Division Algorithms and Hardware Implementations

Sherif Galal

Dung Pham

EE 213A: Advanced DSP Circuit Design

1

Р	Α	Operation
00000	1110	Divide 14 = 1110 by 3 = 11. B register always contains 0011
00001	110	step 1(i): shift
00011		step 1(ii): subtract
00010	110 <u>0</u>	step 1(iii): quotient is -ve, set quotient bit to 0
00001	110 <u>0</u>	step 1(iv): restore
00011	10 <u>0</u>	step 2(i): shift
00011		step 2(ii): subtract
00000	10 <u>01</u>	step 2(iii): quotient is +ve, set quotient bit to 1
00001	0 <u>01</u>	step 3(i): shift
00011		step 3(ii): subtract
00010	0 <u>010</u>	step 3(iii): quotient is -ve, set quotient bit to 0
00001	0 <u>010</u>	step 3(iv): restore
00010	<u>010</u>	step 4(i): shift
00011		step 4(ii): subtract
-00001	<u>0100</u>	step 4(iii): quotient is -ve, set quotient bit to 0
	0100	step 4(iv): restore

Division Algorithms	and hardware	Implementations

Slide 7 of 17

Р	Α	Operation
00000 00001 00011	1110 110	Divide 14 = 1110 by 3 = 11. B register always contains 0011 step 1(i-b): shift step 1(ii-b): subtract b (add two's complement)
11110 11101 00011	110 <u>0</u> 10 <u>0</u>	step 1(iii): P is negative, so set quotient bit to 0 step 2(i-a): shift step 2(ii-a): add b
00000 00001 -11101	10 <u>01</u> 0 <u>01</u>	step 2(iii): P is +ve, so set quotient bit to 1 step 3(i-b): shift step 3(ii-b): subtract b
 11110 11100 -00011	0 <u>010</u> <u>010</u>	step 3(iii): P is -ve, so set quotient bit to 0 step 4(i-a): shift step 4(ii-a): add b
11111 -00011	<u>0100</u>	step 4(iii): P is -ve, set quotient bit to 0 Remainder is negative, so do final restore step
	-	0100 and the remainder is 00010
	<i>storing</i> divisio tra addition in	n seems to be more complicated since it involves a step (iv)
• Th	is is not true	since the sign resulting from the subtraction is

Division Algorithms and hardware Implementations

Slide 9 of 17

References

- Stuart F. Oberman, and Michael J. Flynn, "Division Algorithms and Implementations," IEEE Transactions on Computers, vol. 46, no. 8, August 1997.
- "Computer Arithmetic: A Quantitative Approach" by John
 L. Hennessey & David P. Patterson, Second Edition
- COMS 252A Course Notes " Digital Arithmetic ", Professor Ercegovac

Division Algorithms and hardware Implementations

Slide 13 of 17