
78 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 21, NO. 1, JANUARY 2013

Formal Verification of Architectural Power Intent
Aritra Hazra, Student Member, IEEE, Sahil Goyal, Pallab Dasgupta, Senior Member, IEEE, and

Ajit Pal, Senior Member, IEEE

Abstract—This paper presents a verification framework that
attempts to bridge the disconnect between high-level properties
capturing the architectural power management strategy and the
implementation of the power management control logic using
low-level per-domain control signals. The novelty of the proposed
framework is in demonstrating that the architectural power
intent properties developed using high-level artifacts can be
automatically translated into properties over low-level control
sequences gleaned from UPF specifications of power domains, and
that the resulting properties can be used to formally verify the
global on-chip power management logic. The proposed translation
uses a considerable amount of domain knowledge and is also not
purely syntactic, because it requires formal extraction of timing
information for the low-level control sequences. We present a tool,
called POWER-TRUCTOR which enables the proposed framework,
and several test cases of significant complexity to demonstrate the
feasibility of the proposed framework.

Index Terms—Assertion, formal verification, low-power verifi-
cation, power intent verification.

I. INTRODUCTION

I N order to meet the stringent power budgets of low-power
digital integrated circuit designs, several power manage-

ment techniques have evolved and have been used in indus-
trial practice [6], [9]. This includes techniques for managing
dynamic power such as clock gating, voltage and frequency
scaling, and managing leakage power such as power gating and
adaptive body-biasing [18], [26]. In a complex architecture, a
combination of these strategies may be used for better power
management.
In most complex integrated low-power circuits, the power

management strategy is laid out at the micro-architectural level
[4], [18]. Several tools have been developed for early estima-
tion of power performance, exploring alternative strategies and
converging on the most efficient one. These include tools like
Turandot/MET [30], PowerTimer [8], Spyglass-Power [28], etc.
Power performance analysis typically leads to the development
of a global power management strategy, which demarcates the
boundaries of various architectural power domains and specifies
the properties relating these power domains at a high-level of

Manuscript received March 28, 2011; revised August 19, 2011 and October
24, 2011; accepted December 07, 2011. Date of publication January 17, 2012;
date of current version December 19, 2012. This work was supported by Syn-
opsys Inc. under Synopsys-IITKGP CAD Laboratory Projects. The work of A.
Hazra was supported by Microsoft Corporation and Microsoft Research India
under the Microsoft Research India Ph.D. Fellowship Award.
A. Hazra, P. Dasgupta, and A. Pal are with the Indian Institute of

Technology, Kharagpur, India, West 721302 Bengal, India (e-mail: ari-
trah@cse.iitkgp.ernet.in; pallab@cse.iitkgp.ernet.in; apal@cse.iitkgp.ernet.in).
S. Goyal is with Barclays Capital, SG—018983 Singapore (e-mail: sahil.

kgp@gmail.com).
Color versions of one or more of the figures in this paper are available online

at http://ieeexplore.ieee.org.
Digital Object Identifier 10.1109/TVLSI.2011.2180548

Fig. 1. Power-managed design components.

abstraction. The architectural power management strategy may
entail simple properties (such as domain- and domain- will
not be active simultaneously) or complicated properties, such as
ones which specify start-up sequences between the power do-
mains in a complex system-on-chip (SoC).
Though global power management strategies are designed

up front, they can be implemented only much later in the de-
sign flow. This is because, power intent specification is not sup-
ported in high-level design languages such as Verilog [15] or
SystemVerilog [29], which are used to enter the design imple-
mentation at behavioral or register-transfer level (RTL).
Typically, from a power management perspective, a

low-power digital integrated circuit can be viewed as con-
sisting of the following three components, as shown in Fig. 1.
1) The digital logic of the circuit, partitioned into a set of
power domains. We shall call this the design.

2) The power control interface, consisting of isolation cells,
voltage regulators, frequency converters, level shifters,
switches and retention cells. We call these the power
control circuitry (PCC).

3) The power control logic, which drives (digital) control in-
puts to the PCC to effect changes in the power states of a
power managed domain. We shall call this the power con-
trol logic (PCL). For large circuits, the PCL consists of two
entities, namely:
a) A set of per-domain local power managers (LPM).
Each LPM is responsible for issuing valid control se-
quences for enabling transitions between the power
states of that power domain.

b) The global power manager (GPM) which orches-
trates the LPMs to implement the global power
management strategy.

The above architectural view from a power management per-
spective has become quite accepted among architects of digital
integrated circuits [16], [20].

1063-8210/$26.00 © 2011 IEEE

HAZRA et al.: FORMAL VERIFICATION OF ARCHITECTURAL POWER INTENT 79

Fig. 2. Schematic flow for architectural power intent property generation using
UPF-extracted assertions.

Typically, both the design and the PCL can be expressed in
digital logic and can be coded using hardware description lan-
guages, such as Verilog or VHDL. Since the power lines, voltage
regulators or level-shifter circuits cannot be described in RTL, it
is not possible to directly express the PCC in RTL. Therefore in
the traditional design flow, the PCL can be integrated with the
design very late, that is, after the design has been synthesized
and the PCC has been added into the netlist. Verifying the PCL
becomes challenging due to the cost of simulation at this level
of abstraction.
The focus of this paper is on verifying the PCL at a higher

level of abstraction, namely at the register transfer level. The
golden reference for this verification should be the archi-
tectural properties capturing the global power management
strategy. However, architects are able to specify the power
management strategy through high-level artifacts, which in-
clude names associated with architectural power domains and
names associated with the power states of a domain [1]. On
the other hand, the control signals driven by the PCL to the
PCC are low-level signals controlling specific actions like iso-
lation and retention of individual power domains. Our main
contribution in this paper is to bridge the existing disconnec-
tion between the architectural level artifacts and the low-level
control signals over which the PCL is defined, thereby paving
the way for high-level validation of the PCL using formal ver-
ification.
The novelty of the proposed framework is in automating the

translation of assertions developed using architectural power
management artifacts into assertions defined over the signals of
the PCL, which are then formally verified over the PCL. This
translation takes advantage of the emerging industrial adop-
tion of languages such as unified power format (UPF) [31] and
common power format (CPF) [25] for describing the PCC at
a higher level of abstraction [12]. The components of the pro-
posed verification tool flow are as follows.
1) We present a novel extension of UPF, whichmay be used to
declare the architectural power management artifacts, in-
cluding the names of the architectural power domains and
the names and nature of the power states for each power
domain.

2) We present a novel framework for developing inter-domain
power management properties using high-level power state
predicates and power state transition predicates which are
automatically constructed from the declaration of architec-
tural power domains.

3) We present a novel methodology for automatically ex-
tracting timed control sequences corresponding to these
predicates from per-domain UPF specifications. The LPM
logic for the domain is formally analyzed to extract the
accurate timing for these control sequences. This step
of extracting accurate timing information has important
ramifications towards the scalability of our approach, as
described later.

4) We present a novel translation procedure for rewriting the
inter-domain architectural power management properties
using the per-domain control sequences extracted from
UPF.

5) We present a tool flow integrating the above (as shown in
Fig. 2), in which the formal assertions generated by our
approach are verified formally using standard off-the-shelf
industrial strength model checking tools.

The notion of formally verifying the architectural power in-
tent was introduced in an earlier paper [13]. This paper presents
the complete framework for this verification task and experi-
mental results on more advanced test cases. In this paper, we
introduce a key step into our approach, that is, extracting ac-
curate real-time bounds on the per-domain sequence expres-
sions, before they are used in the architectural power assertions.
We present results to demonstrate the degradation in the perfor-
mance of formal verification task when this step is absent, and
present an approach for extracting the per-domain time bounds.
This paper also extends our earlier work by including artifacts
of more advanced power management strategies such as dy-
namic voltage and frequency scaling (DVFS) and adaptive body
biasing.
Verification of low-power designs [17] involves verification

of the design in multiple power states, and verifying that only
the intended transitions and sequences of transitions have oc-
curred. The proposed approach not only enables formal anal-
ysis of reachable power states and transitions, but also bridges
the disconnection between high-level architectural power intent
properties and low-level per-domain sequencing properties ex-
tracted fromUPF, thereby paving theway for formal verification
of the PCL.
Existing techniques for power-aware simulation [11] and

static analysis related to state retention bugs [5], [7], [10], [24]
are typically employed low down in the design flow. Recent
attempts towards tackling verification problems for power
management include several state-of-the-art procedures for
assertion extraction from UPF [19], [27]. These methods do
not address the problem of verifying architectural power intent
assertions and therefore are not suitable for verifying the global
power management strategy. Our method is possibly the first
attempt to solve the problem of verifying the global power
management strategy in a formal verification setting.

II. OVERVIEW AND TOOL FLOW

Fig. 3 illustrates the main steps in the proposed approach for
formal verification of the PCL. This flow is enabled by our tool,

80 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 21, NO. 1, JANUARY 2013

Fig. 3. POWER-TRUCTOR tool-flow for assertion synthesis and formal as-
sertion verification.

called POWER-TRUCTOR. Each of these steps are based on sev-
eral novel contributions outlined in the following sections. In
this section, we present a summary of these steps, and then elab-
orate them through the subsequent sections.
The tool-flow for POWER-TRUCTOR (see Fig. 3) has the fol-

lowing five major steps.
Step 1) Formalizing the Architectural Power Intent. For cap-

turing the architectural power management strategy,
we need a set of high-level artifacts, such as archi-
tectural power domains and power states. We ex-
tend the syntax of UPF to enable the declaration
of the names of the power domains and the power
states in each domain. Given this declaration, our
tool automatically generates a set of predicates for
power states and transitions, which serves as the
propositions using which the formal properties cap-
turing the architectural power intent can be devel-
oped. Section III elaborates this step.

Step 2) Control Sequence Extraction from UPF. This step
generates the low-level control sequences for en-
abling local power state transitions in individual
power domains. The tool accepts the UPF speci-
fication of the individual power domain and uses
a considerable amount of built-in domain knowl-
edge to automatically extract these sequences in
SystemVerilog Assertions (SVA) [29]. This step is
carried out for each power domain individually.
Section IV elaborates this step.

Step 3) Timing Extraction for Sequences. This step uses
formal methods for analyzing the accurate time
boundaries for the control sequences extracted in
Step 2). The control sequences are automatically
refined with this analysis. Section V elaborates
this step. This step has a significant impact on the
performance of Step 5), which is supported through
experimental results presented in Section VII.

Step 4) Global Assertion Generation. The assertions devel-
oped in Step 1) use high-level predicates. These

predicates must be translated into low-level control
sequences so that the resulting assertions can be for-
mally verified on the PCL. Section VI elaborates this
step.

Step 5) Formal Verification. In this step, standard industrial
strength model checking tools, like Magellan [21],
is used to formally verify the PCL with the asser-
tions generated in Step-4. Experimental results on
several test cases are presented in Section VII.

At the end, POWER-TRUCTOR invokes Magellan to produce an
assertion verification report of the generated assertions, where
the success and failure of the synthesized assertions are pre-
sented. It may be noted that POWER-TRUCTOR uses Magellan
only at the back end, and can use any other model checking tool
as well.
Steps 1)–4) enable Step 5), that is, our objective of formally

verifying the PCL with respect to the architectural power man-
agement strategy. These steps are necessary for the following
reason. Model checking tools take two inputs—a formal prop-
erty and a finite state machine (formally called a Kripke struc-
ture). The formal property must be defined over the labels of
the Kripke structure, that is, the atomic propositions used in the
property are functions of the state variables. In our problem,
this is not the case. The global power management properties
are defined by chip architects using architectural artifacts, that
is, the names of the power domains and the names of the power
modes. On the other hand, the Kripke structure derived from
the RTL description of the PCL does not have these names as la-
bels. Instead, the states of the PCL are labeled by low-level con-
trol signals for controlling local power control circuitry, such as
power gating, isolation and retention. Therefore, the labels of
the Kripke structure states are different from the propositions
used in the formal properties capturing the power management
strategy, and there is no Boolean map between them. We cannot
use the model checker directly for this reason.
We must, therefore, rewrite the formal properties so that they

are defined over the labels of the Kripke structure, while cap-
turing the same design intent. This task of rewriting is non-
trivial because each high-level transition between power states
involves a non-trivial control sequence at the low-level span-
ning many cycles. Steps 1)–4) automate this translation.

III. FORMALIZING THE ARCHITECTURAL POWER INTENT

We demonstrate the idea of specifying the architectural power
intent through an example. Let the overall power architecture of
a design (single-core eLeon3) consist of seven power domains,
namely, a primary integer unit, a secondary integer unit, amulti-
plication unit, a division unit, a memory controller unit, a cache
unit, and a storage elements unit. Fig. 4 demonstrates different
power domains (illustrated using different colors/shades) of the
eLeon3 design.
The architect decides the following power modes for these

power domains.
1) The primary integer unit (PIU) acts in three power modes,
namely, ACTIVE, IDLE, and OFF.

2) The secondary integer unit (SIU) also acts in three power
modes, namely, ACTIVE, IDLE, and OFF.

3) The multiplication unit (MULT) operates in two power
modes, namely, ON and OFF.

HAZRA et al.: FORMAL VERIFICATION OF ARCHITECTURAL POWER INTENT 81

Fig. 4. Different power domains of eLeon3 processor.

4) The division unit (DIV) also operates in two power modes,
namely, ON and OFF.

5) The memory controller unit (MEM_CTLR) acts in two
power modes, namely, ON and OFF.

6) The cache unit (CACHE) operates only in two power
modes, that is, FULL_ON and PARTIAL_ON.

7) The storage elements unit (STORAGE_ELM) acts in two
power modes, namely, ON and OFF.

Among all the power modes of these power domains, the AC-
TIVE power modes of both PIU and SIU power domains are
characterized using higher voltage and frequency pairs com-
pared to IDLE power modes of PIU and SIU, which are char-
acterized using relatively lower voltage and frequency pairs. In
our platform, the architect uses two constructs to specify this ar-
chitecture, namely:
• create_power_domains: specifies power-domain names;
• create_power_states: specifies different power states for a
particular domain and mentions their types (on/off). The
power states are characterized using the following three
flags:
1) -voltage flag: specifies the voltage-level of a power
state;

2) -frequency flag: specifies the frequency-level of a
power state;

3) -bias flag: specifies the bias voltage-level of a power
state.

For example, the architectural power intent specification of
eLeon3 is as follows:

begin_power_architecture(eLeon3)

create_power_domains {PIU SIU MULT DIV

MEM_CTLR CACHE STORAGE_ELM}

create_power_states -domain PIU

-on_state {ACTIVE -voltage Vh_piu

-frequency Fh_piu}

-on_state {IDLE -voltage Vl_piu

-frequency Fl_piu}

-off_state {OFF}

create_power_states -domain SIU

-on_state {ACTIVE -voltage Vh_siu

-frequency Fh_siu}

-on_state {IDLE -voltage Vl_siu

-frequency Fl_siu}

-off_state {OFF}

create_power_states -domain MULT

-on_state {ON -voltage V_mult}

-off_state {OFF}

create_power_states -domain DIV

-on_state {ON -voltage V_div}

-off_state {OFF}

create_power_states -domain MEM_CTLR

-on_state {ON -voltage V_mem_ctlr}

-off_state {OFF}

create_power_states -domain CACHE

-on_state {FULL_ON -voltage Vh_cache}

-on_state {PARTIAL_ON -voltage Vl_cache}

create_power_states -domain STORAGE_ELM

-on_state {ON -voltage V_storage_elm}

-off_state {OFF}

end_power_architecture

The above example does not incorporate body-bias voltage
for any domain of eLeon3. We can, though, easily extend the
architectural power intent description to include the same using
-bias flag. The specification of this flag is syntactically similar
as for the other -voltage or -frequency flags.
Implicit in this specification are the potential transient states

between an on_state and the off_state of a power domain,
namely, as follows.
• Isolation-Enabled. The domain has been isolated by setting
isolation values at its interface.

• Isolation-Disabled. The isolation at the interface of the
power domain has been removed.

• Retention-Completed. The state of the domain has been
saved in the retention registers.

• Retention-Restored. The state of the power domain has
been restored from the retention registers.

Apart from these transient states, there can be other intermediate
states between two on_states, which are characterized using
different voltage-frequency pairs. This is because, the transi-
tion from a high voltage-frequency state to a low voltage-fre-
quency state will take place through a high voltage and low fre-
quency state because the frequency has to be lowered strictly
before the voltage is lowered. Likewise, the transition from a
low voltage-frequency state to a high voltage-frequency state
will pass through a high voltage and low frequency state. A low
voltage-high frequency state will typically be rendered unreach-
able by the strategy.
It may be noted that the transient or intermediate states are

potentially possible, though a specific implementation may not
have one or more of these states. Figs. 5 and 6 present the envis-
aged power state machine for the LPM of the PIU-domain and
MULT-domain in eLeon3, respectively.

A. Generation of Predicate Table

Our platform creates a table of predicates from the power
architecture specification. These predicates are of the forms:

power-domain (state) OR power-domain (state, state)

82 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 21, NO. 1, JANUARY 2013

Fig. 5. Power state machine for LPM of PIU-domain in eLeon3 design.

Fig. 6. Power state machine for LPM of MULT-domain in eLeon3 design.

where power-domain is the name of the power domain and
state represents a specific power-state or transient-state of that
domain. For example, for the PIU domain in our example, we
have two on-states (ACTIVE and IDLE) and therefore, two po-
tential power-up sequences, namely, PIU(OFF, ACTIVE) and
PIU(OFF, IDLE); and two potential power-down sequences,
namely, PIU(ACTIVE, OFF) and PIU(IDLE, OFF). These
predicates become true when the corresponding sequence
takes place. Additionally, we have the following predicates for
capturing the transient states of the PIU domain.
• PIU(ACTIVE), PIU(IDLE), PIU(OFF). These predicates
become true when the power domain, PIU, reaches the AC-
TIVE, IDLE and OFF states, respectively.

• PIU(pwr-ACTIVE), PIU(pwr-IDLE), PIU(pwr-OFF).
These predicates become true when the PCC has applied
the appropriate voltage on the supply rails. In transitions
from the off-state to an on-state, this is followed by
restoring the retention values and disabling the isolation.

• PIU(iso-on), PIU(iso-off). PIU(iso-on) becomes true when
the power domain, PIU, reaches the state where isola-
tion has been enabled during power-down. PIU(iso-off)
becomes true when the domain reaches the state where
isolation has been disabled during power-up.

• PIU(ret-on), PIU(ret-off). These are similarly defined for
retention completion (during power-down) and retention
restoration (during power-up) events, respectively.

Apart from the predicates for these power up/down sequences,
power states and transient states, we also have some predicates
capturing the intermediate state sequences. For example, for
the PIU domain in our example, we have two on-states (AC-
TIVE and IDLE) and therefore, one intermediate state, namely,
PIU-inter-ACTIVE-IDLE (shown in Fig. 5) and two potential
predicates for the intermediate state transition sequences,
namely, PIU-inter(ACTIVE, IDLE) and PIU-inter(IDLE, AC-
TIVE) (as indicated in Table I). The intermediate state, namely
PIU-inter-ACTIVE-IDLE for the PIU-domain of eLeon3),
may be reached during the transition between two on-states,
which are characterized by different voltage-frequency levels.

The complete set of predicates generated by our tool for
our example is shown in Table I. The predicates are based
on the envisaged power state machines of the LPMs. When
the UPF of these domains become available, SVA sequences
corresponding to each predicate are generated automatically.
At this stage, it may be discovered from the UPF specifica-
tion that some transient state is actually not reachable. For
example, the MEM_CTLR unit of eLeon3 did not have a
retention mechanism, which was discovered from the UPF
specification. Therefore the predicates MEM_CTLR(ret-on)
and MEM_CTLR(ret-off) were removed from Table I after
processing the UPF.
Similarly, domains controlled only by multiple voltages

(having no frequency control) will have no intermediate states.
In Table I the power domains MULT, DIV, MEM_CTLR,
STORAGE_ELM, and CACHE belong to this category.

B. Expressing Architectural Power Intent

The architectural power intent expresses the global power
management strategy between the power domains. For example,
in the eLeon3 design, some of the power intent properties are as
follows.
1) The multiplication unit (MULT-domain) and the division
unit (DIV-domain) are never ON together.

2) The integer units (PIU and SIU-domains) cannot be ON
together with the multiplication unit (MULT-domain).

3) The integer units (PIU and SIU-domains) cannot be ON
together with the division unit (DIV-domain).

4) Only after putting the memory controller unit
(MEM_CTLR-domain) fully powered-up, the storage-el-
ements (STORAGE_ELM-domain) are powered-up.

5) Only after the storage-elements (STORAGE_ELM-do-
main) finish their restoration, the power of the integer
units (either PIU and/or SIU) can be given.

The predicate table generated by our tool can be used to define
such inter-domain architectural power intent properties. The
language used for this specification is similar to SystemVerilog
assertions (SVA) [29]. For example, the above mentioned
properties can be expressed using the generated predicates as
shown in the following:
1) not(MULT(ON) and DIV(ON));

2) not(PIU(ACTIVE) and SIU(ACTIVE) and MULT(ON))

and not(PIU(ACTIVE) and SIU(IDLE) and MULT(ON))

and not(PIU(IDLE) and SIU(ACTIVE) and MULT(ON))

and not(PIU(IDLE) and SIU(IDLE) and MULT(ON));

3) not(PIU(ACTIVE) and SIU(ACTIVE) and DIV(ON))

and not(PIU(ACTIVE) and SIU(IDLE) and DIV(ON))

and not(PIU(IDLE) and SIU(ACTIVE) and DIV(ON))

and not(PIU(IDLE) and SIU(IDLE) and DIV(ON));

4) MEM_CTLR(OFF, ON) ##[1:$]
STORAGE_ELM(OFF, ON);

5) STORAGE_ELM(ret-off) ##[1:$]

(PIU(pwr-ACTIVE) or PIU(pwr-IDLE)) or

(SIU(pwr-ACTIVE) or SIU(pwr-IDLE));

By using these high-level predicates, we mask the low-level
control sequences that enable individual domains to power up or
powerdown. In thenext section,wewill showhowlow-levelcon-
trol sequences corresponding to these predicates can be extracted
automatically from UPF specifications of the per-domain PCC.

HAZRA et al.: FORMAL VERIFICATION OF ARCHITECTURAL POWER INTENT 83

TABLE I
PREDICATE TABLE FOR THE ELEON3 DESIGN

An important point to note here is that the architectural power
intent properties are not clocked. This is because, the level of
abstraction at which these are defined may not have definitions
of clocks and timing. On the other hand, these properties can
easily express the sequence in which events related to power
state transitions should take place. While mapping these prop-
erties in terms of the low-level control sequences, we must in-
troduce timing using some strategy as will be explained later.

IV. CONTROL SEQUENCE EXTRACTION FROM UPF

Fig. 7 shows the supply distribution network of the eLeon3
design. The Appendix demonstrates the UPF specification for
this design. In this section, we demonstrate the automatic ex-
traction of control sequences for the predicates of the previous
section (see Table I) from such UPF specifications.
Our tool parses the UPF specification and automatically

generates SVA sequences corresponding to the predicates.
There are the following several utilities of such UPF-extracted
sequences.
1) Since the predicates correspond to different power on/off,
transient and intermediate states of the LPM state machine,
hence, monitoring the coverage for these sequences en-
sures the state and transition sequence coverage of LPM.

Fig. 7. Power domain and supply distribution network of eLeon3 design.

2) These extracted SVA sequences help in constructing
global/architectural power intent properties, whose cov-
erage can, then, be monitored either formally or during
simulation to indicate the functional coverage of PCL.

In the following sub-sections, we shall discuss the extraction of
different types of SVA sequences over the UPF-example pro-
vided for eLeon3 design (in Appendix).

84 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 21, NO. 1, JANUARY 2013

A. Sequences for Power On/Off State Predicates

FromtheUPFspecificationofeLeon3(given in theAppendix),
we can extract two sequences for power-on states and one se-
quence for power-off state for the power domain, PIU. Both the
two on-states of PIU are characterized using unique voltage-fre-
quency combinations. We find that the create_power_switch
statement for this domain has two control signals to control the
voltage-rails,namely,piu_pwr_offandpiu_pwr_type.Moreover,
the add_power_state statement for this domain has one control
signal to control the frequency-values, namely, piu_high_freq.
These signals aredrivenby theLPMof thedomainand thecombi-
nationof these signals select thepower on/off state of thedomain.
Further, the isolation/retention signals can be easily identified

from the UPF as follows. The isolation signal is piu_iso and to
enable isolation during shut-down phase, we shall raise it to high
value (gleaned from the set_isolation_control statement). For
retention, the saving is done (during the shut-down phase) at the
high-value of the piu_ret signal and the restoration is performed
(during thepower-upphase)at the low-valueof thepiu_retsignal.
The sequences extracted by our tool corresponding to the

predicates for the power on/off states, namely, PIU(ACTIVE),
PIU(IDLE), and PIU(OFF) are as follows:

sequence PIU_ACTIVE;

(!piu_pwr_off && piu_pwr_type && piu_high_freq)

&& $fell(piu_ret) && $fell(piu_iso);

endsequence

sequence PIU_IDLE;

(!piu_pwr_off && !piu_pwr_type && !piu_high_freq)

&& $fell(piu_ret) && $fell(piu_iso);

endsequence

sequence PIU_OFF;

$rose(piu_iso) && $rose(piu_ret) && (piu_pwr_off);

endsequence

B. Sequences for Transient State Predicates

Basically, the sequences extracted for transient state predi-
cates are the sub-part of the power state sequences derived in
the previous section. We give one such sequence for each of the
power- gated, isolation and retention transient states, namely,
PIU(pwr-IDLE), PIU(iso-on) and PIU(ret-off) respectively, in
the following.

sequence PIU_pwr-IDLE;

(!piu_pwr_off && !piu_pwr_type && !piu_high_freq);

endsequence

sequence PIU_iso-on;

$rose(piu_iso);

endsequence

sequence PIU_ret-off;

PIU_ret-off_ACTIVE or PIU_ret-off_IDLE;

endsequence

sequence PIU_ret-off_ACTIVE;

((!piu_pwr_off && piu_pwr_type && piu_high_freq)

##[1:$] $fell(piu_ret));

endsequence

sequence PIU_ret-off_IDLE;

((!piu_pwr_off && !piu_pwr_type && !piu_high_freq)

##[1:$] $fell(piu_ret));

endsequence

The transient states corresponding to the predicates,
PIU(iso-off) and PIU(ret-off), can be reached via two paths—ei-
ther through pwr-ACTIVE state or through pwr-IDLE states.
Hence, to model both of them, the sequence PIU_ret-off
has an or construct (similar will be the case for PIU_iso-off
sequence). The sequences for rest of the transient state predi-
cates can be derived similarly.

C. Sequences for Intermediate State Predicates

Intermediate states are reached during the transition between
two on-states, that are characterized using two different voltage-
frequency combinations. Our tool generates sequences for such
intermediate state transitions.
For example, in case of PIU domain in eLeon3, two legal

intermediate state sequences can be extracted, since we can
visit the intermediate state when moving from ACTIVE state to
IDLE state and also from IDLE state to ACTIVE state. These
sequences correspond to the predicates PIU-inter(ACTIVE,
IDLE) and PIU-inter(IDLE, ACTIVE), respectively, and are
given as follows:

sequence PIU-inter_ACTIVE_IDLE;

(!piu_pwr_off && piu_pwr_type && piu_high_freq) ##[1:$]

(!piu_pwr_off && piu_pwr_type && !piu_high_freq) ##[1:$]

(!piu_pwr_off && !piu_pwr_type && !piu_high_freq);

endsequence

sequence PIU-inter_IDLE_ACTIVE;

(!piu_pwr_off && !piu_pwr_type && !piu_high_freq) ##[1:$]

(!piu_pwr_off && piu_pwr_type && !piu_high_freq) ##[1:$]

(!piu_pwr_off && piu_pwr_type && piu_high_freq);

endsequence

If there are on-states for a power domain, then there can
be transitions between them (considering both di-
rections). Each transition may have a transient state. For ex-
ample a transition from a state, , to a state, ,
(where and represent voltage and frequency) will typically
go through a transient state , if and ,
because supply voltage must be raised strictly before raising
the frequency. Typically, all on-states do not have transitions
between them, and hence, lesser number of such intermediate
states and sequences are required.

D. Sequences for Power Up/Down Predicates

The sequence expressions for power up/down predicates can
be derived with the help of the sequences for power on/off states.
Since we have two on-states ACTIVE and IDLE for PIU-domain
of eLeon3, there can be two power-down sequences, namely,
PIU(ACTIVE, OFF) and PIU(IDLE, OFF), and two power-up
sequences, namely, PIU(OFF, ACTIVE) and PIU(OFF, IDLE),
given as follows:

sequence PIU_ACTIVE_OFF;

PIU_ACTIVE ##[1:$] $rose(piu_iso) ##[1:$]

$rose(piu_ret) ##[1:$] (piu_pwr_off);

HAZRA et al.: FORMAL VERIFICATION OF ARCHITECTURAL POWER INTENT 85

endsequence

sequence PIU_IDLE_OFF;

PIU_IDLE ##[1:$] $rose(piu_iso) ##[1:$]

$rose(piu_ret) ##[1:$] (piu_pwr_off);

endsequence

sequence PIU_OFF_ACTIVE;

PIU_OFF ##[1:$] (!piu_pwr_off && piu_pwr_type

&& piu_high_freq) ##[1:$] $fell(piu_ret)

##[1:$] $fell(piu_iso);

endsequence

sequence PIU_OFF_IDLE;

PIU_OFF ##[1:$] (!piu_pwr_off && !piu_pwr_type

&& !piu_high_freq) ##[1:$] $fell(piu_ret)

##[1:$] $fell(piu_iso);

endsequence

Here, PIU_ACTIVE, PIU_IDLE, and PIU_OFF are the
power on/off sequences produced in Section IV-A.

E. Illegal Sequences

To identify the misbehavior in ascertaining proper control
sequence outputs by the PCL, our tool also generates the
SystemVerilog Assertions (SVA) for such illegal behaviors.
Figs. 8 and 9 illustrate two examples of such illegal scenarios
for power-down and power-up sequence, respectively.
This set of assertions are not visible in the predicate table

from architectural power intent of a circuit, but are useful to
locate the bug and improve the coverage of PCL. We classify
these properties into the following five categories.
1) Illegal Restoration before Power-on. During power-up of
a domain, the restoration should never take place before
power-on. For the PIU-domain, the properties corre-
sponding to such behavior are:

property PIU_restoreBeforePoweron_ACTIVE_illegal;

@(posedge CLOCK)

$fell(piu_ret) ##[1:$]

(!piu_pwr_off && piu_pwr_type && piu_high_freq);

endproperty

property PIU_restoreBeforePoweron_IDLE_illegal;

@(posedge CLOCK)

$fell(piu ret) ##[1:$]

(!piu_pwr_off && !piu_pwr_type && !piu_high_freq);

endproperty

2) Illegal Power-off before Retention. During shut-down of a
domain, the power-off should never happen before reten-
tion. For the PIU-domain, the property corresponding to
such behavior is:

property PIU_poweroffBeforeRetention_illegal;

@(posedge CLOCK)

(piu_pwr_off) ##[1:$] $rose(piu_ret);

endproperty

Fig. 8. Legal and illegal power-down (illegal retention before isolation).

Fig. 9. Legal and illegal power-up (illegal de-isolation before restoration).

3) Illegal Retention before Isolation. During shut-down of a
domain, the retention should never take place before iso-
lation. For the PIU-domain, the property corresponding to
such behavior is:

property PIU_retentionBeforeIsolation_illegal;

@(posedge CLOCK)

$rose(piu_ret) ##[1:$] $rose(piu_iso);

endproperty

Fig. 8 illustrates such an illegal scenario, where retention
is performed before isolation during power-down.

4) Illegal De-isolation before Restoration. During power-up
of a domain, the isolation should never be disabled before
restoration takes place. For the PIU-domain, the property
corresponding to such behavior is:

property PIU_deisolationBeforeRestoration_illegal;

@(posedge CLOCK)

$fell(piu_iso) ##[1:$] $fell(piu_ret);

endproperty

Fig. 9 illustrates such an illegal scenario, where isolation
is disabled before restoration during power-up.

5) Illegal Intermediate State Transitions. During the transition
fromoneon-state to another on-state, the voltage-frequency
combination also changes. A particular control sequence
rule is followed during such transition as given below:
a) When transition is taking place from a high voltage-
high frequency power state to a low voltage-low
frequency power state, then the act of lowering fre-
quency should precede the act of lowering voltage.

b) When transition is taking place from a low voltage-
low frequency power state to a high voltage-high fre-
quency power state, then the act of raising voltage
should precede the act of raising frequency.

Any control sequence that violates the above rules is an
illegal control sequence. For example, to check whether
a given eLeon3 implementation violates any of the above
rules, we can check for the occurrence of the following
sequences.

sequence PIU-inter_ACTIVE_IDLE_illegal;

86 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 21, NO. 1, JANUARY 2013

(!piu_pwr_off && piu_pwr_type && piu_high_freq) ##[1:$]

(!piu_pwr_off && !piu_pwr_type && piu_high_freq) ##[1:$]

(!piu_pwr_off && !piu_pwr_type && !piu_high_freq);

endsequence

sequence PIU-inter_IDLE_ACTIVE_illegal;

(!piu_pwr_off && !piu_pwr_type && !piu_high_freq) ##[1:$]

(!piu_pwr_off && !piu_pwr_type && piu_high_freq) ##[1:$]

(!piu_pwr_off && piu_pwr_type && piu_high_freq);

endsequence

Overall, the sequences produced in Section IV are automat-
ically substituted in place of the predicates in the architectural
power intent properties (as demonstrated in the next section).
This bridges the gap between high-level global architectural
power intent specification and low-level per-domain UPF spec-
ifications without additional user intervention.

V. TIMING EXTRACTION FOR SEQUENCES

The properties extracted from the UPF express sequencing
constraints between the output signals of the LPM. It is impor-
tant to note that though the sequence in which the LPM must
assert its outputs is standard in low-power design practices, the
timing underlying the sequences can vary from one domain to
another depending on several other power management factors.
So far in our presentation, we have allowed unrestricted stut-

tering between events in a sequence. For example, consider the
following assertion:

property power-up;

@(posedge CLOCK)

$rose(pwr-on) ##[1:$] $fell(restore)

##[1:$] $fell(isolation);

endproperty

In this assertion, there is no bound on the time between
the occurrences of the events, such as $rose(pwr-on),
$fell(restore) and $fell(isolation). This may
lead to bugs being missed in the verification process, as demon-
strated using Fig. 10. In this figure, two power up sequences
are shown. The first sequence is erroneous since the restore
signal does not fall after the rise of the pwr-on signal. How-
ever, this bug is masked by the second power up sequence
because the unrestricted stuttering in the assertions allows the
$fell(restore) event of the second power up sequence to
account for both $rose(pwr-on) events.
Timing information of such nature is not provided in the UPF

specification of a power domain. However, providing safe upper
bounds on the power up/power down timings is quite feasible in
practice, because the number of cycles spent in these sequences
are significantly smaller than the number of cycles spent be-
tween successive transitions among power states [2], [3], [14].
Therefore it is not hard for the designer to find, for each interval
of the form [1:$] in a sequence, a suitable value of such that
the interval [1:$] can safely be replaced with the interval .
Typically a designer will choose a pessimistic value of so as
to be on the safe side.

Fig. 10. Example of power up sequence error (unidentified by assertions) due
to inaccurate timing information.

The performance of formal property verification is highly
sensitive to the sequential depth of the property. The architec-
tural power intent properties typically contain two or more UPF
extracted sequences—the sequential depth of these sequences
directly contribute to the sequential depth of the architectural
property. We present experimental results to demonstrate that
the quality of the bounds on the time intervals in individual se-
quences significantly influences the performance of formal ver-
ification on the GPM.
We then present an approach which improves the user de-

fined bounds by automatically extracting the worst case times
between successive events by formally analyzing the LPM of in-
dividual domains. Though this step comes with additional com-
putational cost, we show that the sequential depth of the ar-
chitectural assertions can be reduced considerably, leading to
overall performance improvement.
We now discuss the procedure for computing worst case time

intervals for the UPF-extracted per-domain sequences. Let us
consider the following assertion in which we are interested in
determining a tight bound on the parameter, .

property IU_powerup__idle_restore;

@(posedge CLOCK)

($fell(iu_pwr_off) && !iu_pwr_type &&

!iu_high_freq) ##[1:] $fell(iu_ret);

endproperty

Suppose, we are given a user-defined (pessimistic) bound, say
, for . Using a binary search technique between 1 and , we

can successively improve the bound while ensuring at the
end of each iteration that the LPM satisfies the property under
the new bound .
The experimental results (refer to Table IV in Section VII)

demonstrate the benefits of extracting exact time delay (upper-
bound) information from LPMs. In these results, binary search
was used to extract theminimum admissible bounds. In practice,
a user may choose to refine the bounds only to the extent that
makes the architectural verification feasible.
For example, the extracted timing information for eLeon3

design reveals the fact that during the power-down phase for
MULT-domain, from isolation state the LPM asserts signals for
saving data within two cycles (##[1:2]), but from save state
it takes a maximum of three cycles (##[1:3]) to provide
signals for powering the domain off. On the other hand, during
the power-on phase of MULT-domain, the LPM takes only
one cycle (##[1:1]) before moving to restoration step; and
from the restoration step it takes a maximum of three cycles
(##[1:3]) before it moves to the de-isolation step. In the
next section (Section VI), we shall discuss how these sequences
with accurate time boundaries can be used to generate the
global assertions.

HAZRA et al.: FORMAL VERIFICATION OF ARCHITECTURAL POWER INTENT 87

VI. GLOBAL ASSERTION GENERATION

Let us revisit the following power intent properties of
eLeon3 design, expressing the requirements as mentioned in
Section III-B. To build these global assertions for eLeon3,
the required UPF-extracted sequences after applying accurate
timing extraction procedure are given as follows:

sequence MULT_ON;

mult_pwr_on && $fell(mult_ret) && $fell(mult_iso);

endsequence

sequence DIV_ON;

div_pwr_on && $fell(div_ret) && $fell(div_iso);

endsequence

sequence PIU_ACTIVE;

(!piu_pwr_off && piu_pwr_type && piu_high_freq)

&& $fell(piu_ret) && $fell(piu_iso);

endsequence

sequence PIU_IDLE;

(!piu_pwr_off && !piu_pwr_type && !piu_high_freq)

&& $fell(piu_ret) && $fell(piu_iso);

endsequence

sequence SIU_ACTIVE;

(!siu_pwr_off && siu_pwr_type && siu_high_freq)

&& $fell(siu_ret) && $fell(siu_iso);

endsequence

sequence SIU_IDLE;

(!siu_pwr_off && !siu_pwr_type && !siu_high_freq)

&& $fell(siu_ret) && $fell(siu_iso);

endsequence

sequence MEM_CTLR_OFF_ON;

(!mem_ctlr_pwr_on && mem_ctlr_iso) ##1

mem_ctlr_pwr_on ##[1:2] !mem_ctlr_iso;

endsequence

sequence STORAGE_ELM_OFF_ON;

(!storage_elm_pwr_on && storage_elm_iso &&

storage_elm_ret) ##1 storage_elm_pwr_on

##[1:2] !storage_elm_ret ##[1:3] !storage_elm_iso;

endsequence

sequence STORAGE_ELM_ret-off;

storage_elm_pwr_on ##[1:2] !storage_elm_ret;

endsequence

sequence PIU_pwr-ACTIVE;

(!piu_pwr_off && piu_pwr_type && piu_high_freq);

endsequence

sequence PIU_pwr-IDLE;

(!piu_pwr_off && !piu_pwr_type && !piu_high_freq);

endsequence

sequence SIU_pwr-ACTIVE;

(!siu_pwr_off && siu_pwr_type && siu_high_freq);

endsequence

sequence SIU_pwr-IDLE;

(!siu_pwr_off && !siu_pwr_type && !siu_high_freq);

endsequence

Using the SVA sequences extracted from UPF specifications,
we transform the five architectural power intent properties (as
given in Section III-B) of our example, eLeon3, into the fol-
lowing SVA properties.
1) For the property, the multiplication unit (MULT-domain)
and the division unit (DIV-domain) are never ON together,
the corresponding SVA is:

property arch_prop1;

@(posedge CLOCK)

not (MULT_ON and DIV_ON);

endproperty

2) For the property, the integer units (PIU and SIU-domains)
can not be ON together with the multiplication unit
(MULT-domain), the corresponding SVA is:

3) For the property, the integer units (PIU and SIU-domains)
can not be ON together with the division unit (DIV-do-
main), the corresponding SVA is:

property arch_prop3;

@(posedge CLOCK)

not(PIU_ACTIVE and SIU_ACTIVE and DIV_ON)

and not(PIU_ACTIVE and SIU_IDLE and DIV_ON)

and not(PIU_IDLE and SIU_ACTIVE and DIV_ON)

not(PIU_IDLE and SIU_IDLE and DIV_ON);

endproperty

4) For the property, only after putting the memory controller
unit (MEM_CTLR-domain) fully powered-up, the storage-
elements (STORAGE_ELM-domain) are powered-up, the
corresponding SVA is:

property arch_prop4;

@(posedge CLOCK)

MEM_CTLR_OFF_ON

##[1:$] STORAGE_ELM_OFF_ON;

endproperty

5) For the property, only after the storage-elements
(STORAGE_ELM-domain) finish their restoration, the
power of the integer units (either PIU and/or SIU) can be
given, the corresponding SVA is:

property arch_prop5;

@(posedge CLOCK)

STORAGE_ELM_ret-off ##[1:$]

(PIU_pwr-ACTIVE or PIU_pwr-IDLE)

or (SIU_pwr-ACTIVE or SIU_pwr-IDLE);

endproperty

Here, the CLOCK-variable used to model the above properties is
the system clock of the PCL. It is assumed that the name of the
PCL-clock is known (or given) before we generate these global
properties.
The set of generated assertions are, then, verified formally

using an industrial strength formal verification tool, Magellan
[21]. Verification of UPF-extracted per-domain assertions en-
sure the correctness of the LPMs, whereas formal verification

88 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 21, NO. 1, JANUARY 2013

TABLE II
DESIGN STATISTICS FOR POWER MANAGEMENT UNITS (PCL)

TABLE III
UPF-SYNTHESIZED ASSERTIONS AND ARCHITECTURAL PROPERTIES

of the global assertions ensures the correctness of the architec-
tural power management strategy implemented by the PCL. In
the next section, we provide the experimental results obtained
by such formal verification procedure.

VII. EXPERIMENTAL RESULTS

In this section, we present experimental results on six case
studies, namely PowerTrans, PowerCounter, Promethues
and three low-power Enhanced Leon3 benchmarks [22],
[23], namely, eLeon3-SingleCore, eLeon3-DualCore, and
eLeon3-QuadCore.
Table II shows the statistics for only the PCLs of these de-

signs. It may be noted that the entire integrated circuit is much
larger and not shown here, since we are concerned with the
size of the PCLs only. The number of inputs and outputs of
the PCL are shown in Columns 2 and 3, respectively. Columns
4–7 show the number of sequential elements, combinational el-
ements, nets, and power domains, respectively, in the PCLs. In
our experiments, the PCLs are given in Verilog HDL [15].
Table III shows the number of per-domain assertions ex-

tracted in Step 2) of our approach, and also the number of
architectural assertions developed in Step 1). Columns 2–5
present the number of per-domain sequences extracted for four
categories of predicates, namely, power on/off state predicates,
transient state predicates, intermediate state transition pred-
icates, and power up/down sequence predicates. Column 6
presents the number of sequences capturing illegal transitions.
The runtime for extracting the per-domain assertions is negli-
gible and hence not reported here. Column 7 shows the number
of properties developed (manually) from the architectural
power intent using the predicates generated in Step 1).
Table IV demonstrates the impact of Step 3) on the perfor-

mance of Step-5. All our experiments were performed on a
2.8 GHz. Intel XEON processor with 4 GB RAM. Column 2
presents the number of architectural (global) properties used
for the experiment. Column 3 denotes the time to extract the
accurate upper bound using Step 3). Column 4 reports the
formal verification time (building running) of the architec-
tural properties with the extracted bound. Column 5 is the sum

TABLE IV
FORMAL VERIFICATION WITH ACCURATE TIMING INFORMATION

TABLE V
FORMAL VERIFICATION RESULTS ON MAGELLAN

of Columns 3 and 4, and it represents the total time required for
formal verification using our approach (including the timing
for real-time boundary extraction). Columns 6–8 reports the
run-times of formal verification without using the timing extrac-
tion step (that is, Step 3))—in these cases we used pre-defined
(pessimistic) guesses on the time bounds, such as #[1:4] for
Column 6, #[1:5] for Column 7, and #[1:6] for Column
8. Comparing these columns with Column 5 demonstrates the
relevance of Step 3 in our approach. In all these experiments,
the extracted time-bounds were within the range of #[1:3].
In spite of the fact that the guesses were only marginally
higher, we had a significant impact on performance of formal
verification. This is because, the inaccuracies in the sequential
depth of individual control sequences add up to slightly larger
sequential depths for the global assertions, resulting in exposing
the known sensitivity of formal verification with sequential
depth. For the larger eLeon3 PCLs, formal verification failed to
scale (abbreviated as “Mem. O/F” in Table IV) in the absence
of Step 3).
Table V presents the formal verification results (obtained in

Step 5)) including their building and running times using Mag-
ellan [21] as the formal verification tool. It shows that with accu-
rate extracted time bounds for per-domain sequences, the indus-
trial formal verification tools are capable of formally verifying
the global power management logic. Columns 2 and 3 show
the total number of extracted per-domain assertions by our tool
and the number of generated global assertions, respectively. The
time taken (in seconds) for building and running the design are
presented in Columns 4 and 5, respectively. This makes PCLs
very good candidates for formal verification as demonstrated by
the run-times in Table V.
It is anticipated that future SOCs with more than 100 cores

may have many more power domains and power states, but we
believe that PCLs will still remain within feasible limits for ver-
ifying by our approach.

HAZRA et al.: FORMAL VERIFICATION OF ARCHITECTURAL POWER INTENT 89

VIII. CONCLUSION

The verification community has been working on automatic
extraction of per-domain assertions from UPF specifications in
recent times. We show that automatically extracted sequences
from per-domain UPF specifications can be used to automati-
cally translate inter-domain global power intent properties into
SystemVerilog assertions in terms of low-level per-domain con-
trol signals—thereby bridging the disconnect between architec-
tural power intent properties which are expressed in terms of
the major power states of multiple power domains and the low-
level control sequences which model transitions between local
power states. We further extended our approach to extract accu-
rate real-time bounds on the per-domain sequences before they
can be used within the architectural assertions. We integrated
the whole methodology into our tool (POWER-TRUCTOR) and
produced relevant results over some industrial test-cases. Our
methodology helps the verification engineer not only to find
deep low-power functional bugs in the design but also to shorten
the time to find bugs, thus increasing verification productivity.
Using high-level models to express properties at both the per-
domain and the inter-domain level, the user can automate the
assertion generation capabilities which could now be proved
formally.

APPENDIX
UPF SPECIFICATION FOR ENHANCED LEON3 (eLeon3)

A UPF specification for a design consists of the definitions
of the power domains, the supply networks and logic specifi-
cation for isolation, retention and level shifting strategies. We
describe the UPF specification for the PIU-domain of eLeon3.
The UPF for the SIU, MULT, DIV, MEM_CTLR, CACHE, and
STORAGE_ELM domains are defined similarly.

Creating Power Domains

A power domain is a collection of design elements that share
a primary supply set. Fig. 7 shows the seven power domains in
eLeon3, namely, PIU, SIU,MULT,DIV,MEM_CTLR, CACHE,
and STORAGE_ELM. We declare these power domains in UPF
2.0 as:

create_power_domain TOP -include_scope -scope /top_eleon3

create_power_domain PIU -include_scope

-elements { /top_eleon3/primary_IU

/top_eleon3/superscalar_controller }

create_power_domain SIU -include_scope

-elements { /top_eleon3/secondary_IU }

create_power_domain MULT -include_scope

-elements { /top_eleon3/multiplication_unit }

create_power_domain DIV -include_scope

-elements { /top_eleon3/division_unit }

create_power_domain MEM_CTLR -include_scope

-elements { /topeleon3/cache_controller

/top_eleon3/memory_controller

/top_eleon3/memory_ahb_interface }

create_power_domain CACHE -include_scope

-elements { /top_eleon3/iCache /top_eleon3/dCache }

create_power_domain STORAGE_ELM -include_scope

-elements { /top_eleon3/memory

/top_eleon3/register_filebank }

Creating Supply Network

The UPF supply network creation commands designate the
power supply network that connects power supplies to the de-
sign elements in a design. The supply network is a set of supply
nets, supply ports, switches, and potentially, voltage regulators
and generators. We express the power supply network (nets,
ports and power switches) for the domain, PIU, of eLeon3 in
UPF 2.0 as follows:

Supply Network and Supply Port Creation

create_supply_port VDD_high_port -direction in

create_supply_port VDD_low_port -direction in

create_supply_port VSS_gnd_port -direction in

create_supply_net VDD_high -domain PIU

create_supply_net VDD_low -domain PIU

create_supply_net VSS_gnd -domain PIU

create_supply_net VDD_piu -domain PIU

connect_supply_net VDD_high -ports { VDD_high_port }

connect_supply_net VDD_low -ports { VDD_low_port }

connect_supply_net VSS_gnd -ports { VSS_gnd_port }

set_domain_supply_net PIU

-primary_power_net VDD_piu

-primary_ground_net VSS_gnd

Power Switch Creation

create_power_switch SW_piu -domain PIU

-output_supply_port { out_piu VDD_piu }

-input_supply_port { inhigh_piu VDD_high }

-input_supply_port { inlow_piu VDD_low }

-control_port {piu_cp1 /pmu/pmu_IUprimary/piu_pwr_off}

-control_port {piu_cp2 /pmu/pmu_IUprimary/piu_pwr_type}

-on_state {ACTIVE_piu inhigh_piu {!piu_cp1 && piu_cp2}}

-on_partial_state { IDLE_piu inlow_piu

{!piu_cp1 && !piu_cp2} }

-off_state { OFF_piu {piu_cp1} }

Supply Port State (Voltage Values) Assignment

add_port_state VDD_high_port

-state { VDD_high_on 1.0 }

-state { VDD_high_off off }

add_port_state VDD_low_port

-state { VDD_low_on 0.6 }

-state { VDD_low_off off }

add_port_state VSS_gnd_port

-state { VSS_gnd_on 0.0 }

-state {VSS_gnd_off off}

add_port_state SW_piu/out_piu

-state { out_piu_active 1.0 }

-state { out_piu_idle 0.6 }

-state { out_piu_off off }

90 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 21, NO. 1, JANUARY 2013

Creating Multiple Voltage-Frequency Combinations

UPF can specify the power states for every power domain,
through which multiple voltage and frequency attributes of a
power domain can be suitably expressed. We express the power
states for the domain, PIU, of eLeon3 in UPF 2.0 as follows:

add_power_state -domain PIU

-state { ACTIVE_piu_MODE

-logic_eq { SW_piu && piu_high_freq &&

interval(clk posedge negedge) 100ns }

-supply_eq { {power == ‘{FULL_ON, 1.0}} &&

{ground == ‘{FULL_ON, 0}} }

-simstate NORMAL }

-state { IDLE_piu_MODE

-logic_eq { SW_piu && !piu_high_freq &&

interval(clk posedge negedge) 200ns }

-supply_eq { {power == ‘{FULL_ON, 0.6}}
&& {ground == ‘{FULL_ON, 0}} }

-simstate NORMAL }

-state { OFF_piu_MODE

-logic_eq { !SW_piu }

-supply_eq { {power == ‘{OFF}} }

-simstate CORRUPT }

-legal

Extending Logic Specification

UPF defines extensions of the logic design with power-spe-
cific capabilities and constraints without modifying the orig-
inal logic specification. Usually, Isolation, Retention, and Level-
Shifter are the basic power specifications which will result in
extended logic circuitry, while UPF gets synthesized into gate-
level power circuitry or PCC. The following extends the UPF
specification of eLeon3 by introducing isolation and retention
strategies for PIU power-domain:

Isolation Definition

set_isolation ISO_piu -domain PIU

-isolation_power_net VDD_high

-isolation_ground_net VSS_gnd

-clamp_value { 0 }

-applies_to outputs

set_isolation_control ISO_piu -domain PIU

-isolation_signal /pmu/pmu_IUprimary/piu_iso

-isolation_sense high

-location self

Retention Definition

set_retention RET_piu -domain PIU

-retention_power_net VDD_high

-retention_ground_net VSS_gnd

-elements { ASR20 IRQ }

set_retention_control RET_piu -domain PIU

-save_signal { /pmu/pmu_IUprimary/piu_ret high }

-restore_signal { /pmu/pmu_IUprimary/piu_ret low }

ACKNOWLEDGMENT

The authors would like to thank the reviewers for their valu-
able comments and constructive suggestions which have en-
riched this paper significantly and the editor for handling this
paper.

REFERENCES

[1] ACPI, “Advanced Configuration and Power Interface,” [Online].
Available: www.acpi.info

[2] K. Agarwal, K. Nowka, H. Deogun, and D. Sylvester, “Power gating
with multiple sleep modes,” in Proc. 7th Int. Symp. Quality Electron.
Design (ISQED), 2006, pp. 633–637.

[3] N. Agarwal and N. J. Dimopoulos, “Automated power gating of regis-
ters using CoDeL and FSM branch prediction,” in Proc. 7th Int. Conf.
Embed. Comput. Syst.: Arch., Model., Simulation (SAMOS), 2007, pp.
294–303.

[4] S. Bailey, G. Chidolue, and A. Crone, “Low power design and ver-
ification techniques,” Mentor Graphics, White Paper, 2007. [Online].
Available: http://low-powerdesign.com/Low_Power_WP_9-13-07.pdf

[5] S. Bailey, A. Srivastava, M. Gorrie, and R.Mukherjee, “To retain or not
to retain: How do I verify the state elements of my low power design?,”
in Proc. DVCon, 2008, pp. 11–17.

[6] A. Bellaouar and M. I. Elmasry, Low-Power Digital VLSI Design.
Norwell, MA: Kluwer, 1995.

[7] F. Bembaron, S. Kakkar, R. Mukherjee, and A. Srivastava, “Low
power verification methodology using UPF,” in Proc. DVCon, 2009,
pp. 228–233.

[8] D. Brooks, P. Bose, V. Srinivasan, M. K. Gschwind, P. G. Emma,
and M. G. Rosenfield, “New methodology for early-stage, microarchi-
tecture-level power-performance analysis of microprocessors,” IBM J.
R&D, vol. 47, no. 5/6, pp. 653–670, 2003.

[9] A. R. Chandrakasan and R. W. Brodersen, Low-Power Digital CMOS
Design. Norwell, MA: Kluwer, 1995.

[10] G. Chidolue and B. Ramanandin, “Upping verification productivity of
low power designs,” in Proc. DVCon, 2008, pp. 3–10.

[11] A. Crone and G. Chidolue, “Functional verification of low power de-
signs at RTL,” in Workshop for Power Tim. Model., Opt. Simulation
(PATMOS), LNCS-4644, 2007, pp. 288–299.

[12] D. Flynn, “Design for power gating—and what UPF can, and cannot,
do for you!,” presented at the SNUG, San Jose, CA, 2009.

[13] A. Hazra, S. Mitra, P. Dasgupta, A. Pal, D. Bagchi, and K. Guha,
“Leveraging UPF-extracted assertions for modeling and verification of
architectural power intent,” in Proc. 47th Design Autom. Conf. (DAC),
2010, pp. 773–776.

[14] Z. Hu, A. Buyuktosunoglu, V. Srinivasan, V. Zyuban, H. Jacobson,
and P. Bose, “Microarchitectural techniques for power gating of execu-
tion units,” in Proc. Int. Symp. Low Power Electron. Design (ISLPED),
2004, pp. 32–37.

[15] IEEE VHDL Standard, IEEE 1364-2005 Standard Verilog Hardware
Description Language, 2006 [Online]. Available: http://ieeex-
plore.ieee.org/xpls/abs all.jsp?arnumber=1620780

[16] C. Isci, A. Buyuktosunoglu, C.-Y. Cher, P. Bose, and M. Martonosi,
“An analysis of efficient multi-core global power management poli-
cies: Maximizing performance for a given power budget,” inProc. 39th
Annu. IEEE/ACM Int. Symp. Microarch. (MICRO), 2006, pp. 347–358.

[17] S. Jadcherla, J. Bergeron, Y. Inoue, and D. Flynn, “Verification
methodology manual for low power (VMM-LP),” 2009.

[18] M. Keating, D. Flynn, R. Aitken, A. Gibbons, and K. Shi, Low Power
Methodology Manual (LPMM)—For System-on-Chip Design, 2nd
ed. New York: Springer, 2008.

[19] N. Khan and W. Winkeler, “Power assertions and coverage for im-
proving quality of low power verification and closure of power intent,”
in Proc. DVCon, 2008, pp. 53–58.

[20] A. Lungu, P. Bose, D. J. Sorin, S. German, and G. Janssen, “Multicore
power management: Ensuring robustness via early-stage formal veri-
fication,” in Proc. 7th IEEE/ACM Int. Conf. Formal Methods Models
for Co-Design (MEMOCODE), 2009, pp. 78–87.

[21] Magellan, “An Industrial Formal Verification Tool From Synopsys,”
[Online]. Available: www.synopsys.com/tools/verification/function-
alverification/pages/magellan.aspx

[22] K. Marcinek, A. W. Luczyk, and W. A. Pleskacz, “Enhanced LEON3
core for superscalar processing,” in Proc. 12th Int. Symp. Design Di-
agnostics Electron. Circuits Syst. (DDECS), 2009, pp. 238–241.

HAZRA et al.: FORMAL VERIFICATION OF ARCHITECTURAL POWER INTENT 91

[23] K. Marcinek, A. W. Luczyk, and W. A. Pleskacz, “Enhanced LEON3
low power IP core for DSM technologies,” in Proc. 16th Int. Conf.
Mixed Design Integr. Circuits Syst. (MIXDES), 2009, pp. 262–265.

[24] R. Mukherjee, A. Srivastava, and S. Bailey, “Static and formal verifi-
cation of power aware designs at the RTL using UPF,” in Proc. DVCon,
2008, pp. 42–47.

[25] Power Forward, “A Practical Guide for Low Power Design—An Ex-
perience With CPF,” 2008. [Online]. Available: http://www.powerfor-
ward.org/

[26] K. Roy and S. C. Prasad, Low-Power CMOS VLSI Circuit Design.
Singapore: Wiley-Interscience, 2000.

[27] K. Snyder, C. Deaton, and D. Smith, “Formal Verification Checks IC
Power Reduction Features,” Sep. 3, 2008. [Online]. Available: http://
www.scdsource.com/article.php?id=309

[28] Spyglass-Power, “Early Power Estimation Tool From Atrenta,” [On-
line]. Available: http://www.atrenta.com/solutions/spyglass-family/
spyglass power.htm

[29] SystemVerilog LRM, “SystemVerilog LRM 3.1a by Accellera,” 2004.
[Online]. Available: http://www.systemverilog.org

[30] Turandot, “A Power-Performance Analysis Simulator From IBM,”
[Online]. Available: http://www.research.ibm.com/MET/Toolset/Tu-
randot/turandot.html

[31] UPF-2.0. Unified Power Format 2.0 Standard [Draft Version]—IEEE
Draft Standard for Design and Verification of Low Power Integrated
Circuits, IEEE P1801/D18, Oct. 23, 2008.

Aritra Hazra (S’08) received the B.E. degree
from the Department of Computer Science and
Engineering, Jadavpur University, Kolkata, India, in
2006 and the M.S. degree from the Department of
Computer Science and Engineering, Indian Institute
of Technology, Kharagpur, India, in 2010, where
he is currently pursuing the Ph.D. degree from the
Department of Computer Science and Engineering.
His research interests include verification of VLSI

designs, power intent verification, and functional re-
liability analysis. He has published several research

papers in various international conferences.
Mr. Hazra was a recipient of a Best Student Paper in VLSI Design Conference

(2010). He has also been awarded with the Microsoft Research (India) Fellow-
ship in 2011.

Sahil Goyal received the B.Tech. degree (with
honors) in computer science and engineering from
Indian Institute of Technology, Kharagpur, India, in
2010.
He is an Analyst with Global Technology, Bar-

clays Capital, Singapore. His research interests
include formal verification, data mining, and arti-
ficial intelligence. Previously he has worked with
Minekey, India.

Pallab Dasgupta (SM’99) received the B.Tech.,
M.Tech., and Ph.D. degrees in computer science
from Indian Institute of Technology, Kharagpur (IIT
Kharagpur), India.
He is currently a Professor with the Department of

Computer Science and Engineering, IIT Kharagpur.
His research interests include Formal verification,
artificial intelligence, and VLSI. He has over 100
research papers and two books in these areas. He
currently leads the Formal Verification Group,
Department of Computer Science and Engineering,

IIT Kharagpur (www.facweb.iitkgp.ernet.in/~pallab/forverif.html). He is also
the Co-Director of Synopsys CAD Lab, IIT Kharagpur.

Ajit Pal (SM’92) received the M.Tech. and Ph.D. de-
grees from the Institute of Radio Physics and Elec-
tronics, Calcutta University, West Bengal, India, in
1971 and 1976, respectively.
He is presently a Professor with the Department

of Computer Science and Engineering, Indian Insti-
tute of Technology, Kharagpur, India. Before joining
IIT Kharagpur in 1982, he was with the Indian Sta-
tistical Institute, Calcutta, ITI, Naini, and DLRL, Hy-
derabad, in various capacities. His research interests
include real time systems, CAD for VLSI, and com-

puter networks. He has over 90 publications in reputed journals and conference
proceedings and a book entitled Microprocessors: Principles and Applications
(TMH, 1990).
Prof. Pal is the Fellow of the IETE, India.

