Division Algorithms and Hardware Implementations

Sherif Galal

Dung Pham

EE 213A: Advanced DSP Circuit Design

Division Algorithms and hardware Implementations

Motivation

- Implementation of LPC speech coder
- Division operation required in Levinson-Durbin algorithm

Basic Division Algorithms

- Digit Recurrence Algorithm

- Restoring Division
- Non-Restoring Division
- SRT Division (Sweeney, Robertson, and Tocher)
- Multiplicative Algorithm
- Approximation Algorithms
- CORDIC Algorithm
- Continued Product Algorithm

Useful site
http://www.ecs.umass.edu/ece/koren/arith/simulator

Definitions and Notations

$$
\begin{array}{|}
\mid \text { rem }|<|d| u l p| \\
\text { unit in the last position } \\
\text { ulp }=1 \text { for integer quotient } \\
\text { ulp }=r^{-n} \text { for radix-r representation } \\
\text { with } n \text {-digit quotient }
\end{array}
$$

- Two types of division operations
- Integer division: with integer operands and result
- Fractional division: operands and results are fractions
- Any division algorithm can be carried out independent of
- Position of the decimal point
- sign of operands

Restoring Division Algorithm

- Put x in register \mathbf{A}, d in register $\mathbf{B}, 0$ in register \mathbf{P}, and perform n divide steps (n is the quotient wordlength)
- Each step consists of
- (i) Shift the register pair (P,A) one bit left
- (ii) Subtract the contents of B from P, put the result back in P
- (iii) If the result is -ve, set the low-order bit of \mathbf{A} to 0 otherwise to 0
- (iv) If the result is -ve, restore the old value of P by adding the contents of B back in P

After n cycles, A will contain the quotient, P will contain the remainder

B

Restoring Division Example

P	A	Operation
00000	1110	Divide 14 = 1110 by $\mathbf{3}=11$. B register always contains 0011
00001	110	step 1(i): shift
-00011		step 1(ii): subtract
-00010	1100	step 1(iii): quotient is -ve, set quotient bit to 0
00001	1100	step 1(iv): restore
00011	100	step 2(i): shift
-00011		step 2(ii): subtract
00000	1001	step 2(iii): quotient is +ve, set quotient bit to 1
00001	001	step 3(i): shift
-00011		step 3(ii): subtract
-00010	0010	step 3(iii): quotient is -ve, set quotient bit to 0
00001	0010	step 3(iv): restore
00010	010	step 4(i): shift
-00011		step 4(ii): subtract
-00001	0100	step 4(iii): quotient is -ve, set quotient bit to 0
00010	0100	step 4(iv): restore

- The quotient is 0100 and the remainder is 00010
- The name restoring because if subtraction by b yields a negative result, the P register is restored by adding b back

Non-Restoring Division Algorithm

- A variant that skips the restoring step and instead works with negative residuals
- If P is negative
- (i-a) Shift the register pair (P,A) one bit left
- (ii-a) Add the contents of register B to \mathbf{P}
- If P is positive
- (i-b) Shift the register pair (P,A) one bit left
- (ii-b) Subtract the contents of register B from P
- (iii) If \mathbf{P} is negative, set the low-order bit of \mathbf{A} to 0 , otherwise set it to 1
- After n cycles
- The quotient is in A
- If \mathbf{P} is positive, it is the remainder, otherwise it has to be restored (add B to it) to get the remainder

Non-Restoring Division Example

P	A
00000	1110
00001	110
+00011	
11110	1100
11101	100
+00011	
00000	1001
00001	001
+11101	
11110	0010
11100	010
+00011	
11111	0100
+00011	
00010	

Operation
Divide $14=1110$ by $\mathbf{3}=11$. B register always contains 0011 step 1(i-b): shift
step 1(ii-b): subtract b (add two's complement)
step 1(iii): P is negative, so set quotient bit to 0 step 2(i-a): shift step 2(ii-a): add b
step 2(iii): P is +ve, so set quotient bit to 1 step 3(i-b): shift
step 3(ii-b): subtract b
step 3(iii): \mathbf{P} is -ve, so set quotient bit to 0 step 4(i-a): shift step 4(ii-a): add b
step 4(iii): P is -ve, set quotient bit to 0 Remainder is negative, so do final restore step

- The quotient is 0100 and the remainder is 00010
- restoring division seems to be more complicated since it involves extra addition in step (iv)
- This is not true since the sign resulting from the subtraction is tested at adder o / p and only if the sum is +ve, it is loaded back to the P register

SRT Division Algorithm

- Pre-normalization of divisor ($1 / 2 \leq \mathrm{d} \leq 1$) and dividend ($\mathrm{x}<\mathrm{d}$)

```
For an n-bit quotient, n iterations are needed
Each iteration involves 4 intermediate steps
Start by defining a residual (or partial remainder) w and
setting w[0]=x
step1: One digit left-shift of w[j] to produce rw[j]
step2: Determine the quotient }\mp@subsup{q}{j+1}{}\mathrm{ using quotient-digit
select function
    q}\mp@subsup{\mp@code{j+l}}{}{=}=\operatorname{SEL}(w[j],d
step3: Generation of d q}\mp@subsup{q}{j+1}{
step4: Generation of w[j+1]=rw[j] - d q}\mp@subsup{q}{j+1}{
```


Quotient-digit Select Function

- The Quotient-digit set plays a crucial role in the complexity of implementation
- Restoring algorithm $=>0 \leq q_{j} \leq r-1$
- Non-Restoring algorithm $=>q_{j}\{-1,1\}$
- SRT quotient-digit selection function

$$
q_{j+1}=\left[\begin{array}{cc}
1 & 1 / 2 \leq 2 w[j] \\
0 & -1 / 2 \leq 2 w[j] 1 / 2 \\
-1 & 2 w[j]<-1 / 2
\end{array}\right]
$$

- SRT division is very fast in the case of consecutive zeroes in $q\left(w[j+1]=r w[j]-d q_{j+1}=r w[j]\right)$

SRT Division Example

- Example d=0.1101, $x=0.011000$

Table 1: Example of radix-2 SRT Division

j	2w[j]	$\mathbf{q}_{\mathrm{j}+1}$	Q[j]	QM[j]
0	0.110000	1	0	0
1	1.111000	0	0.1	0.0
2	1.110000	0	0.10	0.01
3	1.100000	0	0.100	0.011
4	1.000000	-1	0.1000	0.0111
5	1.101000	0	0.01111	0.01110
6	1.010000	-1	0.011110	0.011101

- Quotient Conversion (on-the-fly conversion algorithm) with initial conditions $\mathrm{Q}[0]=\mathrm{QM}[0]=0$
$Q[k+1]=\left[\begin{array}{cc}Q[k]+q_{k+1} r^{-(k+1)} & q_{k+1} \geq 0 \\ Q M[k]+\left(r-\left|q_{k+1}\right|\right) r^{-(k+1)} & q_{k+1}<0\end{array}\right] Q M[k+1]=\left[\begin{array}{cc}Q[k]+\left(q_{k+1}-1\right) r^{-(k+1)} & q_{k+1}>0 \\ Q M[k]+\left((r-1)-\left|q_{k+1}\right|\right) r^{-(k+1)} & q_{k+1} \leq 0\end{array}\right]$

SRT Division Implementation

References

- Stuart F. Oberman, and Michael J. Flynn, "Division Algorithms and Implementations," IEEE Transactions on Computers, vol. 46, no. 8, August 1997.
- "Computer Arithmetic: A Quantitative Approach" by John L. Hennessey \& David P. Patterson, Second Edition
- COMS 252A Course Notes " Digital Arithmetic ", Professor Ercegovac

