
GCpad IP Core
Integration Manual

Author: Arnim Läuger

arniml@opencores.org

Rev. 1.1

October 14, 2004

 OpenCores 14-Oct-2004

This page has been intentionally left blank.

www.opencores.org Rev 1.1 ii

 OpenCores 14-Oct-2004

Revision History

Rev. Date Author Description
1.0 13-Oct-2004 Arnim Läuger First release.
1.1 14-Oct-2004 Arnim Läuger Corrections, connector pinout.

www.opencores.org Rev 1.1 iii

 OpenCores 14-Oct-2004

Contents
INTRODUCTION 1

ARCHITECTURE 2

OPERATION 3

COMMAND AND RESPONSE SEQUENCE 3
COMMAND TRANSMISSION 3
RESPONSE RECEPTION 3
RECEIVE STATUS 4
BASIC CORE FLAVOR 4

PARAMETRIZATION 5

CLOCKS 6

IO PORTS 7

PROTOCOL 9

ELECTRICAL LAYER 9
BIT TRANSMISSION LAYER 9
DATA LINK LAYER 10
PROTOCOL LAYER 10
REFERENCES 12

www.opencores.org Rev 1.1 iv

 OpenCores 14-Oct-2004

1
Introduction

The GCpad core interfaces to the gamepad used with the Nintendo Gamecube video
gaming system. The core communicates with the gamepad using its proprietary
communication protocol and offers the retrieved information for further processing.

To suit the needs of the integrating system, two different flavors of the core are available:

• For simple applications the basic flavor manages all communication issues with the
gamepad and provides the current status of the buttons and analog axes at its interface.
The integrating system does not need to interfere with gamepad communication and
can statically read the button and axes status information.

• The full flavor allows full control of the gamepad communication by the integrating
system. This flavor offers a command and response interface which is driven by the
system to send arbitrary commands to the gamepad. The response of the gamepad is
available for further processing.

This document indents to aid the integration of both flavors of the core.

The GCpad core is part of the gamepads controller core collection. The complete
collection is maintained and released on the OpenCores web server. You can access the
gamepads project at

http://www.opencores.org/projects.cgi/web/gamepads/overview

Updates of the GCpad core can be obtained via the project pages.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

www.opencores.org Rev 1.1 1 of 12

 OpenCores 14-Oct-2004

2
Architecture

The following Figure 1 gives an overview of the core's architecture.

The central element is the control until CTRL. It manages both the Transmitter and
Receiver unit and controls one atomic command/response sequence. The CTRL unit is
triggered by the request line and instructs the Transmitter to issue the applied
command. When the command has been transmitted, the Receiver starts to monitor
actively the I/O line for any incoming response string from the gamepad.

The received data is presented as a 64 bit value at the core's interface. In addition, the
receive status is output, indicating whether the command/response sequence has finished
and signals a timeout while reading the response.

The transmit settings comprise the command value and the length of the command. The
receive settings specify the expected number of bytes to be received from the gamepad.

www.opencores.org Rev 1.1 2 of 12

Figure 1: Architecture of the GCpad core

Transmit
Settings

Receive
Settings

Request

Gamepad
I/O

Receive
Status

Receive
Data

CTRL

Transmitter

Receiver

 OpenCores 14-Oct-2004

3
Operation

This section describes the functionality of the GCpad core. Beginning with the
description of a command/response sequence, the details of communicating with the
Gamecube controller pad are given.

Command and Response Sequence

Whenever the core is triggered by the pad_request_i line it will initiate a command
and response sequence. Such a sequence comprises the transmission of the specified
command and reception of the gamepad's response.

Command Transmission

The command is specified by the tx_command_i input. The value on this 24 bit wide
vector is transmitted MSB first to the gamepad. The value on tx_size_i specifies how
many bytes have to be transmitted. It is a binary coded, 2 bit vector ranging from 1 to 3.

When the transmit size is set to 3, the full 24 bits (3 bytes) of tx_command_i will be
transmitted to the gamepad. For sizes 2 and 1, only the first 16 resp. 8 bits of
tx_command_i are transmitted. The first bit which is sent is always the MSB (number
23).

The communication protocol requires an additional stop bit following the command
payload. Therefore, the first unused bit of tx_command_i must contain the value '1'.
This is bit number 15 for transmit size 1 and bit number 7 for transmit size 2. The
Transmitter automatically adds the '1' bit for transmit size 3.

Response Reception

After transmitting the command, the GCpad core switches into reception mode and
monitors the I/O line from the gamepad. Each incoming bit is sampled by a majority
detector inside the Receiver and is added to an internal shift register. When the expected
number of bytes as specified by rx_size_i has been received, the response data is
output to rx_data_o and the response phase terminates.

www.opencores.org Rev 1.1 3 of 12

 OpenCores 14-Oct-2004

Like tx_size_i, rx_size_i is a binary encoded vector which allows to set the
expected number of received bytes in the range 1 to 8. The upper limit is 8 although a
larger value can be applied. The behavior of the Receiver is undefined for values larger
than 8.

The incoming data is presented at the 64 bit wide vector rx_data_o. Data is shifted in
MSB first, so the first received bit is located at bit position 63 when 8 bytes are received.
The following bits are located at positions 62 down to 0. For less than 8 bytes, the first bit
is located at a lower position, always filling the output vector from n down to 0. Index n
is calculated as follows

Position n contains the MSB of the response, i.e. the bit that was received first.

Response reception is aborted when no response from the gamepad is detected or when a
timeout occurs.

Receive Status

There are two output signals that show the status of the command and response
sequence: pad_avail_o and pad_timeout_o

Whenever a sequence has been triggered via pad_request_i, both outputs are cleared
to '0'. As soon as the Receiver has terminated pad_avail_o is set to '1' and keeps this
level until a new sequence is initiated. In case a timeout occurred or no data from the
gamepad was received at all pad_timeout_o is activated together with
pad_avail_o.

The system must neither change tx_data_i, tx_size_i or rx_size_i nor trigger
a new sequence via pad_request_i until pad_avail_o has changed from '0' to '1'.
A valid response is only visible at rx_data_o if pad_timeout_o is at '0' while
pad_avail_o is '1'.

Basic Core Flavor

All said above applies to the full flavor of the GCpad core (entity gcpad_full). The
basic flavor (entity gcpad_basic) differs from this in the way that command code,
size and response size are fixed to certain values. Furthermore, the response data is
already decoded by terms of button and axes status.

The command/response sequence cycles automatically and generates a quasi-static
output at the button and axes signals. This eases integration of the core in systems that do
not contain facilities to manage the core, trading off functionality.

www.opencores.org Rev 1.1 4 of 12

n=2rx_data_i − 1

 OpenCores 14-Oct-2004

4
Parametrization

The GCpad core can be parametrized by VHDL generics in several ways. Table 1
specifies the parameters and their respective meaning.

Generic Name Value Description
reset_level_g 0 or 1 Active level of the asynchronous reset input reset_i

0 ... low active
1 ... high active

clocks_per_1us_g 2 ... n Number of clk_i periods within 1 µs

Table 1: List of generic parameters for the GCpad core

The generic reset_level_g is straight forward. It gives the integrator the possibility
to specify the active level of reset_i. Nonetheless, reset_i will always have asyn-
chronous characteristic. This cannot be changed.

The generic clocks_per_1us_g is necessary to adjust the counters inside the Trans-
mitter and Receiver unit to the clock frequency of clk_i. These counters operate on
multiples of this parameter instead of a “real” timebase, so the value of this parameter is
important. It should match quite exactly the final frequency of clk_i in the target
design as a inaccuracy will lead sooner or later to failures in the communication with the
gamepad.

www.opencores.org Rev 1.1 5 of 12

 OpenCores 14-Oct-2004

5
Clocks

Table 2 specifies the clocks of the GCpad core.

Name Source Rates (MHz)
Max Min

Remarks Description

clk_i System
Clock

N/A 2 Minimum frequency
required for gamepad
communication

System clock for
synchronous operations.

Table 2: List of clocks

The system clock clk_i requires a minimum frequency of 2 MHz. This is necessary to
support the time base of 1 µs for communication with the gamepad. To sample the
incoming data stream correctly, the Nyquist criteria has to be fulfilled. The maximum
frequency that needs to be detected is 1 MHz so the core requires at least 2 MHz.

www.opencores.org Rev 1.1 6 of 12

 OpenCores 14-Oct-2004

6
IO Ports

Table 3 specifies the ports of the GCpad core in full flavor.

Name Width Direction Description
clk_i 1 Input System clock
reset_i 1 Input Asynchronous system reset
pad_request_i 1 Input Request to execute a command/response

sequence
pad_avail_o 1 Output Response available indication
pad_timeout_o 1 Output Timeout indication
tx_size_i 2 Input Number of bytes for transmission
tx_command_i 24 Input Command vector for transmission (MSB

transmitted first)
rx_size_i 4 Input Number of expected bytes for response
rx_data_o 64 Output Response data
pad_data_io 1 Bidir Signal line to the gamepad

Table 3: List of IO ports for the full flavor

Table 4 specifies the ports of the GCpad core in basic flavor.

Name Width Direction Description
clk_i 1 Input System clock
reset_i 1 Input Asynchronous system reset
pad_request_i 1 Input Request to execute a command/response

sequence
pad_avail_o 1 Output Response available indication
pad_data_io 1 Bidir Signal line to the gamepad
but_a_o 1 Output State of button A
but_b_o 1 Output State of button B
but_x_o 1 Output State of button X
but_y_o 1 Output State of button Y
but_start_o 1 Output State of button Start
but_tl_o 1 Output State of shoulder button TL (digital contact)
but_tr_o 1 Output State of shoulder button TR (digital contact)
but_left_o 1 Output State of digital pad Left
but_right_o 1 Output State of digital pad Right

www.opencores.org Rev 1.1 7 of 12

 OpenCores 14-Oct-2004

Name Width Direction Description
but_up_o 1 Output State of digital pad Up
but_down_o 1 Output State of digital pad Down
ana_joy_x_o 8 Output Position of analog joystick X-axis

0 128 255
left center right

ana_joy_y_o 8 Output Position of analog joystick Y-axis
0 128 255
down center up

ana_c_x_o 8 Output Position of analog C X-axis
0 128 255
left center right

ana_c_y_o 8 Output Position of analog C Y-axis
0 128 255
down center up

ana_l_o 8 Output Position of analog shoulder TL
0 255
out in

ana_r_o 8 Output Position of analog shoulder TR
0 255
out in

Table 4: List of IO ports for the basic flavor

www.opencores.org Rev 1.1 8 of 12

 OpenCores 14-Oct-2004

Appendix A
Protocol

The communication protocol of the Gamecube controller is proprietary information of
Nintendo. It has been reverse engineered by third parties and is therefore not known in
full detail. This section gives an overview of what is known so far.

Electrical Layer

Information is exchanged between the gamepad and the host side over a single wire. Both
sides seem to implement an open-collector style output driver. Therefore, an external
pull-up resistor of 1 k to the 3.43 V supply is required. The electrical '1' is represented
by inactivity of both output drivers, whereas the electrical '0' is represented by an active
pull to GND.

Figure 2 shows the pinout of the connector at the Gamecube console.

Bit Transmission Layer

Single bits are encoded by the duty cycle of the signal on the I/O line. The period of the
base clock is 5 µs resulting in 200 kBits/s. The logic '0' is encoded by a signal period with
duty cycle 80:20. The logic '1' is encoded by a signal period with duty cycle 20:80. The
following Figure 3 depicts both encodings.

www.opencores.org Rev 1.1 9 of 12

Figure 2: Pinout of the Gamecube connector

1

2

3

4

5

6

At console

1 +5.0V
2 GND
3 DATA
4 NC
5 GND
6 +3.43V

 OpenCores 14-Oct-2004

Other sources define the signal period with 4 µs and the duty cycle as 25:75 / 75:25. The
experience gathered with the GCpad core showed that the gamepad does not respond
when sticking to the 4 µs scheme. It was definitely necessary to enlarge the period to
5 µs when transmitting the command. On the other hand, the Receiver is not restricted to
a tightly fixed scheme. It will accept any signal period up to 5 µs with the duty cycle
varying between 49:51 and 20:80 (and vice versa).

NB: Such a fine granularity requires a high clock frequency. Expect a significantly re-
duced granularity for frequencies below 5 MHz.

Data Link Layer

The data link layer is quite simple. A stop bit consisting of a logic '1' is appended to both
the command and response string. It is not know whether the absence of this stop bit in
the command string results in a sort of error condition in the gamepad logic.

As written above, the Transmitter automatically adds this stop bit at the end of a 3 byte
wide command string. The user has to specify this stop bit explicitly in the command
input vector for command strings smaller than 3 byte.

Protocol Layer

Only few is known about the possible commands for the Gamecube pad. Especially no
information at all is available about the communication with the Gameboy Advance
adapter. This section lists the known commands and their respective response.

• Init
Opcode: 0x00
Length: 1 byte
Response: 0x0900 for standard Gamecube controller

See YAGCD for all known types

www.opencores.org Rev 1.1 10 of 12

Figure 3: Encodings of logic '0' and '1'

0 4 5 6 10 11

Logic 0 Logic 1

t[µs]

 OpenCores 14-Oct-2004

• Poll
Opcode: 0x4000302
Length: 3 bytes
Response: 8 bytes

See Table 5 for details

• Rumble
Opcode: 0x0000000X

X = 1: turn rumble on
X = 0: turn rumble off

Length: 3 bytes
Response: Unknown

Bit # Description
63 Error Status
62 Error Latch
61 Always read as '0'
60 Button Start
59 Button Y
58 Button X
57 Button B
56 Button A
55 Always read as '1'
54 Button shoulder TL
53 Button shoulder TR
52 Button Z
51 Digital pad Up
50 Digital pad Down
49 Digital pad Right
48 Digital pad Left
47 ... 40 Analog joystick X-axis (left is near 0, center around 128, right is near 255)
39 ... 32 Analog joystick Y-axis (down is near 0, center around 128, up is near 255)
31 ... 24 Analog C X-axis (left is near 0, center around 128, right is near 255)
23 ... 16 Analog C Y-axis (down is near 0, center around 128, up is near 255)
15 ... 8 Analog shoulder TL (out is near 0, in is near 255)
7 ... 0 Analog shoulder TR (out is near 0, in is near 255)

Table 5: Format of the response to a poll command

www.opencores.org Rev 1.1 11 of 12

 OpenCores 14-Oct-2004

References

James' excellent page covering many details of the Gamecube controller protocol

http://www.int03.co.uk/crema/hardware/gamecube/gc-control.htm

Yet Another Gamecube Documentation

http://www.gc-linux.org/docs/yagcd/index.html

Refer to sections 5.8, 9.1 and 9.2.

www.opencores.org Rev 1.1 12 of 12

