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Introduction 

• FPGAs: digital circuit with its resources 
connected by programmable/configurable 
wiring 

• uP: mechanism to sequentially execute 
instructions (at high speed).  Has addressable 
memory and IO. 

• Soft-core uP: uP implemented using FPGA 
resources.  Written in VHDL or Verilog. 
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Caveats 

• Presentation may conflict with your course 
material? 

• Am not a professor or even a career FPGA 
designer 

• This talk summarizes how I have learned to go 
at the problem efficiently 

• Computer architecture is one of my hobbies 



Why design & implement a microprocessor 
from scratch? 

• Useful skill set 

– Broaden your design capability from simple state 
machines to high performance uP 

• Term project 

– Talk directed towards fast start & clear path 

• Architectural exploration 

– Instructions & addressing modes of your choosing 

• High performance real-time 



FPGA resources 

• LUT Lookup table  3 to 6 inputs, 1 to 2 outputs 
– Include carry chain for building adders 

• DFF D flip-flop  1 to 2 per LUT 
• IO  Tristate transceiver with optional DFFs 
• RAM Variable aspect ratio, usually dual port 

– LUT RAM:   16x1, 64x1 
– Small block RAM:  32x18, 32x20, 64x18 
– Block RAM:   128x36 to 1024x36 
– Large block RAM:  2Kx72, 4Kx72, 4Kx144 
– External DRAM:  Built-in controller 

• Wiring Fabric 
– Horizontal and vertical wire segments of various lengths 



Additional FPGA resources 
not used herein 

• PLL/DLL  Generation of additional clock 
frequencies 

• Differential IO High speed interfaces 

• SERDES  High speed serial IO (gigabits/sec) 

• Hard core uP ARM Cortex M3, R5, A9, A53 

• Vendor soft cores (32-bit, full tool chains) 
– Altera NIOS II 

– Xilinx microBlaze 

• www.opencores.org processor soft cores 

http://www.opencores.org/


LUT + DFF 
Lattice Semiconductor iCE40FamilyHandbook.pdf pg6-2 



Input – Output pins 
Lattice Semiconductor iCE40FamilyHandbook.pdf pg6-7 



Block RAM 
Xilinx Spartan-6 FPGA Block RAM Resources User Guide pg12 



Simplified DSP48A1 slice 
Xilinx Spartan-6 FPGA DSP48A1 Slice pg 17 



Wiring Fabric 
Altera CycloneV Device Handbook pg1-2 



FPGA Vendors 

• Name web site market share revenue 

• Xilinx Xilinx.com  51%  $2.4B 

• Intel Altera.com  34%  $1.9B 

• Lattice Semiconductor ~7%  $0.4B 

                      Latticesemi.com 

• Microsemi    Actel.com ~7%  $0.4B? 

• Cypress Cypress.com ?  ? 

 



FPGA Tools 

• HDL (Hardware Design Languages) 
– VHDL, Verilog, System Verilog 

– High Level Synthesis(HLS): C, C++, Matlab  

• Compilation   HDL into “gates” & DFF 

• Place & Route  Vendor proprietary 

• Timing analysis  How fast will it run? 

• Performance analysis LUT count & Fmax 

• Simulation  Unit testing on a PC 

• Download  Transfer bit file to the chip 



Spartan-6 resources (XC6LX9-3CSG324) 

• Avnet Spartan-6 FPGA LX9 Micro-Board 

• 4 LEDs, 4 switches, 1 push button, 2 PMOD (16 IO) 

• Ethernet jack, 64MB DRAM, boot flash 

• Power & download via USB cable 

• 6K 6LUTs, 11K Dffs, 64 8K block ram, 200 IOs  

• 16 18x18 MUL/DSP, 2 PLL, no SERDES 

• 100MHz clock 

 



ROIS24_24uP 

• 64 24-bit registers: uses 96 LUTs, quad ported 

• 24 bit instruction with 6-bit op-code and three 6-
bit register designators 
– XXXXXX DDDDDD RRRRRR SSSSSS  (DRS) 

– XXXXXX DDDDDD RRRRRR sNNNNN  (DRsN) 

– XXXXXX DDDDDD sNNNNN NNNNNN  (DsNN) 

– XXXXXX sNNNNN NNNNNN NNNNNN  (sNNN) 

• 24-bit by 1024 word block RAM main memory 

• IO ports directly connected to LEDs, Switches, 
Push button, 100MHz clock 



rois24_24uP block diagram 
write enables on all registers and RAM 
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Clock cycle events 

• Read instruction out of block RAM 

• Use R & S to read operands from LUT RAM 

• Generate control signals 

• Do the arithmetic 

• Select appropriate result 

• Set write enables 

• Update PC, CCR, LUT RAM, post address (new 
PC) to block RAM 



rois24_24uP instruction set 

• Register zero always reads as zero 
• XXXXXX DDDDDD RRRRRRR SSSSSSS (DRS) 

– Two operands & result registers 
– Add, add with carry, subtract, subtract with carry, 
– AND, ANDC(2nd operand complemented), OR, XOR 
– Call (Jump if D=0; branch to mem[R+S]) 

• XXXXXX DDDDDD RRRRRR sNNNNN (DRsN) 
– Sign extended 6-bit immediate combined with R value 
– Addi, adci, andi, ori, xori 
– Call (Jump if D=0; absolute call/jmp if R=0; return if sN=0) 
– In, Out 



rois24_24uP instruction set cont’d 

• Load and store: DRS & DRsN 
– Load to D, Store from D 

• XXXXXX DDDDDD sNNNNN NNNNNN (DsNN) 
– Conditional branch relative (D is condition code) 

– Load immediate 

– Call relative 

• XXXXXX sNNNNN NNNNNN NNNNNN (sNNN) 
– Prefix: sNNN will be prefixed to next sN inst 

• 28 instructions currently, room for 64 inst. 

 



The difficulties 

• FPGA Complexity 

– FPGAs have a lot of features 

– Each family is different 

• VHDL/Verilog Complexity 

– Must code with FPGA primitives in mind 

– HLS doesn’t handle control logic well 

• uP Complexity 

– Large instruction sets, high performance 



Crunch time 

• Devise an instruction set 
– Text & spreadsheet versions 

• Define file with op-code mnemonics 
– Lets one change op-code encoding easily 

• Find a minimal initial set of instructions 
– Write a short program for blinking LEDs 

• Place program into case statement 

• Implement each instruction as a line in another 
case statement 



Rois24_24uP minimal program 

• At 100MHz need more than 24-bits to get 
blinking lights 

• Use two registers: 
– Add one to first register 

– Add carry to second register 

– Output second register to LEDs 

– Branch back to first instruction 

• Four instruction loop 
– 2nd register increments every 0.67 seconds 



Op-code encoding 

constant op_ADD  : std_logic_vector(5 downto 0) := 
"100000"; -- R + S => D 
constant op_SUB  : std_logic_vector(5 downto 0) := 
"100001"; -- R - S => D 
constant op_ADC  : std_logic_vector(5 downto 0) := 
"100010"; -- R + S + carry => D 
constant op_SBC  : std_logic_vector(5 downto 0) := 
"100011"; -- R - S + carry => D 
constant op_AND  : std_logic_vector(5 downto 0) := 
"100100"; -- R and S => D 
constant op_ANDC  : std_logic_vector(5 downto 0) := 
"100101"; -- R and not S => D 
.  .  . 

 



The program case statement 
program_ROM: process(pc) 

Begin 

case pc(3 downto 0) is 

--           location                   op-code          D reg               R reg               sN or S reg     

when "0000" => inst <= op_ADDI   & "000001" & "000001" & "000001"; 

when "0001" => inst <= op_ADCI    & "000010" & "000010" & "000000"; 

when "0010" => inst <= op_OUTsN & "000010" & "000000" & "000000"; 

when "0011" => inst <= op_JMPsN & "000000" & "000000" & "000000"; 

when others => inst <=                  (others => '0'); 

end case; 

end process; 



Instruction evaluation case statement 

--      instruction decode and implementation 

decode: process(inst, pc, sN, R, RR, SS, CCR, Dloc,opcode,aluout) 

begin 

--      default signal values 

pcN<=PC+1;  

ALUout<=(others => '0');  

LUTwe<='0'; CCRwe<='0'; outwe<='0'; 

RR<= '0'&R;  -- need one additional bit so can save carry out 

SS<= '0'&sN; -- the program only uses the DRsN mode 
 



Instruction evaluation case statement 
cont’d 

--  instruction implementation  

-- (for each instruction specify non-default signal values) 

case opcode is 

    when op_JMPsN => ALUout<=RR+SS;         pcN<=ALUout(23 downto 0); 

    when op_ADDI  =>   ALUout<=RR+SS;  LUTwe<='1'; CCRwe<='1'; 

    when op_ADCI  =>   ALUout<=RR+SS+CCR(24); LUTwe<='1'; CCRwe<='1'; 

    when op_OUTsN => ALUout<=RR+SS;          outwe<='1'; 

    when others => pcN<=pc; 

 -- effectively a branch to itself, eg HALT 

end case; 

 



Instruction evaluation case statement 
cont’d 

--  prohibit writes to register zero  

if Dloc = "000000" then LUTwe<='0'; end if;  

end process; 

 

-- connect result to register file write port 

Din <= ALUout(data_size-1 downto 0); 

-- condition code register is copy of ALU result 

CCRN <= "000" & ALUout;  -- no overflow for now 



Register update process 

update: process(clk) 

begin 

if (rising_edge(clk)) then 

    pc<=pcN;  -- always update the PC  

    if CCRwe = '1' then CCR<=CCRN; end if; 

    if outwe = '1' then out0<=Dout; end if; 

--  LUTwe does its enable at the LUT RAM 

end if; 

end process; 

 



Is it working? 

• Constraint file 
– Sets clock speed 
– Sets IO pin assignment 
– Evaluation kit usually has a sample constraint file 

• Simulate/debug 
– Tools will generate a simple test bench 
– Need to relay observed signals out to test bench 
– Program acts as the test script 

• Performance metrics & goals 
– Track LUT count and Fmax 

 



Some results & experiments 

Directory name 
# of 
inst 

Fmax 
MHz 

KHz 
per 
LUT 

LUT 
count 

MUXCY 
count 

Comments 

Data 
path 

Block 
RAM 

rois24_24up_s6_noram 4 109 590 184 56 
basic "Hello World": 
blinking LEDs 

No No 

rois24_24up_s6_dpnoram 4 142 1043 136 32 
experiment to test simple 
data path 

Yes No 

rois24_24up_s6_bram 25 83 74 1119 264 
all inst except PFX, IN & 
shifts; Hello World only 

No Yes 

rois24_24up_s6_dpbram 28 105 206 512 52 
all inst; experiment to test 
full set of data paths 

Yes Yes 

rois24_24up_s6_dpbram 28 106 375 283 52 area mode, high effort 

Yes Yes 

rois24_24up_k7_dpbram 28 176 471 373   
determine best Fmax & 
KHz/LUT 

Yes Yes 

rois24_24up_k7_dpbram 28 143 506 282   area mode, high effort 

Yes Yes 



Moving forward 

• Migrate to a data path? 

• Getting block RAM running 

• Add instructions 

• Migrate to more pipeline stages? 

– Not that big of a gain! 

• Adding modalities 

– Addressing modes 

– Whatever fits into your schedule/interests 



Advanced features 

• Floating-point: figure at least 2K LUTs 

• External RAM: 
– Use block RAM for Caches 

– Use vendor’s DDR interface 

• Writing an assembler 

• Writing a compiler 

• Adding peripherals (see www.opencores.org) 

• Barrel processors 

• Multiple dispatch 



Insights 

• A deliberate process: 

• Get something bare bones working 
– Minimum instruction set, minimum program 

• Add instructions 

• Add to test program 

• Migrate to block RAM and data-path? 
– Data-path logic is harder to debug 

• Lots of soft-core uPs at www.opencores.org 



My next steps 

• Expand program with tests for each inst.  
• Get the block RAM/data path version debugged 
• Do two+ stage pipeline 
• Add multiply, shift & floating-point instructions 
• Do a variation with five-bit register designators 

– Two instruction flag bits: CCR update & return 
– Stack like usage of register file 

• Do 12, 16, 32 and 48-bit data size versions 
• Do 12/16-bit instruction format: D & R partially 

implied 
 
 



FPGA evaluation kits 
all use USB download, check frequently for new boards 

Vendor   Price FPGA   “LUTs” Mults
 Comments 
Cypress CY8CKIT-59  $10 Cypress PSoC5  384 0 
 ARM Cortex M3, digital & analog, schematic editor, not a true FPGA 
Arrow BeMicro MAX10 $30 Altera Max 10M08  8K 24
 oscillator, 12-bit A2D, flash, DRAM 
Arrow BeMicroCV  $49 Altera Cyclone V  25K 50 
 Some versions of Cyclone V have (2) Cortex A9: DE0-Nano-SoC $104 
Arrow SmartFusion Kick Start $60 Actel SmartFusion2  12K 22 
 Cortex M3, security & reliability features 
XESS XuLA2-LX9  $69 Xilinx Spartan-6  9K 16
 40-pin DIP, SDRAM  (might want to use $99 “Arty” Atrix-7 instead) 
Digilent ZYBO(student $)  $125 Xilinx Zynq 7010  28K 80
 (2) Cortex A9, 512MB, HDMI… 
Adapteva Parallella-16 $149 Xilinx Zynq 7010  28K 80
 (2) Cortex A9, 16-core uP 



Videos & Training 

• www.YouTube.com: hundreds of videos 

• Xilinx 
http://www.xilinx.com/training/free-video-courses.htm 

http://www.xilinx.com/support/university.html 

• Altera 
https://www.altera.com/support/training/university/ov
erview.html 

• Altium 
https://altiumvideos.live.altium.com/ 

 

 

http://www.xilinx.com/training/free-video-courses.htm
http://www.xilinx.com/training/free-video-courses.htm
http://www.xilinx.com/training/free-video-courses.htm
http://www.xilinx.com/training/free-video-courses.htm
http://www.xilinx.com/training/free-video-courses.htm
http://www.xilinx.com/support/university.html
https://www.altera.com/support/training/university/overview.html
https://www.altera.com/support/training/university/overview.html
https://altiumvideos.live.altium.com/


Free Range VHDL 



Guidelines & PDFs 

• “Fundamental mode”: Single clock, no latches 
• Two process VHDL: 

– Distinct combinational and sequential processes 
– Jiri Gaisler 2014: A structured VHDL design method 

• VHDL, Verilog and System Verilog Quick Reference 
Cards 

• Crockett etal 2014:  
The Zynq Book:  ARM Cortex A9 + FPGA 

• Mealy & Tappero 2012:  
Free Range VHDL: A to-the-point VHDL text 



Books 

• Harris & Harris 2013: Digital Design and Computer Architecture, 2nd 
ed. 

              VHDL & System Verilog, all the way from 0s & 1s to x86 
 Shows trade-off of performance versus pipe length 
• Max Maxfield 2004:  The Design Warrior’s Guide to FPGAs 
 Folksy, good coverage at the chip level 
• Nazeih Botros 2006: HDL Programming Fundamentals – VHDL and 

Verilog 
 Side by side VHDL & Verilog 
• Peter Ashenden 2008:  The Designer’s Guide to VHDL, 3rd ed. 
 Thee VHDL reference 
• Steve Kilts 2007: Advanced FPGA Design 

 


