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1 Overview

Field-programmable gate arrays (FPGAs) offer a possibility to constitute computing units (FPGA
cores), tailored specifically for a particular task. FPGA cores are introduced, and the advantages of
an implementation using FPGA cores are compared with a software implementation of the same tasks,
are discussed in Sec.2.

Next, two case studies, each using different advantages of the usage of FPGA cores, are presented.
In Sec. 3.1, a utility core intended for analysis of software execution times by timestamping is de-
scribed. In Sec.3.2, an FPGA core is used to compute binary vs. integer cyclic cross-correlation,
required by ultrasonic localization system.

Sec. 4 refers to FPGA reconfiguration, the possibility of carrying same taks by either hardware
(FPGA core) or software (CPU), and offers a resource management scheme incorporated into FRES-
COR.

2 Principles of operation

2.1 FPGA processing cores

As an alternative to traditional computing using software, specialised processing cores (units) can be
created out of FPGA building blocks. Whereas the software runs on a processor (central processing
unit, CPU), the FPGA cores are generic hardware structures. They work as synchronous finite au-
tomata. Regardless of timing and gate array capacity, they are theoretically equivalent to any other
automaton (computer). It means that FPGA cores can perform the same operations as a CPU software,
and vice versa.

The timing is usually an important factor either by means of speed, ie. computing performance,
or by means of precision, ie. response time variation (jitter). The FPGA cores offer absolute timing
precision up to a single clock period. On the other hand, the software is influenced by complex and
hardly predictable CPU behaviour (eg. caching, bus arbitration). Under an operating system (OS), the
timing of software operation is much more varied by context switching and execution of concurrent
tasks. By means of timing precision, the FPGA cores are unbeatable by software.

Comparison of computing performance of the FPGA cores against the software strongly depends
on a particular task. It is obvious, that machine code instructions of CPU themselves are performed by
CPU much faster, than if implemented inside of the FPGA core. However, FPGA core can outperform
software performance, if it is tailored specifically for the particular task: operations are wired without
use of machine code (microcode), parallelism is used if applicable, and pipelines are employed to over-
come propagation delays. Thus, FPGA implementation is especially suitable for simple computations
performed on large amounts of data.

2.2 Interconnection between FPGA cores and CPU

The FPGA cores can constitute the entire application equipment without a need of CPU incorporated
in the system. However, we will concentrate on applications, where the FPGA cores are interconnected
with CPU and cooperate with software. Some tasks are processed by FPGA cores, the rest is performed
in software.
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There are various ways, how an FPGA core can be linked to CPU:

• Fabric coprocessor module (FCM)The FPGA core is connected to the CPU via a dedicated
coprocessor interface. This technique is abbreviated as FCM in the case of IBM PowerPC 405
CPU cores integrated in Xilinx Virtex-4 family FPGAs. During invocation of user-defined co-
processor machine code instructions in software, data are exchanged between CPU registers and
FPGA core.

This way is especially suitable for operations, where a little amount of data is to be transferred
between CPU and FPGA core. It is fast and it is not influenced by peripheral bus congestion. It
is available for any CPU with coprocessor interface (in our case, it is an IBM PowerPC 405 core
inside of a Xilinx Virtex-4 device [1]).

• Memory-mapped peripheral (I/O) The FPGA core is connected to some CPU peripheral bus.
During memory access at certain address, reading/writing of data from/to the FPGA core is
performed. Optionally, FPGA core can signal finished execution to the CPU by interrupt signal
(IRQ).

This way is more suitable for operations on larger amount of data, ie. such amount, that it
can not fit into internal CPU registers. The use of FCM would be impractical in such a case,
because the data had to be first transferred to a memory somewhere, and then processed by
software. Otherwise, when the memory-mapped I/O is used, the software can operate directly
on the memory-mapped data from the FPGA core. This solution requires only a bus or memory
interface, which has been available for all CPUs ever.

• Direct memory access (DMA) or core buss master accessThis variant of data transfer be-
tween data storage and FPGA cores utilizes direct memory access (DMA) unit connected to
main memory bus or a FPGA core driven bus master access. This solution has advantage, that
there is no need to waste CPU cycles to transfer data to the peripheral unit or dual-ported memory
blocks. The data are directly feed and returned back to their location into main system memory.
This technique requires program driven synchronization of CPU core cache with main memory
(invalidation and flushing).

• Direct extension of CPU instruction setThis method is suitable only for open soft-core CPU
modules and allows to adapt instruction set end extend it by application specific instructions
which invoke data transfers and processing by units based on prepared FPGA cores. This method
is very difficult not only for requirement of deep CPU architecture knowledge but the CPU core
modification and extension can cause significant problem to meet timing criteria.

A single FPGA core can take advantage of one or more of these techniques to implement its task.
Data flow use to be bidirectional, but unidirectional flow makes a sense as well. Eg. a random number
generator core is output only.

2.3 Reasons to employ FPGA cores

The reasons, why to carry out some tasks by FPGA cores instead of software, are following:
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• Computing performanceCertain tasks can be computed by FPGA core in substantially shorter
time, than by software on comparable embedded CPU.

• Parallelism The tasks are performed by FPGA cores in a perfectly parallel manner. The execu-
tion is not interrupted nor blocked by processing inside of CPU or neighbour FPGA cores.

• Real-timeFPGA cores offer absolute timing precision and well predictable response time. Usu-
ally, the response time can be very short and constant.

Although whole system can be built of FPGA cores solely, without use of a software, it is usu-
ally advantageous or even necessary to use the software for common tasks. Beside FPGA capacity
limitation, the software is easier to develop and integrate, especially for common tasks involving user
interface, OS and software libraries. In our work, we consider the FPGA cores in connection with CPU
and software only.

3 Case studies

Following FPGA cores demonstrate the principles presented. We have implemented the cores on Xilinx
Virtex-4 FPGA hardware containing PowerPC 405 CPU. Both cores have worked together with an
operating system-less software, as well as with a software under Linux OS (and virtually any other
OS). For the hardware development, Xilinx ISE 9.2i and Xilinx EDK 9.2i software tools have been
used. The PowerPC software has been compiled by GNU gcc 4.3.2, and run either operating system-
less or under Linux 2.6.27-rc4. To enable use of FCM user-defined instructions, Linux kernel and GNU
assembler have been patched.

3.1 Timestamp

3.1.1 Description

A timestamp FPGA core allows to record a time, at which a certain position in instruction sequence has
been executed by CPU. Acting as a FCM, the core provides a user-defined machine code instruction.
Whenever this instruction is executed, the time is instantaneously recorded in block memory. Then,
several records can be read from the memory by software. The time is an integer value, incremented
by a free-running counter, driven by the same clock as a CPU. The instruction can be called with an
arbitrary operand (tag), recorded with the time together, to distinguish between different occurrences
of the instruction in a code.

3.1.2 Motivation

The timestamp is a useful tool for measurement of software execution times. The times and its variation
(jitter) can be measured between crossing of the same position in a code, or between several positions.
It can be used for any kind of code – OS process, OS kernel, or operating system-less program.
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3.1.3 Implementation

The timestamp FPGA core uses both FCM interface and memory mapped I/O. Recording act should
be performed quickly, with low jitter and directly synchronised with instruction execution. The most
desired is to bypass CPU and system instruction pipeline feed advance and write buffers latencies.
Thus, the FCM interface has been employed for this task. On the other hand, reading of recorded times
(and tags) from a memory is not a real-time urgent process, so the memory is connected to an I/O bus.

The block diagram of the timestamp core is on Fig.1. Time is a 32-bit number, continuously
generated by a free-running counter. When a FCM instruction is decoded, a FCM controller performs
a write to the memory, and increments an address counter to point to next memory location. Lower 32
bits of memory word are filled by the time value, upper 32 bits are filled by an optional tag (instruction
argument). The memory is composed of two 16Kb block RAMs, available as a hard core1 in an FPGA
chip used. The block RAM is dual port. One port is used for the memory write, and the second port
is connected to 64-bit wide bridge between block RAM and PowerPC processor local bus (PLB). The
bridge is a standard library core, allowing easy connection of the memory to PLB I/O bus.
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D32
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ctrl

D0

D63

addr

ctrl
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controller
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tag PLB
↔
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Figure 1: Block diagram of timestamp core

A very simple usage example of the timestamp is shown in code snippet on Fig.2. An instruc-
tion (udi0fcm, macroUDI TSTAMP) is called with two different tags (1, and then0xabeceda). Then,
timestamp log is dumped off the memory in a loop. This example can be executed either operating
system-less, as well as under OS. Under Linux, the kernel had to be patched to allow execution of
user-defined FCM instructions in user-space.

3.1.4 Advantages

The timestamp implemented as an FPGA core has no jitter and low computational overhead. Each
record involves execution of one FCM instruction. If user does not care about tagging of different
timestamp instructions, the instruction can be executed with any of CPU registers containing any value

1Hardware structure, ie. a core, which is not composed of elementary macro-cells.
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#define UDI_TSTAMP(id) __asm__ __volatile__("udi0fcm 0,%0,%0" : : "r"(id))

/* ... */

for (;;) {

c = getchar();

UDI_TSTAMP(1);

UDI_TSTAMP(0xabeceda);

for (i = 0; i < 0x400; i += 2)

if (bram[i] != 0)

printf("%02x: (0x%08x) 0x%08x\n", i/2, bram[i], bram[i+1]);

printf("--\n");

}

Figure 2: Example usage of timestamp core

as an operand. Then, the execution takes 2 CPU cycles. If a tag has to be used, it must be assigned to
the register prior to execution of the timestamp instruction.

3.2 Correlator for ultrasonic localisation

3.2.1 Description

A correlator core computes discrete cyclic cross-correlation function (a “correlation” in the follow-
ing). The correlationRxy[n] between two sequencesx[k],y[k] wherek = 0. . .N− 1, is defined as
Rxy[n] = ΣN−1

m=0x[m]y[(m+ n) modN]. The correlation should be evaluated for all possible displace-
mentsn= 0. . .N−1. For the specific application of ultrasonic localisation, one sequence (received sig-
nal) is quantised to 8-bit integer numbers, and the second is a pseudorandom binary sequence (PRBS),
composed of binary values,±1.

3.2.2 Motivation

Calculation of the correlation is one of the most computationally intensive parts of the particular variant
of ultrasonic localisation problem. An ultrasonic localisation system has been developed for two-
dimensional (2D) wheeled mobile robot navigation inside a restricted rectangular playground. The
motivation for this task is the EUROBOT competition. The playground is rectangular, 3× 2.1m in
size, and there can be placed three arbitrary beacons around it.

The ultrasonic localisation method we have used is based on time-of-flight of the sound measure-
ment, see [2, 3]. The system transmits continuously the PRBSes, and uses the correlation to determine
time difference, proportional to a distance. There are two variants of the system:

• mobile transmitter on the robot and static receivers in place of beacons;
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• static transmitting beacons and mobile receiver on the robot.

The correlator presented is applicable for both approaches. In our particular system, the second
option of three beacon transmitters and a receiver on the robot has been chosen. With such a setup, the
robot inherently gets the required information, without a need of separate data link between the robot
and beacons.

Signal path is shown on Fig.3. Three different PRBSes, chosen to be highly uncorrelated (Gold
codes), are transmitted synchronically by the three beacons around the field. The sequences are 27−
1 = 127 bits long and run at 3000 chips2 per second. They are binary phase shift keying (BPSK)
modulated into ultrasonic band, 39. . .69kHz. The three signals are divided both by code and frequency
multiplex3.

ADC

z
− fs

fB

MAFIR

↓ D x1[k]

f1 f2 f3

PRBS1 PRBS2 PRBS3

1110010. . .
generator

Figure 3: Ultrasonic signal path, filtration and demodulation

Resulting signals travel through the air, and delayed by the path length, they are mixed and received
by an ultrasonic transducer at the robot. Signal passes through analogue anti-aliasing band-pass filter,
sampled directly out of the baseband at 72 kHz sampling frequency, and analogue-to-digital converted.
Then, the three signals are separated by band-pass FIR filters, digitally BPSK demodulated, filtered by
moving average (MA), and then subsampled to 12kHz, ie. 4 samples per chip.

At this point, the signals enter the correlation process. After collecting one PRBS period, ie. 4×127
samples, a peak in correlation between received and known transmitted sequence should reveal the
time difference, see Fig.4. After correlation, a low-pass interpolation can take place to get finer time
resolution.

2Chip is one bit of the sequence.
3The reason is to give sufficient dynamic reserve between weak useful signal, and strong crosstalks.
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The three peak times are sufficient to regularly resolve two position coordinates and a time differ-
ence between transmitter and receiver clocks. To get feasible results, direct analytic calculation should
not be used (albeit it is possible), because of measurement uncertainty. Instead, the position should be
estimated in a stochastic manner. In our case, we have used a Monte Carlo estimator, also known as a
particle filter or condensation algorithm, to estimate robot position, mutual transmitter/receiver clock
offset and drift, and to perform data fusion with wheel odometry.

Estimated trajectory of a 28.8s long robot motion is shown on Fig.5. Each trajectory point cor-
responds to one PRBS period. The “cloud” represents estimated robot’s position probability at the
end point, approximated by the Monte Carlo estimator particles. Photograph of our robot, carrying
ultrasonic receiver atop of itself, is on Fig.6.

R
x
y
[n

]

0 ≤ n < 508

transmitter-receiver clock offset

(computed or estimated) t1
t2

t3

1 period ~ 127 PRBS chips ~ 508 correl. samples ~ 42.333 ms ~ 14.538 m

(1)
(2)
(3)

Figure 4: Correlation of all three received signals against corresponding known PRBSes;ti is time-of-
flight from i-th beacon, clock zero offset is marked

3.2.3 How to compute the correlation

Computation of correlation for alln= 0. . .N−1 following the definition involvesN2 multiplications of
x andy and∼ N2 additions. Since one of the numbers is±1, the multiplication reduces to conditional
sign change of the second (integer) number. The correlator implemented in FPGA core performsN2

conditional sign changes and additions. In our application,N = 4× (27−1) = 508, so the correlator
performs 258064 such operations in one run.
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Figure 5: Estimated trajectory composed of correlation distance measurements; one point∼ one PRBS
period;c is sound velocity,ti time-of-flight

Of course, there exist much more efficient methods to compute the correlation, but they are defined
only for sequences with too restrictive properties.

If both x,y ∈ {±1}, the multiplication reduces to boolean exclusive-or (XOR) function, and an
implementation of correlation in ordinary CPU as well as in FPGA would be very fast and simple. The
computation remainsO(N2), but whole vectors are element-wise multiplied by bitwise XOR. However,
in our particular localisation problem, there can occur strong crosstalk from beacon in neighbour band,
stronger than useful signal. Thus the 1-bit instead of 8-bit quantisation can lead to unusable results.

The correlation can be also very efficiently computed using fast Fourier transform (FFT) algorithm,
working (roughly speaking) inO(N logN), which already offers significant performance boost for
sequences of hundred or more elements. However, the FFT is not applicable for prime-length sequences
and almost useless for sequences of length, factorized into few primes4. Not surprisingly, the lengths
of Gold PRBS codes of desired correlation properties are likely to be factorized in a very few primes.
The lengths are in general 2B− 1. In our case, we use PRBS of 27− 1 chips, 4× oversampled, so
the sequence length is prime-factorized as 508= 2× 2× 127. This three-step FFT would not save
anything. Of course, we could change the sequence length to eg. 4× 27 = 512, but the correlation
properties of the PRBS would degrade, so we decided to maintain the quality and employ an FPGA

4Algorithms for efficient computation of discrete Fourier transform for prime-length sequences have been developed,
however, they are much slower than our simple computation, exploiting special element values±1.
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Figure 6: Robot equipped with ultrasonic receiver (electrostatic ultrasonic transducer adapted by cone
for omnidirectional reception)

core for the computation, instead.

3.2.4 Implementation

The correlator uses only memory mapped I/O. It operates in a sequential manner upon two blocks of
memory. One block contains input data, received 8-bit signed sequencex[k]. The second block is being
filled with computed correlation, 32-bit signedRxy[n]. Constant 508bit code sequencey[k] is loaded
as a hardware initial state, ie. it is not accessible by CPU. After the input memory is loaded byx[k],
processing can be started by activation ofstart signal. This can be done eg. by general purpose I/O
signal (GPIO). After the processing is finished and the output memory containsRxy[n], output signal
done is raised. It can activate a hardware interrupt (IRQ), it can be checked by GPIO, or it can be
safely ignored, if the minimal execution time of instruction sequence processed by CPU after FPGA
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core activation ensures that elapsed time is greater than FPGA core processing time.
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Figure 7: Block diagram of correlator core (summand pipeline register not shown)

Block diagram of the core is on Fig.7. Input sequencex[k] is being read from a block RAM.
Block RAM interface can be up to 32 bits wide, so four 8-bit values are read at once. These values
are “multiplied” by conditional sign change, conditioned byy[k] code sequence bits, coming from shift
register. Then, values are extended to 32 bits and summed into the accumulator. After cycling over
all input numbers, the summed resultRxy[n] is written to addressn into the output memory. Then,n is
incremented and the process repeated for all 508 displacementsn. The sequential process contains two
nested loops, inner overk (input memory address), and outer overn (output memory address).

Inside of both loops, the code sequence in shift register is shifted in a different manner. In the inner
loop, the shift is effectively by 4 bits, because 4 numbers are multiplied at once. In the outer loop, the
shift is only by 1 bit. At the end of the loop, the sequence must be shifted back to the initial state.

The operation is controlled by a state-machine (FSM), which cycles over both address loops, con-
trols register shifting, and directs an access to the memories. During the computation, both block
RAMs are connected by a multiplexer (MUX) to the computing kernel. However, when the processing
is done, MUX is switched and both ports of dual port block RAMs are available for a bus memory
access. Usage of both ports in parallel allows a 64-bit wide bus connection, maintaining contiguous
storage of input and output data. The same 64-bit PLB bridge has been be used, as in Sec.3.1.3.
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The presented core interface uses memory mapped I/O on both input and output, acting as an ex-
ternal computing unit, connected only to CPU bus, and independent on any other hardware. However,
in an application, the input data may come from an external hardware directly, possibly from another
FPGA core. In such a case, the input block RAM and astart signal would be connected directly to the
input source hardware. Then, the software would only wait for IRQ and read the computed correlation
valuesRxy[n] from the output block RAM.

3.2.5 Results

The correlator has been implemented into Xilinx Virtex-4 XC4VFX12 FPGA. Running at 300MHz
clock, the correlation forN = 508 took 0.215ms. On a 400MHz MCU Freescale MPC5200B with
PowerPC 603e core, the equivalent correlation implemented in software took approx. 20ms. Running
on a Virtex-4 bulit-in PowerPC core at 400MHz, it would take the same or a slightly longer time.
Provided that a PRBS period is 42.3ms long, the computational load of PowerPC CPU required by the
correlation in real-time is 47%.

Compared to recent embedded CPU, the processing is done by the correlator FPGA core 93× faster.
Moreover, the correlation is performed in parallel, so it does not spend any CPU time.

Example input to the correlator, measured in real conditions, is on Fig.8b. The correlator output
is on Fig. 8c. The algorithm uses integer arithmetic and does not contain any round-off errors (as eg.
integer FFT does).

4 Integration into FRESCOR

4.1 Resource reservation

From the FRESCOR framework point of view, FPGA is an additional computing resource. The FPGA
is able to constitute one or more FPGA cores. Each core can substitute a part of software for a partic-
ular task, lowering overall CPU load. Within the frame of resource reservation, manager can decide,
whether to execute the task in software, or whether to harvest the FPGA and use the FPGA core instead.

4.2 FPGA reconfiguration capabilities

One or more FPGA cores can occupy the FPGA at once. As application needs change in time, it may
be desirable to reconfigure the FPGA, ie. to interchange currently used FPGA core set by a different
one. There are two possible reconfiguration paradigms: dynamic and static.

4.2.1 Dynamic reconfiguration

With dynamic (often called partial) reconfiguration, content of the FPGA is changed only partially
during the reconfiguration. Individual FPGA cores can be loaded into free FPGA areas, preserving
other cores, already present in the FPGA.

The dynamic reconfiguration imposes the following difficulties:

• Design constraintsAt least certain common structures, typically buses, must occupy fixed loca-
tions inside the FPGA. All of the cores must be compiled with respect to preserve these common
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Figure 8: Example correlator input (a, b) and output (c), using signal (b) measured in real conditions;
the output reveals correlation peak at positionn = 331

structures, what constrains the design (compilation). Such a constraint may also lower the per-
formance, because resulting signal paths and delays may be longer than needed.

Moreover, it is desirable to compile individual FPGA cores in such a way, to make them location
independent. Location independent core can be loaded dynamically into one of several prepared
areas of the FPGA, without collision with other cores, loaded into another areas. Architecture of
such areas and their connection to the buses is another substantial design constraint.

• Run-time partial loading Commonly, the bitstream is loaded into FPGA at once. For the dy-
namic reconfiguration, there is a need to load only a part of the FPGA, leaving neighbour cores
untouched. Moreover, execution of the other cores should continue during the loading (run-time
reconfiguration).

• Real-time loadingLoading of a bitstream to the FPGA can take a long time. The delay should
be taken into account when designing a real-time system.

• HW/SW state transition State transition between FPGA and software implementation of the
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same task can be optionally implemented. The state transition allows to transplant running task
from software to FPGA core, and vice versa. Without possibility of the state transition, FPGA
cores must be loaded before execution of their tasks begin, and they can be replaced (erased)
only after the execution is finished. Implementation of the state transition is very complicated
and task specific, see [4].

The main advantage of the dynamic reconfiguration is a flexibility in that FPGA cores can be loaded
independently up to available capacity. The run-time reconfiguration can proceed during uninterrupted
operation of running FPGA cores. The main disadvantage is a difficult design. Also, a resulting FPGA
implementation of cores is slightly suboptimal due to design constraints, in comparison with the static
reconfiguration.

The dynamic reconfiguration is a promising paradigm, however, it still is not a mature technology in
industrial practice. Although FPGA manufacturers offer tools and application notes for implementation
of dynamic reconfiguration [5], and a research has been done [6, 7], it is still a very difficult way.
During our development, we have not employed the dynamic reconfiguration.

4.2.2 Static reconfiguration

For every desirable core set, an FPGA bitstream5 is created (compiled) offline. Then, it is possible to
replace whole core set by another one.

There are no reconfiguration specific design constraints imposed. Every desirable core set is com-
piled as a whole, as one large hardware, containing all the selected FPGA cores. If there areN FPGA
cores present in the system, there are up to 2N core sets. However, substiantially smaller number has
to be actually compiled. Some of combinations can be impractical or useless in an application. Also,
there is no need to compile a set, if its superset already fits into the FPGA6. Again, if a set can not fit
into the FPGA at a whole, it will not be compiled, as well as all of its supersets. The limit case of this
paradigm is that only each one of the FPGA cores itself is compiled, and only one of the cores at a time
can be loaded into the FPGA.

Following difficulties are encountered even in simple case of static reconfiguration:

• HW/HW state transition In contrary to dynamic reconfiguration, whole content of the FPGA
is replaced during each reonfiguration. Thus, if a task, running on an FPGA core, has to con-
tinue after the reconfiguration, it should be interrupted and its state must be transferred to new
incarnation of the same FPGA core. However, the same core in a new bitstream may be placed
in a different location, moreover, it may use slightly different logic building blocks7. Solution
of such a general transition is a very difficult task. If the state transition is not implemented, the
reconfiguration can proceed only when all FPGA cores are inactive.

• HW/SW state transition The issue of HW/SW transition is the very same as in case of the
dynamic reconfiguration, see Sec.4.2.1.

5Bitstream is a serialized representation (block of data), desribing an FPGA content on the lowest possible level. The
bitstream is a breath of life, blown into the FPGA.

6Unless we concern about a power consumption.
7due optimization during compilation
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• Real-time loadingThe FPGA is loaded whole at once, without preservation of any running cores
or content. Thus, it is possible to use common software tools. If a real-time operation is required,
a loading time should be taken into account. Also, an interface which assure deterministic timing
should be used on a CPU side. On the FPGA side, eg. a JTAG8 boundary-scan interface may be
used.

The static reconfiguration is simple to use, a design is not specifically constrained. However, the
HW/HW state transition is very difficult. The other big disadvantage is that every desirable combina-
tion of FPGA cores must be precompiled and stored somewhere in a memory. With growing number
of the FPGA cores, there is a combinatoric explosion of possible core sets. Selecting only few of them
results in a waste of possibly utilizable FPGA capacity.

4.3 FRESCOR contracts for FPGA resources

To support FPGAs in the contract framework a way for applications to specify their requirements in
contracts has to be defined. In the context of FRESCOR, FPGA cannot work as stand-alone computing
entity; it is used as a coprocessor which means it is always accompanied by CPU. Therefore, the
contract for FPGA resource has always to be accompanied by a CPU contract forming a transaction.

Transaction was defined in [8] as“A part of an application consisting of multiple threads executing
code in multiple processing nodes, and exchanging messages with information and events. It is also
called a global activity.” As one can see this definition is tailored to CPUs and distributed systems
consisting of multiple processing nodes. The properties of the “transaction”, as used in this deliverable,
are almost the same as in the previous definition, but in order not to confuse the reader familiar with the
previous definition, we define the transaction more generally as:“A part of an application consisting
of activities on multiple resources and synchronising these activities by some means.”

The tasks of the contract framework with respect to the FPGAs are the following:

1. Decide which cores should be loaded to the FPGA depending on application requirements.

2. For applications that can run their tasks either entirely in software or accelerated by an FPGA
core, decide which application will run which variant.

For the framework to provide this functionality, applications must specify which cores they need in
FPGA and CPU requirements for accelerated and software only (if available) variants.

To specify the needed cores a new contract block [9] namedFRES BLOCK FPGA was defined. Its
content is defined infrsh forb/resources/fpga/res fpga idl.idl. There is only one field in the
block which is a 64 bits wide bitmap with each bit specifying whether a particular core is needed by the
application or not. For FPGAs, timing requirements are not specified in the contract as it is supposed
that the a single core is not shared by multiple applications. In FRESCOR we assume that the FPGA
as a whole can be shared by multiple applications (i.e. there are multiple cores loaded in the FPGA)
but each application uses its own core.

An example transaction of application using the correlator core described in Sec.3.2 is depicted
in Fig. 9. The transaction involves two resources CPU and FPGA. Contracts for these resources are

8Joint Test Action Group, common name for IEEE 1149.1: “Standard Test Access Port and Boundary-Scan Architec-
ture”
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User contract

Variant A

Budget: 20 ms, Period: 42.3 ms

Spare capacity params
discrete

Variant B

Budget: 0.1 ms, Period: 42.3 ms

Resource: CPU

User contract

Variant A

Cores: NONE

Spare capacity params
discrete

Variant B

Cores: CORRELATOR

Resource: FPGA

Transaction
Consistent spare capacity: true

Figure 9: Example of data structures describing the transaction involving CPU and FPGA in the con-
tract framework. There are two variants of resource allocation: A – software only and B – accelerated.

depicted in the figure. Both contracts use the spare capacity block to describe different reservations
needed for software only variant and for FPGA accelerated variant. For proper execution of the trans-
action it must be ensured that the spare capacity is allocated to the contracts consistently within the
whole transaction (i.e. it has no sense if CPU is allocated for variant B and FPGA for variant A). For
this to be feasible, a new way of spare capacity distribution had to be designed in [9].

5 Conclusion

Benefits of FPGA cores as additional helpers cooperating with software has been presented and con-
firmed by case studies. Within the frame of FRESCOR, resource management for statically reconfig-
urable FPGAs has been proposed.
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