
A Versatile UDP/IP based PC↔ FPGA Communication Platform

Nikolaos Alachiotis, Simon A. Berger, Alexandros Stamatakis

The Exelixis Lab, Scientific Computing Group

Heidelberg Institute for Theoretical Studies

Heidelberg, Germany

Emails: {Nikolaos.Alachiotis,Simon.Berger,Alexandros.Stamatakis}@h-its.org

Abstract—We present a substantially improved version of
our popular UDP/IP core for simple and fast FPGA ↔ PC
communication over Gigabit Ethernet. We provide a novel
feature to automatically configure (previously hard-coded)
internal settings on the FPGA. Thereby, we substantially reduce
the installation overhead when a FPGA shall communicate with
several different PCs. The UDP/IP core is designed to occupy
a minimum amount of hardware resources on the FPGA.

On the PC side, this new automatic configuration protocol
can be used and invoked via a C software interface. The
C interface provides convenient functions for setting up the
connection to the FPGA device and sending/retrieving arrays
of common C data-types to/from the UDP/IP core on the FPGA.

The initial UDP/IP core version is available under the LGPL
license at http://opencores.org/project,udp ip core while the
improved version of the core, including the C software interface
(also under LGPL), is available at http://opencores.org/project,
pc fpga com.

Keywords-FPGA; UDP/IP; PC-FPGA communication;

I. INTRODUCTION

FPGAs are commonly deployed as accelerator devices or

for verifying architectures. Irrespective of their particular

use, a machinery for moving data to/from the device is

required. Recently, we presented a proof-of-concept imple-

mentation of a highly efficient UDP/IP core architecture that

is optimized for point-to-point communication [1]. We found

that, combining the IPv4 and UDP protocols represents an

efficient solution for establishing a connection between a

PC and a FPGA, with respect to reconfigurable hardware

utilization. We achieve low resource utilization because the

architecture employs a simplified method for calculating the

IPv4 Header Checksum based on a pre-calculated template.

Here, we present an improved UDP/IP core implemen-

tation and a comprehensive Ethernet-based communication

platform. A key property of the UDP/IP core is that all

static header fields required for point-to-point communica-

tion are stored in a lookup table. In the proof-of-concept

implementation, this required the user to manually initialize

the lookup table before configuring the device. The improved

architecture we present here entails additional control logic

that retrieves all static fields of an incoming initialization

packet from the PC. This data is then stored in the respective

lookup table. This versatility of the new UDP/IP core

comes at a cost: the additional logic occupies approximately

56% more hardware area than the proof-of-concept core.

Nonetheless, this novel and more flexible UDP/IP core, still

outperforms all competing UDP/IP core implementations in

terms of speed and resource requirements.

Since February 2010, the proof-of-concept implementa-

tion has been downloaded over 3000 times from OpenCores.

org (http://opencores.org/project,udp ip core) and from

our software page (http://wwwkramer.in.tum.de/exelixis/

countIPv4.php). Note that, both Xilinx [2], and Altera [3]

provide PCI Express-based solutions for PC ↔ FPGA com-

munication. However, the interest our initial core has gener-

ated, underlines the apparent lack of a standardized, open-

source Ethernet-based communication mechanism. Thus, in

addition to the improved UDP/IP core architecture, we

also present an implementation of a comprehensive open-

source PC ↔ FPGA communication platform that relies

on Gigabit Ethernet. This platform deploys the versatile

version of the UDP/IP core and implements a simplified

communication protocol that facilitates usage and integration

of the send/receive paradigm for common C data types

and arrays. Our platform hides the complexity inherent to

establishing a PC ↔ FPGA connection and to synchronizing

data transmissions in both directions. The versatile UDP/IP

core and the communication platform are available for down-

load at http://opencores.org/project,pc fpga com and from

our software page (http://wwwkramer.in.tum.de/exelixis/pc

fpga com.php).

The remainder of this paper is organized as follows:

Section II provides a short overview of related work on

UDP/IP and TCP/IP cores and PC ↔ FPGA communication

platforms. In Section III, we describe the design of the

novel, and more versatile, UDP/IP core. The PC ↔ FPGA

communication platform is introduced in Section IV. Sec-

tion V covers implementation and verification details and a

performance evaluation of the UDP/IP core as well as of the

PC ↔ FPGA platform. Section V also includes application

examples to demonstrate the functionality of the proposed

solution. We conclude in Section VI and address directions

of future work.

II. RELATED WORK

In [4], Löfgren et al. state that, for Ethernet-based connec-

tions in embedded systems, design criteria such as cost, area,



and flexibility are not weighted equally, but actually vary

depending on the application at hand. Therefore, the authors

present three different (commercially available) stand-alone

UDP/IP cores and denote them as minimum, medium, and

advanced implementations. The medium and advanced IP

cores offer additional protocols, which are not necessary for

establishing a direct PC ↔ FPGA communication. Thus,

we do not compare these heavy-weight cores with our

implementation, because such a comparison would be unfair.

The minimum IP core though, offers the same functionality

as our Gigabit-speed UDP/IP core, but requires 2.8 times

more hardware resources while operating at 10/100 Mbps

only.

In [5], Kühn et al. used UDP/IP to implement PC ↔
FPGA communication over Gigabit Ethernet. To implement

the communication mechanism, the authors deployed an

operating system (Linux) that was running on an embedded

PowerPC processor. While using a processor that handles

the communication represents an elegant, straight-forward

approach, not all reconfigurable devices contain such hard-

coded processors. When such a processor is not required for

conducting additional computations, deploying a soft-coded

processor, can lead to excessive hardware utilization on the

device. Our novel communication platform essentially offers

the same functionality, but does not require an embedded

processor.

Dollas et al. [6] presented an architecture for an open

TCP/IP core that supports all necessary protocols (ARP,

ICMP, UDP) typically required for real-world applications.

The architectural complexity that is induced by the large

number of supported protocols would yield a comparison to

our light-weight design unfair. Note that, a full TCP/IP core

is not necessary for direct PC ↔ FPGA communication,

since this can be implemented using less complex protocols

and a lower amount of resources.

In [7], Lin et al. presented a PC ↔ FPGA based commu-

nication platform for verification and fast prototyping. The

platform communicates via a PCI interface and is intended

to facilitate verification of multimedia applications. For this

purpose, the software provides interfaces and drivers for

several multimedia devices such as USB cameras and sound

cards. There exist similar platforms as the one presented

by Lin et al., that target specific application types [8], [9].

The PC ↔ FPGA communication platform we present here,

offers a mechanism for integrating communication routines

into any kind of application and allows for transferring

arrays of the basic IEEE-754 data types (e.g., characters,

short integers, integers, floats, long integers, and doubles).

III. VERSATILE UDP/IP CORE ARCHITECTURE

In the following we briefly review the basic concept of

the initial UDP/IP core and describe the enhancements in

the new version.

As already mentioned, all static header fields required for

direct point-to-point communication are stored in a lookup

table (henceforth denoted as HLUT). The fields stored in

HLUT form part of the 802.3 MAC frame, the IPv4 header

section, and the UDP header section. The main fields of

the 802.3 MAC frame are the Destination Address, the

Source Address, and the Ethernet Type. The IPv4 header sec-

tion contains the following fields: Version, Header Length,

Differentiated Services, Total Length, Identification, Flags,

Fragment Offset, Time to Live, Protocol, Header Checksum,

Source Address, and Destination Address [10]. The UDP

header section consists of the Source Port, the Destination

Port, the Length, and the Checksum [11]. When only a

direct point-to-point connection between a PC and a FPGA

is considered, all of the above header fields are constant

with the exception of the IPv4 Total Length and Header

Checksum fields as well as the UDP Length field. The idea

of storing constant fields of UDP point-to-point connections

in lookup tables has been used before [4]. However, the

required hardware resources are further reduced in our

design because the calculation of the IPv4 checksum field

can be implemented by a single subtraction.

During a transmission of an Ethernet packet from the

FPGA to the PC, all static/constant fields are retrieved

directly from the HLUT. The three variable fields (Total

Length, Header Checksum, Length) can be calculated at low

cost using two additions and one subtraction. The initial

architecture contained three hard-coded values that were

used as the first operand of the two adders and the subtracter,

while the second operand in all three operations was the

length of the user data. The hard-coded values were set to

the minimum IPv4 Total Length and UDP Length values,

that is, the offsets to the respective header sections and the

IPv4 Header Checksum field of an Ethernet packet without

any user data attached to it.

Based on the amount of data (number of bytes) transferred

with the packet, the corresponding length fields are calcu-

lated by two additions. The subtraction is used to calculate

the correct IPv4 Header Checksum as a function of the

IPv4 Total Length field. A more detailed description of this

procedure and a proof that a single subtraction is sufficient

can be found in [1].

Figure 1 illustrates the versatile UDP/IP core architecture.

The block diagram of the TRANSMITTER and a description

of the RECEIVER components are provided in [1]. The new

RST U, CONFIG U, and HLUT CONTROL components

have been integrated to increase the flexibility of the core.

The RST U component monitors the first byte of the user

data in every incoming packet. The purpose of this unit

is to detect a dedicated byte-code that triggers a reset of

the HLUT CONTROL. A similar function (also using a

dedicated byte-code) is implemented in the CONFIG U

component for detecting a configuration enable code that

triggers the HLUT initialization process. The demand for



TRANSMITTER HLUT

CONFIG_U

RST_U
HLUT

CONTROL

IPv4 Header Checksum

Register

reg

rst

config

wraddr,wren,din

wren,value

from user interface

to user interface

EMAC

EMAC

from

to

RECEIVER

Figure 1. Top-level design of the advanced UDP/IP core.

receiving the reset and configuration enable codes in distinct

packets represents a less error-prone solution, especially with

respect to the fact that the UDP/IP core might not always

be used with the provided software interface.

The HLUT CONTROL is implemented as a 5-state FSM

(Finite State Machine). When the device is configured, the

FSM transitions from the default reset state to the idle state.

It will remain in idle state until a configuration enable

signal arrives from the PC. Upon arrival, the FSM transitions

to pre-configuration state and waits for the next incoming

packet. This packet is used as reference packet to retrieve

the required static fields and must not contain any user data,

since the IPv4 Header Checksum value of the packet will

be stored in a respective 16-bit register. When this empty

packet has arrived, the FSM then switches to configuration

state. In this state, all incoming header fields are redirected

to the HLUT that resides in the TRANSMITTER along

with write addresses and write enable signals. In addition

to controlling the HLUT initialization process, the HLUT

CONTROL component also stores the value of the IPv4

Header Checksum (see above). After these initialization

steps, the FSM transitions to the lock state which then allows

the TRANSMITTER to transmit regular user data. To pre-

vent the transmission of faulty packets, the TRANSMITTER

can not initiate any transmissions to the PC if the HLUT

CONTROL is not in the lock state.

These additional components, allow to setup and use the

UDP/IP core for communication with any PC in a seamless

manner, that is, without requiring manual code changes. The

only requirement for the platform to work properly is that,

the PC must transmit three packets to the FPGA that contain

the reset code, the configuration code, and one packet that

does not contain any data. This can be easily encapsulated

in an initialization function. We describe the implementation

of such a general communication platform that hides the

complexity of the underlying design (based on this improved

version of the UDP/IP core) in the following Section.

IV. PC ↔ FPGA COMMUNICATION PLATFORM

In the following, we describe the software/hardware in-

terface and a simple communication protocol that provide

(in conjunction with the UDP/IP core) a complete PC ↔

D−Pack

Data Type 

User Data

Header

Data 

Section

Section

C−Pack

Code

Configuration Request

Code

Data

Type

Data Length

Data Length

R−Pack

Figure 2. Supported packets in the Configuration and Data Protocol.

FPGA communication solution. The key design objective

is to hide the complexity of (i) setting up a PC ↔ FPGA

connection and (ii) transmitting and receiving variable data

types. In Section IV-A we introduce a simplified protocol

for configuring the UDP/IP core and transmitting user data.

In Section IV-B, the hardware interface is described while

Section IV-C covers the software interface.

A. Configuration and Data Protocol

We propose a Configuration and Data Protocol (hence-

forth denoted as CDP) which offers a simple communi-

cation model for configuring the system and transferring

variable size user data. However, in analogy to the User

Datagram Protocol (UDP [11]), it does not provide reliability

and data integrity mechanisms. There exist three types

of packets: configuration packets, data packets, and data

request/retrieval packets. In CDP, we henceforth denote a

configuration packet as C-Pack, a data request packet as R-

Pack, and a data packet as D-Pack. Figure 2 illustrates the

three packet formats.

A C-Pack consists of header field with a length of a single

byte that contains a configuration code. Two configuration

codes are supported in order to reset and enable the configu-

ration process of the UDP/IP core (see Section III). A R-Pack

consists of a three-byte long header field that contains a data

request code, a data type, and a data length field. Using the

R-Pack the software on the PC can initiate a transmission

of data from the FPGA back to the PC. Finally, the D-Pack

consists of a byte-long Data Type header field followed by

the user data.

B. Hardware Interface

On the FPGA side, our implementation (Figure 3) pro-

vides a well-defined interface that allows the reconfigurable

architecture, to transmit and receive all supported data

types. Furthermore this interface provides all the required

connections to the Media Access Controller (MAC).

For receiving packets, two active-high signals indicate the

start and end of data. Within the time-frame defined by these

signals, a valid data signal is deployed to denote the clock

cycles during which the data buses contain valid user data.

There exist four data buses with different lengths that allow

for receiving character data over the 8-bit bus, short integer



HEADER

REG

PACK

SIZE

RDADDR

GEN

FPGA2PC
FSM

UDP/IP

CORE
HEADER

CHECK CNTRL

CNTRL

VALID

SEL

DATA

SEL

DATA

user enable
type

length

rdaddr

bus8

bus16

bus32

bus64

TYPE

vld_o

type

bus64

bus32

bus16

bus8

FPGA2PC

PC2FPGA

T
O

/F
R

O
M

 E
M

A
C

Figure 3. Hardware design of the communication platform.

data over the 16-bit bus, integers and floats over the 32-bit

bus, and long integers and doubles over the 64-bit bus. Based

on an additional 3-bit data type signal, the reconfigurable

target architecture is notified which of the four data buses

contains valid data at each point in time. Three bits are

required to select among buses and to distinguish between

the respective data types (e.g., 32-bit integers or floats on

the 32-bit bus).

To transmit data from the reconfigurable architecture to

the PC, a transmission enable pulse is required. In synchrony

with the enable pulse, the input type port must contain the

respective Data Type code (e.g., character, short integer,

integer, etc.) and the length port must contain the number of

data items to be sent. The address generator component will

then compute respective read addresses on the rdaddr bus

that must be connected to on-chip memory with a latency of

one clock cycle. The Data Sel component selects between

the four data input buses to transmit the specified data type.

Depending on the data transmission type (e.g., character,

short integer, integer, etc.), the read addresses are generated

at different speeds. Therefore, the user design (reconfig-

urable architecture) is notified when the transmission has

been completed by a transmission over signal. For the sake

of simplicity the transmission over signal as well as the start

and end of data signals have been omitted from Figure 3.

C. Software Interface

The software interface offers three categories of functions

that are used for configuration, sending data, and receiving

data. The configuration (initialization) functions are used to

establish an initial connection with the FPGA by transmit-

ting C-Packs. The data transmission functions are used for

sending arrays of C data types (characters, short integers,

integers, floats, long integers, and doubles) to the FPGA.

This is accomplished by transmitting D-Packs. The third and

final class of functions allows for receiving basic data type

arrays. R-Packs can be transmitted using the respective data

reception function.

For sending data from the PC to the FPGA, the software

interface splits up the arrays provided by the user into sep-

arate UDP packets and can optionally also perform endian

swapping [our current target PC platform (x86 32- or 64-bit

Linux) uses little endian]. For receiving data, the software

implementation can concatenate multiple UDP packets into

larger arrays (including endian conversion) which are then

returned to the application that invoked the receive function.

In contrast to the functions for sending data to the FPGA,

the receive functions make use of a FIFO receive buffer

and a background reader thread to improve performance

(see below). The background reader thread constantly reads

incoming UDP packets and stores them in a FIFO list.

The array splitting and re-assembly part works as fol-

lows: The Ethernet standard defines a maximum packet size

(MTU=maximum transmission unit) that has to be supported

by standardized Ethernet equipment. Thus, in the worst case,

an IP packet can carry a maximum payload of only 1500

bytes. Note that, for specific hardware interfaces the MTU

can, potentially, be larger. The Intel network interface we

used in our tests supports a MTU of 9000 bytes. Because

the MTU is hardware-dependent, we provide an option to

explicitly set the appropriate MTU. If the user intends to

transmit an array that exceeds the MTU (e.g., 1000 double

values, which require 8000 bytes while the MTU is 1500

bytes), the data is split into separate UDP packets which

are sent one-by-one to the FPGA. Conversely, if the user

requests to receive 1000 double values, the library expects

the data to be split into sufficiently small UDP packets by

the FPGA. In this case the PC interface will read as many

UDP packets as required to complete the receive request and

re-assemble the array from the individual packets.

The background reader thread has been introduced to

alleviate problems that can occur when the PC is not able to

receive UDP packets that are sent by the FPGA fast enough.

This can happen in the following scenario (assuming a

single-threaded implementation on the PC): The PC sends a

UDP packet to the FPGA for retrieving a data array that can

consist of multiple UDP packets. After the request packet

(R-Pack) has been sent, a system call for receiving the first

reply packet is issued on the PC. Our UDP/IP core has

very short latencies between receiving a R-Pack and sending

back the reply packets. Therefore it is possible, and indeed

quite common according to our experiences, that the reply

packets from the FPGA are already on their way, before

the PC is ready to receive them. When using a standard

Linux configuration and consumer network hardware, only

limited buffer space for incoming UDP packets is typically

available. Thus, it is likely that some of the reply packets



from the FPGA are discarded before they can actually be

read by the user process on the PC. To solve this problem,

it is necessary to already issue the system call of the receive

function prior to sending an R-Pack to the FPGA. The

background reader approach solves this problem as follows:

A dedicated thread is started by the background reader

mechanism upon initialization of the communication library.

This thread constantly reads incoming packets and stores

them in a, sufficiently large, FIFO buffer. When the user

sends a R-Pack, the background reader thread will already

have issued the receive call and can therefore reliably receive

the reply packets. The user program can then retrieve the

packets from the FIFO buffer in the same order as they were

received by the background reader thread. The background

reader thread works transparently in the background and

does therefore not require any multi-threaded programming

in the application that uses the communication interface.

The background reader is implemented in C++ using the

boost (www.boost.org) libraries for multi-threading. To en-

sure portability, we provide an ANSI-C standard-compliant

application interface for the background reader. The re-

maining functions for FPGA initialization and sending data

packets are directly implemented in ANSI-C.

V. EXPERIMENTAL RESULTS

Initially, we verify the functionality of the enhanced

UDP/IP core and the PC ↔ FPGA hardware interface

(Section V-A). Thereafter, we provide a performance and

resource utilization comparison (Section V-B) with the

previous version of our UDP/IP core and the minimum

commercial UDP/IP core [4]. Finally, we describe three

application test cases that demonstrate the functionality of

our communication platform (Section V-C).

A. Verification

To verify the correctness of the enhanced UDP/IP core

implementation, we performed post place and route sim-

ulations and tests on a real FPGA board (HTG-V5-PCIE

development platform) connected to a DELL Latitude e4300

notebook running Linux via a standard CAT5 twisted-pair

Ethernet cable. We used Chipscope Pro Analyzer to monitor

the input and output ports of the UDP/IP core which were

connected to the EMAC Local Link Wrapper. In addition,

we monitored the incoming and outgoing signals of the

PC2FPGA and FPGA2PC components (see Figure 3) to

verify correctness of the hardware interface on the FPGA.

B. Resource Utilization

The UDP/IP core based communication system was

mapped on a Virtex 5 SX95T -1 FPGA. Table I shows the

resources occupied by the proof-of-concept and enhanced

versions of our UDP/IP core. The table shows that, the

enhanced UDP/IP core occupies 56% more FPGA slices

than the initial implementation. The additional hardware

UDP/IP Core PC ↔ FPGA
Initial Versatile Platform

Slice Registers 79 127 408

Slice LUTs 155 195 562

Occupied Slices 67 105 272

Frequency (MHz) 261 262 181

Table I
RESOURCES OCCUPIED ON A VIRTEX 5 SX95T-1 FPGA BY THE

INITIAL AND VERSATILE UDP/IP CORE IMPLEMENTATIONS AND THE

PC↔ FPGA PLATFORM HARDWARE PART (INCL. UDP/IP CORE).

Löfgren core our UDP/IP core

Xilinx Slices 517 184

Xilinx BRAMS 3 0

FMax(MHz) 90.7 128.8

Duplex Mode FULL FULL

Length(Bytes) 256 1472*

Speed(Mbps) 10/100 10/100/1000

Table II
PERFORMANCE COMPARISON ON A SPARTAN3 XC3S200-4 FPGA:

UDP/IP CORE [4] VS OUR IMPROVED IMPLEMENTATION. *LIMITATION

IMPOSED BY THE EMAC CONFIGURATION (XILINX EMAC WRAPPER

FILES GENERATED BY CORE GENERATOR).

resources required reflect the price that has to be paid for

increasing flexibility. Nevertheless, Table II also shows that,

our improved UDP/IP core still outperforms the commercial

solution [4] with respect to hardware resource utilization.

To conduct a fair comparison between our implementation

and the one described in [4], we mapped the UDP/IP core

on the same FPGA (Spartan 3 XC3S200-4) that was used

by Löfgren et al. in their paper. On this FPGA, our UDP/IP

core architecture, unlike the commercial design, can operate

at Gigabit speed while occupying almost 2.8 times less

hardware resources.

C. Test Applications

To demonstrate the potential of our PC ↔ FPGA commu-

nication platform we implemented the following three test

cases:

Basic Test: In the first experiment, we offload a simple

for-loop that calculates the natural logarithm of the values

stored in an array of floats, to the FPGA. We used the

respective platform function to send the input array of floats

to the FPGA. On the FPGA, we connected the 32-bit output

bus to a LAU (Logarithm Approximation Unit [12]) for

computing the logarithms on the FPGA. The output values

of the LAU are stored in a memory block on the FPGA.

Finally, the respective software function for requesting an

array of floating point values was used to retrieve this array

from the FPGA.

Phylogenetic Alignment Kernel: In the second experi-

ment we focus on verifying a more complex reconfigurable



architecture that we designed for accelerating a phylogeny-

aware short read alignment kernel [13]. Here, we used the

respective communication functions for sending character

arrays in order to transmit bit-encoded DNA sequences from

the PC to the FPGA. The results of this phylogeny-aware

short read alignment process are 16-bit integers/scores that

are subsequently retrieved by the PC through the 16-bit

FPGA2PC data bus.

Phylogenetic Parsimony Kernel: The reconfigurable

architecture we used for the third experiment was designed

to accelerate the parsimony kernel for building phyloge-

netic trees as implemented in the open-source parsimona-

tor code http://wwwkramer.in.tum.de/exelixis/software.html.

The data transfers to the FPGA are similar to those in the

alignment kernel (see above), since we need to transfer bit-

encoded DNA character arrays to the FPGA. Thus, the 8-

bit bus provided by the PC2FPGA component was used

to receive nucleotide sequence data as well as to trigger

parsimony computation requests on the FPGA. The resulting

parsimony scores (32-bit integer values) are then retrieved by

the parsimonator software on the PC through the FPGA2PC

32-bit bus.

In these test scenarios (as for the phylogenetic kernels)

thousands of input arguments and hundreds of scores were

reliably transmitted back and forth within a few seconds

using our PC ↔ FPGA communication platform, thereby

allowing for extensive real world testing of our reconfig-

urable system.

VI. CONCLUSION

We presented a significantly enhanced version of our

widely-used open-source UDP/IP core for efficient direct

PC ↔ FPGA communication. The improved version allows

for automatic configuration of the UDP/IP core. In addition,

we introduce a light-weight PC ↔ FPGA communication

protocol and provide an appropriate software/hardware inter-

face and communication library implementation. This library

allows for easy integration with PC application codes written

in C or C++. Our versatile hardware/software interface

completely hides the complexity inherent to establishing

communication (configuring the UDP/IP core) and trans-

mitting arrays of variable size containing standard C data

types such as characters, short integers, integers, floats, long

integers, and doubles.

Future work will focus on providing a more generic

implementation that can be mapped to any FPGA device

by any vendor. We also plan to extend the communication

platform protocol and design to compensate for packet

loss and/or corruption by means of automatic packet re-

transmission (e.g., using time-outs) and appropriate hand-

shaking protocols.

REFERENCES

[1] N. Alachiotis, S. A. Berger, and A. Stamatakis, “Efficient pc-
fpga communication over gigabit ethernet,” in CIT, 2010, pp.
1727–1734.

[2] Xilinx, “Bus master dma performance demonstration
reference design for the xilinx endpoint pci express
solutions.” [Online]. Available: http://www.xilinx.com/
support/documentation/application notes/xapp1052.pdf

[3] Altera, “Pci express compiler: x1, x4, and x8 megacore
functions.” [Online]. Available: http://www.altera.com/
products/ip/iup/pci-express/m-alt-pcie8.html

[4] A. Löfgren, L. Lodesten, S. Sjöholm, and H. Hansson, “An
analysis of fpga-based udp/ip stack parallelism for embedded
ethernet connectivity,” in Proceedings of the 23rd IEEE
NORCHIP Conference, November 2008, pp. 94–97.

[5] W. Kühn, C. Gilardi, D. Kirschner, J. Lang, S. Lange, M. Liu,
T. Perez, S. Yang, L. Schmitt, D. Jin, L. Li, Z. Liu, Y. Lu,
Q. Wang, S. Wei, H. Xu, D. Zhao, K. Korcyl, J. Otwinowski,
P. Salabura, I. Konorov, and A. Mann, “Fpga based compute
nodes for high level triggering in panda,” in Journal of
Physics: Conference Series, vol. 119, 2008, pp. 22–27.

[6] A. Dollas, I. Ermis, I. Koidis, I. Zisis, and C. Kachris, “An
open tcp/ip core for reconfigurable logic,” in Proceedings of
the 13th Annual IEEE Symposium on Field-Programmable
Custom Computing Machines (FCCM’05), 2005, pp. 297–
298.

[7] Y.-L. Lin, C.-P. Young, Y.-J. Chang, Y.-H. Chung, and
S. A.W.Y, “Versatile pc/fpga based verification/fast prototyp-
ing platform with multimedia applications,” in Instrumenta-
tion and Measurement Technology Conference, 2004. IMTC
04. Proceedings of the 21st IEEE, vol. 2, May 2004, pp.
1490–1495.

[8] D.-S. Kang, S. Y. Hwang, K.-S. Jhang, and K. Yi, “A low cost
and interactive rapid prototyping platform for digital system
design education,” Microelectronics Systems Education, IEEE
International Conference on/Multimedia Software Engineer-
ing, International Symposium on, vol. 0, pp. 95–96, 2007.

[9] P. Schumacher, M. Mattavelli, A. Chirila-Rus, and R. Turney,
“A software/hardware platform for rapid prototyping of video
and multimedia designs,” System-on-Chip for Real-Time Ap-
plications, International Workshop on, vol. 0, pp. 30–33,
2005.

[10] J. Postel, “Internet protocol,” RFC 791 (Standard), Internet
Engineering Task Force, Updated by RFC 1349, September
1981.

[11] ——, “User datagram protocol,” RFC 768 (Standard), Internet
Engineering Task Force, August 1980.

[12] N. Alachiotis and A. Stamatakis, “A Vector-Like Reconfig-
urable Floating-Point Unit for the Logarithm,” in Interna-
tional Journal of Reconfigurable Computing, 2011, in press.

[13] N. Alachiotis, S. Berger, and A. Stamatakis, “Accelerating
Phylogeny-Aware Short DNA Read Alignment with FPGAs,”
in 19th IEEE Symposium on Field-Programmable Custom
Computing Machines, May 2011, accepted for publication.


