
1

WISHBONE wrapper for Xilinx Memory Interface Generator (MIG)
Version 0.1
April 5, 2011

Paul Baker
pbaker@engineer.com

Preface

Xilinx is a Registered Trademark of Xilinx Inc., and the generated memory interface module is
the intellectual property of Xilinx. In accordance with Xilinx's requirements, none of their
generated Design has been copied, reproduced, distributed, republished, downloaded,
displayed, posted, or transmitted in any form in this specification or supporting files.

The use of Xilinx MIG and the generated Design is beyond the scope of this project, please
refer to Xilinx for any questions regarding the program or generated modules. The author has
relied upon “Memory Interface Solutions User Guide” UG086 (v3.5) article published July 23,
20101 and “Wishbone B4” published 20102 to formulate the wrapper.

Unless otherwise stated, all signal names are provided from the perspective of the Master.

This document and all associated files are provided under the GNU Lesser General Public
License (LPGL).

Introduction

High latency memories such as DDR, DDR2 and DDR3 present particular difficulties when
interfacing to minimal latency buses such as WISHBONE. WISHBONE permits multiple
cycles of latency in the Classic single read and write cycles by stalling the assertion of the
ACK signal. This is the method used by Andrey Popelo in the OpenRISC XSoC project.3
However this approach is highly inefficient for high speed sequential memory accessing. For
example, a DDR2 memory with CL=3 requires a minimum of 17 clock cycles between the
address being presented and the data being available, however each subsequent data
accessed requires only one more clock cycle. In Classic mode every access is separate and
must endure the long delay.

Using the WISHBONE Registered Feedback Incrementing Burst Cycle would be ideal
because a single latency would be spread over the total number of accesses, increasing total
throughput. But according to the WISHBONE specification, the ACK signal specifies both an
acknowledge to the Master to proceed with subsequent addresses and that valid data is

1 http://www.xilinx.com/support/documentation/ip_documentation/ug086.pdf
2 http://opencores.org/opencores,wishbone
3 Project available at http://pm.stu.cn.ua/projects/show/xsoc in the Repository path

root/trunk/rtl/stu/ddr2mig_to_wb/

http://pm.stu.cn.ua/projects/show/xsoc
http://www.xilinx.com/support/documentation/ip_documentation/ug086.pdf
http://opencores.org/opencores,wishbone

2

available for the Master to receive. This dual meaning cannot be satisfied when interfacing
with high latency memory bursts.

This project's aim is to overcome this issue by presenting two different methods of interfacing.
The first method presented adheres to the letter of WISHBONE Registered Feedback
Incrementing Burst Cycle specification, but in the author's opinion it violates the spirit of
WISHBONE. The second method is a streamlined interface and more inline with the way
WISHBONE approaches bus transactions, but does not adhere to any already specified mode
of operation. It is the hope of the author that the WISHBONE committee will consider the
second method for inclusion in the specification as a new Registered Feedback Bus Cycle
mode of operation.

WISHBONE Registered Feedback Incrementing Burst Cycle

At first glance it would seem impossible to use the WISHBONE Registered Feedback
Incrementing Burst Cycle for interfacing with high latency memory without modifying the way
the cycle works. But the WISHBONE specification provides Tags which may be used to
provide information on data being presented on their respective array. These tags can be
used to adapt the high latency cycle to WISHBONE by “filling in the blanks,” that is to provide
in enough address requests to receive the requested data. These address requests are
actually bogus, or dummy requests, there to keep the connection open long enough to
receive the requested data. Also the data returned by the Slave is dummy data until the actual
requested data is available.

To make this scheme work, additional tags are specified to provide the necessary information.
• The Master needs to indicate to the Slave the boundary between valid

addresses and the dummy addresses. This address tag, TGA0_O may be called
ADRV (Address Valid).

• The Slave needs to indicate to the Master the boundary between dummy data
and the requested data, this Slave data tag TGD0_I may be called DATV (Data
Valid).

One final complication which arises from this method is the Master needs to provide an End
of Burst, or 111 on CTI_O the cycle before the last requested data is provided by the Slave.
This can be accomplished by the Master using a counter and counting how many DATV
cycles have occurred, and comparing to the total requested. Alternatively the Slave can
indicate to the Master the cycle before the End of Burst cycle that the next cycle should be the
End of Burst. In this situation a third signal needs to be part of the interface, TGD1_I or EBNC
(End Burst Next Cycle).

The following is the waveform for the WISHBONE compliant Registered Feedback
Incrementing Burst Cycle.

3

Figure 1: High Latency WISHBONE Registered Feedback Incrementing Burst Cycle

All signals specified in the WISHBONE Registered Feedback Incrementing Burst Cycle are
adhered to in Figure 1. For the reader's convenience, the cycles are numbered. Note the
cycle labeled N and the subsequent cycles with an offset from N, this is to indicate that cycle
4 may be repeatedly executed. All control signals should remain constant during this repeated
state. This state is exited when TGD0_I (DATV) is asserted.

WISHBONE Registered Feedback High Latency Incrementing Burst Cycle

The solution presented in the previous section is adequate and WISHBONE compliant, but is
inelegant and contains extra information not needed to execute the data transfer. If
WISHBONE's single cycle latency requirement for burst operations was relaxed, a much more
elegant solution could be created. The proposed new cycle is presented in the following
figure.

Figure 2: WISHBONE Registered Feedback High Latency Incrementing Burst Cycle

4

Notice that all tags have been removed, they are not necessary because the CTI_O timing
has been restored to indicate the end of the actual burst, and ACK_I once again indicates
when valid data is present on DAT_I. ADR_O and DAT_I appear different in Figure 1 than in
Figure 2, but the DUMMY cycles in Figure 1 are identical to the don't care cycles in Figure 2.
The CTI_O value of 011 was chosen for continuity with the other Cycle Type Identifiers.

CYC_O holds the burst cycle open so that the high latency memory has time to respond, and
lasts one cycle longer than in Figure 1. This extra cycle is what the author refers to as Lazy
Cycle Termination; after the last data is transferred, the Slave deasserts ACK_I and the
Master responds by deasserting CYC_O which ends the burst cycle. If the Slave cannot
complete the requested burst, it asserts ERR. It is possible to implement a non-Lazy Cycle
Termination (or Standard Cycle Termination) and regain the cycle by using the counter
method in the previous solution in either the Master or the Slave (requires a TGD to signal the
Master). Lazy requires fewer resources to implement, but Standard may be desired when
throughput is important.

If the Slave is unable to receive addresses at the rate the Master is transferring, it is able to
assert STALL or RTY. STALL is useful to pause the Master when the Slave's address queue is
full. When the memory device is being auto-refreshed the Slave can either assert the blocking
STALL, or non-blocking RTY depending on the desired behavior. RTY should be asserted in
response to the first address presented by the Master, STALL should be asserted after the
Slave's address queue has been filled.

In this revision of the proposal, the Master must be able to accept the data at the provided
rate to avoid data-loss. This is not an onerous requirement since the Master dictates the
amount of data transferred and can design a suitable interface to handle the influx of data.

Additional considerations

There are limitations to how many memory locations can be accessed in a single burst, a
request for refresh may occur during a burst, if the burst continues for too long without
providing the MIG with a refresh request the memory may loose data. Also accessing different
rows in a single burst is not possible, the Slave may assert ERR when requested addresses
are not in the same row, or it may latch the column and bank from the first address and
optionally alert the Master the returned data is not from the same column or bank as the
request. The memory dictates which BTE mode is available and is by default not selectable
by the Master. It is possible to implement a reordering buffer to provide a selectable BTE to
the Master, however this will not be implemented.

Many different possible configurations have been proposed, the minimal resources
implementation is Lazy Cycle Termination, RTY during memory refresh, and Column and
Bank latching without out-of-row alert. The highest throughput implementation is Standard
Cycle Termination and STALL during memory refresh, the method of handling out of row
requests does not directly affect throughput.

5

Comments and recommendations are welcome.
Next update(s) will include State Diagrams, Architecture Diagrams and Verilog files.

