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Abstract— Transient multiple cell upsets (MCUs) are becoming
major issues in the reliability of memories exposed to radiation
environment. To prevent MCUs from causing data corruption,
more complex error correction codes (ECCs) are widely used to
protect memory, but the main problem is that they would require
higher delay overhead. Recently, matrix codes (MCs) based on
Hamming codes have been proposed for memory protection.
The main issue is that they are double error correction codes
and the error correction capabilities are not improved in all
cases. In this paper, novel decimal matrix code (DMC) based
on divide-symbol is proposed to enhance memory reliability
with lower delay overhead. The proposed DMC utilizes decimal
algorithm to obtain the maximum error detection capability.
Moreover, the encoder-reuse technique (ERT) is proposed to
minimize the area overhead of extra circuits without disturbing
the whole encoding and decoding processes. ERT uses DMC
encoder itself to be part of the decoder. The proposed DMC
is compared to well-known codes such as the existing Hamming,
MCs, and punctured difference set (PDS) codes. The obtained
results show that the mean time to failure (MTTF) of the
proposed scheme is 452.9%, 154.6%, and 122.6% of Hamming,
MC, and PDS, respectively. At the same time, the delay
overhead of the proposed scheme is 73.1%, 69.0%, and 26.2%
of Hamming, MC, and PDS, respectively. The only drawback
to the proposed scheme is that it requires more redundant bits
for memory protection.

Index Terms— Decimal algorithm, error correction codes
(ECCs), mean time to failure (MTTF), memory, multiple cells
upsets (MCUs).

I. INTRODUCTION

AS CMOS technology scales down to nanoscale and
memories are combined with an increasing number of

electronic systems, the soft error rate in memory cells is
rapidly increasing, especially when memories operate in space
environments due to ionizing effects of atmospheric neutron,
alpha-particle, and cosmic rays [1].

Although single bit upset is a major concern about memory
reliability, multiple cell upsets (MCUs) have become a serious
reliability concern in some memory applications [2]. In order
to make memory cells as fault-tolerant as possible, some error
correction codes (ECCs) have been widely used to protect
memories against soft errors for years [3]–[6]. For example,
the Bose–Chaudhuri–Hocquenghem codes [7], Reed–Solomon
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codes [8], and punctured difference set (PDS) codes [9] have
been used to deal with MCUs in memories. But these codes
require more area, power, and delay overheads since the
encoding and decoding circuits are more complex in these
complicated codes.

Interleaving technique has been used to restrain MCUs [10],
which rearrange cells in the physical arrangement to separate
the bits in the same logical word into different physical
words. However, interleaving technique may not be practically
used in content-addressable memory (CAM), because of the
tight coupling of hardware structures from both cells and
comparison circuit structures [11], [12].

Built-in current sensors (BICS) are proposed to assist with
single-error correction and double-error detection codes to
provide protection against MCUs [13], [14]. However, this
technique can only correct two errors in a word.

More recently, in [15], 2-D matrix codes (MCs) are
proposed to efficiently correct MCUs per word with a low
decoding delay, in which one word is divided into multiple
rows and multiple columns in logical. The bits per row are
protected by Hamming code, while parity code is added in
each column. For the MC [15] based on Hamming, when two
errors are detected by Hamming, the vertical syndrome bits
are activated so that these two errors can be corrected. As a
result, MC is capable of correcting only two errors in all cases.
In [16], an approach that combines decimal algorithm with
Hamming code has been conceived to be applied at software
level. It uses addition of integer values to detect and correct
soft errors. The results obtained have shown that this approach
have a lower delay overhead over other codes.

In this paper, novel decimal matrix code (DMC) based
on divide-symbol is proposed to provide enhanced memory
reliability. The proposed DMC utilizes decimal algorithm
(decimal integer addition and decimal integer subtraction) to
detect errors. The advantage of using decimal algorithm is
that the error detection capability is maximized so that the
reliability of memory is enhanced. Besides, the encoder-reuse
technique (ERT) is proposed to minimize the area overhead
of extra circuits (encoder and decoder) without disturbing the
whole encoding and decoding processes, because ERT uses
DMC encoder itself to be part of the decoder.

This paper is divided into the following sections. The
proposed DMC is introduced and its encoder and decoder
circuits are present in Section II. This section also illustrates
the limits of simple binary error detection and the advantage
of decimal error detection with some examples. The reliability
and overheads analysis of the proposed code are analyzed in
Section III. In Section IV, the implementation of decimal error
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Fig. 1. Proposed schematic of fault-tolerant memory protected with DMC.

detection together with BICS for error correction in CAM is
provided. Finally, some conclusions of this paper are discussed
and shared in Section V.

II. PROPOSED DMC

In this section, DMC is proposed to assure reliability in the
presence of MCUs with reduced performance overheads, and
a 32-bit word is encoded and decoded as an example based
on the proposed techniques.

A. Proposed Schematic of Fault-Tolerant Memory

The proposed schematic of fault-tolerant memory is
depicted in Fig. 1. First, during the encoding (write) process,
information bits D are fed to the DMC encoder, and then
the horizontal redundant bits H and vertical redundant bits
V are obtained from the DMC encoder. When the encoding
process is completed, the obtained DMC codeword is stored
in the memory. If MCUs occur in the memory, these errors
can be corrected in the decoding (read) process. Due to the
advantage of decimal algorithm, the proposed DMC has higher
fault-tolerant capability with lower performance overheads.
In the fault-tolerant memory, the ERT technique is proposed
to reduce the area overhead of extra circuits and will be
introduced in the following sections.

B. Proposed DMC Encoder

In the proposed DMC, first, the divide-symbol and
arrange-matrix ideas are performed, i.e., the N-bit word is
divided into k symbols of m bits (N = k × m), and these
symbols are arranged in a k1 × k2 2-D matrix (k = k1 × k2,
where the values of k1 and k2 represent the numbers of
rows and columns in the logical matrix respectively). Second,
the horizontal redundant bits H are produced by performing
decimal integer addition of selected symbols per row. Here,
each symbol is regarded as a decimal integer. Third, the
vertical redundant bits V are obtained by binary operation
among the bits per column. It should be noted that both
divide-symbol and arrange-matrix are implemented in logical
instead of in physical. Therefore, the proposed DMC does not
require changing the physical structure of the memory.

To explain the proposed DMC scheme, we take a 32-bit
word as an example, as shown in Fig. 2. The cells from
D0 to D31 are information bits. This 32-bit word has been
divided into eight symbols of 4-bit. k1 = 2 and k2 = 4 have
been chosen simultaneously. H0–H19 are horizontal check bits;

V0 through V15 are vertical check bits. However, it should be
mentioned that the maximum correction capability (i.e., the
maximum size of MCUs can be corrected) and the number
of redundant bits are different when the different values for
k and m are chosen. Therefore, k and m should be carefully
adjusted to maximize the correction capability and minimize
the number of redundant bits. For example, in this case, when
k = 2×2 and m = 8, only 1-bit error can be corrected and the
number of redundant bits is 40. When k = 4 × 4 and m = 2,
3-bit errors can be corrected and the number of redundant bits
is reduced to 32. However, when k = 2 × 4 and m = 4, the
maximum correction capability is up to 5 bits and the number
of redundant bits is 36. In this paper, in order to enhance
the reliability of memory, the error correction capability is
first considered, so k = 2 × 4 and m = 4 are utilized to
construct DMC.

The horizontal redundant bits H can be obtained by decimal
integer addition as follows:

H4H3H2 H1H0 = D3 D2 D1 D0 + D11 D10 D9 D8 (1)

H9 H8H7H6H5 = D7 D6 D5 D4 + D15 D14 D13 D12 (2)

and similarly for the horizontal redundant bits
H14H13H12H11H10 and H19H18H17H16H15, where “+”
represents decimal integer addition.

For the vertical redundant bits V , we have

V0 = D0 ⊕ D16 (3)

V1 = D1 ⊕ D17 (4)

and similarly for the rest vertical redundant bits.
The encoding can be performed by decimal and binary

addition operations from (1) to (4). The encoder that computes
the redundant bits using multibit adders and XOR gates is
shown in Fig. 3. In this figure, H19 − H0 are horizontal
redundant bits, V15 − V0 are vertical redundant bits, and the
remaining bits U31 − U0 are the information bits which are
directly copied from D31 to D0. The enable signal En will be
explained in the next section.

C. Proposed DMC Decoder

To obtain a word being corrected, the decoding process
is required. For example, first, the received redundant
bits H4H3 H2H1H

′
0 and V

′
0 − V

′
3 are generated by the received

information bits D
′
. Second, the horizontal syndrome bits

�H4H3H2 H1H0 and the vertical syndrome bits S3 − S0 can
be calculated as follows:

�H4H3H2 H1H0 = H4 H3H2H1H
′
0 − H4H3H2 H1H0 (5)

S0 = V
′
0 ⊕ V0 (6)

and similarly for the rest vertical syndrome bits, where “−”
represents decimal integer subtraction.

When �H4H3H2 H1H0 and S3 − S0 are equal to zero, the
stored codeword has original information bits in symbol 0
where no errors occur. When �H4 H3H2H1H0 and S3 − S0
are nonzero, the induced errors (the number of errors is 4 in
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Fig. 2. 32-bits DMC logical organization (k = 2 × 4 and m = 4). Here, each symbol is regarded as a decimal integer.
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this case) are detected and located in symbol 0, and then these
errors can be corrected by

D0correct = D0 ⊕ S0. (7)

The proposed DMC decoder is depicted in Fig. 4, which
is made up of the following submodules, and each executes
a specific task in the decoding process: syndrome calculator,
error locator, and error corrector. It can be observed from this
figure that the redundant bits must be recomputed from the
received information bits D

′
and compared to the original

3-bit MCUs 

1 0 0 1 1 1
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S0 = 1 + 1
= 0 (binary)

B1 B2 B3 C0 C1

0 0 1 0 1 0

B'
0 B'

1 B'
2 B'
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0 C'

1

Radiation particle 
strikes memory S1 = 0 + 1

= 1 (binary)

Fig. 5. Limits of binary error detection in simple binary operations.

set of redundant bits in order to obtain the syndrome bits
�H and S. Then error locator uses �H and S to detect and
locate which bits some errors occur in. Finally, in the error
corrector, these errors can be corrected by inverting the values
of error bits.

In the proposed scheme, the circuit area of DMC is
minimized by reusing its encoder. This is called the ERT. The
ERT can reduce the area overhead of DMC without disturbing
the whole encoding and decoding processes. From Fig. 4, it
can be observed that the DMC encoder is also reused for
obtaining the syndrome bits in DMC decoder. Therefore, the
whole circuit area of DMC can be minimized as a result of
using the existent circuits of encoder. Besides, this figure also
shows the proposed decoder with an enable signal En for
deciding whether the encoder needs to be a part of the decoder.
In other words, the En signal is used for distinguishing the
encoder from the decoder, and it is under the control of the
write and read signals in memory. Therefore, in the encoding
(write) process, the DMC encoder is only an encoder to
execute the encoding operations. However, in the decoding
(read) process, this encoder is employed for computing the
syndrome bits in the decoder. These clearly show how the
area overhead of extra circuits can be substantially reduced.

D. Limits of Simple Binary Error Detection

For the proposed binary error detection technique in [13],
although it requires low redundant bits, its error detection
capability is limited. The main reason for this is that its error
detection mechanism is based on binary.

We illustrate the limits of this simple binary error
detection [13] using a simple example. Let us suppose that
the bits B3, B2, B1, and B0 are original information bits
and the bits C0 and C1 are redundant bits shown in Fig. 5.
The bits C0 and C1 are obtained using the binary algorithm
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Fig. 6. Advantage of decimal error detection. Using decimal algorithm, H4 H3 H2 H1 H0 will not be “0” (decimal). This represents that MCUs can be detected
and corrected so that the decoding error can be avoided.
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Fig. 7. Types of MCUs can be corrected by our proposed DMC. Type 1 is a
single error, type 2 is an inconsecutive error in two consecutive symbols,
type 3 is a consecutive error in two consecutive symbols, type 4 is an
inconsecutive error in two inconsecutive symbols, and type 5 is a consecutive
error in four consecutive symbols.

(XOR)

C0 = B0 ⊕ B2 = 1 ⊕ 0 = 1 (8)

C1 = B1 ⊕ B3 = 0 ⊕ 1 = 1. (9)

Then assume now that MCUs occur in bits B3, B2, and B0
(i.e., B

′
3 = 0, B

′
2 = 1, and B

′
0 = 0). The received redundant

bits C
′
0 and C

′
1 are computed

C
′
0 = B

′
0 ⊕ B

′
2 = 0 ⊕ 1 = 1 (10)

C
′
1 = B

′
1 ⊕ B

′
3 = 0 ⊕ 0 = 0. (11)

In order to detect these errors, the syndrome bits S0 and S1
are obtained

S0 = C
′
0 ⊕ C0 = 1 ⊕ 1 = 0 (12)

S1 = C
′
1 ⊕ C1 = 0 ⊕ 1 = 1. (13)

These results mean that error bits B2 and B0 are wrongly
regarded as the original bits so that these two error bits are
not corrected. This example illustrates that for this simple
binary operation [13], the number of even bit errors cannot
be detected.

E. Advantage of Decimal Error Detection

In the previous discussion, it has been shown that error
detection [13] based on binary algorithm can only detect a
finite number of errors. However, when the decimal algorithm

is used to detect errors, these errors can be detected so
that the decoding error can be avoided. The reason is that
the operation mechanism of decimal algorithm is different
from that of binary. The detection procedure of decimal error
detection using the proposed structure shown in Fig. 2 is fully
described in Fig. 6. First of all, the horizontal redundant bits
H4H3H2 H1H0 are obtained from the original information bits
in symbols 0 and 2 according to (1)

H4H3H2 H1H0 = D3 D2 D1 D0 + D11 D10 D9 D8

= 1100 + 0110

= 10010. (14)

When MCUs occur in symbol 0 and symbol 2, i.e.,
the bits in symbol 0 are upset to “1111” from “1100”
(D3 D2 D1 D

′
0 = 1111) and the bits in symbol 2 are upset

to “0111” from “0110” (D11 D10 D9 D
′
8 = 0111). During

the decoding process, the received horizontal redundant bits
H4H3H2 H1H

′
0 are first computed, as follows:

H4H3H2 H1H
′
0 = D11 D10 D9 D

′
8 + D3 D2 D1 D

′
0

= 0111 + 1111

= 10110. (15)

Then, the horizontal syndrome bits �H4H3H2 H1H0 can be
obtained using decimal integer subtraction

�H4H3H2 H1H0 = H4 H3H2H1H
′
0 − H4H3H2 H1H0

= 10110 − 10010

= 00100. (16)

The decimal value of �H4H3H2 H1H0 is not “0,” which
represents that errors are detected and located in symbol 0 or
symbol 2. Subsequently, the precise location of the bits that
were flipped can be located by using the vertical syndrome
bits S3 − S0 and S11 − S8. Finally, all these errors can
be corrected by (7). Therefore, based on decimal algorithm,
the proposed technique has higher tolerance capability for
protecting memory against MCUs.

As a result, it is possible that all single and double errors
and any types of multiple errors per row can be corrected
by the proposed technique no matter whether these errors are
consecutive or inconsecutive in Fig. 7. The proposed DMC
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Fig. 8. Error type cannot be corrected by our proposed DMC. The main reason is that H4 H3H2 H1 H0 will be “0” (decimal). Note that even though 7-bit
errors occur in symbols 0 and 2 simultaneously, the decoding error can be refused.

can easily correct upsets of type 1, 2, and 3, because these are
the essential property of DMC: any types of single-error and
multiple-error corrections in two consecutive symbols. Upsets
of types 4 and 5 introduced in Fig. 7 are also corrected because
the multiple errors per row can be detected by the horizontal
syndrome bits (see Fig. 6). These show that the proposed
technique is an attractive option to protect memories from
large MCUs. However, for the upsets of type 4 and 5, it is
important to recognize that it can result in decoding error when
the following prerequisite factors are achieved simultaneously
(this error is typical of its kind).

1) The decimal integer sum of information bits in symbols
0 and 2 is equal to 2m − 1.

2) All the bits in symbols 0 and 2 are upset.
The more detailed explanation is shown in Fig. 8. Assuming

that these two factors have been achieved, according to the
encoding and decoding processes of DMC, H4H3H2 H1H0,
and H4H3H2 H1H

′
0 are computed, as follows:

H4H3 H2H1H0 = D3 D2 D1 D0 + D11 D10 D9 D8

= 0110 + 1001

= 01111 (17)

H4H3 H2H1H
′
0 = D3 D2 D1 D

′
0 + D11 D10 D9 D

′
8

= 1001 + 0110

= 01111. (18)

Then the horizontal syndrome bits �H4 H3H2H1H0 can be
obtained

�H4H3 H2H1H0 = H4 H3H2H1 H
′
0 − H4H3H2 H1H0

= 01111 − 01111

= 00000. (19)

This result means that no errors occur in symbols 0 and 2
and memory will suffer a failure. However, this case is rare.
For example, when m = 4, the probability of decoding errors
is

P�H=0 = 4 ×
(

1
/

24
)2 × PMCU8 ≈ 0.001. (20)

If m = 8

P�H=0 = 4 ×
(

1
/

28
)2 × PMCU16 ≈ 0.0000011. (21)

Fig. 9. J (S) s versus time of different protection codes (M = 32).

PMCU8 represents the probability of eight upsets in a given
word, and similarly for PMCU16. Moreover, according to the
radiation experiments in [1], [2], [17], and [18], it can be
obtained that the word in a memory usually has a limited
number of consecutive errors and the interval of these errors
is not more than three bits. Therefore, this should not be an
issue.

III. RELIABILITY AND OVERHEADS ANALYSIS

In this section, the proposed DMC has been implemented
in HDL, simulated with ModelSim and tested for functionality
by given various inputs. The encoder and decoder have been
synthesized by the Synopsys Design Compiler in the SMIC
0.18 μm technology. The area, power, and critical path delay
of extra circiuts have been obtained. For fair comparisions,
Hamming, PDS [9], and MC [15] are used for references.
Here, the usage of (64, 45) PDS is a triple-error correction
code [9] and its information bits is shorted to 32 bits from
45 bits.

A. Fault Injection

The correction coverage of PDS [9], MC [15], Hamming,
and the proposed DMC codes are obtained from one million
experiments. The results of coverage are shown in Table I. It
can be seen that our proposed DMC have superior protection
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TABLE I

CORRECTION FOR COVERAGE (32-bit)

ECC Codes
The Number of Errors in a Word

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

DMC (%) 100 100 100 100 100 92.6 84.7 76.0 66.7 60.9 54.5 47.7 40.0 31.6 22.3 11.8

PDS [9] (%) 100 100 100 0.8 0 0 0 0 0 0 0 0 0 0 0 0

MC [15] (%) 100 100 76.4 54.3 35.1 14.2 6.7 0.6 0 0 0 0 0 0 0 0

Hamming (%) 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

level compared with other codes. These results show how
our proposed technique provides single- and double-error
correction, but can also provide effective tolerance capabilities
against large MCUs that exceed the performance of other
codes.

B. Reliability Estimation

The reliability of our proposed code can be analyzed in
terms of the mean time to failure (MTTF). It is assumed that
MCUs arrive at memories following a Poisson distribution
[19]. For one word, the correctable probability R (S) after S
radiation events can be given by [14], [15], [20]

R (S) =
∑

i+ j+···+z≤T

P1
i P2

j · · · P S
z (22)

where T is the maximum number of errors andP S
z is the

correctable probability upon the reception of radiation event
S which causes z errors.

For a memory with M words, the correctable probability
J (S) after S radiation events can be given by

J (S) =
∑

a+b+···+e=S

Cx
M

Mx
R1

a R2
b · · · Rx

e (23)

where x (x ≤ S) is the number of words affected by radiation
events, Cx

M is the selection of x from M words in memory,
and Rx

e represents the correctable probability when e radiation
events affect x words.

If we assume that the word number M is 32 and the
correctable probability P S

z can be obtained from Table I, the
correctable probabilities J (S) s of different protection codes
have been shown in Fig. 9. It can be seen that the correctable
probability J (S) of the proposed scheme is larger than other
codes.

Then the MTTF can be given by (24), which is the integral
of function (23)

MTTF =
∫ ∞

0
J (t)dt . (24)

Table II shows MTTFs of different codes for different event
arrival rate λ. In this table, we can see that the proposed
scheme has higher MTTF by more than 122.6%, 154.6%,
and 452.9% compared to PDS [9], MC [15], and Hamming,
respectively.

In general cases, for the proposed technique, it can be
inferred that the larger the word widths, the higher the
tolerance capabilities and the better the reliabilities. For
example, for a 64-bit word, when k = 2 × 4 and m = 8 the
correction capability of the proposed technique is up to 9 bits.

TABLE II

MTTF (M = 32)

λ (Upsets/bit per Day) DMC PDS [9] MC [15] Hamming

10−4 1121.9 915.0 725.6 247.7

10−5 11218.8 9150.3 7256.5 2477.4

TABLE III

AREA, POWER, AND DELAY ANALYSIS OF ENCODER AND DECODER

ECC Codes
Area Power Delay

μm2 % mw % ns %

DMC 41572.6 100 10.8 100 4.9 100

PDS∗ [9] 486778.1 1170.9 221.1 2047.2 18.7 381.6

MC [15] 77933.7 187.5 24.7 228.7 7.1 144.9

Hamming 58409.4 140.5 20.5 189.8 6.7 136.7

*Using parallel decoder instead of serial decoder for fair comparisons

For a 128-bit word, when k = 2×4 and m = 16 the correction
capability of the proposed technique is up to 17 bits. However,
the correction capabilities of PDS, MC, and Hamming are
smaller than DMCs under the same word widths.

C. Overheads Analysis

For each protection code, area, power, and delay overheads
of encoder and decoder have been shown in Table III. From
Table III, we can observe that the proposed MC has a
significant reduction compared with other codes. The area
and power overheads of PDS are 1170.9% and 2047.2%
of the proposed scheme, respectively. The delay overhead
of DMC is 26.2%, 69.0%, and 73.1% of PDS [9], MC
[15], and Hamming, respectively. This indicates that the
memory with the proposed scheme performs faster than other
codes. Different decoding algorithms could result in different
overheads. The decoding algorithm of PDS [9] is more
complex than that of other codes; thus, it has maximum area,
power, and delay overheads. However, for the proposed DMC,
its decoding algorithm is quite simple so that the overheads
are minimal.

The issue is that the proposed technique requires more
redundant bits compared with other codes. The redundant bits
of these protection codes are shown in Table IV, where a
coding efficiency β is used to evaluate the area overhead of
memory cell [20]

β = Redundant bits

Redundant bits + Information bits
. (25)

If the value of β is small, the code needs lower memory
cell overheads. From this table, we can see that Hamming
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TABLE IV

REDUNDANT BITS (32-bit)

ECC Information
Bits

Redundant
Bits

β Note

DMC 32 36 52.9% k = 2 × 4, m = 4

DMC 32 32 50.0% k = 4 × 4, m = 2

PDS [9] 32 19 37.3% Shorting and puncturing

MC [15] 32 28 46.7% Correction capability is 2

Hamming 32 7 17.9% Correction capability is 1

Fig. 10. CCCs of different protection codes.

code has the least β value but its correction capability is a
constant (1). For the MC [15], its correction capability is also
a constant (2) due to the limits of error correction capability of
Hamming code. PDS [9] has a lower β value compared with
the proposed scheme, but it requires higher delay overhead
which would severely affect the access time of memory. The
scaling down of CMOS technology has resulted in a dramatic
increase in the number of MCUs. In 90-nm technology, more
than three errors have been observed in radiation test [1], [2],
[17], [18], so Hamming, MC, and PDS are not good choices
for protecting memory. The proposed scheme needs higher β
value than other codes but it has higher correction capability.
Therefore, designers should choose the optimal combination of
k and m based on the radiation test to provide a good tradeoff
between reliability and redundant bits.

We have also used a metric to assess the efficiency of
our proposed scheme compared to PDS, MC, and Hamming,
which is called correction coverage per cost (CCC) and can
be calculated as follow [15]:

CCC = Correction Coverage

Cost
(26)

where Cost is obtained by

Cost = Area · Power · Delay · Redundant bits. (27)

Fig. 10 shows the values of this metric for different
protection codes. From this figure, we can see that the
proposed scheme has a higher CCC value than other codes
except that only one MCU occurs. Therefore, based on the
results in Table III and Fig. 10, the proposed scheme is quite
suitable for high-speed memory applications. It should be
mentioned that when the number of errors is more than two

(a)

(b)

CAM cell array
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. . .

BICS 
. . .

Corrector

Es
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D[31:0]

Horizontal
syndrome1

0
D
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D'[31:0]
D[31:0]
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Decimal integer addition 
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The number of 
redundant bits is 10

Fig. 11. (a) Proposed fault-tolerant CAM using decimal error detection
technique together with BICS. Note that when errors do not exist in CAM,
the stored codeword is directly output without though error detection and
correction circuits. (b) 32-bit word organization in CAM (k = 1 × 4 and
m = 8).

per word, Hamming and MC [15] codes cannot correct any
errors.

IV. DECIMAL ERROR DETECTION IN CAM

ECC code is a very powerful technique to correct MCUs in
memory, as mentioned before. However, ECC implementation
in CAM is significantly different from its implementation in
SRAM due to simultaneous access to all the words in CAM,
so that ECC code is not suitable to directly protect CAM [12].
In [14], BICS together with Hamming code is used to protect
SRAM. Because BICS has zero fault-detection latency for
multiple error detection, it is suitable for detection errors in
CAM as well.

For the decimal error detection, this ability to detect any
type of error can be useful in CAM. Let us consider that
the decimal error detection technique combines with BICS to
protect CAM. The fault-tolerant CAM structure is depicted in
Fig. 11(a) and a 32-bit word organization in CAM is proposed
in Fig. 11(b). For each column of CAM, BICS is added to
detect the error (the basic principle and circuit of BICS are
shown in [13] and [14]). When MCUs occur in a word of
CAM, for each error column, a momentary current pulse is
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generated between power supply and ground. BICS can detect
this current pulse and generate an error signal Es, i.e., this
Es signal detects and locates columns which the errors occur
in. At the same time, the syndrome calculation is active to
detect the error row, i.e., (5) is performed row and row. Then
in the error corrector these errors can be corrected. Finally,
the correctable word is written back in CAM. Because the
proposed decimal error detection technique can detect any
number of errors in a word, the reliability of CAM has an
adequate level of immunity to MCUs in a word. For example,
when 32-bit errors occur in a word of CAM, the syndrome bits
�H can detect these errors (�H can detect errors but cannot
locate the precise upset locations; this is enough) and activate
the syndrome calculation so that all errors can be corrected at
the expense of least time consumption.

V. CONCLUSION

In this paper, novel per-word DMC was proposed to assure
the reliability of memory. The proposed protection code
utilized decimal algorithm to detect errors, so that more errors
were detected and corrected. The obtained results showed that
the proposed scheme has a superior protection level against
large MCUs in memory. Besides, the proposed decimal error
detection technique is an attractive opinion to detect MCUs in
CAM because it can be combined with BICS to provide an
adequate level of immunity.

The only drawback of the proposed DMC is that more
redundant bits are required to maintain higher reliability of
memory, so that a reasonable combination of k and m should
be chosen to maximize memory reliability and minimize the
number of redundant bits based on radiation experiments
in actual implementation. Therefore, future work will be
conducted for the reduction of the redundant bits and the
maintenance of the reliability of the proposed technique.
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