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1. Introduction 
 
 
The floating point unit (FPU) implemented during this project, is a 32-bit processing unit 
which allows arithmetic operations on floating point numbers. The FPU complies fully 
with the IEEE 754 Standard [1]. 
The FPU supports the following arithmetic operations: 
 

1. Add 
2. Subtract 
3. Multiply 
4. Divide 
5. Square Root 

 
For each operation the following rounding modes are supported: 
 

1. Round to nearest even 
2. Round to zero 
3. Round up 
4. Round down 

 
 
The FPU was written in VHDL with top priority to be able to run at approximately 100-
MHz and at the same time as small as possible. Meeting both goals at the same time was 
very difficult and tradeoffs were made.  
In the following sections I will explain the theory behind the FPU core and describe its 
implementation on hardware. 
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2. Floating point numbers 
 
 
The floating-point representation is one way to represent real numbers. A floating-point 
number n is represented with an exponent e and a mantissa m, so that: 

 
n = be × m, …where b is the base number (also called radix) 

 
So for example, if we choose the number n=17 and the base b=10, the floating-point 
representation of 17 would be: 
 
  17 = 101 x 1.7 
 
Another way to represent real numbers is to use fixed-point number representation. A 
fixed-point number with 4 digits after the decimal point could be used to represent 
numbers such as: 1.0001, 12.1019, 34.0000, etc. Both representations are used depending 
on the situation. For the implementation on hardware, the base-2 exponents are used, 
since digital systems work with binary numbers. 
Using base-2 arithmetic brings problems with it, so for example fractional powers of 10 
like 0.1 or 0.01 cannot exactly be represented with the floating-point format, while with 
fixed-point format, the decimal point can be thought away (provided the value is within 
the range) giving an exact representation. Fixed-point arithmetic, which is faster than 
floating-point arithmetic, can then be used. This is one of the reasons why fixed-point 
representations are used for financial and commercial applications.  
The floating-point format can represent a wide range of scale without losing precision, 
while the fixed-point format has a fixed window of representation.  So for example in a 
32-bit floating-point representation, numbers from 3.4 x 1038 to 1.4 x 10-45 can be 
represented with ease, which is one of the reasons why floating-point representation is the 
most common solution.  
Floating-point representations also include special values like infinity, Not-a-Number 
(e.g. result of square root of a negative number). 
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3. IEEE Standard 754 for Binary Floating-Point 
Arithmetic 
 

3.1 Formats 
 
The IEEE (Institute of Electrical and Electronics Engineers) has produced a Standard to 
define floating-point representation and arithmetic. Although there are other 
representations, it is the most common representation used for floating point numbers.  
The standard brought out by the IEEE come to be known as IEEE 754. 
The standard specifies [1]: 
 

1) Basic and extended floating-point number formats 
2) Add, subtract, multiply, divide, square root, remainder, and compare operations 
3) Conversions between integer and floating-point formats 
4) Conversions between different floating-point formats 
5) Conversions between basic format floating-point numbers and decimal strings 
6) Floating-point exceptions and their handling, including non numbers (NaNs) 

 
 
When it comes to their precision and width in bits, the standard defines two groups: 
basic- and extended format. The extended format is implementation dependent and 
doesn’t concern this project. 
The basic format is further divided into single-precision format with 32-bits wide, and 
double-precision format with 64-bits wide. The three basic components are the sign, 
exponent, and mantissa.  The storage layout for single-precision is show below: 
 
Single precision 
     

 
 
 

The most significant bit starts from the left. 
 
The double-precision doesn’t concern this project and therefore will not be discussed 
further.  
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The number represented by the single-precision format is:  
 
value   = (-1)s2e × 1.f  (normalized) when E > 0 else 
  = (-1)s2-126 × 0.f   (denormalized)  
 
where 

f  = (b23
-1+b22

-2+ bi
n +…+b0

-23) where bi
n =1 or 0 

s = sign (0 is positive; 1 is negative) 
E =biased exponent; Emax=255 , Emin=0. E=255 and E=0 are used to 

represent special values. 
e =unbiased exponent; e = E – 127(bias) 

 
A bias of 127 is added to the actual exponent to make negative exponents possible 
without using a sign bit. So for example if the value 100 is stored in the exponent 
placeholder, the exponent is actually -27 (100 – 127).  Not the whole range of E is used to 
represent numbers. As you may have seen from the above formula, the leading fraction 
bit before the decimal point is actually implicit (not given) and can be 1 or 0 depending 
on the exponent and therefore saving one bit.  Below is a table with the corresponding 
values for a given representation to help better understand what was explained above: 
 
 
Sign(s) Exponent(e) Fraction Value 

0 00000000 00000000000000000000000 +0 
(positive zero) 

1 00000000 00000000000000000000000 -0 
(negative zero) 

1 00000000 10000000000000000000000 -20-127x0.(2-1)= 
-20-127x 0.5 

0 00000000 00000000000000000000001 +20-127x0.(2-23) 
(smallest value) 

0 00000001 01000000000000000000000 +21-127x1.(2-2)= 
+21-127x1.25 

0 10000001 00000000000000000000000 +2129-127x1.0= 
4 

0 11111111 00000000000000000000000 + infinity 
 

1 11111111 00000000000000000000000 - infinity 
 

0 11111111 10000000000000000000000 Not a Number(NaN)
 

1 11111111 10000100010000000001100 Not a Number(NaN)
 

 
   
 
 

 - 4 -  



3.2 Exceptions 
 
The IEEE standard defines five types of exceptions that should be signaled through a one 
bit status flag when encountered. 

3.2.1 Invalid Operation 
 
Some arithmetic operations are invalid, such as a division by zero or square root of a 
negative number. The result of an invalid operation shall be a NaN. There are two types 
of NaN, quiet NaN (QNaN) and signaling NaN (SNaN). They have the following format, 
where s is the sign bit: 
 
QNaN  = s 11111111  10000000000000000000000 
SNaN  = s 11111111  00000000000000000000001 
 
The result of every invalid operation shall be a QNaN string with a QNaN or SNaN 
exception.  The SNaN string can never be the result of any operation, only the SNaN 
exception can be signaled and this happens whenever one of the input operand is a SNaN 
string otherwise the QNaN exception will be signaled.  The SNaN exception can for 
example be used to signal operations with uninitialized operands, if we set the 
uninitialized operands to SNaN. However this is not the subject of this standard. 
 
The following are some arithmetic operations which are invalid operations and that give 
as a result a QNaN string and that signal a QNaN exception: 
 
1) Any operation on a NaN  
2) Addition or subtraction: ∞ + (−∞) 
3) Multiplication: ± 0 × ± ∞ 
4) Division: ± 0/ ± 0 or ± ∞/ ± ∞ 
5) Square root: if the operand is less than zero 

3.2.2 Division by Zero 
 
The division of any number by zero other than zero itself gives infinity as a result. The 
addition or multiplication of two numbers may also give infinity as a result. So to 
differentiate between the two cases, a divide-by-zero exception was implemented. 

3.2.3 Inexact 
 
This exception should be signaled whenever the result of an arithmetic operation is not 
exact due to the restricted exponent and/or precision range. 
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3.2.4 Underflow 
 
Two events cause the underflow exception to be signaled, tininess and loss of accuracy. 
Tininess is detected after or before rounding when a result lies between ±2Emin. Loss of 
accuracy is detected when the result is simply inexact or only when a denormalization 
loss occurs. The implementer has the choice to choose how these events are detected. 
They should be the same for all operations. The implemented FPU core signals an 
underflow exception whenever tininess is detected after rounding and at the same time 
the result is inexact. 

3.2.5 Overflow 
 
The overflow exception is signaled whenever the result exceeds the maximum value that 
can be represented due to the restricted exponent range. It is not signaled when one of the 
operands is infinity, because infinity arithmetic is always exact. Division by zero also 
doesn’t trigger this exception. 

3.2.6 Infinity 
 
This exception is signaled whenever the result is infinity without regard to how that 
occurred. This exception is not defined in the standard and was added to detect faster 
infinity results. 

3.2.7 Zero 
 
This exception is signaled whenever the result is zero without regard to how that 
occurred. This exception is not defined in the standard and was added to detect faster zero 
results. 

 

3.3 Rounding Modes 
 
Since the result precision is not infinite, sometimes rounding is necessary.  To increase 
the precision of the result and to enable round-to-nearest-even rounding mode, three bits 
were added internally and temporally to the actual fraction: guard, round, and sticky bit. 
While guard and round bits are normal storage holders, the sticky bit is turned ‘1’ when 
ever a ‘1’ is shifted out of range.   
As an example we take a 5-bits binary number:  1.1001.  If we left-shift the number four 
positions, the number will be 0.0001, no rounding is possible and the result will no be 
accurate. Now, let’s say we add the three extra bits. After left-shifting the number four 
positions, the number will be 0.0001 101 (remember, the last bit is ‘1’ because a ‘1’ was 
shifted out). If we round it back to 5-bits it will yield: 0.0010, therefore giving a more 
accurate result. 
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The standard specifies four rounding modes: 

3.3.1 Round to nearest even 
 
This is the standard default rounding. The value is rounded up or down to the nearest 
infinitely precise result. If the value is exactly halfway between two infinitely precise 
results, then it should be rounded up to the nearest infinitely precise even. 
 
 
For example: 
 
Unrounded Rounded 
3.4 3 
5.6 6 
3.5 4 
2.5 2 
 

3.3.2 Round-to-Zero 
 
Basically in this mode the number will not be rounded. The excess bits will simply get 
truncated, e.g. 3.47 will be truncated to 3.4. 

3.3.3 Round-Up 
 
The number will be rounded up towards +∞, e.g. 3.2 will be rounded to 4, while -3.2 to  
-3. 
 

3.3.4 Round-Down 
 
The opposite of round-up, the number will be rounded up towards -∞, e.g. 3,2 will be 
rounded to 3, while -3,2 to  -4. 
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4. Arithmetic on floating point numbers 
 
In the following sections, the basic algorithms for arithmetic operations will be outlined. 
For more exact detail please see the VHDL code, the code was commented as much as 
possible. 
 

4.1 Addition and Subtraction 
 
Addition and Subtraction operations on floating-point numbers are a lot more complex 
than that on integers. The basic algorithm for adding or subtracting FP numbers is shown 
in the following flow diagram. 
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An example is given below to demonstrate the basic steps for adding/subtracting two FP 
numbers. 
Let’s say we want to add two 5-digits binary FP numbers: 
 

24 × 1.1001 
+ 22 × 1.0010 
_________________ 

 
Step1: get the number with the larger exponent and subtract it from the smaller exponent. 
 

eL = 24, eS = 22 , so diff = 4 -2 = 2 
 
Step 2: shift the fraction with the smaller exponent diff positions to the right. We can 
now leave out the exponent since they are both equal. This gives us the following: 
 

1.1001   000 
+ 0.0100   100  
_________________ 

 
Step 3: Add both fractions 
 

1.1001   000 
+ 0.0100   100  
_________________ 
 1.1101   100 

 
Step 4: Round-to-nearest-even 
 

1.1110 
 
Step 5: Result 
 

24 × 1.1110 
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4.2 Multiplication 
 
 

 
 
 
The multiplication was done parallel to save clock cycles, at the cost of hardware. 
If done serial it would have taken 32 clock cycles (without pre-, post-normalization) 
instead of the actual 5 clock cycles needed. Disadvantage, the hardware needed for the 
parallel 32-bit multiplier is approximately 3 times that of serial. 
To demonstrate the basic steps, let’s say we want to multiply two 5-digits FP numbers: 
 

2100 × 1.1001 
× 2110 × 1.0010 
_________________ 
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Step 1:  multiply fractions and calculate the result exponent. 
 

1.1001 
× 1.0010 
_________________ 

1.11000010   
 
so fracO= 1.11000010  and eO = 2100+110-bias = 283

 
Step 2: Round the fraction to nearest-even 
 

fracO= 1.1100  
 
Step 3: Result 
 
 283 × 1.1100 
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4.3 Division 
 
 

 
 
The division was done serially using the basic algorithm taught in most schools, which is 
division through multiple subtractions. Since divisions are not needed as often as 
multiplications (divisions can be done also through multiplications!), it was implemented 
as serial and in the process saving some hardware area.  
To demonstrate the basic steps of division, let’s say we want to divide two 5-digits FP 
numbers: 
 

2110 × 1.0000 
÷ 2100 × 0.0011 
_________________ 
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Step 1: count leading zeros in both fractions. 
 

zA = 0, zB = 3 
 
 
Step 2: shift-left the fractions according to zA, zB . Calculate the result exponent 
 

fracA = 10000 00000 
fracB = 00000 11000 
 
eO = 2110-100+bias-0+3 = 2140 

 
Step 3: divide both fractions 
 

100000,0000 
÷ 000001,1000 
_________________ 

            1,0101 
 
Step 4: result 
  
 1,0101 × 2140
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4.4 Square-Root 
 

 
* The sign of result is always positive except for -0 
 
The square root is calculated using an iterative algorithm, which needs the same number 
of loops as the precision of the result.  The square-root algorithm used here doesn’t need 
any multipliers or divisors, because all multiplications were replaced with left-shifts and 
all divisions with right-shifts. This makes the algorithm very efficient and fast for 
hardware implementations. 
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4. Hardware implementation 
 
The FPU core basic architecture is shown below: 
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The FPU core was designed to be as modular as possible. The current core supports five 
arithmetic operations: 
 

1. Add 
2. Subtract 
3. Multiply 
4. Divide 
5. Square Root 

 
To save logic elements on the chip, one can disable the arithmetic units that are not 
needed by modifying the output multiplexer code, since all units are totally independent 
from each other. Future arithmetic units can be added very easily just by instantiating the 
unit and connecting its output to the output multiplexer.  
All arithmetic operations have these three stages: 
 

1. Pre-normalize:  the operands are transformed into formats that makes them 
easy and efficient to handle internally. 

 
2. Arithmetic core:  the basic arithmetic operations are done here. 

 
3. Post-normalize:  the result will be normalized if possible (leading bit before 

decimal point is 1, if possible) and then transformed into the format specified 
by the IEEE standard. 

 
A common post-normalization unit for all arithmetic operations was not used, although it 
was possible to combine them all in one unit. It was not done so because:  

• Post-normalizations differ from one arithmetic operation to another, e.g. the post-
normalization unit for addition/subtraction needs 259 logic elements (LCs) while 
multiplication needs 889 LCs.  

• Most importantly, less clock cycles are needed for some operations 
• Hardware can be saved if not all operations are wanted 

 
Through pipelining the FPU core was able to reach higher fmax

 at the cost of throughput 
(more clock cycles). The number of clock cycles that the FPU needs for each arithmetic 
operation is listed below: 
 
Operation Number of clock cycles 
Addition 7 
Subtraction 7 
Multiplication 12 
Division 35 
Square-root 35 
 
By lowering the amount of pipelining, the clock cycles needed can be reduced, but at the 
same time fmax decreases. To reduce the clock cycles needed and therefore increase the 
speed of processing without much effecting fmax, the precision can be decreased. So for 
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example when dividing, the serial divider needs 26 clock cycles (again, without pre-, 
post-normalization) for the 24-bits precision result and the extra 3-bits to enable 
rounding. So if we reduced the precision to let’s say 10-bits, we can reduce the needed 
clock cycles to 13 clock cycles. The same thing can be done with the square root 
operation. Decreasing the precision will also save hardware area. 
 

4.1 Interface 
 
Input signals: 

Signal Name Width Description 
clk_i 1 clock signal 
opa_i 32 operand A 
opb_i 32 operand B 

fpu_op_i 3 

FPU operations: 
000 = add, 
001 = subtract, 
010 = multiply, 
011 = divide, 
100 = square root 
101 = unused 
110 = unused 
111 = unused 

rmode_i 2 

Rounding modes: 
00 = round to nearest even  
01 = round to zero 
10 = round up 
11 = round down 

start_i 1 Start signal 
 
Output signals: 

Signal Name Width Description 
output_o  output 
ready_o  ready signal 

Exceptions 
ine_o 1 inexact 

overflow_o 1 overflow 
underflow_o 1 underflow 
div_zero_o 1 divide by zero 

inf_o 1 infinity 
zero_o 1 zero 
qnan_o 1 QNaN 
snan_o 1 SNaN 

 - 17 -  



4.2 Compilation and Synthesis 
 
The FPU core was compiled and synthesized successfully with Altera Quartus II v.5 and 
Synplify Pro 8.1. The  Cyclone I–EP1C6Q240C6  was the intended FPGA.  
The order in which the files shall be compiled are: 
 

fpupack.vhd 
pre_norm_addsub.vhd 
addsub_28.vhd 
post_norm_addsub.vhd 
pre_norm_mul.vhd 
mul_24.vhd 
post_norm_mul.vhd 
pre_norm_div.vhd 
serial_div.vhd 
post_norm_div.vhd 
pre_norm_sqrt.vhd 
sqrt.vhd 
post_norm_sqrt.vhd 
comppack.vhd 
fpu.vhd 

 
The number of Logic elements needed for each unit is shown below. 
 
Altera Quartus II v.5 
 

fmax:  100 MHz 
 
Number of  logic elements:   

Addition unit:   684 
Multiplication unit:  1530 
Division unit:   928 
Square-root unit:  919 
Top unit:  326 

_______________________________ 
Total:    4387 

 

4.3 Test and verification 
 
The FPU was tested with test cases created using SoftFloat 
(http://www.jhauser.us/arithmetic/SoftFloat.html). SoftFloat is a software implementation 
of floating-point that conforms to the IEC/IEEE Standard for Binary Floating-Point 
Arithmetic. The FPU was tested in ModelSim with 100000 test cases for each arithmetic 
operation and for each rounding mode. This comes up to 2 million test cases. The 
instructions for how to create the test cases and test the FPU core, can be found in the 
readme file in folder test_bench. 
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The FPU mastered also successfully the hardware test. The FPU was implemented in the 
Cyclone I–EP1C6Q240C FPGA chip and was then connected to the Java processor JOP 
(www.jopdesign.com) to do some floating-point calculations. 
 

4.4 FPU comparsion 
 
I compared the FPU presented here with Usselmann’s FPU 
(http://www.opencores.com/projects.cgi/web/fpu/overview), since it was the only open 
source FPU known to me. Both FPU’s were tested with Altera Quartus II v.5 using 
Cyclone I–EP1C6Q240C6. Summery of the most important parameters are shown in the 
table below. 
 
 FPU #1 (presented here) FPU #2 (Usselmann) 
Nr. of logic elements *3468 7392 
fmax 100 MHz 6.17 MHz 

Clock Cycles 
Addition/Subtraction 7 3 
Multiplication 12 3 
Division 35 3 
Square-root 35 NA 
 
* Without the square-unit 
 

5. Conclusion 
 
 
An FPU was implemented, which successfully achieved the goals stated at the beginning 
which were: 

• 100 MHz operating frequency 
• Few clock cycles 
• Few logic elements 

 
Further, the FPU was tested, verified, and implemented in hardware successfully. 
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7. Updates 
 

 
 
30/01/2006 
Added serial multiplier to the parallel multiplier already implemented to reduce the 
number of logic elements needed. By changing 2 constants in fpu.vhd one of the 
multipliers can be chosen.  
 
28/03/2006 
Tested the FPU with 2 million test cases and corrected few bugs. 
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