
Hardware implementation of
the tiff algorithm

User manual

Date: January 7, 2014

By:
Aart Mulder

Abstract
This document considers the hardware implementation of the b/w tiff compression

algorithm(CCITT-G4). Firstly it explains how to setup the project, run the testbench
and build the implementation. Secondly it explains elements that the design exists of

and usage of the client application. The advantage of this design is a very low bandwith
and low energy consumption in situations where a remote camera is needed that

possibly runs on a battery.

Hardware implementation of the tiff algorithm

Contents

Table of Contents 1

1 Introduction 2

2 Project setup 3
2.1 Simulation . 4
2.2 Synthesis . 4

3 Implementation 6
3.1 CCITT . 6
3.2 Byte segmentation . 7
3.3 Transmission memory . 8
3.4 Capture manager . 9
3.5 Serial communication . 10

4 Client application 12

Appendix 14

A Huffman tables 15

B Detailed transmission memory block diagram 17

Bibliography 17

January 7, 2014 1 Aart Mulder

Hardware implementation of the tiff algorithm

Chapter 1

Introduction

This document explains the functionality of the CCITT-G4 hardware implementation. This
vhdl design works in combination with a client application running on a PC that handles and
displays tiff images received over RS232 from an FPGA.

Future extensions:

Region of interest coding.

Change coding of region of interest.

January 7, 2014 2 Aart Mulder

Hardware implementation of the tiff algorithm

Chapter 2

Project setup

The complete project directory that can be downloaded or checked out using svn contains a
sub-directory called prj that contains the Xilinx ISE project file bw tiff compression.xise.

Figure 2.1: Xilinx ISE project explorer in simulation mode.

January 7, 2014 3 Aart Mulder

Hardware implementation of the tiff algorithm

Figure 2.2: Xilinx ISE project explorer in implementation mode.

2.1 Simulation

The file wcfg/TB capture manager.wcfg can be used in ISim to clarify the waveform by select-
ing simulation mode(see figure 2.1), opening process properties and then setting the Custom
Waveform Configuration File.

2.2 Synthesis Result

Table 2.1 shows the device utilization of the design on a Spartan-3E 1200 fpga. The BRAM
utilization of 9 includes a 4000 locations transmission memory in order to let the design work
properly. Without this memory the BRAM utilization is 5.

Spartan-3E 1200

On chip Used Used(%)

Number of slices 8672 1526 17

Number of slice Flip Flops 17344 716 4

Number of 4 input LUTs 17344 2922 16

Number used as logic 2912

Number used as Shift registers 10

Number of IOs 35

Number of bonded IOBs 250 24 9

Number of BRAMs 28 9(5) 32(18)

Number GCLKs 24 1 4

Table 2.1: Device utilization.

January 7, 2014 4 Aart Mulder

Hardware implementation of the tiff algorithm

Spartan-3E 1200

Maximum frequency 38.697MHz

Minimum input arrival time before clock 8.055ns

Maximum output required time after clock 7.155ns

Maximum combinatorial path delay 6.429ns

Table 2.2: Timing results.

January 7, 2014 5 Aart Mulder

Hardware implementation of the tiff algorithm

Chapter 3

Implementation

Figure 3.1 shows the block diagram of the complete system with the camera, fpga and PC. The
single modules are explained in the sections that follow.

Figure 3.1: Dataflow through the system

3.1 CCITT

The pixels entering the system from the camera are first processed by the Tiff-run detector that
does change coding based on the current and previous line. The output of the Tiff-run detector
is fed into the Huffman encoder which applies huffman encoding based on table A.1 and A.2
in appendix A. Those two modules together do the actual image compression and are therefore
called the CCITT module. The flow diagram in figure 3.2 comes from the CCITT-G4 standard
and shows how the Tiff-run detector works.

January 7, 2014 6 Aart Mulder

Hardware implementation of the tiff algorithm

Figure 3.2: ITU-T Rec. T.6. coding flow diagram

[1]

3.2 Byte segmentation

The byte segmentation module does as it’s name suggests, segmentation of the input data,
coming from the CCITT module into byte segments. A symbolic diagram shown in figure 3.3.
The input data is buffered in the FIFO to handle sudden bursts. Theoretically it is possible that
several bigger huffman encoded segments come in without any clock cycle in between but at
the same time image patterns that change on every pixel have a small segment size. Depending
on the data size available in the shift register output 2,3 and 4 are used as well to empty the

January 7, 2014 7 Aart Mulder

Hardware implementation of the tiff algorithm

register as fast as possible. The data left over after writing to the output is moved up to the
top.

Figure 3.3: Block diagram of the byte segmentation module.

3.3 Transmission memory

The four 8 bit data signals coming from the byte segmentation module are stored in the trans-
mission memory. Before storage the data goes through a kind of rotating register, drawn as
the big circle in figure 3.4. When the first data of 8 bit comes in, the multiplexer passes it
through to position 1 in RAM 1. Then when the second data of for example 32 bit comes in,
the multiplexer routes byte 1 to RAM 2, byte 2 to RAM 3, byte 3 to RAM 4 and byte 4 to
position 2 of RAM 1. On data read the four RAMs are read sequentially, i.e. first position 1
of all the RAMs and then position 2 of all the RAMs and so on. A detailed block diagram is
shown in appedix B.

January 7, 2014 8 Aart Mulder

Hardware implementation of the tiff algorithm

Figure 3.4: Variable with input RAM module.

3.4 Capture manager

The task of the capture manager is to handle input commands received over RS232 and to
control the capturing process. It waits for a new-frame command, then captures and stores the
next complete frame and sends it out over the RS232 connection. Figure 3.5 shows the state
machine that controls the system.

January 7, 2014 9 Aart Mulder

Hardware implementation of the tiff algorithm

Figure 3.5: State diagram of the capture manager.

3.5 Serial communication

The serial port is used for communication with the client application on the PC that stores
the tiff streams. It receives commands from the PC and sends the tiff stream to the PC. A
header with the tiff stream size is send before the stream itself to let the PC know how much
data to expect. Another option is to use timeouts but that would limit the throughput since
the timeout must be longer than the longenst expectable stream. The serial port component is

January 7, 2014 10 Aart Mulder

Hardware implementation of the tiff algorithm

obtained from Digilent, the developer of the Nexys2 FPGA board used for testing the design.
The baudrate can be set based on the clock speed. The maximum functional baudrate in my
situation was 115200 baud at a clock speed of 26.67MHz. A higher resulted in communication
failures.

January 7, 2014 11 Aart Mulder

Hardware implementation of the tiff algorithm

Chapter 4

Client application

The client application as described in the previous chapter is shown below in figure 4.1. It is
a fairly simple application that connects to the serial port, sends a new-frame command out
and waits for data to be stored in a tiff file. When a complete image is received, it is displayed
in the image viewer. Images stored in the same folder are listed in the panel in the right side.
The storage folder can be changed by typing the path or with the button on the right that
opens a selection window. The text window below the image viewer is a receiving data debug
log. The three buttons at the bottom left are respectively connect/disconnect, single mode
and continuous mode. The connect/disconnect button opens the port configuration window
shown in figure 4.2. The application contains a timeout timer of currently 10 seconds to cancel
the communication if the server(fpga) doesn’t reply quick enough. The communication can be
canceled at any time by pressing the Esc key.

The project sub folder client application/target contains two executables for respectively Win-
dows and Ubuntu which are build in respectively 32 and 64 bit format but have been executed
successfully in Windows7 x64. Furthermore it contains the *.dll files that are needed to run the
application in Windows. The sub folder qt must be placed in the C directory. It contains the
runtime library qtiff.dll that is needed to open tif. This file must be stored under the exact path
c:\qt\4.8.1\desktop\qt\4.8.1\mingw\plugins\imageformats because the application appears to
have a static path to it. On Ubuntu it runs straight away, at least in a clean install of 13.10.

The source can be build if one has a version of Qt installed, so far only tested with 4.8 but
according to the Qt community any version should work. Version 5 contains some major changes
so I’m not sure if that works. On Linux/Ubuntu the standard gcc compiler is used to build but
on Windows MinGW or Visual Studio must be installed. The operating system specific code
parts for the serial port are selected based on preprocessor defines and no odd libraries are used
for it.

January 7, 2014 12 Aart Mulder

Hardware implementation of the tiff algorithm

Figure 4.1: The client application.

Figure 4.2: The port selection window.

January 7, 2014 13 Aart Mulder

Hardware implementation of the tiff algorithm

Appendix

January 7, 2014 14 Aart Mulder

Hardware implementation of the tiff algorithm

Appendix A

Huffman tables

White run length Code word Black run length Code word

64 11011 64 0000001111
128 10010 128 000011001000
192 010111 192 000011001001
256 0110111 256 000001011011
320 00110110 320 000000110011
384 00110111 384 000000110100
448 01100100 448 000000110101
512 01100101 512 0000001101100
576 01101000 576 0000001101101
640 01100111 640 0000001001010
704 011001100 704 0000001001011
768 011001101 768 0000001001100
832 011010010 832 0000001001101
896 011010011 896 0000001110010
960 011010100 960 0000001110011
1024 011010101 1024 0000001110100
1088 011010110 1088 0000001110101
1152 011010111 1152 0000001110110
1216 011011000 1216 0000001110111
1280 011011001 1280 0000001010010
1344 011011010 1344 0000001010011
1408 011011011 1408 0000001010100
1472 010011000 1472 0000001010101
1536 010011001 1536 0000001011010
1600 010011010 1600 0000001011011
1664 011000 1664 0000001100100
1728 010011011 1728 0000001100101

Table A.1: Make-up codes.

[1]

January 7, 2014 15 Aart Mulder

Hardware implementation of the tiff algorithm

White run length Code word Black run length Code word

0 00110101 0 0000110111
1 000111 1 010
2 0111 2 11
3 1000 3 10
4 1011 4 011
5 1100 5 0011
6 1110 6 0010
7 1111 7 00011
8 10011 8 000101
9 10100 9 000100
10 00111 10 0000100
11 01000 11 0000101
12 001000 12 0000111
13 000011 13 00000100
14 110100 14 00000111
15 110101 15 000011000
16 101010 16 0000010111
17 101011 17 0000011000
18 0100111 18 0000001000
19 0001100 19 00001100111
20 0001000 20 00001101000
21 0010111 21 00001101100
22 0000011 22 00000110111
23 0000100 23 00000101000
24 0101000 24 00000010111
25 0101011 25 00000011000
26 0010011 26 000011001010
27 0100100 27 000011001011
28 0011000 28 000011001100
29 00000010 29 000011001101
30 00000011 30 000001101000
31 00011010 31 000001101001
32 00011011 32 000001101010
33 00010010 33 000001101011
34 00010011 34 000011010010
35 00010100 35 000011010011
36 00010101 36 000011010100
37 00010110 37 000011010101
38 00010111 38 000011010110
39 00101000 39 000011010111
40 00101001 40 000001101100
41 00101010 41 000001101101
42 00101011 42 000011011010
43 00101100 43 000011011011
44 00101101 44 000001010100
45 00000100 45 000001010101
46 00000101 46 000001010110
47 00001010 47 000001010111
48 00001011 48 000001100100
49 01010010 49 000001100101
50 01010011 50 000001010010
51 01010100 51 000001010011
52 01010101 52 000000100100
53 00100100 53 000000110111
54 00100101 54 000000111000
55 01011000 55 000000100111
56 01011001 56 000000101000
57 01011010 57 000001011000
58 01011011 58 000001011001
59 01001010 59 000000101011
60 01001011 60 000000101100
61 00110010 61 000001011010
62 00110011 62 000001100110
63 00110100 63 000001100111

Table A.2: Termination codes.

[1]

January 7, 2014 16 Aart Mulder

Hardware implementation of the tiff algorithm

Appendix B

Detailed transmission memory block
diagram

Figure B.1: Detaile block diagram of the variable with input RAM module.

January 7, 2014 17 Aart Mulder

Hardware implementation of the tiff algorithm

Bibliography

[1] http://www.itu.int/rec/dologin_pub.asp?lang=e&id=T-REC-T.6-198811-I!

!PDF-E&type=items. Itu-t (ccitt) t.6. facsimile coding schemes and coding control
functions for group 4 facsimile apparatus, 6 December, 2012.

January 7, 2014 18 Aart Mulder

http://www.itu.int/rec/dologin_pub.asp?lang=e&id=T-REC-T.6-198811-I!!PDF-E&type=items
http://www.itu.int/rec/dologin_pub.asp?lang=e&id=T-REC-T.6-198811-I!!PDF-E&type=items

	Table of Contents
	Introduction
	Project setup
	Simulation
	Synthesis

	Implementation
	CCITT
	Byte segmentation
	Transmission memory
	Capture manager
	Serial communication

	Client application
	Appendix
	Huffman tables
	Detailed transmission memory block diagram
	Bibliography

