

Tiny Tate Bilinear Pairing Core Specification

Author: Homer Hsing homer.hsing@gmail.com

> Rev. 0.2 June 24, 2012

This page has been intentionally left blank.

Revision History

Rev.	Date	Author	Description
0.1	04/28/2012	Homer Hsing	First Draft
	05/03/2012		Source of citation
0.2	06/24/2012		Add a new core in which group size of G_1 is 2^{911} .
			(The group size of G_1 in the original core is 2^{151} ,
			maybe insecure)

Contents

INTRODUCTION	1
Mathematical background The security level	1
ARCHITECTURE	4
ARCHITECTURE OF THE CORE PROCESSING ELEMENT RAM ROM (INSTRUCTION MEMORY) CONTROL UNIT	4 4 5 5 5
INTERFACE	7
TIMING	8
MEMORY ADDRESS OF THE INPUT/OUTPUT WRITE TO RAM WAIT FOR THE END OF THE COMPUTATION READ FROM RAM	8 9 9
FPGA IMPLEMENTATION 1	0
Synthesis results (ISE)	10 10 10
TEST BENCH 1	1
REFERENCES 1	2

Introduction

Tiny Tate Bilinear Pairing core is for calculating a special type of Tate bilinear pairing called reduced η_T pairing. Its features are:

- ✓ super-singular elliptic curve $E: y^2 = x^3 x + 1$
- ✓ the field is the Galois field $GF(3^m)$, m = 593
- ✓ the irreducible polynomial is $x^{593} + x^{112} + 2$
- \checkmark vendor independent code

Mathematical background

The elliptic curve $E: y^2 = x^3 - x + 1$ contains a large cyclic subgroup of prime order *l*. Also *l* divides $3^{6m} - 1$ and not any $3^{j \times m} - 1, j < 6$, and l^2 does not divide #E.^[2] Now $E(GF(3^m))$ contains an *l*-torsion group $E[l](GF(3^m))$, i.e., the set of elements *P* of $E(GF(3^m))$ satisfying $l \cdot P = 0$, where *O* is the point at infinity.^[4] $E(GF(3^{6m}))$ also contains an *l*-torsion group $E[l](GF(3^{6m}))$. The Tate bilinear pairing (of order *l*) is a bilinear map between $E[l](GF(3^m))$ and $E[l](GF(3^{6m}))$ to an element of the multiplicative group $GF(3^{6m})^*$,^[2] i.e.

$$e_l: E[l](GF(3^m)) \times E[l](GF(3^{6m})) \to GF(3^{6m})^*$$
(1)

Let $P \in E[l](GF(3^m)), Q \in E[l](GF(3^{6m}))$, let $f_{l,P}$ be a rational function on the curve with divisor l[P] - l[O], there exists a divisor D_Q equivalent to [Q] - [O], with a support disjoint from the support of $f_{l,P}$.^[4] Then the Tate pairing of order l is defined by

$$e(P,Q) = f_{l,p} (D_Q)^{(3^{6m} - 1)/l}$$
(2)

It is necessary to raise the value on the right hand side to the power $\epsilon = (3^{6m} - 1) / l$ to obtain a unique value in $GF(3^{6m})$. Consider $P = (x_1, y_1), Q = (x_2, y_2) \in E[l](GF(3^m))$ i.e. $x_1, y_1, x_2, y_2 \in GF(3^m)$ and define a distortion map ϕ as

$$\phi(Q) = \phi(x_2, y_2) = (\rho - x_2, \sigma y_2)$$
(3)

, where $\rho, \sigma \in GF(3^{6m})$ satisfying $\rho^3 - \rho - 1 = 0$ and $\sigma^2 + 1 = 0$. Then one can define the modified Tate pairing \hat{e} for all points $P, Q \in E[l](GF(3^m))$ as

$$\hat{e}(P,Q) = e_l (P,\phi(Q))^{\epsilon} = \tau \in GF(3^{6m})^*$$
(4)

Generally speaking, the modified Tate pairing is a transformation that takes in two elements in the elliptic curve point group and outputs a nonzero element in the extension field $GF(3^{6m})$.

The modified Tate pairing performs in two stages:^[2]

Stage 1: calculation of $\phi(Q) \in E[l](GF(3^{6m}))$ in the rational function f_P on $E(GF(3^m))$ such that $div(f_P) \sim l[P] - l[O]$, i.e. $e_l(P, \phi(Q)) = f_P(\phi(Q)) = t \in GF(3^{6m})^*$. This is by Algorithm 1 (Modified Duursma-Lee algorithm) below.

Algorithm 1 (Modified Duursma-Lee algorithm)

Input:
$$P = (x_1, y_1), Q = (x_2, y_2) \in E[l](GF(3^m))$$

Output: $t = e_l(P, \phi(Q)) \in GF(3^{6m})^*$
1: $t = 1 \in GF(3^{6m})^*, \alpha = x_1, \beta = y_1, x = x_2^3, y = y_2^3, \mu = 0 \in GF(3^m), d = m \mod 3$
2: for *i* from 0 to $m - 1$ do
3: $\alpha = \alpha^9, \beta = \beta^9, \mu = \alpha + x + d$
4: $\gamma = -\mu^2 - \beta y \sigma - \mu \rho - \rho^2, t = t^3 \gamma, y = -y, d = d - 1 \mod 3$
5: next *i*
6: return *t*

Stage 2: raising t to the power $\epsilon_1 = \epsilon/3^{3m} = 3^{3m} - 1$

In [3], Barreto et al. introduced the η_T pairing, which improved above algorithm. The η_T pairing of two points $P, Q \in E[l](GF(3^m))$ is

$$\eta_T(P,Q) = \begin{cases} f_{T,P}(\phi(Q)), & \text{if } \mu b = -1\\ f_{-T,-P}(\phi(Q)), & \text{if } \mu b = 1 \end{cases}$$

, where b = 1, $T = 3^m - \#E(GF(3^m))$ and $\mu = 1$ if $m \equiv \pm 1 \pmod{12}$, $\mu = -1$ if $m \equiv \pm 5 \pmod{12}$. To assure the obtained value is unique, we have to compute the reduced η_T pairing defined as $\eta_T(P,Q)^M$ where $M = (3^{6m} - 1) / \#E(GF(3^m))$.^[4]

The security level

Denote $E[l](GF(3^m))$ as the G₁ group. Its order is of 911 bits,

 $878755984131050254811220296450839341502219800334391977555562929757787543\\168587753450186105984191081612182631607072509819780494684607286870400404\\281933474050007325104852481011993575449232681109203421845690741518751915\\8187004726202613531723766536810294204598390767415388972923.$

Until June 2012, the world record to break such large group is about 140 days with 252 CPUs together^[5].

Architecture

Architecture of the core

Figure 1: architecture of the core

Processing element

This is a unified module for addition, subtraction, multiplication and cubing. It has four registers R_0 , R_1 , R_2 and R_3 supporting following functionalities.

 $\checkmark \quad R_3 \leftarrow R_1 + R_2$

$$\checkmark \quad R_3 \leftarrow R_1 - R_2$$

✓
$$R_3 \leftarrow (R_1)^{3^{times}}$$
, where *times* is specified by instructions.

$$\checkmark \quad R_3 \leftarrow R_0 \cdot R_1$$

The functionality depends on a control word. The control word $\{c_0, c_1, ..., c_{10}\}$ for the processing module is as follows.

	<i>c</i> ₀	<i>c</i> ₁	<i>c</i> ₂	<i>c</i> ₃	C ₄	<i>C</i> ₅	<i>c</i> ₆	<i>C</i> ₇	<i>C</i> ₈	С ₉	<i>c</i> ₁₀
set R ₀					1	0					

Table 1: the control word for the processing element

set R_1	1	1									
set R ₂			1	1							
add/sub							1	0	0	0	1
cubic	0	1	0	1	0	0	0	0	0	0	1
mult	0	0	0	0	0	1	1	1	1	1	1

RAM

This is a dual-port RAM storing 64 words which is 1188 bits wide.

ROM (instruction memory)

This module stores instructions. Each instruction contains five fields:

- ✓ SRC1 (6 bits): address for the first operand
- ✓ SRC2 (6 bits): address for the second operand if available
- ✓ OP (2 bits): operation type
- \checkmark TIMES (9 bits): how many times an operation should be repeated
- ✓ DEST (6 bits): address for the operation result

Control unit

The control unit contains a finite state machine. The states are as follows.

State	Description	successor
START	the default after reset	READ_SRC1
READ_SRC1 (S_1)	for reading the first operator	READ_SRC2
READ_SRC2 (S_2)	for reading the second operator	DON or CALC
CALC	for arithmetic	WAIT
WAIT	arithmetic result $\rightarrow R_3$	WRITE
WRITE	$R_3 \rightarrow \text{RAM}$	READ_SRC1
DON	the default after the computation	DON

Table 2: the state of the control unit

Its output signals are as follows.

Table 3:	output	signals	of the	e control	unit
----------	--------	---------	--------	-----------	------

arithmetic type	state	ram_a_addr	ram_b_addr	pe_ctrl
add/sub	S_1	src1	op_add/op_sub	set R0, R1

OpenCores	Tiny Tate B	ilinear Pairing Co	re Specifications	6/24/2012
cubic	S_2 S_1	src2 src1	op_cubic	set R2 set R0,R1,R2
mult	$S_2 \\ S_1 \\ S_2$	src2 src1 src2	src2	set R1,R2 set R0

Interface

The Tiny Tate Bilinear Pairing core implements the signals shown in the table below.

Input signals are synchronous and sampled at the rising edge of the clock.

Output signals are driven by flip-flops, and not directly connected to input signals by combinational logic.

For signals wider than 1 bit, the range is most significant bit down to least significant bit.

Signal name	Width	In/Out	Description
clk	1	In	clock
reset	1	In	active high synchronous reset
sel	1	In	active high for reading/writing RAM from outside
addr	6	In	RAM address
W	1	In	active high for writing RAM; low for reading RAM
update	1	In	active high for updating the I/O buffer
ready	1	In	active high if it is ready to read/write
i	1	In	serial input
0	1	Out	serial output whose value is valid when the <i>done</i> signal is asserted
done	1	Out	The termination signal. It is inactive low after the <i>reset</i> signal asserted, and is active high only if the Tate pairing computation is done.

Table 4: Interface signals

Timing

The entire computing process is

- ✓ write input to RAM
- \checkmark wait for the end of the calculation, the time when the *done* signal is asserted
- \checkmark read the result from RAM

Memory address of the input/output

Assume that the input is $P = (x_P, y_P)$, $Q = (x_Q, y_Q)$, assume the output is $\eta_T (P, Q)^M = T$, $T = t_0 + t_1 \sigma + t_2 \rho + t_3 \rho \sigma + t_4 \rho^2 + t_5 \rho^2 \sigma$, assume each of $\{x_P, y_P, x_Q, y_Q, t_0, t_1, \dots, t_5\}$ is 1188-bit wide, equal to the width of RAM. The memory address for input/output is defined below.

input/output	address
x_P	3
${\mathcal Y}_P$	5
x_Q	6
\mathcal{Y}_Q	7
t_0	9
t_1	10
t_2	11
t_3	12
t_4	13
t_5	14

Table 5: memory address for input/outpu

Write to RAM

In order to write a value V[1187:0] to a specified RAM address Addr[5:0], firstly let sel = 1, addr = Addr[5:0], w = 1

, and comply with the timing below.

8 8							
clock cycle	signal name/value						
	update	ready	i				
Т	1	0 or 1	0 or 1				
T + 1	0	1	V[0]				
<i>T</i> + 2	0	1	V[1]				
	I						
T + 1188	0	1	V[1187]				

Table 6: timing for writing to RAM

Then let w = 0.

When write the RAM, the *reset* signal should be asserted and keep asserted until the termination of writing.

Wait for the end of the computation

Wait until the signal *done* is active.

Read from RAM

In order to read from a specified RAM address Addr[5:0], firstly let sel = 1, addr = Addr[5:0], w = 0

, and comply with the timing below.

clock cycle	signal name/value		
	update	ready	0
Т	1	0 or 1	0 or 1
T + 1	0	1	V[0]
<i>T</i> + 2	0	1	V[1]
<i>T</i> + 1188	0	1	V[1187]

Table 7: timing for reading from RAM

Then keep w = 0.

FPGA Implementation

Synthesis results (ISE)

Device	Xilinx Spartan 3 XC3S5000-4FG900
Number of Slice Flip Flops	8,125
Number of 4 input LUTs	18,024
Number of occupied Slices	9,988
Number of bonded IOBs	15
Minimum period	12.3 ns
Maximum Frequency	81.3 MHz

Table 8: Synthesis result (ISE)

* Synthesis tool is Xilinx ISE 14.1.

Synthesis results (Quartus)

Table 9: Synthesis result (Quartus	Table 9:	Synthesis	result	(Quartus
------------------------------------	----------	-----------	--------	----------

Device	Altera Cyclone II EP2C20F484C7
Total logic elements	22,075
Dedicated logic registers	7,757
Total memory bits	90,880
Total pins	15

* Synthesis tool is Altera Quartus II 11.1.

Speed

The core computes one Tate pairing in 20.0 milliseconds if with a 50MHz clock.

Test bench

The file "testbench/simulation.do" is a batch file for ModelSim to compile the HDL files, setup the wave file, and begin function simulation. In order to make it work properly, the working directory of ModelSim must be the directory of "testbench".

The file "testbench/test_pairing.v" is the main test bench for the Tate Bilinear Pairing core. The test bench is self-checked. It feeds input data to the core and compares the correct result with the output of the core. If the output is wrong, the test bench will display an error message.

If the function of the core is wrong, some other self-checking test benches in the "testbench" directory may help. The object of each test bench is listed in the table below.

File name	the object being tested
test_const.v	the module outputting constant and the control word for the processing element
test_fsm.v	control unit
test_pe.v	processing element
test_ram.v	RAM
test_tiny.v	the module computing the Tate bilinear pairing

Table 10: the object being tested by each test bench

References

- [1] I.Duursma, H.S.Lee. Tate pairing implementation for hyper-elliptic curves $y^2 = x^p x + d$. In Advances in Cryptology Proc. ASIACRYPT'03, pp. 111-123, 2003.
- [2] T.Kerins, W.P.Marnane, E.M.Popovici, and P.S.L.M.Barreto. Efficient hardware for the Tate pairing calculation in characteristic three. In Cryptographic Hardware and Embedded Systems Proc. CHES '05, pp. 412-426, 2005.
- [3] P.Barreto, S.Galbraith, C.O hEigeartaigh, and M.Scott. Efficient pairing computation on supersingular abelian varieties. In Designs, Codes and Cryptography. Springer Netherlands, Mar. 2007, vol. 42(3), pp. 239–271.
- [4] J.Beuchat, N.Brisebarre, J.Detrey, E.Okamoto, M.Shirase, and T.Takagi. Algorithms and arithmetic operators for computing the η_T pairing in characteristic three. In IEEE Transactions on Computers, Special Section on Special-Purpose Hardware for Cryptography and Cryptanalysis, 57(11):1454-1468, 2008.
- [5] Fujitsu Laboratories, NICT and Kyushu University Achieve World Record Cryptanalysis of Next-Generation Cryptography. http://www.fujitsu.com/global/news/pr/archives/month/2012/20120618-01.html