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Abstract—Finite field accumulation is the simplest of all the fi-
nite field operations, but at the same time, it is one of the most fre-
quently encountered operations in finite field arithmetic. In this
paper, we present a simple but highly useful modification of the
conventional hardware implementation of accumulation in finite
field over �� �. The critical path, as well as, the hardware-
complexity are reduced in the proposed design by performing the
accumulation operation using number of flip-flops instead of
using a combination of number of XOR gates with equal number
of flip-flops in dependent loop structures. The conventional de-
sign is found to involve nearly 39% more area, 53% more delay,
and 40% more maximum ac power consumption compared with
the proposed accumulator. The proposed finite field accumulator
is used further for the implementation of serial/parallel polyno-
mial-basis finite field multiplication and bit-serial inter-conversion
between polynomial basis representation and normal basis repre-
sentation over �� �. The area-time complexity of the proposed
bit-serial/parallel multiplier is less than half of the best of the corre-
sponding existing structures. The structure proposed for digit-se-
rial/parallel multiplication for trinomials is found to involve nearly
56% less area-time complexity compared with the best of the corre-
sponding existing multipliers; and the existing design of bit-serial
basis conversion is found to involve nearly twice area-time com-
plexity compared with the proposed design using the proposed fi-
nite field accumulator.

Index Terms—Elliptic curve cryptography (ECC), error control
coding, finite field, finite field addition, finite field multiplication,
galois field, VLSI.

I. INTRODUCTION

F INITE fields are of great interest for their applications
in elliptic curve cryptography (ECC) and error control

coding. In recent years, it has received more attention due to the
emergence of ECC as a potential candidate for realizing robust
cryoptosystems in resource-constrained environments [1], [2].
Addition operation in finite field over is simpler com-
pared with other field operations, since there is no carry prop-
agation, and addition of any two bits can be performed simply
by a logical XOR operation. But at the same time, it is one of
the most frequently encountered operations in finite field arith-
metic, because not only is it required to perform the other field
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operations like multiplication, squaring, and inversion, but also
it is required to perform the basic operations like point-additions
and point-doubling in elliptic curve groups [1]. Conventionally,
finite field accumulation over is performed by a com-
bination of number of XOR gates with equal number of
flip-flops in dependent loop structure. In this paper, we present
a simple modification of the conventional design of finite field
accumulator (FFA) where the combination of XOR gates and
flip-flops are replaced by flip-flops. We have shown that the
critical path, as well as, the hardware-complexity can be signif-
icantly reduced by performing the accumulation operation by
flip-flops. Although it is an apparently trivial and simple mod-
ification of the widely used conventional design, the proposed
FFA can lead to significantly more efficient implementation of
other finite field operations and point operations for ECC. We
have presented two examples in this paper to establish the ad-
vantages of the proposed FFA.

Multiplication is a basic arithmetic operation in finite field,
which is relatively more complex compared with the other field
operations like addition and squaring. Division operations on
the other hand can be performed by a lookup table arrange-
ment or through a series of multiplications. The time involved
in performing the multiplications, consequently, is an impor-
tant concern for efficient realization of point operations in el-
liptic curve groups and error control coding. Finite field multi-
pliers with different bases of representation have been realized
to be used for various applications. Multiplication in polyno-
mial basis is relatively simpler, offers scalability for the fields
of higher orders, and does not require a basis conversion [3].
The polynomial basis multipliers are, therefore, more efficient,
and more widely used compared with the multipliers in the other
bases of representations. A large number of architectures have
been proposed in the literature for efficient polynomial basis
multiplication over in dedicated hardware platform
[4]–[31]. Bit-serial polynomial-basis multipliers are well-suited
for small embedded systems since the cost and size of hardware
and bandwidth are major constraints in such systems [11]–[13],
[31]. Scalability of throughput, however, is an important issue
in realization of finite field multipliers to have a balance be-
tween the speed-performance required by the application on
one side, and bandwidth/logic-resources available in the imple-
mentation environment on the other side. Digit-serial architec-
tures for polynomial-basis multiplications [17]–[22] are, there-
fore, suggested in the literature for scalable implementation by
appropriate choice of digit-size. We have shown here that by
using the proposed FFA, it would be possible to design more
efficient hardware for bit/digit-serial/parallel polynomial-basis
finite field multiplication over .
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Three different bases of representation over are of
particular interest. Those are: polynomial basis, normal basis,
and dual basis. Out of the three bases, polynomial basis, and
normal basis are more popular due to their higher practical rel-
evance [32], [33]. Each of these bases has some advantages
over the other for efficient realization of finite field arithmetic.
Normal basis is a good choice for squaring of element over

since squaring is performed in normal basis just by
a cyclic right-shift, while in case of polynomial bases squaring
is performed by bit-extension through insertion of 0 between
the consecutive bits followed by modular reductions to reduce
the extended polynomial of degree to degree .
Similarly, inversion involves less area and time-complexity in
normal basis. But polynomial basis has superior performance in
finite field multiplications. For efficient hardware implementa-
tion of a given application, it would be useful to perform mul-
tiplication and addition in polynomial basis while squaring and
inversion can be performed in normal basis. It is therefore useful
to have an efficient hardware for conversion of normal basis to
polynomial basis and vice versa. A hardware-efficient bit-serial
design for basis conversion to be used for low-cost mobile and
embedded systems is proposed by Li [34]. In this paper, we have
reviewed the bit-serial converter presented in [34] and modified
that to a more efficient form by using the proposed FFA.

The rest of this paper is organized as follows. A simple math-
ematical formulation for derivation of the proposed FFA is pre-
sented; and its efficiency over conventional implementation is
discussed in Section II. Structures of bit-level and digit-level se-
rial/parallel finite field multipliers using the proposed FFA is de-
rived, and their advantages over the existing serial/parallel mul-
tipliers over are presented in Section III. In Section IV,
we have reviewed an existing design [34] for bit-serial con-
version from normal basis to polynomial basis and vice versa;
and shown further that the basis converter can be implemented
more efficiently by using the proposed FFA. Conclusions are
presented in Section V.

II. FINITE FIELD ACCUMULATOR

Let the finite field be defined by an irreducible poly-
nomial of degree , given by

(1)

where for . introduces
a polynomial basis (where is a root of

), which is used to represent the field elements. and
be any two arbitrary elements in , represented by the
polynomial basis in the form of polynomials of degree
as

(2)

where and , for .
Addition is the simplest operation in , which is

performed by bit-by-bit XOR operations of the pair of operand

words, such that the addition of any two field elements,
, is given by

(3a)

where

(3b)

for .
Since, no carries are generated during additions, the succes-

sive accumulation of number of finite field elements for
can be given by

(4a)

where

(4b)

for , and

(4c)

for .
The conventional design of an FFA over is shown in

Fig. 1. It consists of number of bit-level accumulation cells,
where each such cell consists of a two-input XOR gate and a
flip-flop. Structure of each bit-level accumulation cell and its
characteristic table are shown in Fig. 1(b). The input elements

for are fed sequentially in bit-parallel form
to the FFA where each bit is fed to a bit-level accumulation cell.
The accumulated output is obtained from the FFA after cy-
cles. The duration of cycle period , where
and are the delays of two-input XOR gate and flip-flop,
respectively. It can be observed that the characteristic table of
bit-level accumulation cell [see Fig. 1(b)] is the same as that of
a flip-flop. We can, therefore, replace each bit-level accumu-
lation cell of the conventional FFA of Fig. 1 by a flip-flop;
and can have an FFA consisting of number of flip-flops
as shown in Fig. 2. It may be noted that the complexity of a

flip-flop is nearly the same as that of a flip-flop since a
flip-flop could be obtained by feeding the complementary output

back as input to the flip-flop. The input for the resulting
flip-flop is, however, required to be fed along with the clock to a
NAND gate followed by an invertor to derive the clock derivation
circuit in order to control the state toggling of the flip-flop ac-
cording to the input bits. The states of all the flip-flops of the
proposed FFA are reset at the beginning, and successive field
elements to be accumulated are fed to the flip-flops in parallel.
Since the state of a flip-flop toggles on arrival of each 1 as
its input, the FFA performs the desired finite field accumulation
when the input bits corresponding to all the elements are fed to
the flip-flops in successive cycles.
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TABLE I
AREA- AND TIME-COMPLEXITIES AND POWER CONSUMPTION OF THE PROPOSED AND THE CONVENTIONAL DESIGNS

FOR FINITE FIELD ACCUMULATION OVER �� �� �

Power estimation corresponds to maximum ac power consumption at switching frequency of 1 MHz in both cases at 25 C and at 1.8 V operating voltage at unit
drive strength. Note that � is the order of finite field and � refers to the number of field elements required to be accumulated.

Fig. 1. Typical design of an accumulator over�� �� �. (a) Conventional finite
field accumulator. (b) Bit-level accumulation cell and its characteristic table.

Fig. 2. Proposed � flip-flop-based accumulator over �� �� �.

The area- and time-complexities of conventional FFA and the
proposed FFA are listed in Table I. We have obtained the area
of two-input XOR gate, flip-flop and flip-flop along with
their worst-case intrinsic delays and maximum power consump-
tion at unit drive strength using TSMC 0.18- m process 1.8-V
SAGE-X standard cell library databook [35]. Using those data,
we have estimated the complexities mentioned in Table I. The

complexity of flip-flop is derived from that of the equivalent
flip-flop where the clock derivation circuit is replaced by a

NAND gate followed by an invertor. The conventional accumu-
lator is found to involve nearly 39% more area, 53% more delay,
and 40% more maximum ac power consumption compared with
the proposed accumulator.

III. SERIAL-PARALLEL MULTIPLIER OVER

In terms of the input/output (I/O) structuring, all these mul-
tipliers over can be classified into three basic forms:
e.g., parallel-in parallel-out (or bit-parallel) architectures, se-
rial-in serial-out (or bit/digit-serial) architectures, and serial-in
parallel-out (or serial/parallel) architectures. In bit-parallel de-
signs, a complete operand word is processed in every cycle,
where the bits of input multiplicands are fed in parallel and
the bits of output product word are also obtained in parallel.
The bit-parallel designs [24]–[30] are intended mainly for high-
speed implementation of the multiplication over . They
provide high throughput rate, but involve very high I/O band-
width and large chip-area particularly for large values of the
field order . While large values of (160 or higher) are nor-
mally used in practice for ECC implementation to have adequate
security [2], the portable and embedded devices where ECC is
currently targeted are heavily constrained in terms or cost, size,
and power-consumption. The bit-parallel architectures, there-
fore, are not well-suited for such resource-constrained systems.
The bit/digit-serial structures, take only one new input bit/digit
during a cycle and produce one output bit/digit per cycle. They
are compact and may be opted for implementation of ECC in
highly constrained systems [5]–[7], but cannot be used for high-
speed applications. The digit-serial designs on the other hand,
offer scalability of hardware and throughput, but the number of
pipelining latches in the existing digit-serial systolic structures
add substantial complexity to the overall area and time-com-
plexity of the system [18]–[21]. Guo and Wang [18] have de-
rived a systolic digit-serial/parallel architecture; and that has
been improved further in [19]–[21] to reduce the critical path.
Song and Parhi [17] have also proposed an efficient digit-se-
rial/parallel architecture for finite field multiplication to achieve
less area-complexity and a short critical path. In case of serial/
parallel designs [11], [17], [22], the bits of one of the operands
are fed in parallel and the bits of output are also obtained in
parallel, while the other input operand is fed either in bit-se-
rial or in digit-serial manner. The National Institute of Stan-
dards and Technology (NIST) [32] has recommended five bi-
nary finite fields for ECC implementation, out of which two
are generated by the trinomials, and

. Efficient bit-parallel structures have,
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therefore, been suggested in the last few years for finite field
multiplications over based on irreducible trinomials
[25]–[27] to achieve minimum critical path and least gate-com-
plexity. But for large values of , the critical path of these de-
signs are too high. Efficient implementation of digit-serial/par-
allel multipliers in are suggested in [22], [23], for
high-throughput by concurrent multi-bit processing.

Keeping these facts in view, by using the proposed finite field
accumulator, in this section, we have derived a bit-serial/par-
allel multiplier based on a general irreducible polynomial and a
digit-serial/parallel multiplier for polynomial basis multiplica-
tions over for trinomials.

A. Bit-Serial-Parallel Multiplication Over Based
on General Polynomials

In one of the early papers, Song and Parhi [11] have suggested
a semi-systolic architecture for serial-parallel implementation
of multiplication over . To have higher throughput
rate without proportionate increase in hardware, bidirectional
data-flow schemes are used in semi-systolic designs for se-
rial-parallel multipliers in [10] and [12]. A hardware-efficient
LSB-first serial/parallel multiplier over is suggested in
[13] for the trinomial-based binary extension fields
and . An efficient modular reduction technique is
suggested in [14] to speedup the computation by partitioning
the product expression of the traditional Mastrovito’s serial
multiplier, and concurrent by processing. In [15], Bharathwaj
and Narasimham have simplified the modulo operation using
the Itoh Tsujii algorithm [16], which could be used for area-time
efficient realization for small values of field order . In a recent
paper [31], an area-time efficient serial-parallel semi-systolic
architecture is suggested where the field multiplication is
implemented by bidirectional modulo reduction operation and
gate-level optimization. In the following, we derive a more
efficient bit-serial architecture for finite field multiplication
using the proposed FFA.

Algorithm Formulation for the Bit-Serial/Parallel Multiplica-
tion: The product of two finite field elements and in poly-
nomial basis representation over is given by

(5)

To derive a recurrence relation for recursive implementation of
the proposed bit-serial multiplier, (5) can be expanded and rep-
resented by the polynomial sum

(6)

Equation (6) can be expressed as a finite field accumulation

(7)

where each is a polynomial of degree , and given by

(8)

for , and , such that can
be obtained from recursively as

(9)

By polynomial expansion of right-hand side of (9), we can
find

(10a)

where

(10b)

Since is a root of given by (1), one can have

(11)

Substituting the expansion of on (10a), the reduced form
of can be obtained as

(12a)

where

(12b)

and

(12c)

for
For bit-serial/parallel multiplication, (7)–(9) can be imple-

mented recursively, where each recursion consists of three steps,
e.g., the modular reduction of (9) [realized according to (12)],
AND operations of (8), and finite field accumulation of (7).

1) Proposed Structure For the Bit-Serial/Parallel Multiplica-
tion: The proposed structure for bit-serial/parallel implementa-
tion of multiplication over is shown in Fig. 3. It con-
sists of three units: such as the modular reduction unit (MRU),
AND unit (AU), and an FFA. The MRU consists of number

flip-flops and number of reduction cells “ ”
for . At the first cycle, the state of the
flip-flops of MRU are initialized by loading the operand word
in parallel. During each of the subsequent cycles, the MRU per-
forms a modular reduction according to (12). The function of the
reduction cells of MRU is depicted in Fig. 3(b). It may be noted
that the structure and function of a reduction cell depends on the
value of coefficient-bits “ ” (for ) of the field
polynomial . For , the th reduction cell performs
an XOR operation of its input from left with its input from top to
produce an output to be fed to the flip-flop on its right. For

, the reduction cell does not have any additional function
other than transferring the input available from a flip-flop on
its left to the flip-flop on its right. For , therefore, the re-
duction cell should be removed and flip-flop output should be
fed directly to the next flip-flop on its right. In most practical
ECC applications, the primitive irreducible polynomial is
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Fig. 3. Structure of the bit-serial/parallel multiplier over �� �� � using � flip-flop-based accumulator. (a) The proposed serial/parallel multiplier. (b) Function
of the reduction cells (RC).

TABLE II
HARDWARE- AND TIME-COMPLEXITIES OF THE BIT-SERIAL/PARALLEL MULTIPLIERS FOR �� �� �-BASED ON GENERAL FIELD POLYNOMIALS

In case of proposed structure each of the input registers consists of � � flip-flops and the FFA contains equal number of � flip-flops. The area, cycle period,
and area-time are, respectively, in square-nm, ns, and sq-um-ns. � , � , � , and � are the gate delays of AND gate, XOR gate, latch, and multiplexer,
respectively. Area of a three-input XOR gate is taken to be equivalent to that of 2 two-input XOR gates, and three-input XOR delay �� � is taken to be two times
that of two-input XOR delay. The structure of [11] requires 4 m number of 2:1 multiplexers in addition to the gate counts, which is not shown in this table, but
the multiplexers are taken into account for computing the area-complexity of the structure.

a trinomial or pentanomial (of very high degree for ECC imple-
mentation) [2]. Except a few (one in case of trinomial and three
in case or pentnomial), all the coefficients of the irreducible
polynomial in the range ) are, therefore, zero.
For trinomial field polynomials, except only one reduction cell,
all other reduction cells may be removed.

2) Complexity Considerations: Since there is no feedback
loop in the structure at the output, the critical path of the struc-
ture , where and , are the delays of a
two-input AND gate and a two-input XOR gate. It performs a
multiplication over in cycles, where the duration
of cycle period . In Table II, we have listed the
hardware requirements including the number of different gates,
registers and multiplexors along with the time-complexity met-
rics, e.g., cycle time and average computation time (ACT) in
terms of number of cycles of the proposed structure, as well
as, the existing structures for bit-serial/parallel multiplication
over based on any general polynomial. Using TSMC
0.18- m process 1.8-V SAGE-X standard cell library data [35]
for area and worst-case intrinsic delays of gates and flip-flops at
unit drive strength, we have estimated the area-complexities and
time-complexities of different structures; and listed in Table II.
Time-complexities of different structures are estimated as the
product of critical path with the ACT [ ]. The
proposed structure is found to have the significantly lower area
complexity, shorter cycle times and less area-time complexity

compared to those of the existing structures. The area-time com-
plexity of the proposed design is found to be less than half of the
best of the corresponding existing structures for serial/parallel
multipliers in .

B. Digit-Serial/Parallel Multiplier Over Based on
Trinomials

We derive here an efficient digit-serial/parallel structure
for polynomial-basis multiplications in based on
irreducible trinomials (which could also be extended for
pentanomials), where the critical path, as well as, the hard-
ware-complexity are reduced by the proposed FFA [23].

Algorithm Formulation for the Digit-Serial/Parallel Multipli-
cation: To derive the recurrence relations for concurrent pro-
cessing of the bits of a digit in the proposed multiplier, (6) can
be broken into separate sums of terms as

(13)

where and for . Equation
(13) can be expressed further in recursive form

(14)
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where

(15)

for , and can be written as

(16)

Note that in the recursions defined by (14)–(16), the partial
product generation and modular reductions are, respectively,
performed according to (15) and (16), while the accumulation
of the reduced polynomials are performed according to (14). In-
terestingly, all the reduced polynomials of (16) can be computed
independently, and can be added in any desired sequence. After
modular reduction, each individual term for
in (14) being transformed into a polynomial of order ,
can be added by bit-by-bit XOR operations to obtain the desired
product.

For efficient modular reduction of the individual terms of
(15), we can find that

(17)

If is a trinomial of the form , then we
can replace by in (17) to find

(18)

Note that the right-hand side of (18) is a polynomial of degree
and the modular reduction is achieved by number

of XOR operations required for adding the coefficients in the
middle term, where .

1) Proposed Structure for the Digit-Serial/Parallel Multi-
plication: A conceptual block diagram of the proposed struc-
ture for the digit-serial/parallel multiplication over is
shown in Fig. 4. It consists of a product-generator-cum-mod-
ular-reduction (PGCMR) unit along with an -bit input register
and an -bit finite field accumulator. The input register of the
structure consisting of flip-flops is initialized by one of
the multiplicands (by providing the bits of as SET/RESET
signal); and reloaded on every cycle such that is loaded on
the th cycle for . During the th cycle of com-
putation, PGCMR performs modular reduction to transform the
polynomials (for ) of de-
gree to a polynomial of degree , and per-
forms AND operations of every bit of the reduced output with

followed by the field additions. The detail structure of
PGCMR for word size [for any irreducible trinomial

Fig. 4. Conceptual block diagram of the proposed architecture of the field mul-
tiplier over �� �� �.

as the field polynomial, and satisfying the
condition ] is shown in Fig. 5. It consists
of three combinational sections: the modular reduction section,
the AND section, and the addition section. The modular reduc-
tion section consists of eight modular reduction cells [shown
in Fig. 5(b)] for , where the th modular reduction cell
performs number of XOR operations according to (18) in par-
allel to produce during the th cycle. The th
modular reduction cell consists of number of two-input XOR

gates to perform the number of XOR operations of (18) in par-
allel. In total, the modular reduction unit, therefore, consists of

number of two-input XOR gates and takes time
to perform all the XOR operations.

The AND section consists of eight AND cells (AC). The func-
tion of an AC is shown in Fig. 5(c). It consists of number
of two-input AND gates to perform the AND operations of (15).
During each cycle, the AND section receives a digit (set of eight
bits for ) of the second operand in least significant digit
(LSD)-first order, such that on the th cycle it receives the bits

for . The th AC performs number of
AND operations of each bit of with .
Each AC thus requires two-input AND gates. The AND section
as a whole involves number of two-input AND gates. It takes
time to complete its operation, where is the propagation
delay of a two-input AND gate. The finite field addition of the
eight elements for
of (15) are performed by bit-wise XOR operations in the addition
section by an XOR logic tree consisting of seven XOR cells (XC).
The function of each XC is shown in Fig. 5(d). It consists of
number of two-input XOR gates to perform the bit-by-bit XOR

operations of its pair of -bit operands. The addition section
requires seven XCs and requires duration of time to com-
plete its operations. The successive additions of (14) are per-
formed by an FFA consisting of number of flip-flops. Note
that the FFA also acts as the output register for this structure.

2) Complexity Considerations: The proposed structure for
finite field multiplier over requires two -bit registers
and a PGCMR unit. The PGCMR unit, in general, requires
modular reduction cells, equal number of AND cells and

XOR cells. Since the th modular reduction cell requires
number of two-input XOR gates, the modular reduction unit as
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Fig. 5. Structure of the PGCMR unit of the multiplier in�� �� � for� � �. (a) The structure of PGCMR. (b) Function of a modular reduction cell. (c) Function
of an AND cell (AC). (d) Function of an XOR cell (XC).

a whole requires number of two-input XOR gates.
The AND section requires number of two-input AND gates,
while the addition section requires number of two-
input XOR gates. The computational delay of the modular re-
duction section, AND section and the addition section are ,

, and , respectively. Since there is no feedback
loop from the output register, the critical path of the structure

. The crit-
ical path of the structure thus amounts to .
It takes cycles, in general, to perform a finite field mul-
tiplication in based on any irreducible trinomial.

In Table III, we have listed the hardware requirements in-
cluding the number of different gates, multiplexers, and regis-
ters along with the time-complexity metrics, e.g., cycle time,
ACT, and latency in terms of number of computational cycles
of the proposed structure, as well as, the existing structures.
As shown in Table III, the structures of [18]–[21] require more
than four times the number of registers, and involve nearly two
times the number of two-input AND/XOR gates with number
of additional multiplexers compared with those of the proposed
structure. They have nearly the same ACT but involve nearly
three times more latency. The structure of [21] has the same
critical path as the proposed one but the structures of [18] and
[19] have substantially higher critical path. The structures of
[17] and [22] involve the same number of cycles of ACT as the

proposed structure, but involve relatively more area and longer
critical path than the latter. The proposed one thus involves sub-
stantially lower area-time complexity compared with the other
two. The area and time-complexities of different structures, es-
timated by using the TSMC 0.18- m process 1.8-V SAGE-X
standard cell library data [35] for area and worst-case intrinsic
delays at unit drive strength, are listed in Table IV. It can be ob-
served from Table IV that the proposed structure involves nearly
56% less area-time complexity compared with the best of the ex-
isting structures for .

IV. BIT-SERIAL CONVERTER OF BASIS OVER

The sets and
are, respectively, called as the polynomial basis and the normal
basis over , where is a root of the irreducible poly-
nomial as given by (1). Let be a finite field element in
polynomial basis representation, and be the normal basis rep-
resentation of the same element. There exists one-to-one corre-
spondence between these elements in two representations, such
that one can be obtained from the other by linear transforma-
tions of the forms

(19a)
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TABLE III
HARDWARE- AND TIME-COMPLEXITIES OF THE DIGIT-SERIAL STRUCTURES FOR FIELD MULTIPLICATION OVER �� �� � BASED ON TRINOMIALS

� � �����. � is the delay of a 2:1 line multiplexer. The delays of three-input and four-input XOR gates is taken to be two times that of two-input XOR

delay. The register size is represented in terms of number of bits. In case of proposed structure the input register consists of � � flip-flops and the finite field
accumulator contains equal number of � flip-flops. The ACT is represented in terms of number of computational cycles.

TABLE IV
AREA- AND TIME-COMPLEXITIES OF THE PROPOSED AND EXISTING DESIGNS

FOR FIELD MULTIPLICATION OVER �� �� � FOR � � �

The area and area-time complexities are approximated for large values of
�. The value of � is approximated to ����� for [18]–[21] although � �
�����. The area-time values are in sq.um.ns.

and

(19b)

where and are conversion matrices of size , and
the elements of both these matrices and , for

. and are column vector representation
of the elements and .

For simple presentation of the proposed structure we use here
the same example as that of [34] for basis conversion.

A. Conversion From Polynomial Basis to Normal Basis

Let us consider a conversion from polynomial basis to normal
basis over for , and consider a primitive polyno-
mial . The polynomial basis and
the normal basis may, respectively, be given by the linearly inde-
pendent sets and . Since

is a root of , we can have

(20)

Besides, one can find that the elements of normal basis satisfy
the condition [33]

(21)

Using (20) and (21), it is possible to map the normal basis to
polynomial basis according to the following relations:

(22)

The normal basis representation of the poly-
nomial basis representation of a field element
over may thus be given by

(23)

where the conversion matrix is given by

(24)

B. Conversion From Normal Basis to Polynomial Basis

Using (20) and (21), one can also map the polynomial basis
to normal basis according to the following relations:

(25)

The polynomial basis representation of the normal basis rep-
resentation of a field element over may thus be given
by

(26)
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TABLE V
HARDWARE- AND TIME-COMPLEXITIES OF THE BIT-SERIAL STRUCTURES FOR CONVERSION OF BASIS OVER �� �� �

The area and time required for switch are taken to be the same as that of a NAND gate in the existing design and the proposed modified design.

Fig. 6. Structures for basis conversion over�� �� �. (a) The existing structure.
(b) Proposed structure for basis conversion.

where the conversion matrix is given by

(27)

The existing bit-serial structure [34] for basis conversion over
is shown in Fig. 6(a). It consists of number of

switches, number of two-input XOR gates and equal number
of flip-flops. The bits of a finite filed element are broadcast
to all the switches of the structure in bit-serial order, while the
rows of conversion matrix is fed in parallel to the switches,
such that successive elements of a column of are fed to a
particular switch in successive cycles. It can be used as a uni-
versal basis converter by feeding with appropriate conversion
matrix to the circuit. Conversion from normal basis to polyno-
mial basis of representation can be performed when
and according to (26). Conversion from polynomial
basis to normal basis of representation can be performed when

and according to (23). In the existing structure
of Fig. 6(a), the output of each of the switches are accumulated
in successive cycles by the combination of XOR gate and one
bit-register. The combination of XOR gates and the bit-registers
can be replaced by an FFA as shown in Fig. 6(b) to have a more
efficient implementation.

The area- and time-complexities of the proposed structure
and the existing structure [34] are listed in Table V for com-
parison. As shown in the table, the proposed design involves
significantly less area and less time-complexity compared with
the existing design of bit-serial basis converter in . The
existing design is found to involve nearly twice the area-time
complexity of the design modified by using the proposed FFA.

V. CONCLUSION

A simple but highly useful modification of conventional
hardware implementation of accumulation in finite field over

has been suggested, where the cycle time is substan-
tially reduced by implementing successive additions in every
clock period by flip-flops instead of using number
of flip-flops and XOR-gates in data-dependent loops. The
conventional accumulator is found to involve nearly 39% more
area, 53% more delay, and 40% more maximum ac power
consumption compared with the proposed accumulator. The
proposed finite field accumulator is used to design serial/par-
allel polynomial-basis multipliers for . The structure
proposed for bit-serial/parallel multiplier for based on
any general polynomial is found to have significantly lower area
complexity, shorter cycle time and less area-time complexity
compared to those of the existing structures. The area-time
complexity of the proposed bit-serial/parallel multiplier is less
than half of the best of the corresponding existing structures.
The structure proposed for digit-serial/parallel multiplication
over based on trinomials is also found to be signifi-
cantly more efficient compared with the existing designs. By
using the proposed accumulator, we have modified a low-cost
bit-serial hardware design [34] for conversion of polynomial
basis to normal basis and vice versa. The modified design
of basis converter involves significantly less area and less
time complexity compared with the existing design [34]. The
existing design is found to involve nearly twice the area-time
complexity of the design modified by using the proposed FFA.
Further studies can still be made to find the advantages of this
finite field accumulator in various other circuits for finite field
arithmetic.
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