA CoreMultiplier, EDAptability, Munich, Germany
http://www.edaptability.com/coremultiplier.htm

www.opencores.org Rev 0.1 Preliminary 17 of 17

http://www.cs.berkeley.edu/~yatish/cs252/252slides.ppt
http://www.opencores.org/
http://www.edaptability.com/coremultiplier.htm
http://www.xilinx.com/tools/webpack.htm
http://www.xilinx.com/tools/mxe.htm
http://winavr.sourceforge.net/index.html

	Author: Tobias Strauch
	Preliminary Draft

	Table of Contents
	Table of Figures and Tables
	1 Introduction
	2 Theory of Hyper Pipelining
	3 Hyper Pipelined AVR Core
	4 Testbench and Test Software
	5 Directory Structure
	6 Reference

