
Digital IIR Filter

SystemC Approach

Author:

Ahmed Shahein

email:

ahmed.shahein@ieee.org

July 20, 2012



1 IIR Fundamentals

Infinite Impulse Response (IIR) filters is a typical DSP component. IIR filters
can be be implemented as analog or digital filter. However it depends on their
analog counterparts. Compared to FIR filters, IIR filters have less order, narrow
transitions, and approximate to analog filter responses. On the other hand, very
sensitive to fixed point representation, can’t be used for multi-rate computation
(decimation filter), and non-linear phase (variable group delay). Its transfer
function is given by

H(z) =
Y (z)

X(z)
(1)

H(z) =
ΣN

i=0
b[i]z−1

1− ΣN

i=1
a[i]z−1

(2)

Its difference equation is depicted by

y[n] = b[0]x[n]+ b[1]x[n−1]+ b[2]x[n−2] · · ·+a[1]y[n−1]+a[2]y[n−2] · · · (3)

2 IIR Structures

The IIR structure does not affect the functionality of the filter, i.e., the transfer
function does not change. The choice of the implementation depends on the
hardware realization theme. The common structures are:

1. Direct-form I (DF I)

2. Direct-form II (DF II)

3. Transposed-form I (TF I)

4. Transposed-form I (TF II)

5. Second Order Sections (SOS)

There are several trade-offs between the different implementations. As an
example, the DF/TF-I and DF/TF-II are recommended for high speed appli-
cations. However, they are very sensitive to round-off errors. On the other
hand, the cascaded implementation, e.g., second order sections (SOS), are less
sensitive to round-off errors. Practically, it is recommended to use SOS imple-
mentation for IIR filters. Each section could be implemented as either of the
previous basic structures.

1



z−1z−1z−1

z−1z−1z−1

b[0] b[1] b[2] b[3]

a[3] a[1]a[2]

x[n]

y[n]

(a)

z−1z−1z−1

z−1z−1z−1

b[0]b[1]b[2]b[3]

a[3]a[2]a[1]

x[n]

y[n]

(b)

Figure 1: IIR filter structures (a) Direct-form I (b) Transposed-form I.

2



z−1z−1z−1

b[0] b[1] b[2] b[3]

a[3]a[1] a[2]

x[n]

y[n]

(a)

z−1z−1z−1

b[0]b[1]b[2]b[3]

a[3] a[1]a[2]

x[n]

y[n]

(b)

Figure 2: (a) Direct-form II (b) Transposed-form II.

3



3 Matlab

f = [0 0.25 0.35 1.0]; % Corner frequencies

m = [1 1 0 0]; % Filter magnitudes

n = 3; % Filter order

[b,a] = yulewalk(n, f, m); % Design IIR Filter

[h,w] = freqz(b,a,128); % FFT

figure

plot(f,m,w/pi,abs(h)) % Plot frequency response

figure

step(filt(b,a)) % Plot step response

figure

impulse(filt(b,a)) % Plot impulse response

figure

zplane(b,a) % Plot poles/zeros

[sos, g] = tf2sos(b, a); % Second Order Sections

4 Implementation

Here I will describe how the developed model is constructed. I will consider
only the TF I as an illustrative case study since. I developed it in a structural
manner in order to easily transfer it to hardware model using any HDL. The
filter is constructed from right-to-left as indicated by the bold arrow in the figure
shown below.

• x[n] input

• y[n] output

• b[i] feed-forward coefficients

• a[i] feed-back coefficients

The internal signals are defined as arrays, i.e., each signal is an element in the
array. The internal signals are defined as follow:

• oMultiplierFF[i] multipliers’ outputs in the feed-forward path

• oMultiplierFB[i] multipliers’ outputs in the feed-back path

• oAdderFF[i] adders’ outputs in the feed-forward path

• oAdderFB[i] adders’ outputs in the feed-back path

• oDelayFF[i] delays’ outputs in the feed-forward path

4



• oDelayFB[i] delays’ outputs in the feed-back path

The figure shows a detailed construction of an IIR filter of 3rd order.

tIIR

z−1z−1z−1

z−1z−1z−1

b[0]b[1]b[2]b[3]

a[3]a[2]a[1]

x[n]

y[n]

oAdderFF[0]oAdderFF[1]oAdderFF[2]oAdderFF[3]

oAdderFB[0]oAdderFB[1]oAdderFB[2]

oDelayFF[0]oDelayFF[1]oDelayFF[2]

oDelayFB[0]oDelayFB[1]oDelayFB[2]

oMultiplierFF[0]oMultiplierFF[1]oMultiplierFF[2]oMultiplierFF[3]

oMultiplierFB[1] oMultiplierFB[2] oMultiplierFB[3]

Implementation

Figure 3: Transposed-form I

5 Getting Start

Generally you will just need to insert the filter coefficients, i.e., feed-forward
(b’s) and feed-back (a’s) coefficients. Further, the filter order and the stimuli
file. The code comes with stimuli files for step and impulse responses. At the
main file ’.cpp’ the compilation command is commented by the end of the file.
The model is developed as a template so that you can change the data type as
the design or user wish. As an example, you can simply investigate the effect
of fixed point representation by replacing the float data type by sfixed¡¿ data
type.

At the header filter IIR TFI.h you can change:

• Define the filter order

#define order 3

At the header filter Stimuli.h you can change:

• Give in the name of the stimului file

FILE* pFile = fopen("Step.txt","r+t");

At the main file IIR TFI.cpp you can change the following items:

5



• Adjust the clock frequency

sc_clock CLOCK("CLOCK", 1, SC_US);

• Enter the filter coefficients

float b[orderFF] = {0.0995,0.1486,0.1481,0.0999};

float a[orderFB] = {0.9828,-0.5450,0.0671};

const int Size = 16;

• Change the data type from float to sc fixed<16,3>

IIR_TFI<float > DUT("DUT", b, a);

6


