
Development and Implementation of an MotionJPEG Capable JPEG
Decoder in Hardware

The JPEG standard (ISO/ IEC 10918-1 ITU-T Recommendation T.81) defines compression
techniques for image data. As a consequence, it allows to store and transfer image data
with considerably reduced demand for storage space and bandwidth. From the four
processes provided in the JPEG standard, only one, the baseline process is widely used.

In this thesis a hardware based system to decode JPEG baseline compressed image data
is presented. The different stages of the decoding process are implemented in a pipe-
lined design described in VHDL. Running on a Virtex-II Pro FPGA at 100 MHz operation
frequency, the performance and accuracy of the hardware decoder is comparable to a
software decoding system running on a 1500 MHz commodity PC. The pipelined struc-
ture allows for the processing of multiple image blocks simultanously. Thus, the decoder
is especially suited to decode MotionJPEG movies. Functionality of the system is demon-
strated with a hardware MotionJPEG video player application.

Entwicklung und Realisierung eines MotionJPEG fähigen JPEG Dekoders in
Hardware

Der JPEG Standard (ISO/IEC 10918-1 ITU-T Recommendation T.81) definiert Verfahren zur
Kompression von Bilddaten. Der JPEG Algorithmus ermöglicht es folglich, Bilddaten
mit deutlich reduziertem Anspruch an Speicherplatz und Bandbreite zu archvieren und
zu übertragen. Der Standard stellt vier verschiedene Prozesse zur Komprimierung von
Bilddaten zur Verfügung, von denen sich allerdings nur einer, der baseline process, in der
Praxis durchgesetzt hat.

Im Rahmen dieser Diplomarbeit wurde ein hardware-basiertes System zur Dekodierung
von mit dem JPEG baseline process komprimierten Bilddaten entwickelt. Dabei wurde
der mehrstufige Prozess der Dekodierung in einem gepipelineten Design realisiert. Auf
einem mit 100 MHz getakteten Virtex-II Pro FPGA wurden damit vergleichbare Ergeb-
nisse erzielt wie mit einem Softwaredekoder, welcher auf einem mit 1500 MHz getak-
teten Standardprozessor ausgeführt wurde. Das Design der Pipeline ist speziell dafür
ausgelegt, mehrere Bildblöcke gleichzeitig zu bearbeiten. Damit ist der Dekoder bestens
zum Dekodieren von MotionJPEG Filmen geeignet. Die Funktionstüchtigkeit des System
wurde mit einer hardware-basierten MotionJPEG Video Player Applikation unter Beweis
gestellt.
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1 JPEG Compression Overview

The frequently-used term JPEG is an acronym for Joint Photographic Experts Group1, a joint
committee between ISO 2 and ITU-T 3, who specified the JPEG standard in 1992.

The JPEG compression standard [Jpe92] defines techniques to compress, decompress, and
store image data. Covering a wide field of applications it is a complex venture to imple-
ment everything provided in the JPEG standard. Therefore the committee defines a set of
coding processes, each using their own subset of the JPEG technologies: Baseline process,
Extended DCT-based process, Lossless process and Hierarchical process (cp. table 1.1).

Besides the the Lossless process all of the processes implement so called “lossy compres-
sion”. This means that non-redundant information is removed from the data and the
original image cannot be restored exactly form the recorded data. However, done right,
the uncompressed image will appear very similar to the original image.

JPEG compression works very well for continuous tone images like photographs of a nat-
ural scene. For images with many sharp edges and bigger areas of exactly the same color,
for example computer generated diagrams, other compression techniques like those de-
veloped for “GIF”4 usually result in better compression rates although being lossless.

The most widely used process is the Baseline process. Most modern video compression
techniques in common use (like MJPEG, MPEG-1/2) base heavily on the JPEG baseline
process as well.

The file format widely used - usually with the suffix .jpg - has its own standard called
JFIF5 [Ham92], which comes with further restrictions. JFIF is compatible with the official
JPEG specification, but not a part of it.

Generally JPEG refers to a JFIF-file storing image data compressed according to the JPEG
baseline process. Since the decoder which has been implemented in this thesis decodes
these kind of images, this chapter gives an overview of the JPEG baseline process.

Figure 1.1 shows and describes the essential steps in baseline JPEG encoding, a detailed
description of the different steps is given in the following paragraphs.

1The official name is ISO/IEC Joint Technical Committee 1, Subcommittee 29, Working Group 1
2International Organization for Standardization
3International Telecommunication Union, formerly CCITT (Comité Consultatif International Téléphonique
et Télégraphique)

4Graphics Interchange Format
5JPEG File Interchange Format
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Figure 1.1: The essential steps in JPEG encoding (baseline process). First the im-
age is transformed to the YCbCr color mode separating luma (Y) from chroma
(Cb/Cr) information [RGB2YCbCr]. Then the color components are reduced
in spatial resolution [Sampling]. Applying the Discrete Cosine Transformation
(DCT) the blocks are mapped to frequency space [DCT] where the higher fre-
quencies can now be removed[Quantization]. After reordering the remain-
ing coefficients [Zigzag-Ordering] the resulting bitstream is then very well
prepared for entropy encoding using run length encoding and an Huffman
algorithm [Entropy Encoding].

To understand the principles of JPEG technologies it is more intuitive to take a look at
the steps of encoding rather than decoding. Therefore, despite the fact that a decoder
has been developed, due to better understanding this chapter will explain the steps of
encoding. The steps of decoding will be the inverse of the encoding steps but in reverse
order.

1.1 JFIF - Structure of the Header

The way header information is stored in a JPEG file is presented in the JFIF standard and
the Annex B of the JPEG standard. As mentioned before the JFIF standard specifies a sub-
set of techniques from the JPEG standard and additionally has its own (JPEG compatible)
restrictions.

To be JFIF compatible the image components need to be Y, Cb & Cr for color images and
just Y for grayscale images (cp. section 1.2).
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1.1 JFIF - Structure of the Header

Baseline Extended DCT-based

• DCT-based process
• Source image: 8-bit samples within

each component
• Sequential
• Huffman coding: 2 AC and 2 DC ta-

bles
• Decoders shall process scans with 1,

2, 3, and 4 components
• Interleaved and non-interleaved

scans

• DCT-based process
• Source image: 8-bit or 12-bit samples
• Sequential or progressive
• Huffman or arithmetic coding: 4 AC

and 4 DC tables
• Decoders shall process scans with 1,

2, 3, and 4 components
• Interleaved and non-interleaved

scans

Lossless Hierarchical

• Predictive process (not DCT-based)
• Source image: P-bit samples (2 ≤ P ≤

16)
• Sequential
• Huffman or arithmetic coding: 4 DC

tables
• Decoders shall process scans with 1,

2, 3, and 4 components
• Interleaved and non-interleaved

scans

• Multiple frames (non-differential and
differential)

• Uses extended DCT-based or lossless
processes

• Decoders shall process scans with 1,
2, 3, and 4 components

• Interleaved and non-interleaved
scans

Table 1.1: The essential characteristics of the four processes suggested in the
JPEG-specification [Jpe92]. Only the baseline process is commonly in use.
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ff d8 ff e0 00 10 4a 46 49 46 00 01 01 01 00 48
00 48 00 00 ff db 00 43 00 0a 07 07 08 07 06 0a
08 08 08 0b 0a 0a 0b 0e 18 10 0e 0d 0d 0e 1d 15
16 11 18 23 1f 25 24 22 1f 22 21 26 2b 37 2f 26
29 34 29 21 22 30 41 31 34 39 3b 3e 3e 3e 25 2e
44 49 43 3c 48 37 3d 3e 3b ff db 00 43 01 0a 0b
0b 0e 0d 0e 1c 10 10 1c 3b 28 22 28 3b 3b 3b 3b
3b 3b 3b 3b 3b 3b 3b 3b 3b 3b 3b 3b 3b 3b 3b 3b
3b 3b 3b 3b 3b 3b 3b 3b 3b 3b 3b 3b 3b 3b 3b 3b
3b 3b 3b 3b 3b 3b 3b 3b 3b 3b 3b 3b 3b 3b ff fe
00 11 08 01 e0 02 80 03 01 22 00 02 11 01 03 11
01 ff c4 00 1a 00 00 03 01 01 01 01 00 00 00 00
00 00 00 00 00 00 00 01 02 03 04 05 06 ff c4 00
18 01 01 01 01 01 01 00 00 00 00 00 00 00 00 00

Table 1.2: Part of the header of some JPEG file; in hexadecimal representation.

The header is structured using two-byte codes, in JPEG terminology called markers. A
marker starts with the byte 0xFF followed by an identification byte. A marker may carry
some payload; marker and payload together are called marker segment. The payload al-
ways starts with two bytes giving the length of the payload (excluding the marker but
including the two length bytes).

The following list sums up the important information stored in the header.

• Width and height of the image6

• Number of components (grayscale or YCbCr color)

• How the components are sampled (gray, 4:2:0, 4:2:2 or 4:4:4).

• Quantization Tables.

• Huffman Tables.

Table 1.2 shows a part of some JPEG-file header visualizing the different marker segments
by using different colors. A table of important markers is given in the appendix A. For
further details about the markers refer to Annex B in the JPEG standard [Jpe92].

6Note that the number of compressed pixels may be greater than width × height. For technical reasons
pixels may be appended at the right and at the bottom side of the image. (cp. section 1.3)
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1.2 RGB2YCbCr

1.2 RGB2YCbCr

Image data is usually represented by giving the red, green and blue component of each
pixel (RGB color model). The JFIF file format however requires that the data to be com-
pressed is coded in the YCbCr color model and it even specifies how to convert to and
from RGB (equations 1.1 and 1.2). This transformation is based on a transformation spec-
ified in CCIR Rec.601 [CCI82] and has been modified slightly to better suit the JPEG re-
quirements.

Y = 0.299 · R + 0.587 · G + 0.114 · B
Cb = − 0.1687 · R − 0.3313 · G + 0.5 · B + 128
Cr = 0.5 · R − 0.4187 · G − 0.0813 · B + 128

(1.1)

R = Y + 1.402 · (Cr− 128)
G = Y − 0.34414 · (Cb− 128) − 0.71414 · (Cr− 128)
B = Y + 1.772 · (Cb− 128)

(1.2)

Figure 1.2 illustrates how a picture is composed of its RGB- and its of its YCbCr-compo-
nents. In the YCbCr color model the appearance of a pixel is given by its brightness (Y),
its “blueness” (Cb) and its “redness” (Cr). Green is represented by presence of brightness
and absence of red and blue7 . The Y component (called “luminance”) is a weighted
sum of the R, G and B components with the weights chosen to represent the intensity
of an RGB color. The human eye is most sensitive in the green component, followed by
the red component and at last the blue component. The Cb and Cr components (called
“chrominance”) indicate how much blue and red respectively is in that color.

128 is added to the chrominance components to have a value range from 0 to 255 instead
of -128 to 127 (two‘s complement). Since the Discrete Cosine Transformation needs two‘s
complement signed values as input data, 128 will be subtracted from all values (including
Y). This seems quite odd since one could include this step in formula 1.1 in the first place.
Most literature explains this in two steps, probably to keep the similarity to the Y, Cb and
Cr values as they are defined in CCIR Rec.601 [CCI82].

The separation of brightness and color makes it possible to handle them differently, as
needed by the sampling step.

7Be aware that the RGB and the YCbCr color models only define abstract units (R, G, B and Y, Cb, Cr
respectively) and have no correlation to actual colors. Making the picture visible as intended, like on a
monitor or a printer, additional reference points to actual colors have to be defined. More information
about color representation and perception can be found in [Sch03, chapter 2.3] and [Wat99, chapter 5].
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JPEG Compression Overview

Figure 1.2: The famous Lenna image decomposed; on the
left side in RGB components, on the right side in YCbCr
components. Note how the Y component appears to be
much richer in detail than the Cb and Cr components. The
human eye is more sensitive in perceiving differences in
brightness than differences in color.
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1.3 Sampling

(a) 4:2:0 (b) 4:2:2 (c) 4:4:4 (d) gray

Figure 1.3: There are several different sampling methods, the most important
ones are visualized here. The × show the position where the luma component
is taken, the ◦ the position of the chroma components. While the dotted lines
outline the pixels of the image, the boxes indicate the size and position of the
MCUs.

1.3 Sampling

When examining Figure 1.2 it seems that while R, G, and B components show about the
same level of detail, the Y component appears to be much richer in detail than the Cb and
Cr components. The human eye is more precise when detecting changes in brightness
than changes in color. Storing the luma component in full resolution and the chroma
components in reduced resolution may save up to 50% of the data at almost no loss in
visual perception quality.

Most JPEG files reduce the chrominance components to half of the resolution in both di-
mensions by taking the mean value of each 2x2 block. This sampling method is called
“4:2:0”8. Another sampling method evolved form analog television signals is “4:2:2”
where chrominance components are reduced only in the horizontal dimension 9. This
sampling method seems obsolete nowadays but it is still of importance since the MPEG-
2 standard (as found for example on DVDs) still uses it. For completeness the “4:4:4”
method should be mentioned; it does not reduce any component‘s resolution. For gray-
scale images only the Y component is processed. Figure 1.3 illustrates the described sam-
pling methods.

If the “4:2:0” or “4:2:2” sampling method is used this is one of two steps in the compres-
sion process were information is lost.

8The names of the sampling methods are confusing, “4:2:0” does not mean that Y is sampled four times,
Cb two times and Cr not at all; it is as described above, for four Y-pixels (a 2x2 block) there is one Cb- and
one Cr-pixel sampled. The origin of the name lies in analog television signal transmission.

9Analog televisions signals transmitted the image in interlaced mode. First the odd lines of the image,
then the even lines. This allowed to double the frame rate of the transmitted video signal but prevent to
average over different lines.
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Image

MCU

Pixel

8x8 Block

Padded Pixels

Figure 1.4: A JPEG image is composed of smaller units. An image is com-
posed of MCUs which consist of square blocks of 8x8 pixels. It depends on
the chosen sampling method how many 8x8 blocks form an MCU (cp. fig 1.3),
in this example the 4:2:0 sampling method is used. The order in which the
units will be processed is always from left to right and from top to bottom.
For the MCUs it is also important to keep the color-decomposition in mind
(cp. fig. 1.5).

Since every component is encoded separately in 8x8 blocks and chroma components
might be reduced in resolution, for full coverage there might be more than one block
in the luma component needed for every block in the chroma components. For “4:2:0”
there are four luminance 8x8 blocks needed (arranged in a square), for “4:2:2” only two
luminance 8x8 blocks. The required luminance blocks plus one block for each chromi-
nance component is called Minimum Coded Unit or MCU 10. The MCUs are illustrated in
figure 1.3 as blue squares.

The arrangement of data units will always be from left to right and from top to bottom.
This order applies to the pixels inside an 8x8 block as well as for the (luminance) 8x8
blocks in the MCU as well as for the MCUs in the image (illustrated in figure 1.4).

The YCbCr components in an MCU will be in following order: Y-Y-Y-Y-Cb-Cr for “4:2:0”,
Y-Y-Cb-Cr for “4:2:2”, Y-Cb-Cr for “4:4:4” and Y for “gray” (cp. figure 1.5).

Since the image is divided into 8x8 blocks, the encoder pads the image’s width and height
to be a multiple of 8. Taking sampling into account the image dimensions must even be
a multiple of the MCU’s dimensions.

10Note that in the MPEG compression standard there is a similar, nonetheless different construct of 16x16
blocks called “Makroblock”.
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1.3 Sampling

Cb CrY

MCU

1 2 3 4 5 6 7 8

Y Y Y Y Cb Cr

. . .

next MCU

Stream

Figure 1.5: A MCU contains three components, from which usually the two
color components are reduced to half resolution in both dimensions (4:2:0
sampling). Therefore an MCU consists of 4 luminance and 2 chrominance (one
Cb and one Cr) 8x8 blocks. The order in which these blocks are processed is
illustrated here.
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JPEG Compression Overview

1.4 Discrete Cosine Transformation (DCT)

The discrete cosine transformation belongs to a class of linear transforms that are related to
Fourier analysis. Those transforms map an n-dimensional vector to a set of n coefficients.
A linear combination of n known basis vectors weighted with the n coefficients will re-
sult in the original vector. So mathematically, it is just a “change of basis”. The known
basis vectors of transforms from this class are “sinusoidal“, which means that they can
be represented by sinus shaped waves or, in other words, they are strongly localized in
the frequency spectrum. Therefore one speaks about transformation to the frequency do-
main. The most famous member of this class is the Discrete Fourier Transformation (DFT).
The difference between DCT and DFT is that DFT applies on complex numbers while
DCT uses just real numbers. For real input data with even symmetry DCT and DFT are
equivalent.

The input data to be processed is a two-dimensional 8x8 block, therefore we need a
two-dimensional version of the discrete cosine transformation. Since each dimension can
be handled separately, the two-dimensional DCT follows straightforward form the one-
dimensional DCT. A one-dimensional DCT is performed along the rows and then along
the columns, or vice versa.

For a more complex mathematical description, the user can refer to [NTR74], [Kha03],
[Way99, chapter 9] and [Wat99, chapters 3.5-3.7].

The resulting formula for the two-dimensional discrete cosine transformation (DCT) and
the corresponding inverse discrete cosine transformation (IDCT) is:

F (u, v) =
1
4

CuCv

7

∑
x=0

7

∑
y=0

f (x, y) cos
(

2x + 1
16

uπ

)
cos

(
2x + 1

16
vπ

)
(DCT) (1.3)

f (x, y) =
1
4

7

∑
u=0

7

∑
v=0

CuCvF(u, v) cos
(

2x + 1
16

uπ

)
cos

(
2x + 1

16
vπ

)
(IDCT) (1.4)

Cu, Cv =

{
1√
2

f or u, v = 0
1 otherwise

where F(u, v) is the DCT coefficient for the 2d-DCT component (u,v) and f(x,y) the pixel
value at position (x,v) in the 2d-input-data.

Applying these formulas directly requires much computational resources. Although fast
algorithms have been developed [AAN88] it is still computationally expensive. However,
the algorithm is suitable for parallelization and therefore an implementation in hardware
can be very efficient [Pil07a].

A JPEG baseline compression compliant discrete cosine transformation takes blocks of 8x8
signed integer values with 8 bit precision as input and produces output blocks of 8x8
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1.5 Quantization

(a) Pixel components (b) DCT components

Figure 1.6: Before the discrete cosine transformation the 8x8 block is represented
by it’s 64 discrete pixel values. It can be interpreted as a linear combination of
the 64 basis blocks on the left, weighted with the corresponding pixel values.
After the transformation the block is expressed as a linear combination of the
64 basis blocks on the right, weighted with the DCT coefficients. The 8x8 block
is still well-defined, but represented in an other basis. Picture 1.6(b) source:
[Wik08].

signed integer values with 11 bit precision. 11

Figure 1.6 illustrates the 64 basis components of the spatial domain (fig. 1.6(a)) and the
frequency domain used by the DCT (fig. 1.6(b)) arranged in an two-dimensional 8x8
array.

1.5 Quantization

The “Quantization” is a key step in the compression process since less important informa-
tion is discarded.

The advantage of the representation in the frequency domain is that, unlike in spatial
domain before the DCT, not every dimension has the same importance for the visual
quality of the image. Removing the higher frequencies components will reduce the level

11Note that in theory the transform is a lossless step in the compression chain but information will be lost
due to limited machine precision.
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JPEG Compression Overview

of detail but the overall structure remains, since it is dominated by the lower frequency
components.

The 64 values of a 8x8 block will be divided according to the 64 values of an 8x8 matrix
called the quantization table. There is no information lost in the division of the coefficients
itself, but the result is then rounded to the next integer afterwards. The higher the divi-
sor, the more information about the coefficient will be positioned after the decimal point
hence lost in the rounding operation.

The JPEG standard provides an example quantization table which has “been used with
good results on 8-bit per sample luminance and chrominance images” [Jpe92]. Many
encoders simply use this example, but the values are not claimed to be optimal. An
encoder may use any other quantization table, probably optimized by analyzing the image
first. The quantization tables are stored in the header of the JPEG file in the “DQT” (Define
Quantization Table) marker to be available for decoding.

Most JPEG encoders allow the user choose a compression level or a quality setting. This
parameter specifies the tradeoff between the efficiency of the compression and the asso-
ciated quality loss. By setting this parameter one actually just specifies what quantization
table the encoder will use (usually the example quantization table will be multiplied by a
factor computed from the chosen parameter).

The 64 coefficients of the Discrete Cosine Transformation are, like their spatial equiva-
lents, sorted in two dimensions forming an 8x8 block. Towards the bottom the frequency
in vertical direction increases, towards the right the frequency in horizontal direction in-
creases. So the lower frequencies are located in the upper left corner of the block (cp.
figure 1.6(b)).

Figure 1.7(a) shows an example 8x8 block of DCT coefficients. Figure 1.7(c) shows the re-
sults of this block after quantization and rounding (using the example chrominance quan-
tization table (figure 1.7(b)) from [Jpe92]).

1.6 Zigzag-Mapping

The two dimensional order of the DCT coefficients refers to the two dimensions that
the 8x8 block had in spatial domain. This order, of course, is not mandatory; one can
rearrange the coefficients in any well-defined way. After the quantization step most of
the coefficients towards the lower right corner are zero. The Zigzag-Mapping - as shown
in figure 1.7(d) - rearranges the coefficients in a one dimensional order, so that most of
the zeroes will be placed at the end. This array with many consecutive zeroes at the end
is now optimized to achieve high compression in entropy encoding.
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1.6 Zigzag-Mapping
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Figure 1.7: Quantization will divide the coefficients according to a quantization
table and round the result to the next integer. The quantization table is chosen in
a way that most of the lost information belongs to the higher frequencies. This
way the block might lose some details but it preserves the global structure.
Afterwards most of the remaining coefficients will be located in the upper left
corner. Serializing in zigzag-order will result in many consecutive zeroes, thus
well suited for entropy encoding.
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1.7 Entropy Encoding

The final step is a combination of three techniques: run length encoding, variable length
encoding, and Huffman encoding.

The first coefficient is called “DC”, all other coefficients are called “AC”12.

There are several things to keep in mind.

• The first coefficient (DC) is the mean value of the original 8x8 block.

• There is a correlation between the DC coefficients of neighboring blocks.

• It is very likely that the first coefficient has the largest value. This is the most sig-
nificant coefficient and therefore usually the least reduced one in the quantization
step.

• Most zero coefficients appear at the end.

• The chance to find some consecutive zeroes followed by a non-zero component is
good as well.

• Most non-zero coefficients have very small values.

The DC coefficient will be decoded slightly different than the AC coefficients. Respecting
the correlation to the neighboring blocks, just for the first block the whole DC coefficient
is processed. Later blocks will only encode the difference to the preceding block’s DC
component, this applies for each component separately. AC and DC coefficients have
different Huffman tables.

Let’s look at an example block of coefficients (the one from figure 1.7(e)):

29,−2, 3, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, . . .

Let’s assume that the previously decoded block of the same component had the DC coef-
ficient 22, therefore we decode the difference 29− 22 = 7.

7,−2, 3, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, . . .

12This refers to electronics, where “DC” means direct current and “AC” alternating current. The first coeffi-
cient is the mean value of the block and the only one contributing equally to all pixels
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1.7 Entropy Encoding

So now we take care of the zeroes using run length encoding. The tailing zeroes will
be combined in one code, called “eob” 13 . To each non-zero code we will stick the in-
formation about preceding zeroes, so we can remove the rest of the zeroes. 14 For the
DC coefficient there will be no preceding zeroes, however, unlike for the AC coefficients,
“zero” is still a valid value that has to be concerned.

7, −2, 3, 1, 1, 1, 0, 0, 0, 1︸ ︷︷ ︸, 0, 0, 0, 0, . . .︸ ︷︷ ︸
[] 7, [0]− 2, [0] 3, [0] 1, [0] 1, [0] 1, [3] 1, [eob]

The remaining coefficients will probably be very small so that an variable length ap-
proach seams feasible. Therefore we switch to binary representation and add the mini-
mum number of bits needed to represent the coefficients value to the information part.
Negative values will be represented by negating every bit (one’s complement). This can
be done because we have the information about the length, so that every positive value
starts with an 1.15

7, −2, 3, 1, 1, 1, 0, 0, 0, 1︸ ︷︷ ︸, 0, 0, 0, 0, . . .︸ ︷︷ ︸
[] 7, [0]− 2, [0] 3, [0] 1, [0] 1, [0] 1, [3] 1, [eob]

[ 3] 111, [0 2] 01, [0 2] 11, [0 1] 1, [0 1] 1, [0 1] 1, [3 1] 1, [eob]

[eob] is coded as [0 0], [zrl] as [15 0]; there is no other code with the structure [X 0].

Since the coefficients are usually very small there is not much gain in compressing them
further. But we haven’t thought about the information we attached to the coefficients
yet. We use 4 bits for the preceding zeroes (see footnote 14 on page 19) and 4 bits for the
number of bits used to store the value16 . These 8 bits are compressed using a Huffman
table which maps the frequently occurring values to shorter bit strings and the rarely
occurring values to longer bit strings. How to choose the table is left to the encoder17 .

Let’s assume we have build the Huffman table and find the following tables:

13For the rare case that the last coefficient in the block is not zero, there is no “eob” appended.
14Later we will use just 4 bits for the information about preceding zeroes, so if there are (unlike in this

example) more than 15 preceding zeroes we will exchange 16 zeroes with another special code, “zrl” (zero
run length). We do this until there are less than 16 zeroes left. Example: 7,4,3, <44 zeroes>, 1, <rest is zero>
will be coded as: [0]7,[0]4,[0]3,[zrl],[zrl],[12]1,[eob] .

15[0 3] 100 6= [0 4] 0100 the left value is 4, the right value -11
16The Huffman algorithm used is designed for up to 15 bit precision but the baseline process only uses 11

bit precision. More advanced JPEG processes may use the full 15 bits.
17The official standard comes with example tables for luminance (DC and AC) and chrominance (DC and

AC) based on statistics of a large set of images.
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DC Table
Huffman code Original Value

...
...

110 0x3 [3]
...

...

AC Table
Huffman code Original Value

00 0x00 [eob]
01 0x01 [0 1]

100 0x02 [0 2]
101 0x11 [1 1]

1100 0x03 [0 3]
...

...
1111110 0x31 [3 1]

...
...

Now we can construct the final bit stream:

7, −2, 3, 1, 1, 1, 0, 0, 0︸ ︷︷ ︸ 1, 0, 0, 0, 0, . . .︸ ︷︷ ︸
[] 7, [0] −2, [0] 3, [0] 1, [0] 1, [0] 1, [3] 1, [eob]

[ 3] 111, [0 2] 01, [0 2] 11, [0 1] 1, [0 1] 1, [0 1] 1, [3 1] 1, [eob]
110 111 100 01 100 11 01 1 01 1 01 1 1111110 1 00

The final bit stream:

11011110 00110011 01101101 11111110 100

So we compressed the 64 bytes of input data down to less than five bytes.

Storing of the Huffman table The Huffman table is stored in the header (DHT marker
segment) in a sophisticated way. It will be easier to understand if explained along an
example, so let’s take a look at the following example DHT table marker:

FF C4 00 39 11 00 02 02 02 01 04 02 02 01 04 01
04 01 03 02 07 01 02 03 11 04 12 21 05 13 22 31
00 06 32 41 14 07 23 42 51 15 33 52 61 71 24 16
43 62 08 25 81 91 34 72 63 A1 C3

The first two bytes are the DHT18 marker (FF C4), they are followed by two bytes coding
the length of the DHT marker segment (00 39). Then comes one byte table context (11);
in this case it’s the AC table number one. In the next 16 bytes are the Huffman codes but
given in a special way. The first of these 16 bytes stands for the number of Huffman codes
with length one, the second byte gives the number of codes with length two and so on.
The actual codes have to be rebuild the following way.

18For details see appendix A
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1.7 Entropy Encoding

So in our case we have no code with length one, but two with length two. Taking into
account that it will never be prefix of an existing code, a new code will always be the
lowest possible number. So we start with the code 00 and then 01.

Length 1 2
Code - 00 01
Value -

Next we have two codes with the length of three bits, giving:

Length 1 2 3
Code - 00 01 100 101
Value -

And so on ...

Length 1 2 3 4 5 6
Code - 00 01 100 101 1100 1101 11100 ...
Value -

Right after the 16 bytes for the Huffman codes follow the values to be associated with the
codes. The number of values depends on the number of codes which have been rebuilt
(= sum of the 16 code-bytes).

Length 1 2 3 4 5 6
Code - 00 01 100 101 1100 1101 11100 ...
Value - 0x01 0x02 0x03 0x11 0x04 0x12 0x21 ...

The Huffman tree is not completely utilized, there are no codes that are all 1. Another im-
portant thing is that any occurrence of the byte aligned value 0xFF inside the compressed
data will be masked as 0xFF00.
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2 Basic Approach

This chapter formulates the different considerations for the implementation of the Mo-
tionJPEG decoder. The layout of the infrastructure around the JPEG/MotionJPEG decoder
is described and some in-depth thoughts concerning the design of the decoder pipeline
are formulated.

2.1 Objectives

The JPEG compression algorithm with its sequential decoding steps implies a pipelined
design. The pipeline is designed with strictly encapsulated components, interconnected
by a two-signal flow control. This way the components may also be used in other projects
with minimal effort.

The encapsulated components are also very well suited to be used in a demonstration ap-
plication in the field of dynamic partial reconfiguration. A hardware scheduler, as developed
by Norbert Abel for his diploma thesis [Abe05], can be used to swap single components
in and out, reducing the required chip-resources.

The first step to a video decoder is the implementation of a still image decoder. In doing
so the long-term objective, to later do video decoding, has always been kept in mind.
The JPEG decoder has been developed with regard to be easily upgradeable without
performance penalty.

2.2 Basic System Layout

Figure 2.1 outlines the decoding system whose major part is the developed JPEG decoder.
Besides JPEG decoding, the system fetches the image data from the SDRAM, takes care
of displaying the decoded data on a VGA monitor, and provides controlling functionality
via the PowerPC.

The decoding system is implemented as OPB component (“MyIPIF”1) being part of an
EDK design. The image data is read from SDRAM and served via the OPB bus to the de-

1OPB IPIF (On-Chip Peripheral Bus Intellectual Property Interface) is a standardized interface between the
OPB and a user IP core.
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Figure 2.1: The image data is
held in the SDRAM. It is pre-
sented to the JPEG decoder
via OPB. The decoded data
is then displayed directly on
a VGA monitor. Initializing
and controlling the entity is
done via the PowerPC.
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coder entity in 32-bit words. The OPB is configured to operate in burst mode, presenting
a new word every clock cycle until the input buffer is completely filled. New data is not
requested until the logic of the input buffer requests new data. This way most of the time
the OPB will be free to be used by other components which eases the requirements for
possible future extensions (like upgrading to MPEG, cp. chapter 7.3).

Sending the decoded data over the OPB would as well result in a unnecessary load on the
bus. Therefore a basic VGA core has been implemented (cp chapter 5) which is directly
instantiated in the “MyIPIF” component and interfaces the JPEG decoder to avoid bus
traffic.2

Since there are insufficient on-chip memory resources available to store a complete de-
coded image, for a frame buffer the SDRAM needs to be utilized. This would require
complex logic for memory management and is not implemented. The decoder has to
provide the data synchronous to the to the VGA component displaying it. So the de-
coder has to (a) be be fast enough to always provide valid data and (b) come with reverse
flow control support to not outrun the VGA component. The VGA core operates at 60
Hz. Therefore one image needs to be decoded in less than 1

60 s.

A detailed discussion of the JPEG decoder and the VGA entity can be found in chapters
3 and 5 respectively.

2Note that the OPB bandwidth is sufficient to handle a stream of decoded data. This is necessary for an
MPEG decoder design (cp. chapter 7.3).

24



2.3 MyIPIF

Read  2
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Read  1

Master
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else

Start / Reset

else

else

OPB_MGrand

go and
jpeg_ready

jpeg_ready

Figure 2.2: The finite state machine to initiate an OPB-
master-read cycle. In the idle state the entity is lis-
tening on the OPB for configuration commands, but as
soon as the jpeg decoder requests new data by assert-
ing jpeg_ready it will change to the next state. How-
ever with the configuration register go the user may
force the state machine to stay in idle. In the Master
Read 1 state the entity is requesting the bus from the
OPB arbiter. If the bus has been granted (OPB_MGrand)
the state machine switches to the state Master Read 2
where it requests data from the SDRAM until the in-
put buffer is filled and jpeg_ready is set to low by
the JPEG decoder causing the return to the idle state.
While in state Master Read 1 the OPB is locked for
other components.

2.3 MyIPIF

The MyIPIF component is connected to the EDK system as a OPB-master component.
It fetches the data from the SDRAM in burst mode (this mode is also known as "OPB
sequential address"). The finite state machine for this OPB-master-read cycle is outlined in
figure 2.2. The OPB provides the data in 32-bit words starting with the first word from
the given address, then every clock cycle the next 32-bit word in sequence is provided.
When the input buffer of the JPEG decoder is filled the state machine memorizes the last
read address. The next time data is requested by the JPEG decoder the state machine will
resume reading from this position. However, if the decoder signals that it received the
end of image (EOI) marker, the next read cycle starts from the base address again.

When not in the idle state, MyIPIF is locking the bus and no other than the addressed
OPB component (in this case the SDRAM controller) is allowed to access it. When in the
idle state, the component listens on the OPB for configuration commands that then can
be issued by the PowerPC (cp. chapter 3.9).
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Figure 2.3: The essential steps of the JPEG decoder. Except the header readout
all components are arranged in a pipeline chain. The header readout is closely
connected to the input buffer and presents the information from the header to
the specified components.

2.4 Pipelining

Since there are several independent steps in series (cp. figure 2.3), the JPEG decoding
algorithm is very well suited to be implemented in a pipelined manner. For the pipelining
some issues need to be addressed. Insufficient on-chip video memory implies the need to
stop and resume decoding on request, so the pipeline has to have a proper backpressure
support. Furthermore the context of the data is important. Along with the data, every
component in the pipeline needs to know the context information as well. The efficiency
of a pipeline is best if it is “balanced”, i.e. all components need about the same processing
time for their step.

Context The context can be information from the header (e.g. the sampling method
used) or something else (e.g. that an EOI marker has been detected). Keeping in mind
that the core should be upgradable to MotionJPEG this leads to a problem when a new im-
age enters the pipeline and the header related context changes. At that point the pipeline
may hold two different images with different header information. The size of the header
information (including Huffman- and quantization-tables) is too large to stick it to the
data and pass it through the pipeline. Therefore the header readout provides two sets
of header information, updated alternately. The (header related) context provided along
with the data is just a flag indicating which set to use. This way draining the pipeline on
image change can be avoided.
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2.4 Pipelining
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Figure 2.4: The connection of two components in the pipeline is controlled
by two signals, datavalid and ready. When both flow control signals of the
connection are asserted, the data is sampled. Both components have to check
both signals.
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Figure 2.5: Timing diagram for the flow control signals. Data will only be
sampled when both signals, datavalid and ready, are sampled high on the
rising edge of the clock. Cycles with valid data handover are marked with ~.

Flow Control The flow control ensures that only valid data is processed, no data is
lost, and no data is processed multiple times. Each component in the pipeline provides
two flow control signals, datavalid and ready. datavalid implies that the component
provides valid data and ready indicates that the component is ready to take data. The
datavalid signal is connected forward, the ready signal backwards in the chain (see fig-
ure 2.4). When the datavalid signal of the component providing the data is asserted
along with the ready signal of the component taking the data, the data is sampled. Both
components analyze the flow control signals separately. Figure 2.5 shows a timing dia-
gram illustrating the flow control.

The design of the flow control signals allows to easily separate the pipeline components
by connecting fifos in between. This is important for the dynamic partial reconfiguration
environment, if single components shall be scheduled.
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Pipeline Pipelining works best if the pipeline stages are balanced, i.e. the time required
for processing is the same for each stage. The decomposition of the image in smaller
units may raise the idea of accelerating critical stages by demultiplexing the data stream
into more than one path, each path decoding its own data unit. In this case however
this would result in no speed gain because the units cannot be identified until after the
entropy decoding which is the bottleneck of the decoding process as well.

28



3 Implementation of the JPEG Decoder

This chapter gives in detail how the decoder has been implemented, each of the JPEG
components are discussed.

For some components it is important to have the theoretical background of the JPEG
compression, as discussed in chapter 1, in mind. To ease reading, a short description of
the theory behind the component will then be given in a blue box at the beginning of the
section.

3.1 JPEG Top Entity

The JPEG top entity encapsulates the connections of the pipeline components. The back-
ward and forward handshaking signals to the outside are those from the first and last
pipeline component respectively. The input data is 32-bit wide and the component has
three 8-bit wide output data channels (one for each RGB component). Additionally some
context information is provided along with the data to the outside, namely the sampling
method, the width, the height and an “end of image” flag for synchronization with the
VGA entity. A second “end of image” flag is provided backwards to the OPB logic, indi-
cating that all image data has been read. The OPB logic will then start to re-transmit the
image data.

3.2 Input Buffer and Header Readout

The input buffer has been designed as a two-stage fifo with logic to pre-analyze the in-
coming data (cp. figure 3.1). The data coming from the OPB is collected in a first fifo
(“Fifo 1”) where the 32-bit input data is presented in chunks of 8 bits to the preanalyzer
(“check_FF”). Since the data is stored in sequential addresses, it can be fetched in bursts.
However, data after the end of the image is not valid and has to be flushed. “check_FF”
checks for the EOI marker. If EOI is detected the invalid data will be flushed from “Fifo
1”. Furthermore a new decoding cycle is then initiated by signaling the “MyIPIF” com-
ponent to re-transmit the whole image again and reactivate the header readout.1.

1The header readout state machine is outlined in Appendix B.
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Input Buffer

check_FF

OPB

eoi
se

le
ct

Header 

Readout

v
al

id
context context

Fifo 1 Fifo 2

Header
Info

D
em

u
x

Info 2
Header

Info 1
Header

Decoder

Figure 3.1: The design of the two-staged input buffer is illustrated here. The
OPB - operating in burst mode - continues reading even after the end of the
image. check_FF detects the EOI marker and flushes the invalid data in Fifo
1. With regard to MotionJPEG, the header readout reads the header informa-
tion each time the image is decoded, presenting it by alternately updating two
different information sets. The presence of Fifo 2 allows the header readout
being done in parallel to the rest of the decoding process.
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3.3 Entropy Decoding

For decoding the same JPEG image over and over it would be sufficient to read out the
header just once at the beginning and store the information for the rest of the decoding
process. While decoding MotionJPEG there are several different images to be sequen-
tially processed and the header of each has to be read. So the header information is not
just read out once at the first decoding cycle but for every cycle again. This way the
decoder is already prepared for MotionJPEG. On the other hand the header information
is required by many pipeline stages and cannot be updated while these components are
busy. Draining the pipeline before decoding the next image would be very inefficient, so
the decoder provides space for two sets of header data used alternately. This way there
is no need to drain the pipeline before decoding the next image2.

The two-staged input buffer combined with the two header-information sets allows to
process the header of image n+1 while the rest of the decoder is still working on image n.
The multiple header readout itself does not add any delay since it is done in parallel to
the rest of the decoding process.

There is another important task that the preanalyzer takes care of. Any occurrence of
0xFF in the compressed bitstream has been escaped to 0xFF00 by the encoder, the prean-
alyzer replaces the byte sequence 0xFF00 in the compressed data with just 0xFF.

3.3 Entropy Decoding

Theoretical Background:

The last step in the encoding process is entropy encoding, therefore it is the first
step in the decoding process. The entropy encoding is a combination of run
length encoding, variable length encoding and a special form of Huffman encoding.
Entropy decoding is divided in two steps. First, the information needed for
the run length decoding and the variable length decoding needs to be decoded by
applying a Huffman algorithm. Then run length decoding (used for the zeroes)
and variable length decoding (for the non-zero values) can be applied (cp. figure
3.2).

Figure 3.3 shows a simplified model of the finite state machine used for the entropy de-
coding. To keep a clear picture, several status registers and buffers required to perform
entropy decoding are not shown. Because this is a very complex pipeline component,
this section is divided in several subsections.

2A third image has to be stalled, though.
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Figure 3.2: The data is read bit by bit until a valid Huffman code (blue) is
found. The Huffman table is consulted for the information how many preced-
ing zeroes there are and how many bits the encoded value (red) requires. First
the preceding zeroes are written, then the required number of bits is read and
the resulting value is written.

3.3.1 Data Input

The decoder needs the data bit by bit, but the input buffer presents the data in 8 bit junks.
Changing “Fifo 2” to a 8-to-1 asymmetric fifo would implicate problems with the context
that already needs to be presented along with the data. So a 12-bit wide “Fifo 2” is used
and the 4-bit context together with the 8-bit data are written as one 12-bit word into this
fifo. On the read side of the fifo the data is buffered in an 8-bit shift register and shifted
out bit by bit.

A special case may occur if a JPEG marker (RST3, DNL3 or EOI) has been inserted into
the compressed stream. The markers are byte-aligned and therefore it may have been
necessary to pad (invalid) bits before the marker. These padded bits are all ’1’ and there-
fore are no valid Huffman code according to the specifications. If encountered, the finite
state machine continues to decode until the last stuff bit is processed is then reset as soon
as the marker is read (the marker is detected by the input buffer, which then sets a flag in
the context). This way no valid code is missed.

3Not yet supported. The RST (Restart) and DNL (Define Number of Lines) markers are usually not used.
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Figure 3.3: The finite state machine for entropy decoding. States for the Huff-
man decoding are colored blue, states for variable length decoding and run
length decoding are colored red. For a detailed description consult the chap-
ters 3.3.2 and 3.3.3.
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3.3.2 Huffman Decoding

Theoretical Background:

There are four different kinds of Huffman tables, a different one for DC and AC
coefficient and for luminance (Y) and chrominance (Cb or Cr) component. The
tables are stored in the header in a sophisticated way. 16 specific bytes hold the
information about the codes. The first byte is the number of codes with length
1, the second byte the number of codes with length 2 and so on. They are then
followed by the values that are represented by the codes. The codes are not
stored in cleartext but have to be build by the decoder. Starting with the lowest
length the next valid code is always the lowest possible value that has not a
previous code as prefix.

The following is a description of the (blue) states in state machine shown in figure 3.3.
Two 16-bit signals are used in this part of the finite state machine, code_read and code_-
build. They are compared and if they match a valid code has been detected. Code_read
is appended by one bit of input data, if necessary, and code_build is successively build
according to the rules. To distinguish between DC tables and AC tables a counter called
ac_dc_counter is used, to distinguish luminance from chrominance components a sepa-
rate, sampling dependent, finite state machine was implemented.

start1-3: In the first state the registers storing the table addresses and the codes are
reset to zero. The next two states are needed to wait for the BRAM storing the tables to
hold valid data.

get_code: The length of the potential Huffman code is increased by one bit. A bit is
read from the input shift register and appended to the register code_read. A zero is
appended to the register code_build. The number of Huffman codes with the current
length is read from the relevant Huffman table (AC or DC, luminance or chrominance)
and memorized in symbols. If this value is zero, the state machine stays in this state for
an additional cycle to append another bit.

check_code1: In this state the previously read code is checked for validity by compar-
ing code_ read with code_build. code_build is incremented until either a valid code is
found (→ check_code2) or the number of tested codes equals the previously memorized
value symbols (→ get_code).
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3.3.3 Variable Length Decoding and Run Length Decoding

Theoretical Background:

The byte decoded by the Huffman part of the state machine consists of two nib-
bles with different meaning. The first nibble represents the information of how
many zeroes there are prior to the value to decode, the second nibble is the num-
ber of bits required to represent the value to decode.
The Huffman table holds two special bytes (0x00: eob and 0xF0: zrl) that are
treated differently. zrl represents 16 zeroes, eob indicates that the rest of the
block are zeroes.
It must be noted that for the DC coefficients only the difference to the DC co-
efficient of the previous block has been encoded. This applies for each color
component separately.

The following is a description of the (red) states shown in figure 3.3. Two counters are
used in this part of the state machine, one for the zeroes to be written and one for the bits
to be read for the non-zero value.

Since for the decoding of the DC coefficient, the DC coefficient of the previous block
is needed, three register arrays are used to store the DC coefficients, one for each color
component. The selection of the correct component register is done by a separate finite
state machine.

check_code2: The valid code is interpreted by consulting the appropriate Huffman ta-
ble (AC or DC, luminance or chrominance). It may be one of the special codes eob or zrl
(→ write_zeroes_eob/_zrl) or a combination of (a) the number of preceding zeroes (if
zero: → get_value, else: → write_zeroes) and (b) the number of bits required for the
value to decode.

write_zeroes_eob / write_zeroes_zrl: For zrl 16 zeroes are written, for eob the re-
maining bytes of the current 8x8 block are written as zero. Then the state machine will
start from the beginning.4

write_zeroes: The number of preceding zeroes is written.4

4These states can be separated from the state machine, continuing decoding while the zeroes are written in
parallel. Significant performance-enhancing can be achieved (cp. chapter 7.1).
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get_value1: One bit is read. If it is zero then the value to decode is negative and this
bit as well as all following bits need to be inverted.

get_value_2: The remaining number of required bits of the value to decode are read
and the value is written out.

3.4 Dequantize

Theoretical Background:

In the encoding process the coefficients representing the image in the frequency
domain are divided according to the corresponding entry of a quantization ta-
ble. Two tables are used, one for the luminance and one for the two chrominance
components. The result is then rounded to the next integer value, information
is lost. The higher frequencies are divided by higher values and therefore loose
more information. The division needs to be reversed, this is done in the dequan-
tize step.

Since the quantization tables are stored in the header in zig-zag order, dequantize is ap-
plied before the dezigzag step. This way the tables can be read and used without reorder-
ing. They are stored in circular shift registers where the output register is fed back to the
input register. The shift registers have to be 8 bit wide and 64 bit deep to hold one table.
For the implementation discussed here, they are instantiated using a coregen generated
component to take advantage of the SRL16 primitives.

For multiplication a (coregen) generated multiplier component is used. On the Virtex-II
Pro FPGA a MULT18x18 primitive is used, on other Xilinx FPGAs corresponding primi-
tives would be instantiated (e.g. DSP48 on a Virtex 4).

Information about the used sampling method is needed to choose the correct table. The
multiplication of one byte is done in one cycle.
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3.5 Dezigzag

Shift In

Shift Out

De−Zig−Zag

Mapping

Figure 3.4: If the input shift register (red) is filled and the output shift register
(blue) is empty, the data is mapped in the inverse zigzag order. Then new data
is accepted again while simultaneously the previously mapped data is shifted
out.

3.5 Dezigzag

Theoretical Background:

To optimize the data for entropy encoding the 8x8 blocks are reordered into an
array in a zig-zag order so the lower frequencies appear at the beginning and
the higher frequencies (that are usually zero after quantization) at the end. The
IDCT step needs the coefficients in the original order. The reverse mapping is
done in the dezigzag step.

Two shift registers are used for this step. The first shift register buffers the incoming
data. As soon as one complete block is read, it is mapped to the other shift register in
the inverse zig-zag order. Then the second shift register shifts out the data while the first
begins to process the next data block (cp. figure 3.4).

Shift registers are preferred over distributed ram, because distributed ram wastes too much
fabric resources for the - unneeded - random access logic. Block Memory cores use ran-
dom access logic as well, but can compensate this by storing the data in dedicated in-
tegrated memory blocks instead of logic cells. However those memory blocks are only
available in large units5, a too valuable resource to waste here for just 128 byte data.

The context needs special consideration since the component is internally designed as
a two-stage pipeline. The input shift register is filled while simultaneously the output
shift register shifts out the previously read data. So the component holds two sets of data
with eventually different context information. Therefore two sets of context are needed
as well. Context set one is copied to set two at the same time as the data is mapped.

518 Kbit on the Virtex-II Pro
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3.6 IDCT

Theoretical Background:

The image has been transformed to frequency space by applying the discrete
cosine transformation. There the less important6 , higher frequencies could be
compressed in a stronger way than the more important, lower frequencies. In
this step the inverse discrete cosine transformation (IDCT) transforms the image
back to the spatial domain.

Xilinx provides an IDCT core via coregen [Pil07b] which is used because it takes advan-
tage of the FPGAs primitives7 for the multiplications required. This core is implemented
as a pipelined design, but it does not provide reverse flow control.Once one data block
is read, data will be shifted out after the calculation delay. If the next entity is then not
ready to take the data, it is lost. To ensure proper backpressure, a wrapper has been im-
plemented for the IDCT core and the flow control signal “ready” of the next component
in the chain (upsampling) has been adapted. The i“upsampling-ready” signal is de-asserted
when less than one block can be buffered. The “upsampling-ready” signal is used directly
as IDCT-ready signal, so the second block is not fully read thus indirectly stalling the
IDCT core. This can only be done because the IDCT core starts to shift out the first block
before the second one is completely read, even if there is always valid input data avail-
able. The Xilinx IDCT core for a Virtex-II Pro FPGA reads one complete 8x8 block in 92
cycles8 and needs the same time for writing one 8x8 block. The latency of the core9 is
always 144 cycles (>92 cycles). The time between the last input and the first output data
is 144-92=52 cycles (<92 cycles). Setting the upsampling-ready signal low 64 bytes too
early results in a functional reverse flow control while still taking some advantage of the
internal pipelined design of the Xilinx-IDCT core (cp. figure 3.5).

The input coefficients are 12-bit signals, as specified by the JPEG standard. Internally,
the data may be represented by more bits to reduce rounding errors but requiring more
fabric resources. In the case of this decoder 15-bit accuracy is used internally, thus being
compliant with the IEEE 1180-1990 specifications10[IEE91].

Since the IDCT core may hold more than one (a maximum of three) different sets of data,
the correct context must be selected. There are two 8 bit wide counters (in_counter
and out_counter) and four context sets. The in_counter increments if data is read, the
out_counter if data is shifted out. Both counters are two bits wider than needed for one

6for the viewed optical impression
7MULT18x18 for the Virtex-II Pro, DSP48 for Virtex-4
8if valid data is always available
9last input data to last output data

10The IEEE-1180-1990 standard specifies an accuracy test for IDCT transformations.
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(a) Flow control as described in section 2.4 results in loss of data because the Xilinx IDCT core cannot be
stalled. Once the whole 8x8 block is read, the core will shift out the data after the calculation latency. In
this case block number 5 is the last one that can be buffered, but block number 6 is already fully read when
the last data of block number 5 is shifted out. Block number 6 is lost.
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(b) Manually preventing pipelining in the Xilinx IDCT core results in seriously reduced performance.
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(c) A whole block is never fully read before the Xilinx IDCT core starts to shift out the previous block. The
trick is to set the upsampling-ready signal to low when the buffer space becomes less than needed for one
complete 8x8 block. The upsampling-ready signal is directly used as IDCT-ready signal, therefore no new
data will be sampled by IDCT. The component is stalled and data loss is prevented.

Figure 3.5: Flowcontrol and pipelining in the IDCT component.
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block, so the two most significant bits can be interpreted as a two bit block counter. The
incoming data is stored in the context set indicated by the two most significant bits of
the in_counter, the context provided along the output data is taken according to the two
most significant bits of the out_counter.

Due to the algorithm used the decoded data is shifted out column-wise instead of the
required row-wise order. Since in the next entity (upsampling) the data is reordered any-
ways, this does not present a problem. The 8x8 matrix is transposed there in one step
with the native reordering.

3.7 Upsampling

(The gray text refers to a previous version.)

Theoretical Background:

The human eye is more sensitive in perceiving differences in brightness than
in color. Therefore the color components (in the YCbCr color model there are
two color components and one brightness component) are stored in reduced
resolution. The upsampling component interpolates the color components to its
original resolutions.

Similar to the dezigzag component, the upsampling component rearranges the data in a
different order and therefore has to buffer a whole block of data. It is implemented the
same way as the dezigzag component by using two shift registers. The internal two-step
pipelined design is implicating the above mentioned problem with the context. Two sets
of context are needed. Set one copied to set two at the same time as the data is copied.
Because the context information (the sampling method) influences size of the buffers and
the order in which they are mapped, special care must be taken in the copying process.

The input order is one 8x8 block after another until one complete MCU is received, the
output of the component will be a whole MCU in the usual “from left to right and top to
bottom”-order. Additionally to the mapping from read-in to read-out order, the data is
rearranged to compensate the column wise output order of the IDCT component.

Contrary to dezigzag which has to buffer only one 8x8 block, this component has to buffer
a whole MCU. Depending on the sampling method used, a MCU can be up to six 8x8
blocks for the input buffer and twelve 8x8 blocks on the output buffer. The initial imple-
mentation with shift registers is inefficient in terms of device usage. The buffer needs to
hold (6 + 12) · 64 bytes = 1152 bytes. The dual port BRAM primitive is used, the data is
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3.8 YCbCr2RGB

mapped by different addressing for reading and writing, comparable to how the data is
rearranged in the VGA component.

As mentioned in the previous chapter, flow control has to be slightly different than in
the other components, otherwise advantages of the internal pipelined design of the IDCT
component are lost. The ready signal has to be set to low when the available buffer space
falls below 64 bytes (less than one complete 8x8 block).

3.8 YCbCr2RGB

Theoretical Background:

JPEG compression works with the YCbCr color model, while VGA uses the RGB
color model (RGB is the most common color model). This component trans-
forms the data from YCbCr to RGB. The formula for the transformation is:

R = Y + 1.402 · (Cr− 128)
G = Y − 0.34414 · (Cb− 128) − 0.71414 · (Cr− 128)
B = Y + 1.772 · (Cb− 128)

The IDCT core outputs data that is level shifted, this means that 128 is subtracted from
the values. So the 8 bit values have a range from -128 to 127 (two’s complement represen-
tation) instead of the range 0 to 255. According to the transformation formula this is what
needs to be done for the color components anyways, so just the Y component is corrected
by simply adding 128.

To apply the formula, the Y component is multiplied by 1024 (10 bit shift right) and the
same is done for the factors that the color components are multiplied with. The factors
were rounded to the next integer11 leading to the following formula with just integer
arithmetic:

R = 1024 · (YIDCT + 128) + 1436 · (CrIDCT)
G = 1024 · (YIDCT + 128) − 352 · (CbIDCT) − 731 · (CrIDCT)
B = 1024 · (YIDCT + 128) + 1815 · (CbIDCT)

This is the formula that is currently implemented.

However after the color transformation the RGB values are not certainly within the range
0 to 255. Due to rounding errors in the IDCT step the resulting RGB values of this step
may be less than 0 or higher than 255. The JPEG standard is aware of this problem and

11The rounding errors induced are minimal, one pixel value in rare cases.
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requires the RGB values to be cropped to the proper range of 0 to 255 by setting all values
higher than 255 to 255 and all negative values to 0. Being just some comparisons, this
boundary check was not very difficult to implement.

Unfortunately the design tool was not capable to route the synthesized logic within the
timing constraints for the Virtex-II Pro FPGA. Basically the multiplier primitives used for
the multiplication in the transformation formula are adding too much latency. So this
step is divided into two clock cycles. In the first cycle the formula is applied. In the
second cycle the boundaries are checked and the results are divided by 1024 (10 bit shift
left) which was needed for integer arithmetic.

Flow control and context handling of this component can be held very simple. The ready
signal coming from outside of the decoder (this is the last component in the pipeline) is
fed directly to the upsampling component and additionally connected to the clock enable
pin of the used flip-flops. The datavalid signal and the context from the upsampling
component are delayed by two cycles, keeping them synchronized with the data.

3.9 Slow Control

The the system can be controlled via the embedded PowerPC. The user can connect the
board via an UART to a personal computer where a terminal program (like “minicom”)
is running. The terminal will show the following output:

Go: ............ 1
No Go: ......... 2
Reset: ......... 5

The user may start and stop the system (“Go”/ “No Go”) and initiate a reset (“Reset”)
by sending the corresponding number (as ASCII character).12 The usefulness of the slow
control will become more evident when upgrading to MotionJPEG (cp. chapter 4.3).

12Take care not to send special characters like “Page Up” or “Backspace”. This may confuse the PowerPC.
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4 Upgrade to MotionJPEG (MJPEG)

The JPEG decoder is designed to decode multiple images in sequence without perfor-
mance penalty, so the decoder is well suited for the upgrade to MotionJPEG. Even so, two
matters have to be addressed. First, it is important how the movie is stored, so that the
JPEG images can be extracted. Second, to display the decoded data on a VGA monitor
some images need to be decoded multiple times.

4.1 Container Formats

A container file combines the different data streams of a movie. This can be the video and
audio of course, but also additional information like subtitles or a second audio track (e.g.
in a different language) are common. To have the all simultaneously needed information
stored closely localized in the file, the different data streams are interleaved. Additional
non-stream information, like the frame rate of the video or the video and audio codec
used, are usually stored in a header and sometimes in a trailer. Figure 4.1 illustrates a
container file.

There are many different video container formats, the most popular ones are listed be-
low:

• Audio Video Interleave (.avi): A still well-established format, despite being tech-
nologically outdated.

• MPEG-4 File Format (.mp4): The standard format for MPEG-4 video streams.

• Matroska (.mkv): An open source container format.

• Ogg (.ogg): The standard format for Ogg streams.

To implement a video decoder at least one container format has to be supported. The
decoder has to parse the header and extract the relevant information. This can be the
frame rate and duration of the stream, codecs used, etc. The video stream has to be
extracted and then decoded according to the parameters defined in the header.

However, there was not enough time to implement a container format interpreter so the
input stream has to fulfill some additional restrictions to be interpretable by the decoder
developed. Extracting the video stream from the “container” is done by checking for the
JPEG-markers EOI and SOI, so the other data (the blue chunks in figure 4.1) must not
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the container
with header 
and trailer

(like audio)

video data

other data skipped data

processed data

Figure 4.1: A container file is a data structure with a header (and perhaps a
trailer), and some data streams - like video and audio data - that are stored
in an interleaved manner. Some video frames are repeated to achieve the re-
quired framerate.

contain these markers. Since the chance to find such a marker in an audio stream is very
good, the file must not include any audio data.

The video is displayed on the monitor with a frame rate of 60 Hz and it can only be
adjusted how many times each frame is repeated. So the framerate of the video stream
has to be a 60

n fps1 with n ∈ {1, 2, 3, . . . , 16} and has to be manually adjusted. Otherwise
the video would run too fast or too slow.

4.2 Fetching the Stream

The JPEG decoder can be used for MotionJPEG decoding when fed with a sequence of
JPEG images. However two issues need to be addressed. First, the framerate of the
recorded video may not be the same as the framerate required by the monitor. Second,
it has to be assured that no data is lost due to the branch prediction logic of the JPEG-
decoders input buffer.

The VGA monitor displays images with 60 Hz refresh rate and in the test setup there is
not sufficient on-chip memory to store a complete frame, so the decoder has to provide
a new image every 1

60 s. If the video frame rate is different from 60 Hz, some frames
have to be decoded multiple times. Usually the resulting repetition rate is not the same
for each frame (cp. figure 4.1). To be played accurately at 60 Hz, a stream recorded with

1fps: frames per second
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4.3 Slow Control

24 fps needs to repeat the every second frame three times and the other frames two times.
However other frame rates are harder to map to 60 Hz.

To repeat a frame the SDRAM-address where the image starts is stored, so the frame can
be fetched as often as the frame rate requires. This implementation supports videos with
a framerate of 60 Hz

n with n ∈ N, i.e. the repetition rate for each frame must be equal. To
adjust the frame rate two 4 bit counters are used, a reference counter set by user and a
status counter counting how often the image has already been read. If they are equal the
decoder advances to the next frame.

Figure 4.2 shows the basic components and connections needed to fetch the stream and
adjust the frame rate. The JPEG_EOI signal is controlled by the input buffer of the JPEG-
decoder component. This signal simultaneously resets the Fifo 1 in the input buffer to
flush invalid data (cp. chapter 3.2). The next image cannot be fetched until after the
JPEG-decoder signals JPEG_EOI, part of the image would be flushed as well. An EOI
and SOI detection logic searches the incoming data for these markers. The logic for the
address calculation may proceed in the following two ways after an EOI marker has been
detected, depending if the frame shall be repeated or not:

1) If the frame is not going to be repeated, the stream is analyzed further until SOI is
detected. Then the OPB_address of the word containing this SOI marker is stored. If the
JPEG_EOI of the previous frame has not yet been received the address will be reset to the
stored value at the time when JPEG_EOI is received. Otherwise data is lost due to the
reset of the input buffer.
2) If the frame is to be be repeated, the decoder waits for the JPEG_EOI and then resets
OPB_address to the previously stored value.

Note: Since the data is read from SDRAM aligned to 32-bit words it may contain both
valid and invalid bytes, feeding the JPEG-decoder with only valid data and omitting the
then unnecessary reset of the input buffer is not possible without extra effort.

4.3 Slow Control

Video decoding needs some additional parameters to be adjusted. Besides the three
options already explained in section 3.9 (“Go”, “No Go” and “Reset”), there are now
some (self-explaining) video specific options (Pause On/Off, Next Frame (while paused),
Faster, and Slower). The following control screen will be accessible via UART:
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data

datavalid

data

OPB_address

VGA

control

slow

SOI & EOI

detection

address calculation

ready

decoder

JPEG

JPEG_EOI

slower

next frame

pause

faster

adjust framerate

EOI

SOI

continue
or repeat

Figure 4.2: The framerate can be adjusted using the slow control. In case
the frame is repeated, the OPB address is set back to the start address of the
image. In case the frame is not repeated, the data stream is received further
until a new image starts. In this case the start address of the new image is
stored for later frame repetition.
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Go: ............ 1
No Go: ......... 2
Reset: ......... 5
Pause On: ..... 14
Pause Off: .... 15
Next Frame: ... 16
Faster: ....... 17
Slower: ....... 18
Commands may be issued by sending the referring number.
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5 Simple VGA Component

To avoid unnecessary traffic on the bus, a basic VGA component directly interfacing the
JPEG decoder has been implemented. Its implementation is discussed in this chapter.

5.1 Generating the VGA Signals

Theoretical Background:

There are five analog signals needed to operate a VGA monitor, the three RGB
color components and two sync signals. The timing is illustrated below.

RGB−Data Line 1 Line 2 Line 480 Line 1

v. back porchv. front porch

v. sync

h. back porchh. front porch

h. sync

vertical synchorizontal sync

HSYNC

VSYNC

VGA is an analog standard therefore analog signals have to be generated. This is done by
a digital to analog converter (DAC) installed on the development board. The DAC requires
the following input signals: the three RGB color components (each 8 bits), the horizontal
and the vertical sync signals (1 bit), a blank signal (1 bit, overriding the RGB input) and a
clock signal (operating at the frequency of pixel change). It outputs the five analog VGA
signals.

To operate the DAC at industry standard (a resolution of 640x480 pixels and a refresh
rate of 60Hz) a new clock domain is introduced. A new pixel is displayed every 1

25 µs,
therefore the DAC clock is operating at 25 MHz. The clock is generated by a component
(vga_signals) that has been simplified and ported to VHDL from an existing Verilog
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Simple VGA Component

design [GS06]. This component also generates the horizontal and vertical sync signals,
and the blank signal. Additional to the VGA signals a line counter and a pixel counter
are provided to indicate the position of the current pixel on screen. As all those signals
are generated independently from the rest of the system, the data to be displayed has to
be synchronized with those signals. This is done by using the true-dualport Block RAM
primitives that are also used to buffer and rearrange the data.

Figure 5.1 illustrates the VGA component where the data is passed to the new clock do-
main (25 MHz) via a dualport Block RAM. Some signals are generated in the 25 MHz
clock domain and needed in the 100 MHz domain as well and vice versa. So they have to
be synchronized into the other clock domain. The signals from the 100 MHz domain that
are needed in the 25 MHz domain are critical since here the transition from a higher fre-
quency to a lower frequency domain may lead to missed signals due to undersampling.
However these signals (width, height, and sampling) are not very volatile, so this is not
a real problem.

5.2 Buffering and Rearranging of Data

As mentioned before, there is not enough on-chip memory available to buffer a decoded
image completely, so the decoder has to decode the data synchronous to the display.
Although the decoder has proper backpressure support being able to stop pixel value
output at every time, it can not be guaranteed that there is always valid data present.
To accomplish reliability it is still necessary to buffer some decoded data in the VGA
component.

Yet there is another compelling reason for a buffer between the JPEG and the VGA com-
ponent: the order the pixels are decoded from a JPEG file is not the same as the pixels
are needed by the display. The JPEG decoder will output the pixels MCU-wise, while the
VGA core needs them line-wise. The largest supported MCU is a square of 16x16 pixels
(cp. chapter 1.3). Therefore a minimum buffer needs to be able to hold up to 32 lines of
the image, enough to write 16 lines (one “line of MCUs”, cp. figure 5.2) while reading the
previous 16 lines, in a different order. This is very BRAM consuming1 and cannot easily
be relocated to SDRAM because of the different read and write order. The OPB bus could
not be used in burst mode for reading and writing from SDRAM.

The different read and write addresses are calculated separately. To define strictly sep-
arated address spaces for reading and writing the signal (memory_select) is used. This
signal is used as most significant bit (MSB) of the read address and its negation as MSB

132 rows with a maximum of 640 pixels, 3 components each 1 byte per pixel: 32rows · 640 pixel
row · 3 byte

pixel =
61 440byte = 61.44kB (20% of all BRAM available on the Virtex-II Pro FPGA).
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Figure 5.1: The VGA component with the two clock domains and the digital
to analog conversion.
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Padded Pixels

8x8 Block

MCU

Image

A Line of MCUs

Pixel

Figure 5.2: Illustration of a “line of MCUs”. The VGA component provides
buffer space for two lines of MCUs. One for writing the decoded image data
and one for reading, used in turns.

of the write address. The signal toggles after every 16th line when the 4:2:0 sampling
method is used, and after every 8th line when an other sampling method is used2.

Write Address Calculation The decoded data has to be presented in a defined order,
lost data results in a misaligned image. To assure that not more MCUs than the one
“line of MCUs” is written to the buffer, sampling and width are needed. From these
signals the number of MCUs in a line is calculated and the flowcontrol ready signal is
de-asserted when the line is full. When the complete image has been decoded, writing
has to stop as well, waiting for a new VGA frame. Therefore the signals eoi, line_count
and height are used. The use of eoi additionally synchronizes the data stream in case
the image unexpectedly misalignes after all. The write address is incremented when the
flow-control signals indicate valid data handover.

Read Address Calculation The data is stored MCU-wise to the Block RAM, not pixel-
line after pixel-line. The data of one pixel-line of the image is stored in scattered address
spaces. However the scattering is well defined. The correct read address can be calcu-
lated from pixel_count and line_count when considering the sampling method.
If the displayed pixel on the VGA monitor is not inside the area covered by the image,
the RGB output values are set to zero by asserting the blank signal to the DAC.

2The height of a MCU at 4:2:0 sampling is 16 lines, for the other sampling methods it is 8 lines.
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6 Results

To analyze the quality and the performance of the developed JPEG decoder a whole set of
test images with different characteristics and encoding parameters has been created. The
images chosen are a picture of some clouds with only continuous variations in color and
brightness, on which the JPEG algorithm is known to work very well. Furthermore the
famous “Lena” image is used, a very popular test image in the field of image processing
containing both, smooth areas and sharp edges. The last image is a composition of text
with many sharp edges, on which the JPEG algorithm is known to work very poorly.
Those images are encoded in all different sampling methods, 4:4:4, 4:2:2, 4:2:0, and gray-
scale and with the different quality settings, 20, 40, 60, 80, 90, and 100.

The 72 images created were then used to analyze the developed JPEG decoder. This
has been done by performing a behavior analysis with Modelsim. A testbench has been
written that reads a JPEG file from the hard disk and provides it to the JPEG decoder.
The output of the decoder, along with a timestamp, is dumped to a logfile. The testbench
permanently asserts its ready signal, so the maximum performance of the decoder is
measured. The results of the analysis are presented in the next two sections.

6.1 Quality of Decoding

The implementation of the JPEG decoder comprises a tradeoff between decoding accu-
racy and usage of silicon resources. The IDCT (cp. chapter 3.6) core internally uses 15-bit
wide signals, being compliant with the IEEE 1180-1990 specifications[IEE91]. However
it is still possible to be more precise by using wider internal signals.

It is expected that, although being comparable, the developed hardware decoder does
not provide the full accuracy of software decoders using the well-established libjpeg
[Ind98]. libjpeg, executed on a 32-bit processor, is used as a reference implementation
for quality analysis.

Each of the figures 6.1, 6.2 and 6.3 shows a) an image decoded by a software decoder
using libjpeg1, b) the same image decoded (in a Modelsim simulation) by the developed

1The CImg library [Tsc] has been used to do the analysis, it uses the libjpeg to import JPEG images. The
C++ code implemented for the verification is available on the CD (cp. Appendix ??).
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hardware JPEG decoder, c) an image showing the differences of software and hardware
decoder and d) a table with some statistics.

Each of these figures is dealing with an image showing a different theme. The themes
are chosen to point out how the decoder is dependent on the content of the image. The
images are originally compressed with the same parameters, the quality is set to 80 and
the sampling method is 4:2:0. The parameters are chosen to represent commonly used
values.

In all three cases the differences between hardware and software decoder, caused by the
tradeoff mentioned above, are barely noticeable by comparing the images with the hu-
man eye. Only the difference-image and the histogram reveals the minor deficiency of
the hardware decoder.

Statistics The following statistics are presented in the histogram:

• Max: The maximum value of the difference image.

• MSE: The mean squared error between the software and the hardware decoded
image.

• PSNR: The peak signal to noise ratio between the software and the hardware de-
coded image. The PSNR is the ratio between the maximum possible value of a
signal and the noise. It is commonly used to quantify the quality of image com-
pression algorithms, where the compressed and reconstructed image is considered
a noisy approximation of the original image. In this chapter the hardware decoded
image reconstruction is considered a noisy approximation of the software decoded
image reconstruction.

6.2 Decoding Performance

Several parameters have an impact on the decoding time. A set of images has been pro-
duced and simulated to point out the different effects of the parameters. Width and
height are important later in combination with the VGA component (cp. section 6.3), but
their influence on the decoding time is trivial. The dimension of all test images are set to
the same value: 256x256 pixels. The varied parameters are:

• The quality setting which the image has been compressed with.

• The sampling method: 4:4:4, 4:2:2, 4:2:0 or grayscale.

• The structure of the scene that the image displays.
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6.2 Decoding Performance

(a) Decoded by well-established software decoder
(libjpeg).

(b) Decoded by developed hardware decoder (sim-
ulated with Modelsim).

(c) Difference of software and hardware decoder. (d) A histogram and some statistics of the differ-
ences. The first two channels are cropped, chan-
nel 0 has 70845 counts, channel 1 has 85779
counts.

Figure 6.1: clouds_q80_420.jpg: An image of some clouds with no sharp
edges and only smooth variations in color and brightness, originally com-
pressed with the JPEG quality setting 80 and the 4:2:0 sampling method.
The decoder works very well for this kind of image. There is no difference
noticeable between the hardware decoder and the reference software decoder,
even when the two pictures are subtracted from each other (pixel by pixel for
each component separately).
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(a) Decoded by well-established software decoder
(libjpeg).

(b) Decoded by developed hardware decoder (sim-
ulated with Modelsim).

(c) Difference of software and hardware decoder. (d) A histogram and some statistics of the differ-
ences.

Figure 6.2: lena_q80_420.jpg: A photograph of a girl with some continuous
tone areas and some areas with more detailed structure, originally compressed
with the JPEG quality setting 80 and the 4:2:0 sampling method.
The decoder performs well for this kind of image. There is no difference no-
ticeable between the hardware decoder and the reference software decoder.
When the two pictures are subtracted from each other (pixel by pixel for each
component separately) a close look is needed to spot the differences.
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6.2 Decoding Performance

(a) Decoded by well-established software decoder
(libjpeg).

(b) Decoded by developed hardware decoder (sim-
ulated with Modelsim).

(c) Difference of software and hardware decoder. (d) A histogram and some statistics of the differ-
ences.

Figure 6.3: lorem_q80_420.jpg: An image of some printed text with many
sharp edges, originally compressed with the JPEG quality setting 80 and the
4:2:0 sampling method.
The decoder works satisfyingly for this kind of image. There is hardly any
difference noticeable between the hardware decoder and the reference soft-
ware decoder. However when the two pictures are subtracted from each other
(pixel by pixel for each component separately) some noticeable differences are
revealed.
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Figures 6.4 to 6.6 show the measured decoding times (for a frame) in tabular and plotted
representation. It can be observed that a quality setting of 100 leads to a significant loss
of performance. This quality setting sets all entries of the quantization tables to one,
which essentially eliminates the quantization step. Not much zero-coefficients are to be
decoded, thus eliminating the effect of the part of the entropy decoding that performs
relatively well. With a lower quality setting, the compression rate and the performance
of the entropy decoder increases. Since the entropy decoder is the bottleneck, this has a
direct effect on the overall decoding time.

The second issue to be pointed out is the sampling method. Grayscale works best since
there is less data to be dealt with, in the whole decoding process. The 4:2:0 sampling
method needs nearly half the time of the 4:4:4 sampling method, and 4:2:2 nearly two
thirds of 4:4:4. These times are proportional to the amount of data after the entropy
decoding and before the upsampling component. This effect again uncovers the entropy
decoder as bottleneck.

Another mentionable effect is that the structure of the image content has a direct influ-
ence on the decoding performance. This is not surprising, the information of sharp edges
is held in grand portions in the high frequency coefficients. With high values in those
coefficients, they are not completely removed in the quantization step and the com-
pression algorithm does not work very well. More data needs to be processed by the
entropy decoder.

6.3 Performance Requirements for VGA

To display the decoded image on a VGA monitor some additional requirements need to
be fulfilled. The VGA monitor works at a refresh rate of 60 Hz, so an image has to be
decoded in less then a 1

60 s = 16 2
3 ms. Since there is not enough memory available to store

a whole frame, only a line of MCUs is buffered. There are 524 pixel lines total2 (including
the horizontal and vertical synchronization signals), resulting in

1
60

s
frame

· 1
524 lines

frame

=
1

31440
s

line
= 31.807

µs
line

Since the buffer may hold just one line of MCUs, there is no performance gain in reducing
the height dimension of the image, only reduction of the width dimension helps. As
noticed in chapter 6.2, it also helps to encode the movie with reduced quality or a better
sampling rate.

If there are some lines with many sharp edges (for example when subtitles are part of the
image), the decoder may not keep up with the VGAs need in that part of the image. It

2This value has been ported from [GS06] and proven to work. However other sources suggest 525 lines in
total.
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(a) The gray boxes refer to the reference measurements using a software decoder (libjpeg), executed on a
standard 1.5 GHz PC. The colored boxes refer to the hardware decoder.

Quality Gray 4:2:0 4:2:2 4:4:4
20 1.89 1.72 2.43 3.86
40 1.89 1.77 2.46 3.92
60 1.89 1.87 2.52 4.03
80 1.94 2.20 2.78 4.24
90 2.28 2.83 3.41 4.76

100 5.63 7.82 9.46 12.32

(b) Decoding times of the hardware decoder, in
milliseconds.

Quality Gray 4:2:0 4:2:2 4:4:4
20 1.03 3.60 3.75 4.11
40 1.16 3.75 3.96 4.33
60 1.26 3.88 4.11 4.52
80 1.42 4.12 4.41 4.94
90 1.64 4.40 4.74 5.43

100 2.77 6.09 6.79 8.05

(c) Decoding times of a reference software de-
coder, in milliseconds. (Average value over
1000 measurements.)

Figure 6.4: Decoding times at different compression levels and different sam-
pling rates for an image with very smooth structure(clouds*.jpg). Reference
data has been measured by a software decoder executed on a standard 1.5
GHz PC.
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(a) The gray boxes refer to the reference measurements using a software decoder (libjpeg), executed on a
standard 1.5 GHz PC. The colored boxes refer to the hardware decoder.

Quality Gray 4:2:0 4:2:2 4:4:4
20 1.98 2.09 2.69 4.14
40 2.23 2.54 3.11 4.50
60 2.53 2.97 3.55 4.92
80 3.18 3.86 4.52 5.90
90 4.21 5.15 6.02 7.57

100 8.30 11.70 14.90 21.23

(b) Decoding times of the hardware decoder, in mil-
liseconds.

Quality Gray 4:2:0 4:2:2 4:4:4
20 1.38 4.06 4.24 4.66
40 1.53 4.22 4.51 5.07
60 1.65 4.39 4.73 5.33
80 1.90 4.69 5.10 5.87
90 2.18 5.05 5.53 6.47
100 3.50 7.17 8.44 11.15

(c) Decoding times of a reference software decoder,
in milliseconds. (Average value over 1000 mea-
surements.)

Figure 6.5: Decoding times at different compression levels and different sam-
pling rates for an image with average structure (lena*.jpg). Reference data
has been measured by a software decoder executed on a standard 1.5 GHz PC.
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(a) The gray boxes refer to the reference measurements using a software decoder (libjpeg), executed on a
standard 1.5 GHz PC. The colored boxes refer to the hardware decoder.

Quality Gray 4:2:0 4:2:2 4:4:4
20 2.99 3.66 4.43 6.01
40 4.17 5.27 6.35 8.51
60 5.05 6.61 7.97 10.79
80 6.42 8.76 10.73 14.72
90 7.73 10.82 13.42 18.71

100 10.09 15.01 19.78 29.04

(b) Decoding times of the hardware decoder, in mil-
liseconds.

Quality Gray 4:2:0 4:2:2 4:4:4
20 1.90 4.73 5.15 6.06
40 2.24 5.18 5.74 6.80
60 2.45 5.55 6.22 7.46
80 2.85 6.18 7.00 8.62
90 3.21 6.78 7.81 9.84

100 3.80 7.82 9.41 12.46

(c) Decoding times of a reference software decoder,
in milliseconds. (Average value over 1000 mea-
surements.)

Figure 6.6: Decoding times at different compression levels and different sam-
pling rates for an image with very sharp structure (lorem*.jpg). Reference
data has been measured by a software decoder executed on a standard 1.5
GHz PC.
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does not matter how fast the rest of the image is decoded. Such an image will flicker and
the lines that are hard to decode appear out of order. However the rest of the image will
not be affected, if the decoder can catch up to the VGA component again.

6.4 Comparison to a Software Decoder

Figures 6.4 to 6.6 additionally contain measurements of a software decoder (using lib-
jpeg).

The software was executed on a standard CPU (Intel Pentium M), running at 1.5 GHz,
requiring 24.5 W power [Int04]. For comparison, the Virtex-II Pro FPGA runs at just 100
MHz and requires only between 0.5 W and 3 W power [Tel05].

Measuring a software implementation is not as accurate as the measurements of the hard-
ware implementation. The standard library for time measurement (time.h) does not pro-
vide a finer granularity than the operating system time slice for scheduling. Such a time
slice is usually about 10 ms and therefore not exact enough for this measurement. How-
ever there is a way to measure the CPU cycles used by directly reading out the TSC3

of the x86-processor using the assembly instruction RDTSC4. The measured value may
contain some scheduling cycles of the operating system, which is fair since this is the en-
vironment a software implementation usually works in. 1000 measurements per image
have been made and the average value, including an average part of scheduling cycles,
have been recorded.

The hardware and the software decoder timewise perform in the same order of mag-
nitude. It is noticeable that the software decoder outruns the hardware decoder when
dealing with grayscale images. The pipelined design of the hardware decoder does not
benefit from the fact that for grayscale images the upsampling and the YCbCr2RGB com-
ponents are not necessary.
High quality images also perform better on the software side, obviously entropy decod-
ing is not the heavy part for the software decoding.
For 4:2:0 and 4:2:2 sampled images however the hardware decoder does better. The
MCUs are spread over a wide range of addresses. This may lead to more cache misses in
the CPU that executes the software decoder.

6.5 Proof of Operation

The JPEG decoder is successfully put into operation, figure 6.7 shows the development
board displaying a MotionJPEG movie on a connected VGA monitor. The movie is played

3TSC: time stamp counter.
4The patch applied on the libjpeg source code can be found on the CD provided (cp. Appendix ??)
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6.5 Proof of Operation

as intended, without any flickering or other disturbances and can be controlled via the
serial port.

Figure 6.7: The Xilinx XUP Virtex-II Pro Development System board decoding an MotionJPEG movie
and displaying it on a VGA monitor.
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7 Future Prospects

The JPEG decoder implemented in this thesis is fully functional, yet there are ideas for
quality improvement. The decoder may be used in various ways as demonstration and
test application for Norbert Abel’s hardware scheduler [Abe05]. Additionally, it is imagin-
able to use the decoder as a good basis for future projects like MPEG decoding.

Some ideas for enhancement shall now be discussed before describing the use of the
decoder in possible future projects.

7.1 Tuning of the JPEG decoder

The efficiency in term of device usage can be improved by revising the implementation of
the upsampling component (cp. chapter 3.7). Instead of the shift registers, an enhanced
implementation will use Block RAM primitives. Such an implementation would be sim-
ilar to the design of the VGA component (cp. chapter 5) since a major part of this task is
buffering and rearranging data as well. The address calculations are more complex since
different components of the image need different reordering.

To improve the decoder performance, the bottleneck of the decoding pipeline, the en-
tropy decoding, has to be reviewed. For common images the decoder spends about half
of the time in the write_zeroes_eob state and only the rest of the time decoding (cp.
figure 7.1). This is not necessary, the decoding can proceed while the zeroes are written,

Figure 7.1: A snapshot taken from the simulation tool Modelsim, showing the states of
the entropy decoder main finite state machine. Decoding is done only in the blue col-
ored cycles, the red colored cycles are used to write the tailing zeros of a 8x8 block to the
output. Those two phases can be done in parallel, resulting in significant performance-
enhancement.
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the in parallel decoded output data just needs to be buffered in a (small) FIFO. In most
cases this would increase the performance considerably, in the best case it could double
the performance.

In the particular case of this video decoding system it is feasible to reduce the require-
ments of the VGA core additionally to the performance improvement of the decoder. This
can be accomplished by implementing a framebuffer in SDRAM, with better hardware
an on-chip framebuffer is thinkable as well1. There is then no need to decode an image
in less than 1

60 s (the VGA frame rate). The framerate of the movie defines the decoding
speed and is normally much smaller than 1

60 s. Plus, a framebuffer would solve some
problems in the implementation as well. Beside the fact that it is no longer required to
decode images multiple times to achieve the video frame rate, a framebuffer can render
need for a low latency reverse flow control unnecessary. This would solve the problem
with the IDCT deficient reverse flow control.

Another improvement would be the support for RST and DNL markers, which would
not be very difficult since it can be done very similar to the handling of the EOI marker.
On the other hand this is not very important either as these markers are hardly used.

7.2 Usage in a Dynamic Partial Reconfiguration Environment

The decoder is to be used in a dynamic partial reconfiguration environment. Two scenarios
are especially suitable.

Scheduling of the Pipeline Components The decoder can be divided into its pipeline
components, which can then be scheduled. This way an image can be decoded even if the
chip does not provide enough space to instantiate the whole decoder. A major problem
of this approach is the high data rates that have to be dealt with, which is exactly the
topic of J. N. Meier’s diploma thesis [Mei] carried out at the Configurable Hardware group
at the Kirchhoff Institute for Physics.

Reconfiguring Whole Decoder Cores A baseline compliant JPEG decoder needs to sup-
port four different sampling rates, where just one at a time is used for the decoding of
an image. The other sampling methods cannot be omitted, because they may be needed
by future images of the stream. However, with dynamically reconfigurable hardware it
is possible to replace the decoder with another one. So specialized decoders, that require
less resources, can be implemented and a suitable decoder can be dynamically loaded on
demand.

1Storing one frame would require 640 · 480 · 3Byte = 900KByte memory.
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7.3 Upgrade to MPEG
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Figure 7.2: MPEG decoding requires an additional memory controller for external
memory. Whole decoded image frames need to be preserved for the decoding of subse-
quent frames.

7.3 Upgrade to MPEG

MPEG bases heavily on the JPEG compression techniques, the MPEG i-frames are JPEG
compressed images and the decoding of MPEG p- and b-frames follow the same princi-
ples after all2. So an upgrade to MPEG is a natural thought. The MPEG specification is
more restrictive than the JPEG specification, therefore some parts of the design may be
simplified for MPEG decoding. The Huffman tables quantization tables are not stored in
the file but specified in the MPEG standard, so they can be hard-coded. However, mem-
ory management is much more difficult. The decoding of an MPEG frame may require
information from other, previously decoded frames. These frames need to be stored to
and loaded from SDRAM, usually not in the same pixel order. The order the pixels are
needed is not even predefined but depending on the motion vectors that need to be in-
terpreted. Figure 7.2 outlines a possible MPEG decoding “pipeline”, however the block
“Memory controller” includes complex logic.

2MPEG video frames can be i-, p- or b- frames. While i-frames (i for intra) are JPEG compressed images, p-
frames (p for predictive) only store the difference to the previous image and b-frames (b for bidirectional)
rely on previous and subsequent images.
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Appendix A

Table of Important Jpeg Markers

Hex Abbrev. Full Name Description
0xFFD8 SOI Start Of Image Every JPEG image starts with these two bytes. This

marker has no payload.
0xFFE0 APP0 Application Seg-

ment 0
Immediately following the SOI marker. It starts
with the sequence 0x4A46494600 (the zero termi-
nated string "JFIF") which indicates that this is a JFIF
file. The rest of the payload holds the following in-
formation: version number, density in x-and y-axis
(dots/inch or dots/cm) or the aspect ratio of the im-
age, an optional thumbnail of the image.

0xFFC0 SOF Start Of Frame It includes the following information: the data pre-
cision (usually 8 bit), width and height of the im-
age, number of components (usually 1 (gray) or 3
(YCbCr)), sampling factors, the assignment of the
quantization tables to the components.

0xFFDB DQT Define Quantiza-
tion Table

This is where the quantization tables are stored. Usu-
ally there is one DQT marker present for each quanti-
zation table. But be aware that one single DQT marker
might as well hold more than one quantization table.

0xFFC4 DHT Define Huffman
Table

This is where the Huffman tables are stored. Usually
there is one DHT marker present for each Huffman
table. But be aware that one single DHT marker might
as well hold more than one Huffman table.

0xFFFE COM Comment A zero terminated string.
0xFFDA SOS Start Of Scan This marker includes the following information: the

number of components of the image (same as in SOF),
the assignment of the Huffman tables to the compo-
nents. It is the last marker of the header.

0xFFD9 EOI End Of Image Indicates the end of the JPEG image. This marker has
no payload.
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Header Readout State Machine
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Header Readout State Machine
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Figure B.1: The header readout state machine. Some states are grouped to
keep a clear picture. The dqt and dht markers may contain more than one
table but this is not mandatory. For the different tables there may as well be
more than one dqt marker (or dht marker respectively) present in the header.
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