
Polyphase Decimation Filters

SystemC Approach

Author:

Ahmed Shahein

email:

ahmed.shahein@ieee.org

May 11, 2012



1 Overview

This is a behavioral SystemC model for Polyphase Decimation filters. It can
be used as for system design and functional verification. It has been tested with
Matlab and Octave as well. If you need any further illustrations or further
modifications, don’t hesitate to contact me.

2 Introduction

Decimation filter is a filter and downsampler. Polyphase decimation filter is a
digital filter (FIR/IIR) which is implemented in a polyphase decomposition.

The FIR filter transfer function is given by

H(z) =

N∑

n=0

h[n] z−n (1)

where N is the filter order and h[n] is the filter coefficients (in other words
the filter step response). A direct-form (DF) FIR filter is shown in Fig. 1.

The polyphase decomposition for FIR filter is given by

x[n]

y[n]

h[0] h[1] h[n-1] h[n]

z−1z−1z−1

Figure 1: Direct-form FIR digital filter topology.

H(z) =

M−1∑

k=0

Ek(z
M ) z−k (2)

where

Ek(z) =

⌈ N

M
⌉∑

n=0

h[nM + k] z−n (3)

where N is the filter order, M is the decimation factor (also called downsample
factor) and k = ⌈N+1

M
⌉.

A polyphase decimation filter based on DF FIR is shown in Fig. 2 and
detailed structural implementation is given in Fig. 3. The main advantage of
PPD is that the filter is running at lower frequency compared to conventional

1



filter architecture. In other words, for clock frequency of fs and decimation fac-
tor M the standard FIR filter is running at fs while PPD is running at fs/M .

x[n] y[n]

z−1

z−1

E0

E1

Ek

Figure 2: Polyphase decimation filter.

3 Symbolic Example

Consider a filter with order of 8 (N = 8) and decimation factor of 3 (M = 3)

H(z) = h[0]+h[1]z−1+h[2]z−2+h[3]z−3+h[4]z−4+h[5]z−5+h[6]z−6+h[7]z−7+h[8]z−8

Ek(z) =

⌈ 8

3
⌉∑

n=0

h[3n+ k] z−n

E0(z) =

2∑

n=0

h[3n+ 0] z−n

E1(z) =

2∑

n=0

h[3n+ 1] z−n

E2(z) =

2∑

n=0

h[3n+ 2] z−n

2



x[n]

y[n]

h[0]

h[1] h[n-2]

h[n-1]

z−1z−1

z−1z−1

z−1z−1

Figure 3: Direct-form FIR digital filter topology.

E0(z) = h[0] + h[3]z−3 + h[6]z−6

E1(z) = h[1] + h[4]z−3 + h[7]z−6

E2(z) = h[2] + h[5]z−3 + h[8]z−6

4 How to Build your PPD?

@ ppd.cpp

Replace h[N] = 0.0017,0.0073,0.0107 ... with your filter coefficients, where the
N is the filter order and it is defined at ppd.h. Setting N is a bit trick and it
is explained later on.
You can then change the clock frequency by changing 10, where 10 is the clock
period.

sc_clock CLK("CLK", 10, SC_NS);

Then you can change the simulation period by changing 360

sc_start(360, SC_NS);

@ ppd.h

Replace N , M and P first set M to your decimation factor (has to be integer)
adjust and set N to be a valid integer value taking into cosidration M . As an
example, if you have a filter order of N = 55 and a decimation factor of M = 6.
Then how many columns do we have in the PPD? In other words, how many
coefficients at each row?

⌈
55 + 1

6
⌉ = 10

3



However
10× 6 = 60

Which means there is 4 empty coefficients, those extra coefficients has to be
filled by zeros. Actually, I could write a simple function to adjust this but I
leave it to you. In this case the input parameters would be

#define N 60

#define M 6

#define P 10

Actually, you can add a simple check like that

if (M*P != N)

{

cout << "################" << endl;

cout << "ERROR : MxP != N" << endl;

cout << "################" << endl;

}

@ stimuli.h

The the proceeding value to the length of samples in the stimuli file. In the
default case it is set to the number of samples at the impulse response.dat.

#define textLength 40

In the following line just replace ”impulse response.dat” to the name and ex-
tension of your stimuli file.

FILE* pFile = fopen("impulse_response.dat","r+t");

4


