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Design of High-Speed Multiplierless Filters Using
a Nonrecursive Signed Common Subexpression

Algorithm
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Abstract—In this work, a new algorithm called nonrecur-
sive signed common subexpression elimination (NR-SCSE) is
discussed, and several applications in the area of multiplierless
finite-impulse response (FIR) filters are developed. While the
recursive utilization of a common subexpression generates a high
logic depth into the digital structure, the NR-SCSE algorithm
allows the designer to overcome this problem by using each
subexpression once. The paper presents a complete description
of the algorithm, and a comparison with two other well-known
options: the graph synthesis, and the classical common subexpres-
sion elimination technique. Main results show that the NR-SCSE
implementations of several benchmark circuits offer the best
relation between occupied area and logic depth respect to the
previous values published in the technical literature.

Index Terms—Common subexpression elimination, finite-im-
pulse response (FIR) filtering, multiplierless algorithm.

I. INTRODUCTION

T HE multiplication of a variable (data input) by a set of
constants (finite-impulse response (FIR) filtering, DCT,

FFT, etc.) is a central operation in video processing, digital tele-
vision, data transmission, and wireless communications. The
area-time optimization of this operation has often been accom-
plished by using a shift-and-add multiplication algorithm, com-
bined with techniques to reduce the number of nonzero bits
in the binary representation of the coefficients. For example,
signed-digit (SD) code was efficiently applied in [1] and [2]
to reduce circuit area. Moreover, an additional area saving can
be obtained if the common subexpression elimination (CSE)
method introduced in [1] is also utilized [2], [3]. Main ideas
of the CSE method are shown in Fig. 1. In this example, the
implementation of the coefficient 10100101 requires only one
subexpression (101) and two additions [Fig. 1(b)] compared to
a shift-and-add that requires three additions [Fig. 1(a)]. In terms
of speed, the logic depth is diminished from three to two adders.
This fact leads to an important reduction of the data propagation
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Fig. 1. Implementation of the coefficient10100101by using the CSE method.

Fig. 2. CSE with a pipeline implementation of two coefficients.

Fig. 3. Coefficient10100101 using a SCS.

time through the whole filter structure. The use of a register, the
triangle in a box in [Fig. 1(b)], before the coefficient implemen-
tation allows the subexpressions to be pipelined. The number of
logical operators (LO) is further reduced if common subexpres-
sions can be shared between various coefficients (Fig. 2).

The CSE idea has been also used to share signed subex-
pressions (SCSE). Fig. 3 shows the reduction in the previous
implementation by using 101 or (where ) as
signed common subexpression (SCS). Compared to the design
in Fig. 2, the SCSE algorithm saves a logic operator in the
implementation of the coefficient .

Another alternative to save area is to use graph synthesis
methods [4], [5], [7], [8]. These methods depart from a set of
integer coefficients to create a dependence graph. The graph
obtains each new coefficient from the previous ones and shift
operations (powers of two) of the data input. For instance, the
coefficient 93 is obtained as
by using shifts of the data input, together with subtractions and
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Fig. 4. Transposed structure of a FIR filter with three coefficients.

Fig. 5. Four occurrences of the same common subexpression in three
coefficients FIR filter.

Fig. 6. Recursive use of the algorithm from R. Hartley [6] over the array in
Fig. 5.

shifts of the previously calculated coefficient. However, these
dependence graph usually results in structures with high logical
depth.

Following the research ideas described above, the contri-
bution of the algorithm proposed in this paper is to simplify
both logic depth and number of logic operators. It can be
accomplished by searching signed subexpressions that are used
to create independent structures for each coefficient.

The paper is structured as follows. In Section II, the algo-
rithms used to implement multiplication by constants and their
most interesting characteristics are reviewed. Section III de-
scribes the new algorithm based on a computer array splitting re-
duction. Finally, in the fourth section, the results in terms of LO
and logical depth (LD) are compared to previous related works
[1], [2], [5], [11].

II. REVIEW OF MULTIPLIERLESSALGORITHMS

The basic method to multiply by constants without using mul-
tiplier blocks is based on the power-of-two representation of
these constants. A canonic signed-digit (CSD) representation
can be employed to implement the basic shift-and-add algo-
rithm, obtaining a reduction in the number of nonzero bits com-
pared with the binary code. As an example, based on the CSD
representation, Hartley [1] and [6] proposed a CSE algorithm
that was refined by Potkonjak [2]. Both alternatives are based on
the location of several common subexpressions between coeffi-
cients. The main idea is illustrated in Fig. 5, for a FIR filter with

(Fig. 4) where
, , and .

Four occurrences of the same subexpression between three
different coefficients are shown in Fig. 5. The leftmost subex-

Fig. 7. Filter implemented using the Hartley algorithm and the decomposition
done in Figs. 5 and 6.

TABLE I

TABLE II

pression can be expressed as
, where the term 1 represents a unit delay,

the sign “ ” a -step right shift, and the bar indicates a
negative expression. The method proposed by Hartley to iden-
tify common subexpressions is then applied recursively. Fig. 6
shows the location of the previous subexpression into a new ma-
trix, and its recursive use. From these figures, a second subex-
pression is obtained by using . Finally,
the complete filter can be expressed as . Fig. 7
shows the final topology of the circuit. In the example, the new
structure and the basic one have similar delays. But the method
led to a time penalty if it is used to synthesize more complex
filters.

The ITM algorithm [2] describes another common subexpres-
sion-based technique. The method finds the maximum number
of coincidences between two signed-digit (SD). For instance,
Table I represent the SD coefficients while the binary coinci-
dences between those coefficients is shown in Table II. The final
structure by using additions, subtractions and shifts is shown in
Fig. 8.

An alternative to the previously described CSE algorithms
was developed by Bull [4]. This is one of the first works de-
scribing a graph dependence algorithm. The algorithm (named
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Fig. 8. ITM [2] representation of a four-coefficient filter.

Fig. 9. Filter using the BHA graph synthesis algorithm.

as BHA in subsequent works) represents the filter as a graph
that creates a new coefficient, depending on the previous one.
In Fig. 9 the BHA algorithm has been used to generate nine
unique coefficients (represented by boxes). The authors demon-
strated in [7] that the use of adders combined with subtractors
leads to a lower number of logic operators. A modified version
of the BHA was presented in [5] and [8]. In these works, Demp-
ster and Macleod demonstrated that the Bull-Horrocks modified
algorithm (BHM) could reach the minimum number of logical
operators. One of the advantages of the BHM is the use of in-
tegers with a larger magnitude than the coefficient, in order to
reduce the number of operators. For example, the coefficient 7
is obtained as whereas BHA used the expression

. BHM allows the designer a 26% average re-
duction in the number of logical operators, compared with the
simplest shift-and-add algorithm from the CSD representation.
An example of a filter using BHM is presented in Fig. 10. The
dotted lines represent possible frequency cuts to reduce the logic
depth.

Although BHM leads to the lowest number of adders, the
algorithm does not consider the logic depth. While the graph
synthesis algorithms reduce the area, its dependence graph in-
creases the logic depth. A comparative example between these
algorithms is shown in Table III. The number of logic operators

Fig. 10. Implementation of the filtery[n] = 155x[n]+109x[n�1]+93x[n�
2] + 98x[n � 3] based on the BHM algorithm.

TABLE III

and logic depth required for a filter with coefficients {105, 621,
815, 831} is summarized. This case study was used in [2] to ex-
plain the ITM algorithm.

Main conclusions are that BHM algorithm uses the lowest
number of LO, but present the highest LD. Hartley algorithm
requires few additional logic operators respect to BHM alterna-
tive, having at the same time a minimum LD. In addition, the
Hartley algorithm leads to a straightforward layout, thus sim-
plifying hardware synthesis. Others algorithms to implement
multiplierless structures like [9] and [10] (compared in [8]) are
based on exhaustive search methods, that are time consuming
and more difficult to translate into hardware.

III. NR-SCSE ALGORITHM

In this section, we propose a new array splitting algorithm
that combines the advantages of previous methods: it reduces
the logic depth obtained from Hartley algorithm, using approxi-
mately the same number of logic operators than BHM. The orig-
inal array starts with a CSD representation of the coefficients,
obtaining a layout similar to the Hartley description. The re-
sulting structure can also be easily synthesized into hardware.
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The proposed NR-SCSE algorithm makes use of a signed subex-
pression elimination method as [1] and [2], but subexpressions
belonging to different coefficients are not shared. This modifi-
cation leads to independent structures in the final hardware de-
scription, that reduce logic depth and increase the operation fre-
quency. A complete description of the NR-SCSE algorithm is
shown below.

The problem starts with the CSD coefficient array
, where and are the two-dimensions of the

array. represents the number of coefficients andis the
number of bits, or precision. The algorithm is based on the
following three points.

• There are two patterns of signed subexpressions, S1 and
S2. S1 represents subexpressions with values or
its negative , and S2 subexpressions with values

or . The number of zeros in S2 is be-
tween 1 and . The nonzero digits in subexpression
S1 have the same sign while in S2 1 and1 are always
present.

• Each coefficient C has one associated subexpression
model matrix (SMM) with two rows and
columns. Each position in the first row represents an
occurrence of the subexpression S1, whereas the occur-
rences of the subexpression S2 are represented in the
second row. The column position shows the number
of zeros between ones for each subexpression model.
For instance, the cell represents three
occurrences of the subexpression or in
the CSD representation of the coefficient C.

• The number of common subexpression (S) to be found out
in the original CSD array can be selected by the designer.
In Section IV, it is demonstrated that selecting the max-
imum number of common subexpressions can lead to fil-
ters with poor properties in terms of area and speed com-
pared to those filters obtained from a reduced number of
the most common subexpressions.

The search of S common subexpressions among C coeffi-
cients can be implemented in several steps as described in the
following algorithm.

Step 1) Obtain the SMM arrays for each subexpression
s belonging to the interval (1, S) and each coefficient

in (1, C). The algorithm must take into account
the overlaps between subexpressions in the same co-
efficient. As an example, in the pattern , the
subexpression S2 of value or its signed associ-
ated subexpression has two occurrences. How-
ever, only one is accepted as valid.

Step 2) Calculate the sum-array by using (1).

(1)

Step 3) Select the most common subexpression defined as
the maximum value in the array.

For instance, the NR-SCSE algorithm is applied
on the array in (2) to generate the sum-array

for the first most common subexpression
in (3).

(2)

(3)

In (3), the is located in
the second row—fourth column. Thus, the first
subexpression selected that appears five times in the
original CSD array is or its negative value

. Using the , the SMM obtained
for each coefficient are shown in (4)–(7)

(4)

(5)

(6)

(7)

Step 4) Eliminate the previous selected subexpression from
the arrays, i.e., the nonzero bits in the subexpres-
sion are replaced by zeros.

Step 5) Generate the partial residual array from the
original array without the occurrences of the
subexpression selected in Step 3).

In (8), we have the resulting partial residual array
after the selection of

(8)

Step 6) If either or the maximum value into the array
, go to Step 7). Otherwise, increment s

and return to Step 1).
Step 7) Obtain as a result the subexpressions, the final

residual array, number of adders, and the logic
depth of the structure. These values are explained in
the next paragraphs.

The iteration of the NR-SCSE algorithm over the
last residual array (8) leads to the second subexpression

from the new sum-array

(9)

In (9) the subexpression (or its signed value ) has
two occurrences. Finally, the last residual array obtained is

(10)
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The filter can be expressed as the union of the last residual array
(10) and the SMM arrays obtained for the first and the second
MCSE (3)–(6) and (8). Generalizing, the original array
can be represented as

(11)

symbolizes the position for each MCSE obtained in the orig-
inal CSD array. The number of logical operators (adder/subtrac-
tors) to implement the final structure can be expressed as

LO (12)

Equation (12) represents the addition of the number of subex-
pressions S, the number of nonzero elements from the SMM
array and the number of nonzero elements from the residual
array. Equation (13) represents the logic depth obtained for each
coefficient

LD (13)

The final logic depth in the structure is calculated as the max-
imum value of (13) for all coefficients. Thus, the array
used as example is implemented with LO and LD . The
LD value is

LD

(14)

The final structure obtained from the application of the
NR-SCSE algorithm over the filter is shown in Fig. 11.
The two most common subexpressions are pipelined. Each
coefficient is obtained using its SMM array, that represents
the connections from the , , and the
residual array .

Fig. 11 shows the final result: 9 logic operators (plus the
last vector merging adder), and two adders of logic depth. A
pseudo-HDL description code obtained from the NR-SCSE al-
gorithm is

(15)

Fig. 11. Transposed FIR filter structure obtained from the NR-SCSE algorithm
application.

Equation (16) shows the direct structure of the filter obtained
by applying the transposition theorem to (15). A straightfor-
ward solution could be obtained from the transposed structure
(Fig. 11) using the same theorem. The direct structure re-
quires less registers than the transposed version. However,
the resulting logic depth is always better for the transposed
representation. The idea of the NR-SCSE algorithm is to create
high-speed structures from the lowest logic depth option.
Thus, the transposed version is the structure of choice when
NR-SCSE is applied. Otherwise, the BHM algorithm offers the
minimum number of logic operators to implement the direct
structure along with a sometimes poor logic depth.

(16)

The number of patterns to be searched in Step 1) reduces dra-
matically the run time of the above algorithm when compared to
optimal run time algorithms as [12], where subexpressions with
more than two nonzero bits are examined. These algorithms in-
crease the complexity by the creation of pattern frequency sta-
tistics. On the contrary, in this paper we propose to search pat-
tern, S1 and S2 with only two nonzero bits as proposed in [3].
In this way, the process that identifies the most common subex-
pression in the original CSD array is simplified. In addition, the
overlaps between subexpressions can easily be computed. For
instance, in the 8-bit coefficient , the occurrences of
subexpression models S1 and S2 are computed in Table IV. It
can be observed that subexpressions a and c have the same oc-
currences. The final selection is based on the minimum number
of zeros between nonzero bits. The pattern a is selected: it leads
to a reduction in the number of bits of the adder that implements
this subexpression.

Although each selected subexpression modifies the statistics
of all subexpressions; we propose to select only the most
common subexpression once on each iteration of the algorithm,
without taking into account the variation on the statistics. That
option generates an algorithm that can be easily included into
a synthesis tool with no penalty in the run time operation.
To test the proposed method, filters S1 and S2 in [12] were
implemented, obtaining the same number of adders.
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TABLE IV

IV. A LGORITHM EVALUATION AND COMPARISONRESULTS

In this section, two methods are used to evaluate the ad-
vantages of the presented NR-SCSE algorithm. First, the
main algorithms summarized in Section II are compared with
the NR-SCSE approach, using several filter structures. Later
results are generalized using a test bench of 100 filters. Both
parameters LO and LD are obtained as a function of filter
characteristics such as the order , the coefficient precision

and the required number of common subexpressions (S).
Several parameters must be defined to compare the NR-SCSE

algorithm. In Table V, symbolizes the required number of
adders. The optimization ratio related to the use of a particular
algorithm is usually reflected as ; i.e, the number of
adders per tap coefficient. The improvement ratio, the number
of LO compared with the CSD direct implementation, is defined
as . Finally, the LD ratio is introduced to
measure improvements in both area and logic depth.

The filters implemented in Table V have different order and
coefficient precision. FIR1 represents the topology used in Sec-
tion II to describe the algorithms. FIR2 is a sixteenth-order an-
tisinc filter. FIR3 is the structure used in [2] to describe the ITM
algorithm. FIR4 and FIR5 are the filters F1 and F2 introduced
in [11] and used in [12] as S1 and S2 to compare different algo-
rithms. Finally, FIR6 is the filter designed in [13].

Table V shows that NR-SCSE obtains always a lower number
of logic operators respect to the Hartley algorithm. The reason
is that our algorithm searches for the best most common subex-
pression for each filter specification. To the contrary, Hartley
just uses the two statistically most common subexpressions [6].
In addition, the NR-SCSE algorithm is designed to obtain the
best logical depth, as shown in Table V. Although BHM algo-
rithm often leads to the least number of logic operators (the pro-
posed algorithm offers the minimum in FIR4 on Table V), the
NR-SCSE algorithm has always the best compromise between
logic depth and number of logic operators. This result allows
the designer to get a matrix-vector product with the best rela-
tion between frequency and area.

The advantages of the NR-SCSE algorithm can be illustrated
with a set of filters designed using the Park and McClellan algo-
rithm [14]. These filters have different ripples in passband and
stopband ranging from 0.001 to 0.0001, and from 0.025 to 0.1,
respectively. Moreover, the set includes both narrow and wide
band filters.

In Fig. 12 it can be observed that there exists a maximum
number of shared subexpressions (S) that yields the minimum
number of adders. The number of logical operators does not de-

TABLE V

crease in most of the filters, even sharing subexpressions.
This fact is an important difference between our algorithm and
the approach presented in [12]. The effect of sharing too many
subexpressions is to increase the final size of the filter. How-
ever, the use of few subexpressions implies extra wiring with
high fanout that leads to a power consumption increment and a
speed reduction in current VLSI technologies. Table VI summa-
rizes the results from Fig. 12. The average of logical operators
LO is 2 with . The same result is obtained using

subexpressions. However, the logic depth average is LD
for the entire structures, even using different number of shared
subexpressions. This fact is a consequence of the dependence
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Fig. 12. Number of adders in 50 different filters withT = 20, n = 12, and
S varying from 1 to 4.

TABLE VI

Fig. 13. Number of adders in four groups of 50 filters with different coefficient
word length(n) andT = 30.

between and LD, while LD is independent of the (number
of coefficients) and .

Fig. 13 shows the dependence between the coefficient
word length and the number of adders. As the NR-SCSE
algorithm searches common subexpressions in each individual
coefficient, the word length directly influences the required
number of adders (LO). The figure shows that the average
value of LD, for , 12, 16, and 23 is LD , 2.9, 4,

Fig. 14. Parameters LO and LD in 100 filters withT = 10, n = 12, and
S = 4.

Fig. 15. Number of adders and logic depth in 100 filters withT = 40,n = 12,
andS = 4.

and 5.6, respectively, thus evidencing the dependence between
LD and . Furthermore, LO depends on the order of the filter

. Figs. 14 and 15 present the results in terms of LD and LO
for 100 filters with , , and (Fig. 14)
or (Fig. 15). These figures show that LD does not
depend on the order of the filter (the value of this parameter
is approximately 3 in both pictures) whereas LD presents
important variations (from 17 to 55 as average for and

, respectively).
From the above results we can conclude the following.

a) The logical depth (LD) depends neither onnor . It only
depends on the word length.

b) The number of required logical operators (LO) is function
of and , but it is not highly dependent on.

V. CONCLUSION

The work describes an algorithm obtained from [1] that
presents some improvements such as a lower number of adders
and logic depth. The new algorithm has been called NR-SCSE
because it searches for the nonrecursive signed common subex-
pressions that must be eliminated from the original CSD array.
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Compared with the most popular multiplierless algorithms,
NR-SCSE offers the best relation area—frequency operation,
or number of adders—logical depth along with optimal runtime
operation due to its simplicity. Moreover, the structure of the
filter obtained from the algorithm can easily be described using
a HDL. Finally several interesting properties in both parameters
LD and LO have been studied by using groups of 50 and 100
random filters.
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