
1 

 

 

 

 

 

 

OpenCores G.729A Codec 

Version 1.0 
 

 

 

 

January 2015 



2 

 

 

Contents
Introduction ..................................................................................................................................................3 

License .........................................................................................................................................................3 

Conventions .................................................................................................................................................4 

General description ......................................................................................................................................4 

Source code language ..................................................................................................................................4 

Core architecture ..........................................................................................................................................4 

Core interface ...............................................................................................................................................5 

Flow of operations .......................................................................................................................................6 

Control signals .........................................................................................................................................6 

Single-channel operations, full-duplex mode ..........................................................................................7 

Single-channel operations, half-duplex mode..........................................................................................7 

Multiple-channel operations, full-duplex mode .......................................................................................8 

Multiple-channel operations, half-duplex mode ......................................................................................9 

Performance .................................................................................................................................................9 

Sample timing diagrams ............................................................................................................................10 

Core reset ...............................................................................................................................................10 

Initialization ...........................................................................................................................................11 

Encoding  ...............................................................................................................................................12 

Channel state saving operation ..............................................................................................................14 

Channel state restoring operation...........................................................................................................15 

Appendix A: Altera© Quartus II 9.1 synthesis test ...................................................................................16 

Appendix B: Xilinx© ISE 14.7 synthesis test ...........................................................................................16 

Appendix C: Simulation & Implementation Hints ....................................................................................16

 

 



3 

 

 

Introduction 
 This document describes OpenCores G.729A codec core available at 

http://opencores.org/project,g729a_codec. The core performs multi-channel 8kbps voice compression 

based on ITU-T G.729A standard, in both half-duplex and full-duplex modes. 

 Hopefully this work can be of use to somebody. 

License 
 In accordance with the existing version of the OpenCores G.729A codec core. This work is 

licensed under the GNU Lesser General Public License. The license can be obtained at 

http://www.gnu.org/licenses/lgpl.html . As such, the following applies to all source files added to the 

OpenCores G.729A codec core. 

 

Copyright (C) 2014 Stefano Tonello 

 

This source file may be used and distributed without restriction provided that this copyright statement is 

not removed from the file and that any derivative work contains 

the original copyright notice and the associated disclaimer This source file is free software; you can 

redistribute it and/or modify it under the terms of the GNU Lesser GeneralPublic License as published 

by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. 

 

This source is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without 

even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  

See the GNU Lesser General Public License for more details. 

 

You should have received a copy of the GNU Lesser General Public License along with this source; if 

not, download it from http://www.gnu.org/licenses/lgpl.html. 

G.729 includes patents from several companies and is licensed by Sipro Lab Telecom. Sipro Lab 

Telecom is the authorized Intellectual Property Licensing Administrator for G.729 technology and 

patent pool. In a number of countries, the use of G.729 may require a license fee and/or royalty fee.  

http://opencores.org/project,g729a_codec
http://www.gnu.org/licenses/lgpl.html
http://www.gnu.org/licenses/lgpl.html


4 

 

Conventions 
The following conventions are used in this document: 

 Channel: a sequence of data packet related to the same audio stream. 

 Coding (or encoding): the process of compressing audio samples. 

 Core: the G.729A codec described in this document. 

 Data packet: any sequence of 16-bit word transferred between the core and outside world 

(hereinafter called user logic), data packets can carry un-encoded, coded (or encoded) or state 

data. 

 Decoding: the process of un-compressing audio samples. 

 User logic: any circuitry connected to the core, and used to control it and/or exchanging data 

with it. 

General description 
 This G.729A codec core performs coding and decoding of 16-bit LPCM audio samples 

according to ITU-T G.729A standard.  

When coding, the core takes as input data packets composed of 80 16-bit LPCM audio samples 

and outputs compressed data packets consisting of 5 16-bit words. 

When decoding, the core takes as compressed data packets consisting of 5 16-bit words and 

outputs data packets composed of 80 16-bit LPCM audio samples. 

The core can operate in both half-duplex (coding-only or decoding-only) and full-duplex (coding 

+ decoding) modes. 

The core can handle  multiple channels by intermixing processing of their data packets, 

corruption of state information related to each channel is avoided by saving them (to external memory) 

after processing a packet belonging to a channel, and restoring them (from external memory) before 

processing the next packet belonging to the same channel. 

The maximum number of channels which can be intermixed is limited only by the core operating 

frequency. Channel state save/restore operations are not needed for single-channel operations. 

Source code language 
 All source code files are written in synthesizable VHDL language. 

 Although the source code doesn’t include vendor-specific features, it has been written having 

FPGA’s in mind and therefore is more suitable to implementation on FPGA’s. 

 FPGA-oriented features include, among others, the use of inferred dual-port RAM memories 

with one read/write and one read-only port, and the mixing of logic and memory instances in VHDL 

code. 

Core architecture 
 The core has been designed following an ASIP-style (Application Specific Instruction Processor) 

approach, and it consists of a simple processor, which RISC-like instruction set has been augmented 

with instructions dedicated to G.729A coding/decoding operations, plus instruction and data memories 

and an interface module managing the processor itself and the data transfers between the core and user 

logic.  

Every data transfer between the core and the user logic is actually implemented as a Direct 

Memory Access (DMA) operation on the processor data memory. 

Data memory stores three types of data: constant data (in a read-only portion of it), channel state 

data (to be retained across decoding/encoding runs) and scratchpad data (to be overwritten at each run). 



5 

 

Core interface 
The core interface consists of the following signals: 

 CLK_i: clock input. 

 RST_i: synchronous reset input (reset completes in one cycle). 

 STRT_i: start input. 

 OPS_i[3-1:0]: operation selecting input. 

 RE_i: read-enable input. 

 WE_i: write-enable input. 

 DI_i[16-1:0]:  data input. 

 BSY_o: core busy output. 

 DMAE_o: DMA-enabled output 

 STS_o[3-1:0]:  status output. 

 DV_o: data valid output 

 DO_o[IO_WIDTH-1:0]:  data output. 

 

STRT_i starts a core operation and must be asserted by user logic for one cycle. STRT_i 

signal level is ignored when signal BSY_o is asserted. 

OPS_i[3-1:0] selects the operation to be performed by the core and must asserted by user 

logic on the same cycle where STRT_i is asserted. Valid core operations are listed below. 

RE_i and WE_i signals control data transfers between user logic and the core. User logic asserts 

WE_i for one cycle when a 16-bit data word needs to be written to the core. User logic asserts RE_i 

for one cycle when a 16-bit data word needs to be read from the core. 

DI_i[16-1:0] is used to write 16-bit data words to the core, data loaded by user logic on 

DI_i are valid, and can be latched by the core, on the same cycle where WE_i signal is asserted. 

BSY_o acts as “core busy” flag and is asserted by the core while processing a data packet. 

DMAE_o acts as “DMA-enabled” flag and is asserted by the core when it’s in DMA mode (i.e. 

when data can be read/written using RE_i, WE_i, DI_i, and DO_o). This signal is currently 

redundant and can be ignored (left open). 

STS_o[3-1:0] provides user logic with core status information specifying the type of data 

(decoded data packets, encoded data packet and state data packet) the core expects to be transferred and 

the direction of the transfer. Valid status values are listed below. 

DV_o flags presence of valid data on DO_o. When DV_o is asserted, data on DO_o can be 

latched by user logic. This output is in some way redundant, because the information it provides can be 

obtained from RE_i too. 

DO_o[16-1:0] is used to read 16-bit data words from the core, data loaded by the core on 

DO_o are valid, and can be latched by user logic, one cycle, or two cycles, after RE_i signal has been 

asserted (two cycles delay occurs when optional output registers are present, one cycle delay occurs 

when they’re not). 

All control signals are active-high: asserting a signal means driving it high, and de-asserting a 

signal means driving it low. 

Valid OPS_i values 

Value Mnemonic Purpose 

000 RUNF Run full-duplex (coding + decoding) operation 

001 INIT Initialize core (required before processing first packet of a channel) 



6 

 

010 RSTS Restore channel state data 

011 RUNC Run half-duplex (coding-only) operation 

100 RUND Run half-duplex (decoding-only) 

101 SAVS Save channel state data 

110 - Reserved 

111 - Reserved 

 

Valid STS_o values 

Value Mnemonic Purpose 

000 IDLE Core idle (no operation in progress) 

001 COD_DIN Writing un-encoded data to core (encoding input) 

010 COD_DOUT Reading coded data from core (encoding output) 

011 DEC_DIN Writing coded data to core (decoding input) 

100 DEC_DOUT Reading en-encoded data from core (decoding output) 

101 STT_DIN Writing channel state data to core (restoring state) 

110 STT_DOUT Reading channel state data from core (dumping state) 

111 RUN Processing (no data transfer possible) 

 

Core top-level module is named G729A_CODEC_SDP and is located in source file 

G729A_codec_sdp.vhd. 

 

Top-level module provides the following configuration parameters (generics): 

 REGISTER_INPUTS: when set to ‘1’, input signals STRT_i, OPS_i, RE_i, WE_i, 

and DI_i  are registered by the core. Default value is ‘0’ (no registering). 

 REGISTER_OUTPUTS: when set to ‘1’, output signal DO_o  is registered by the core. 

Default value is ‘0’ (no registering). 

 SIMULATION_ONLY: used for verification purposes only, ignore it or set to default 

value of ‘0’. 

 ST_FILE: used for verification purposes only, ignore it. 

 WB_FILE: used for verification purposes only, ignore it. 

 USE_ROM_MIF: when set to ‘1’, ROM memories data content is specified using a MIF 

(Memory Initialization File) format file (this option is suitable for synthesis with Altera 

tools). When set to ‘0’, ROM memories data content is specified as a VHDL constant 

value (this option is suitable for simulation and for synthesis with Xilinx tools). Default 

value is ‘0’ (no MIF file). 

Flow of operations 

Control signals 

 Interaction between the core and user logic mainly occurs by means of OPS_i input and STS_o 

output: OPS_i is used, by user logic, to send commands to the core (to be qualified by STRT_i signal), 

which responds by providing status information on STS_o. Status information is needed by user logic to 

detect when the core is ready to exchange data (either coded, un-encoded or state data) with it. 

Additional status information is provided by BSY_o output, this signal informs user logic that an 

operation is in progress on the core: a new command can be issued only when BSY_o is de-asserted. 



7 

 

Single-channel operations, full-duplex mode 

Before starting to perform encoding/decoding operations, the core must be initialized by issuing 

command INIT on OPS_i input and asserting STRT_i signal. The core responds by asserting signal 

BSY_o and (with some cycle of delay) driving RUN on STS_o output for the whole duration of the 

operation. 

When core de-asserts BSY_o, actual encoding and decoding of next data packet can begin, this 

is accomplished by issuing command RUNF on OPS_i input and asserting STRT_i signal. The core 

responds by asserting signal BSY_o and (with some cycle of delay) driving DEC_DIN on STS_o 

output, thus informing user logic than encoded data are expected by the core. 

User logic detects change in STS_o value and writes an encoded data packet (5 16-bit words) to 

core using WE_i and DI_i . The core counts incoming data words and, when whole packet has been 

transferred, responds by driving RUN on STS_o output, thus informing user logic than decoding is in 

progress. 

When decoding is complete, the core drives DEC_DOUT on STS_o output, thus informing user 

logic than decoded data are ready to be read from the core. 

User logic detects change in STS_o value and read a decoded data packet (80 16-bit words) 

from core using RE_i and DO_o . The core counts out coming data words and, when whole packet has 

been transferred, responds by driving COD_DIN on STS_o output, thus informing user logic than un-

encoded data are expected by core. 

User logic detects change in STS_o value and (if encoding is requested) writes an un-encoded 

data packet (80 16-bit words) to core using WE_i and DI_i . The core counts incoming data words 

and, when whole packet has been transferred, responds by driving RUN on STS_o output, thus 

informing user logic than encoding is in progress. 

When encoding is complete, the core drives COD_DOUT on STS_o output. 

User logic detects change in STS_o value and read an encoded data packet (5 16-bit words) 

from core using RE_i and DO_o . The core counts out coming data words and, when whole packet has 

been transferred, responds by de-asserting signal BSY_o and driving IDLE on STS_o output, thus 

informing user logic than the core is back to idle state and can perform a new operation. 

Single-channel operations, half-duplex mode 

Before starting to perform encoding/decoding operations, the core must be initialized by issuing 

command INIT on OPS_i input and asserting STRT_i signal. The core responds by asserting signal 

BSY_o and (with some cycle of delay) driving RUN on STS_o output for the whole duration of the 

operation. 

When core de-asserts BSY_o, actual encoding/decoding of next data packet can begin, this is 

accomplished by issuing command RUNC (encoding-only), or RUND (decoding-only), on OPS_i input 

and asserting STRT_i signal. The core responds by asserting signal BSY_o and (with some cycle of 

delay) driving DEC_DIN, or COD_DIN, on STS_o output, thus informing user logic than encoded, or 

un-encoded, data are expected by the core. 

User logic detects change in STS_o value and writes an encoded (5 16-bit words), or an un-

encoded (80 16-bit words), data packet to core using WE_i and DI_i . The core counts incoming data 

words and, when whole packet has been transferred, responds by driving RUN on STS_o output, thus 

informing user logic than decoding is in progress. 

When decoding is complete, the core drives DEC_DOUT, or COD_DOUT, on STS_o output. 



8 

 

User logic detects change in STS_o value and read a decoded (80 16-bit words), or coded (5 16-

bit words), data packet from core using RE_i and DO_o .  

The core counts out-coming data words and, when whole packet has been transferred, responds 

by de-asserting signal BSY_o and driving IDLE on STS_o output, thus informing user logic than the 

core is back to idle state and can perform a new operation. 

 

Multiple-channel operations, full-duplex mode 

Multiple-channel operations differ from single-channel ones because the core must be initialized 

for every channel and state data must be saved after every encoding/decoding operation and restored 

before every encoding/decoding operation on the same channel. 

Before starting to perform encoding/decoding operations, the core must be initialized for first 

channel, by issuing command INIT on OPS_i input and asserting STRT_i signal. The core responds 

by asserting signal BSY_o and (with some cycle of delay) driving RUN on STS_o output for the whole 

duration of the operation. 

When core de-asserts BSY_o, actual encoding and decoding of next data packet can begin, this 

is accomplished by issuing command RUNF on OPS_i input and asserting STRT_i signal. The core 

responds by asserting signal BSY_o and (with some cycle of delay) driving DEC_DIN on STS_o 

output, thus informing user logic than encoded data are expected by the core. 

User logic detects change in STS_o value and writes an encoded data packet (5 16-bit words) to 

core using WE_i and DI_i . The core counts incoming data words and, when whole packet has been 

transferred, responds by driving RUN on STS_o output, thus informing user logic than decoding is in 

progress. 

When decoding is complete, the core drives DEC_DOUT on STS_o output, thus informing user 

logic than decoded data are ready to be read from the core. 

User logic detects change in STS_o value and read a decoded data packet (80 16-bit words) 

from core using RE_i and DO_o . The core counts out coming data words and, when whole packet has 

been transferred, responds by driving COD_DIN on STS_o output, thus informing user logic than un-

encoded data are expected by core. 

User logic detects change in STS_o value and (if encoding is requested) writes an un-encoded 

data packet (80 16-bit words) to core using WE_i and DI_i . The core counts incoming data words 

and, when whole packet has been transferred, responds by driving RUN on STS_o output, thus 

informing user logic than encoding is in progress. 

When encoding is complete, the core drives COD_DOUT on STS_o output. 

User logic detects change in STS_o value and read an encoded data packet (5 16-bit words) 

from core using RE_i and DO_o . The core counts out-coming data words and, when whole packet has 

been transferred, responds by de-asserting signal BSY_o and driving IDLE on STS_o output, thus 

informing user logic than the core is back to idle state and can perform a new operation. 

User logic must now save state data for the current channel, this is accomplished by issuing 

command SAVS on OPS_i input and asserting STRT_i signal. 

The core responds by asserting signal BSY_o and (with some cycle of delay) driving 

STT_DOUT on STS_o output, thus informing user logic than state data are expected to be read from 

the core (to be stored in some external memory). 

User logic detects change in STS_o value and reads state data packet (1679 16-bit words) from 

core using RE_i and DO_o . The core counts out-coming data words and, when whole packet has been 



9 

 

transferred, responds by driving IDLE on STS_o output, thus informing user logic that the core is back 

to idle state and can perform a new operation. 

The same sequence of operations (initialization, coding/decoding and state saving) must then be 

repeated for each one of the remaining channels. 

When such sequence has been performed for every channel (i.e., when first data packet from 

every channel has been processed), state data for first channel must be restored, this is accomplished by 

issuing command RSTS on OPS_i input and asserting STRT_i signal. 

The core responds by asserting signal BSY_o and (with some cycle of delay) driving STT_DIN 

on STS_o output, thus informing user logic than state data are expected to be written to the core (from 

some external memory). 

User logic detects change in STS_o value and writes a state data packet (1679 16-bit words) to 

core using WE_i and DI_i . The core counts incoming data words and, when whole packet has been 

transferred, responds by driving IDLE on STS_o output, thus informing user logic that the core is back 

to idle state and can perform a new operation. 

A new data packet for first channel can now be processed in the same way described above for 

single-channel operations. When core completes this operation and returns to IDLE state, channel state 

has to be saved again. 

This restore-run-save operation sequence must then be repeated for each of the remaining 

channels. 

Multiple-channel operations, half-duplex mode 

Multiple-channel operations in half-duplex mode are not described in details, differences 

between them and multiple-channel operations in full-duplex mode being the same existent between 

single-channel half- and full-duplex operations. 

Performance 
Minimum clock frequency for single-channel full-duplex operations is 27.5 MHz (actual 

minimum frequency is a bit lower, but the number of instructions executed in each encoding + decoding 

run varies from run to run, so it’s safer to add some margin). 

Rule-of-thumb for multiple-channel full-duplex operations is to add 27.5 MHz for each channel 

(55 MHz for two channels, 82.5 MHz for three channels, and so on). 

Rule-of-thumb for half-duplex operations is to budget ~5.5 MHz/channel for decoding 

operations and ~22 MHz/channel for encoding operations.   



10 

 

Sample timing diagrams 
 The following timing diagrams assume optional input/output registers are not present. 

Core reset 

 
Fig. 1: reset timing diagram. 

 



11 

 

Initialization 

 
Fig. 2: Initialization timing diagram. 

Note: for simplicity, BSY_o and STS_o are shown to change state on the same cycle after STRT_i assertion, in 

reality STS_o changes state some cycle later than BSY_o. 



12 

 

Encoding  

 
Fig. 3a: Encoding timing diagram (part I). 

Note: for simplicity, BSY_o and STS_o are shown to change state on the same cycle after STRT_i assertion, in 

reality STS_o changes state some cycle later than BSY_o. 

 

Decoding operation timing diagram differs from encoding one only for the command that is issued 

(RUND, instead of RUNC) and for input data type (encoded data vs. un-encoded data). 

 



13 

 

 
Fig. 3b: Encoding timing diagram (part II). 

 

Decoding operation timing diagram differs from encoding one only for the output data type (un-encoded 

data vs. encoded data). 



14 

 

Channel state saving operation 

 
Fig. 4: Channel state saving operation timing diagram. 

Note: for simplicity, BSY_o and STS_o are shown to change state on the same cycle after STRT_i assertion, in 

reality STS_o changes state some cycle later than BSY_o. 



15 

 

Channel state restoring operation 

 
Fig. 5: Channel state restoring operation timing diagram. 

Note: for simplicity, BSY_o and STS_o are shown to change state on the same cycle after STRT_i assertion, in 

reality STS_o changes state some cycle later than BSY_o. 



16 

 

Appendix A: Altera© Quartus II 9.1 synthesis test 
Top-level module: G729A_CODEC_SDP_SYN (synthesis test-bench) from file 

G729A_codec_sdp_SYN.vhd. 

Configuration parameters:  

 REGISTER_INPUTS = ‘0’ 

 REGISTER_OUTPUTS = ‘0’ 

 USE_ROM_MIF = ‘1’. 

Target device: EP3C25F324C8 (the one used by NEEK development board) 

Target Fmax: 100 MHz (default synthesis options). 

Results: 

 Total logic elements: 6175 (24%) 

 Total registers: 1728 (7%) 

 Total memory bits: 319488 (53%) 

 Embedded multipliers: 6 (5%) 

 Fmax (worst case): 87.5 MHz 

Appendix B: Xilinx© ISE 14.1 synthesis test 
Top-level module: G729A_CODEC_SDP_SYN (synthesis test-bench) from file 

G729A_codec_sdp_SYN.vhd. 

Configuration parameters:  

 REGISTER_INPUTS = ‘0’ 

 REGISTER_OUTPUTS = ‘0’ 

 USE_ROM_MIF = ‘0’. 

Target device: xc6vlx75t-2ff484. 

Target Fmax: 143MHz (default synthesis options).. 

Results: 

 Number of slice registers: 1574 (1%) 

 Number of slice LUTs: 4284 (9%) 

 Number of RAMB36: 18 (11%) 

 Number of DSP48E1s: 4 (1%) 

 

Appendix C: Simulation & Implementation Hints 
 The suggested starting point, after downloading the project from OpenCores site, is to run the 

self-test module simulation (related VHDL files are located in VHDL/SELF_TEST folder). This 

simulation allows to verify that all design files are available and can be compiled correctly, and 

provides also an example of codec top-level module instantiation and interfacing to user logic. 

 Once self-test module simulation runs successfully, a simple test on HW can be performed by 

implementing the self-test module itself on an FPGA board (so far the module has been 

successfully implemented on Cyclone III, Virtex-5, Virtex-6, Spartan-6 and Artix-7 FPGA’s). 

The simplest approach is to connect self-test module clock and reset inputs to the board FPGA 

clock and cpu/user reset pins and to connect self-test module pass and done outputs to board 

LED’s (if available). Pay attention to polarity of input/output signals (self-test module signals are 

active-high, while some board signal may be active-low). A more sophisticated test may consist 



17 

 

in adding a clock generator core (a PLL) and derive codec reset input from the clock generator 

lock/stable signal. 

 When targeting Virtex-5 FPGA family (or older ones), add "-use_new_parser yes" to synthesis 

other options (the default parser used for such FPGA families doesn’t synthesize some portion of 

VHDL code correctly). Check synthesis report file to verify option has been properly specified. 


