
EE287 Project design
The data unconfuser engine

The data unconfused engine is designed to handle streaming data which occurs for long durations of time. The goal of the
confuser is to make i t di fficult for others to easi ly determine the contents of the data. The confuser is a simple single key data
processing engine intended to be placed in various communications produc ts where some low level of data protec tion is
desired, but the costs of true public /private key encryption are not justi fied.

The data unconfuser is based on simple CRC type registers. These are implemented by using shift registers and exc lusive or
gates. A CRC register may be used as a pseudo random number generator, or as a multipl ier of data with the PRN sequence in
a ECC syndrome generator. The test bench wil l generate confused data based on a ~700 bit key, and your data unconfuser
engine wil l decode the confused data providing c lean unconfused data on the output interface.

The data unconfuser is a stream oriented single pad system. The confusion/unconfusion blocks work on 4 byte blocks. The test
bench wil l always send the data in groups of 4 bytes. The pads keep moving unti l reloaded through the configuration interface.

Your design should have a FIFO (Already bui l t as a homework assignment) on the input and output interfaces. The design has
a one flag input model, and a two flag output model. (To make the student work harder). Your design is assumed to have two
64k byte FIFOs, and the test bench can put data in the design much faster than you can unconfuse the data.

The block interface is shown below:

Table 1 Interface signals

The data unconfuser has a large number of byte oriented configuration registers. Each of these registers is Little Endian (The
first byte is the lowest byte of information, bit 0 is the low order bit).

Address What Bytes Bits used

0 PAD0 initial value 21 160

21 PAD1 initial value 21 161

42 PAD2 initial value 21 162

63 PAD3 initial value 21 163

84 Injector initial value 4 32

88 Pad Sel initial value 5 40

http://sjsu6.blackboard.com/webct/ContentPageSer...

1 of 5 04/05/2009 03:00 AM

Table 2 Table of registers on the initialization interface

The fol lowing table shows the polynomials used in the data confuser/unconfuser. The key is simply the initial values of al l
the CRC registers l isted below. See the text below on how to implement a bi-direc tional polynomial register.

What Polynomial Notes

PAD0 X160+X139+X119+X98+X79+X60+X40+X20+1

PAD1 X161+X140+X121+X100+X80+X60+X40+X20+1

PAD2 X162+X141+X121+X100 +X80+X60+X40+X20+1

PAD3 X163+X142+X122+X102+X82+X61+X41+X20+1

Injector X32+X27+X21+X16+X10+X5+1 # pad bits used

Pad Sel X40+X34+X27+X19+X12+X6+1 Which pad

CDATA X32+X31+X29+X28+X26+X25+X24+X22+X21+X13+X11+X9+X8+X5+1 Data coding

Table 3 Internal function polynomials (All are primitive over GF(2))

Assuming the configuration registers are loaded, the unconfusion process is described below.

Load 4 bytes of information into the CDATA register. The data may not be present in the FIFO, and the state machine
must wait unti l the input FIFO is not empty. The first byte is placed in bits 31:24, and the third byte is placed in bits
7:0.

The pad amount is formed by taking bits from the Injec tor CRC register.

{ 1'b1, I[30],I[5],I[9],I[2],I[27] } I is the injec tor register

Step the Injec tor CRC forward 39 times

Step the fol lowing forward by the amount determined as the pad amount

PAD0

PAD1

PAD2

PAD3

Pad Sel

Step the fol lowing backwards pad amount times, undoing the CDATA register to get the original bytes of the message

PAD0, PAD1, PAD2, PAD3, Pad Sel, CDATA

The data from PAD0,1,2,3 are selec ted by Pad Sel as shown below in Table 4

Extrac t the unconfused data from the CDATA register. The first byte is in bits 31:24, and the third byte is in bits 7:0.
The data is placed in the output FIFO.

Step the fol lowing forward by the pad amount to prepare for the next 4 byte group (or save and restore from the last
forward stepping)

PAD0, PAD1,PAD2,PAD3,PAD4,Pad Sel

Repeat al l steps unti l reset

The Pad Sel CRC is used to selec t which bit of which PAD register wi l l be used to unconfuse the data. A 5 bit binary index is
c reated by concatenating:

{ PS[31],PS[3],PS[5],PS[19],PS[8] }

The PAD bits are selec ted for appl ication to the CDATA register according to the fol lowing table:

Index Selected Pad

http://sjsu6.blackboard.com/webct/ContentPageSer...

2 of 5 04/05/2009 03:00 AM

0 PAD1[15]

1 PAD0[37]

2 PAD2[73]

3 PAD3[99]

4 PAD0[121]

5 PAD1[130]

6 PAD3[15]

7 PAD2[9]

8 PAD3[97]

9 PAD2[140]

10 PAD1[4]

11 PAD0[88]

12 PAD0[33]

13 PAD1[75]

14 PAD2[35]

15 PAD3[155]

16 PAD2[28]

17 PAD1[150]

18 PAD3[29]

19 PAD0[144]

20 PAD0[127]

21 PAD1[125]

22 PAD2[0]

23 PAD3[5]

24 PAD0[110]

25 PAD3[87]

26 PAD1[19]

27 PAD2[82]

28 PAD0[48]

29 PAD1[47]

30 PAD2[46]

31 PAD3[51]

Table 4 PAD Index table to PAD bit mapping

A CRC register is formed of fl ip flops and exc lusive or gates according to the generation polynomials. The generator

polynomials are l isted above in Table 3. The fol lowing examples wil l use a simple polynomial of X3+X+1.

http://sjsu6.blackboard.com/webct/ContentPageSer...

3 of 5 04/05/2009 03:00 AM

The high order bit of the polynomial is not implemented in a fl ip flop. (It is the feedback term). In each location where
there is a 1 in the polynomial (Where the power of X is indicated) an exc lusive or gate is placed in the D input.

To step a CRC in reverse, the XOR direc tions are reversed, and the X^0 bit is xored with the Pad bits to form the bit to
the high order bit position.

http://sjsu6.blackboard.com/webct/ContentPageSer...

4 of 5 04/05/2009 03:00 AM

This i l lustrated in the fol lowing table with some pad examples. Notice, that going backwards after going forwards
results in the same data in the X2-X0 fl ip flops.

X2 X1 X0 Pad

0 1 1 1
Forward
CRC

1 1 1 0

1 0 1 1

0 0 0 1

0 0 1 1

0 1 1 0

1 1 0 1

1 1 0 0

1 1 1 1

1 0 0

1 0 0 1
Reverse
CRC

1 1 1 0

1 1 0 1

1 1 0 0

0 1 1 1

0 0 1 1

0 0 0 1

1 0 1 0

1 1 1 1

0 1 1

Each CRC register must be able to retain the current value, be loaded with new data, step forward, and step
backwards. This may be implemented with a 4:1 mux type selec tion on the D input of each fl ip flop. Your state
machine and loading logic should control what is happening to each byte. Of each register.

Implement the design. Run and pass the suppl ied test bench. Synthesize the design for operation at 180 MHz
assuming a 5 ns memory is avai lable. Submit the veri log code, simulation output fi le, and synthesis results.

Last updated 2/23/2009

http://sjsu6.blackboard.com/webct/ContentPageSer...

5 of 5 04/05/2009 03:00 AM

