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Motivation

• Implementation of LPC speech coder
• Division operation required in Levinson-Durbin algorithm
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Basic Division Algorithms

• Digit Recurrence Algorithm
• Restoring Division
• Non-Restoring Division
• SRT Division (Sweeney, Robertson, and Tocher)

• Multiplicative Algorithm
• Approximation Algorithms
• CORDIC Algorithm
• Continued Product Algorithm

Useful site
http://www.ecs.umass.edu/ece/koren/arith/simulator
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Definitions and Notations

• Two types of division operations
• Integer division: with integer operands and result
• Fractional division: operands and results are fractions

• Any division algorithm can be carried out independent of
• Position of the decimal point
• sign of operands

x qd rem+=

Dividend

Quotient
Divisor

Remainder

rem d ulp<

unit in the last position
ulp=1 for integer quotient
ulp=r-n for radix-r representation

with n-digit quotient
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Restoring Division Algorithm

• Put x in register A, d in register B, 0 in register P, and
perform n divide steps ( n is the quotient wordlength)

• Each step consists of
• (i) Shift the register pair (P,A) one bit left
• (ii) Subtract the contents of B from P, put the result back in P
• (iii) If the result is -ve, set the low-order bit of A to 0 otherwise to 0
• (iv) If the result is -ve, restore the old value of P by adding the

contents of B back in P

B

P A

shift

After n cycles, A will contain the
quotient, P will contain the remainder
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Restoring Division Example

P A Operation

 00000 1110 Divide 14 = 1110 by 3 = 11. B register always contains 0011
 00001 110 step 1(i): shift
-00011 step 1(ii): subtract
----------
-00010 1100 step 1(iii): quotient is -ve, set quotient bit to 0
 00001 1100 step 1(iv): restore
 00011 100 step 2(i): shift
-00011 step 2(ii): subtract
----------
 00000 1001 step 2(iii): quotient is +ve, set quotient bit to 1
 00001 001 step 3(i): shift
-00011 step 3(ii): subtract
----------
-00010 0010 step 3(iii): quotient is -ve, set quotient bit to 0
 00001 0010 step 3(iv): restore
 00010 010 step 4(i): shift
-00011 step 4(ii): subtract
----------
-00001 0100 step 4(iii): quotient is -ve, set quotient bit to 0
 00010 0100 step 4(iv): restore

• The quotient is 0100 and the remainder is 00010
• The name restoring because if subtraction by b yields a negative

result, the P register is restored by adding b back
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Non-Restoring Division Algorithm

• A variant that skips the restoring step and instead works
with negative residuals

• If P is negative
• (i-a) Shift the register pair (P,A) one bit left
• (ii-a) Add the contents of register B to P

• If P is positive
• (i-b) Shift the register pair (P,A) one bit left
• (ii-b) Subtract the contents of register B from P

• (iii) If P is negative, set the low-order bit of A to 0,
otherwise set it to 1

• After n cycles
• The quotient is in A
• If P is positive, it is the remainder, otherwise it has to be restored

(add B to it) to get the remainder
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Non-Restoring Division Example

P A Operation

  00000 1110 Divide 14 = 1110 by 3 = 11. B register always contains 0011
  00001 110 step 1(i-b): shift
+00011 step 1(ii-b): subtract b (add two’s complement)
----------
  11110 1100 step 1(iii): P is negative, so set quotient bit to 0
  11101 100 step 2(i-a): shift
+00011 step 2(ii-a): add b
----------
  00000 1001 step 2(iii): P is +ve, so set quotient bit to 1
  00001 001 step 3(i-b): shift
+11101 step 3(ii-b): subtract b
----------
  11110 0010 step 3(iii): P is -ve, so set quotient bit to 0
  11100 010 step 4(i-a): shift
+00011 step 4(ii-a): add b
----------
  11111 0100 step 4(iii): P is -ve, set quotient bit to 0
+00011 Remainder is negative, so do final restore step
----------
 00010

• The quotient is 0100 and the remainder is 00010
• restoring division seems to be more complicated since it involves

extra addition in step (iv)
• This is not true since the sign resulting from the subtraction is

tested at adder o/p and only if the sum is +ve, it is loaded back to
the P register
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SRT Division Algorithm

• Pre-normalization of divisor (1/2  ≤ d ≤ 1) and dividend (x < d)

For an n-bit quotient, n iterations are needed
Each iteration involves 4 intermediate steps

Start by defining a residual (or partial remainder) w and
setting w[0]=x

step1: One digit left-shift of w[j] to produce rw[j]

step2: Determine the quotient qj+1 using quotient-digit

select function

                                 qj+1=SEL(w[j],d)

step3: Generation of d qj+1

step4: Generation of w[j+1]=rw[j] - d qj+1
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Quotient-digit Select Function

• The Quotient-digit set plays a crucial role in the
complexity of implementation

• Restoring algorithm => 0 ≤ qj ≤ r-1

• Non-Restoring algorithm => q j {-1,1}

• SRT quotient-digit selection function

• SRT division is very fast in the case of consecutive
zeroes in q (w[j+1]=rw[j] - d q j+1=rw[j])

qj 1+

1 1 2⁄ 2w j[ ]≤
0 1 2⁄– 2w j[ ] 1 2⁄<≤
1– 2w j[ ] 1 2⁄–<

=
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SRT Division Example

• Example d=0.1101, x=0.011000

• Quotient Conversion (on-the-fly conversion algorithm) with initial
conditions Q[0]=QM[0]=0

Table 1: Example of radix-2 SRT Division

j 2w[j] q j+1 Q[j] QM[j]

0 0.110000 1 0 0

1 1.111000 0 0.1 0.0

2 1.110000 0 0.10 0.01

3 1.100000 0 0.100 0.011

4 1.000000 -1 0.1000 0.0111

5 1.101000 0 0.01111 0.01110

6 1.010000 -1 0.011110 0.011101

Q k 1+[ ]
Q k[ ] qk 1+ r

k 1+( )–
+ qk 1+ 0≥

QM k[ ] r qk 1+–( )r k 1+( )–
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SRT Division Implementation
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