
DIY soft-core uP
Microprocessor design using an

FPGA
“made simple”

Jim Brakefield

Introduction

• FPGAs: digital circuit with its resources
connected by programmable/configurable
wiring

• uP: mechanism to sequentially execute
instructions (at high speed). Has addressable
memory and IO.

• Soft-core uP: uP implemented using FPGA
resources. Written in VHDL or Verilog.

Table of Contents

• Rational

• FPGA resources

• Eval/Dev Board/Kit

• A uP definition

• Instruction set

• FPGA tools & flow

• What else is available

• Difficulties

• Finding the minimal
design

• Next steps

• Advanced steps

• References

Caveats

• Presentation may conflict with your course
material?

• Am not a professor or even a career FPGA
designer

• This talk summarizes how I have learned to go
at the problem efficiently

• Computer architecture is one of my hobbies

Why design & implement a microprocessor
from scratch?

• Useful skill set

– Broaden your design capability from simple state
machines to high performance uP

• Term project

– Talk directed towards fast start & clear path

• Architectural exploration

– Instructions & addressing modes of your choosing

• High performance real-time

FPGA resources

• LUT Lookup table 3 to 6 inputs, 1 to 2 outputs
– Include carry chain for building adders

• DFF D flip-flop 1 to 2 per LUT
• IO Tristate transceiver with optional DFFs
• RAM Variable aspect ratio, usually dual port

– LUT RAM: 16x1, 64x1
– Small block RAM: 32x18, 32x20, 64x18
– Block RAM: 128x36 to 1024x36
– Large block RAM: 2Kx72, 4Kx72, 4Kx144
– External DRAM: Built-in controller

• Wiring Fabric
– Horizontal and vertical wire segments of various lengths

Additional FPGA resources
not used herein

• PLL/DLL Generation of additional clock
frequencies

• Differential IO High speed interfaces

• SERDES High speed serial IO (gigabits/sec)

• Hard core uP ARM Cortex M3, R5, A9, A53

• Vendor soft cores (32-bit, full tool chains)
– Altera NIOS II

– Xilinx microBlaze

• www.opencores.org processor soft cores

http://www.opencores.org/

LUT + DFF
Lattice Semiconductor iCE40FamilyHandbook.pdf pg6-2

Input – Output pins
Lattice Semiconductor iCE40FamilyHandbook.pdf pg6-7

Block RAM
Xilinx Spartan-6 FPGA Block RAM Resources User Guide pg12

Simplified DSP48A1 slice
Xilinx Spartan-6 FPGA DSP48A1 Slice pg 17

Wiring Fabric
Altera CycloneV Device Handbook pg1-2

FPGA Vendors

• Name web site market share revenue

• Xilinx Xilinx.com 51% $2.4B

• Intel Altera.com 34% $1.9B

• Lattice Semiconductor ~7% $0.4B

 Latticesemi.com

• Microsemi Actel.com ~7% $0.4B?

• Cypress Cypress.com ? ?

FPGA Tools

• HDL (Hardware Design Languages)
– VHDL, Verilog, System Verilog

– High Level Synthesis(HLS): C, C++, Matlab

• Compilation HDL into “gates” & DFF

• Place & Route Vendor proprietary

• Timing analysis How fast will it run?

• Performance analysis LUT count & Fmax

• Simulation Unit testing on a PC

• Download Transfer bit file to the chip

Spartan-6 resources (XC6LX9-3CSG324)

• Avnet Spartan-6 FPGA LX9 Micro-Board

• 4 LEDs, 4 switches, 1 push button, 2 PMOD (16 IO)

• Ethernet jack, 64MB DRAM, boot flash

• Power & download via USB cable

• 6K 6LUTs, 11K Dffs, 64 8K block ram, 200 IOs

• 16 18x18 MUL/DSP, 2 PLL, no SERDES

• 100MHz clock

ROIS24_24uP

• 64 24-bit registers: uses 96 LUTs, quad ported

• 24 bit instruction with 6-bit op-code and three 6-
bit register designators
– XXXXXX DDDDDD RRRRRR SSSSSS (DRS)

– XXXXXX DDDDDD RRRRRR sNNNNN (DRsN)

– XXXXXX DDDDDD sNNNNN NNNNNN (DsNN)

– XXXXXX sNNNNN NNNNNN NNNNNN (sNNN)

• 24-bit by 1024 word block RAM main memory

• IO ports directly connected to LEDs, Switches,
Push button, 100MHz clock

rois24_24uP block diagram
write enables on all registers and RAM

PC state CCR

Combinatorial
logic

Adders,
MUXes,

Etc.

Output reg

LUT RAM
64x24

Block RAM
1024x24

Input pins
Memory read data

S value
R value

D value

D in

PC/mem adr

Memory write data

D

R

S

clock Write
clock

Read &
Write
clock

Clock cycle events

• Read instruction out of block RAM

• Use R & S to read operands from LUT RAM

• Generate control signals

• Do the arithmetic

• Select appropriate result

• Set write enables

• Update PC, CCR, LUT RAM, post address (new
PC) to block RAM

rois24_24uP instruction set

• Register zero always reads as zero
• XXXXXX DDDDDD RRRRRRR SSSSSSS (DRS)

– Two operands & result registers
– Add, add with carry, subtract, subtract with carry,
– AND, ANDC(2nd operand complemented), OR, XOR
– Call (Jump if D=0; branch to mem[R+S])

• XXXXXX DDDDDD RRRRRR sNNNNN (DRsN)
– Sign extended 6-bit immediate combined with R value
– Addi, adci, andi, ori, xori
– Call (Jump if D=0; absolute call/jmp if R=0; return if sN=0)
– In, Out

rois24_24uP instruction set cont’d

• Load and store: DRS & DRsN
– Load to D, Store from D

• XXXXXX DDDDDD sNNNNN NNNNNN (DsNN)
– Conditional branch relative (D is condition code)

– Load immediate

– Call relative

• XXXXXX sNNNNN NNNNNN NNNNNN (sNNN)
– Prefix: sNNN will be prefixed to next sN inst

• 28 instructions currently, room for 64 inst.

The difficulties

• FPGA Complexity

– FPGAs have a lot of features

– Each family is different

• VHDL/Verilog Complexity

– Must code with FPGA primitives in mind

– HLS doesn’t handle control logic well

• uP Complexity

– Large instruction sets, high performance

Crunch time

• Devise an instruction set
– Text & spreadsheet versions

• Define file with op-code mnemonics
– Lets one change op-code encoding easily

• Find a minimal initial set of instructions
– Write a short program for blinking LEDs

• Place program into case statement

• Implement each instruction as a line in another
case statement

Rois24_24uP minimal program

• At 100MHz need more than 24-bits to get
blinking lights

• Use two registers:
– Add one to first register

– Add carry to second register

– Output second register to LEDs

– Branch back to first instruction

• Four instruction loop
– 2nd register increments every 0.67 seconds

Op-code encoding

constant op_ADD : std_logic_vector(5 downto 0) :=
"100000"; -- R + S => D
constant op_SUB : std_logic_vector(5 downto 0) :=
"100001"; -- R - S => D
constant op_ADC : std_logic_vector(5 downto 0) :=
"100010"; -- R + S + carry => D
constant op_SBC : std_logic_vector(5 downto 0) :=
"100011"; -- R - S + carry => D
constant op_AND : std_logic_vector(5 downto 0) :=
"100100"; -- R and S => D
constant op_ANDC : std_logic_vector(5 downto 0) :=
"100101"; -- R and not S => D
. . .

The program case statement
program_ROM: process(pc)

Begin

case pc(3 downto 0) is

-- location op-code D reg R reg sN or S reg

when "0000" => inst <= op_ADDI & "000001" & "000001" & "000001";

when "0001" => inst <= op_ADCI & "000010" & "000010" & "000000";

when "0010" => inst <= op_OUTsN & "000010" & "000000" & "000000";

when "0011" => inst <= op_JMPsN & "000000" & "000000" & "000000";

when others => inst <= (others => '0');

end case;

end process;

Instruction evaluation case statement

-- instruction decode and implementation

decode: process(inst, pc, sN, R, RR, SS, CCR, Dloc,opcode,aluout)

begin

-- default signal values

pcN<=PC+1;

ALUout<=(others => '0');

LUTwe<='0'; CCRwe<='0'; outwe<='0';

RR<= '0'&R; -- need one additional bit so can save carry out

SS<= '0'&sN; -- the program only uses the DRsN mode

Instruction evaluation case statement
cont’d

-- instruction implementation

-- (for each instruction specify non-default signal values)

case opcode is

 when op_JMPsN => ALUout<=RR+SS; pcN<=ALUout(23 downto 0);

 when op_ADDI => ALUout<=RR+SS; LUTwe<='1'; CCRwe<='1';

 when op_ADCI => ALUout<=RR+SS+CCR(24); LUTwe<='1'; CCRwe<='1';

 when op_OUTsN => ALUout<=RR+SS; outwe<='1';

 when others => pcN<=pc;

 -- effectively a branch to itself, eg HALT

end case;

Instruction evaluation case statement
cont’d

-- prohibit writes to register zero

if Dloc = "000000" then LUTwe<='0'; end if;

end process;

-- connect result to register file write port

Din <= ALUout(data_size-1 downto 0);

-- condition code register is copy of ALU result

CCRN <= "000" & ALUout; -- no overflow for now

Register update process

update: process(clk)

begin

if (rising_edge(clk)) then

 pc<=pcN; -- always update the PC

 if CCRwe = '1' then CCR<=CCRN; end if;

 if outwe = '1' then out0<=Dout; end if;

-- LUTwe does its enable at the LUT RAM

end if;

end process;

Is it working?

• Constraint file
– Sets clock speed
– Sets IO pin assignment
– Evaluation kit usually has a sample constraint file

• Simulate/debug
– Tools will generate a simple test bench
– Need to relay observed signals out to test bench
– Program acts as the test script

• Performance metrics & goals
– Track LUT count and Fmax

Some results & experiments

Directory name
of
inst

Fmax
MHz

KHz
per
LUT

LUT
count

MUXCY
count

Comments

Data
path

Block
RAM

rois24_24up_s6_noram 4 109 590 184 56
basic "Hello World":
blinking LEDs

No No

rois24_24up_s6_dpnoram 4 142 1043 136 32
experiment to test simple
data path

Yes No

rois24_24up_s6_bram 25 83 74 1119 264
all inst except PFX, IN &
shifts; Hello World only

No Yes

rois24_24up_s6_dpbram 28 105 206 512 52
all inst; experiment to test
full set of data paths

Yes Yes

rois24_24up_s6_dpbram 28 106 375 283 52 area mode, high effort

Yes Yes

rois24_24up_k7_dpbram 28 176 471 373
determine best Fmax &
KHz/LUT

Yes Yes

rois24_24up_k7_dpbram 28 143 506 282 area mode, high effort

Yes Yes

Moving forward

• Migrate to a data path?

• Getting block RAM running

• Add instructions

• Migrate to more pipeline stages?

– Not that big of a gain!

• Adding modalities

– Addressing modes

– Whatever fits into your schedule/interests

Advanced features

• Floating-point: figure at least 2K LUTs

• External RAM:
– Use block RAM for Caches

– Use vendor’s DDR interface

• Writing an assembler

• Writing a compiler

• Adding peripherals (see www.opencores.org)

• Barrel processors

• Multiple dispatch

Insights

• A deliberate process:

• Get something bare bones working
– Minimum instruction set, minimum program

• Add instructions

• Add to test program

• Migrate to block RAM and data-path?
– Data-path logic is harder to debug

• Lots of soft-core uPs at www.opencores.org

My next steps

• Expand program with tests for each inst.
• Get the block RAM/data path version debugged
• Do two+ stage pipeline
• Add multiply, shift & floating-point instructions
• Do a variation with five-bit register designators

– Two instruction flag bits: CCR update & return
– Stack like usage of register file

• Do 12, 16, 32 and 48-bit data size versions
• Do 12/16-bit instruction format: D & R partially

implied

FPGA evaluation kits
all use USB download, check frequently for new boards

Vendor Price FPGA “LUTs” Mults
 Comments
Cypress CY8CKIT-59 $10 Cypress PSoC5 384 0
 ARM Cortex M3, digital & analog, schematic editor, not a true FPGA
Arrow BeMicro MAX10 $30 Altera Max 10M08 8K 24
 oscillator, 12-bit A2D, flash, DRAM
Arrow BeMicroCV $49 Altera Cyclone V 25K 50
 Some versions of Cyclone V have (2) Cortex A9: DE0-Nano-SoC $104
Arrow SmartFusion Kick Start $60 Actel SmartFusion2 12K 22
 Cortex M3, security & reliability features
XESS XuLA2-LX9 $69 Xilinx Spartan-6 9K 16
 40-pin DIP, SDRAM (might want to use $99 “Arty” Atrix-7 instead)
Digilent ZYBO(student $) $125 Xilinx Zynq 7010 28K 80
 (2) Cortex A9, 512MB, HDMI…
Adapteva Parallella-16 $149 Xilinx Zynq 7010 28K 80
 (2) Cortex A9, 16-core uP

Videos & Training

• www.YouTube.com: hundreds of videos

• Xilinx
http://www.xilinx.com/training/free-video-courses.htm

http://www.xilinx.com/support/university.html

• Altera
https://www.altera.com/support/training/university/ov
erview.html

• Altium
https://altiumvideos.live.altium.com/

http://www.xilinx.com/training/free-video-courses.htm
http://www.xilinx.com/training/free-video-courses.htm
http://www.xilinx.com/training/free-video-courses.htm
http://www.xilinx.com/training/free-video-courses.htm
http://www.xilinx.com/training/free-video-courses.htm
http://www.xilinx.com/support/university.html
https://www.altera.com/support/training/university/overview.html
https://www.altera.com/support/training/university/overview.html
https://altiumvideos.live.altium.com/

Free Range VHDL

Guidelines & PDFs

• “Fundamental mode”: Single clock, no latches
• Two process VHDL:

– Distinct combinational and sequential processes
– Jiri Gaisler 2014: A structured VHDL design method

• VHDL, Verilog and System Verilog Quick Reference
Cards

• Crockett etal 2014:
The Zynq Book: ARM Cortex A9 + FPGA

• Mealy & Tappero 2012:
Free Range VHDL: A to-the-point VHDL text

Books

• Harris & Harris 2013: Digital Design and Computer Architecture, 2nd
ed.

 VHDL & System Verilog, all the way from 0s & 1s to x86
 Shows trade-off of performance versus pipe length
• Max Maxfield 2004: The Design Warrior’s Guide to FPGAs
 Folksy, good coverage at the chip level
• Nazeih Botros 2006: HDL Programming Fundamentals – VHDL and

Verilog
 Side by side VHDL & Verilog
• Peter Ashenden 2008: The Designer’s Guide to VHDL, 3rd ed.
 Thee VHDL reference
• Steve Kilts 2007: Advanced FPGA Design

