
SD/MMC Bootloader
Specification

Author: Arnim Läuger

arniml@opencores.org

Rev. 3.3

August 7, 2007



OpenCores SD/MMC Bootloader Specification 07-Aug-2007

This page has been intentionally left blank.

www.opencores.org Rev 3.3 ii



OpenCores SD/MMC Bootloader Specification 07-Aug-2007

Revision History

Rev. Date Author Description
1.0 27-Feb-2005 Arnim Läuger First Version
2.0 09-Mar-2005 Arnim Läuger Update for set concept
3.0 14-Apr-2005 Arnim Läuger Handshaking information
3.1 16-Apr-2005 Arnim Läuger Formatting
3.2 16-Mar-2006 Arnim Läuger Detailed description of generic parameters

Formatting and typos fixed
3.3 07-Aug-2007 Arnim Läuger Additional check for illegal command on

ACMD41 in init flow diagram
Extension of set selection vector

www.opencores.org Rev 3.3 iii 



OpenCores SD/MMC Bootloader Specification 07-Aug-2007

Contents
INTRODUCTION..............................................................................................................1

ARCHITECTURE.............................................................................................................2

OPERATION......................................................................................................................5

INTEGRATION.................................................................................................................8

IO PORTS.........................................................................................................................11

www.opencores.org Rev 3.3 iv 



OpenCores SD/MMC Bootloader Specification 07-Aug-2007

1
Introduction

The SD/MMC Bootloader is a CPLD design that manages configuration and bootstrapping
of  FPGAs. It is able to retrieve the required data from SecureDigital (SD) cards or Multi-
MediaCards (MMC) and manages the FPGA configuration process. SD cards as well  as
MMCs are operated in SPI mode which is part of both standards thus eliminating the need
for dedicated implementations. The SD/MMC Bootloader fits both. Beyond configuration,
this core supports a bootstrapping strategy where multiple images are stored on one single
memory card.

For example consider a system completely based on SRAM. The bootloader provides an
initial configuration data from the first image to the FPGA. This image contains a design
which pulls the next image from the memory card and transfers this data to SRAM. In the
last step, the final FPGA design is loaded from the third image.

Features
� Configuration mode: configures SRAM based FPGAs via slave serial mode (Xilinx and

Altera)
� Data mode: provides stored data over a simple synchronous serial interface
� Broad compatability using SPI mode

� SecureDigital cards using dedicated initialization command
� MultiMediaCards (see below)

� Operation triggered by power-up or card insertion

The SD/MMC Bootloader project is maintained and released on the OpenCores web server
at

http://www.opencores.org/projects.cgi/web/spi_boot/overview/

Updates of this core can be obtained via the project pages.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCURE-
MENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTER-
RUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

www.opencores.org Rev 3.3 1 of 11



OpenCores SD/MMC Bootloader Specification 07-Aug-2007

2
Architecture

The architecture of the SD/MMC Bootloader is depicted in Figure 1. It consists of the con-
troller and command FSMs, an SPI port, two config/data ports and three counters.

Controller FSM

The controller FSM manages the overall  functionality of  the core. On one hand, this in-
cludes the complete SD/MMC SPI  mode protocol  with initialization, data retrieval  and
abort. On the other hand, configuration and data requests are handled.

Command FSM

The command FSM  sequences each single SPI  mode command and generates the
corresponding bit stream. Each sequence consists of the command itself, the card's response
and optional  data. Whenever this sequence has finished, the controller FSM is flagged,
triggering it to step to the next command.

Bit Counter

The bit counter provides a generic counting service to the command FSM. It times each
part of a command sequence and generates an overflow indicator to the command FSM.

www.opencores.org Rev 3.3 2 of 11

Figure 1: SD/MMC Bootloader block diagram

controller
FSM

spi_data

controlcontrol

status

config_n

cfg_init_n
config
port

cfg_done

data
port

SPI
port

spi_clk

spi_cs_n

spi_data_in

spi_data_out

cmd
FSM

spi_data

cfg_clk

cfg_dat

start

dat_done MMC
comp.

bit
cnt

img
cnt

mode

set_sel

detached

state
finished

status

cnt



OpenCores SD/MMC Bootloader Specification 07-Aug-2007

Image Counter

The image counter tracks the number of the current image. It increments according to the
instructions of the controller FSM.

MMC Compatability Counter

For full  compatability with the MMC standard it is required to initialize the card with a
maximum clock frequency of 400 kHz. The clock division is done with the MMC compati-
bility counter which signals its overflow to the bit counter. As soon as the initialization
phase has finished, the MMC compat counter is disabled by the controller FSM.

SPI Port

The SPI port connects to the pins of the SD or MM card according to Table 1.

Signal Connector Description
spi_clk Pin 5, CLK Clock
spi_cs_n Pin 1, CS Chip Select (Active low)
spi_data_in Pin 7, DataOut Card to Host Data and Status
spi_data_out Pin 2, DataIn Host to Card Commands and Data

Table 1: SD/MMC connections of SPI port

Furthermore, this port contains an output enable signal to put all outputs to tri-state.

Configuration Port

This port interfaces to the configuration facilities of the FPGA. It matches both Altera and
Xilinx products. The mapping is given in Table 2.

Signal Altera Xilinx Description
config_n nCONFIG PROGRAM# Initiates FPGA configuration sequence
cfg_init_n nSTATUS INIT# Rising edge indicates end of init
cfg_done CONF_DONE DONE Loading the configuration completed
cfg_clk DCLK CCLK Configuration clock
cfg_dat DATA0 DIN Configuration data

Table 2: Configuration port mapping

Data Port

The data port accepts control signals that control the sequence when reading multiple im-
ages and sets from the card. Table 3 describes their meaning.

Signal Description
start Initiates configuration sequence when asserted low
mode Mode selector: 0 

�
 configuration mode, 1 

�
 data mode

dat_done Loading in data mode completed
detached Indication that the SPI port outputs are tri-stated
set_sel Set selection

Table 3: Data port signals

Memory Organization

Data on the card is paritioned into sets, with each set consisting of one or more images. Sets
are static containers while images form the dynamic part of this two-fold scheme. The core
automatically increments its image counter whenever an image is requested via the start

www.opencores.org Rev 3.3 3 of 11



OpenCores SD/MMC Bootloader Specification 07-Aug-2007

trigger. Hence the dynamic attribute of images. The address offset for the images involved
is calculated by the set selection inputs. They are applied externally and are static during a
bootstrapping sequence.

Figure 2 shows the generic memory organization.

Parameters in Figure 2 are defined as follows (see also Table 4)
� bpi, bits per image: Number of bits required for the image address range.

ex.: bpi = 18 
�

 image contains 218 = 256 KB
� i: Number of images within a set.

i = 2m images
� m: Width of image counter.
� s: Maximum number of sets for a 4 GB card.

s = 2p sets
� p: Width of set selection vector.

p = 32 – bpi – m

The set selection vector is a general way to add an offset address to the image(s) and en-
ables paging through the full 4 GB (232 Bytes) address range of a card. It is the integrator's
responsibility to avoid memory ranges that are not available on the attached card.

www.opencores.org Rev 3.3 4 of 11

Figure 2: Memory organization

Image 0

Image 1

...

Image i−1

Set 1

Image 0

Image 1

...

Image i−1

Set s−1

((p−1)*m)*bpi2

((p−1)*m+1)*bpi2

((p−1)*m+2)*bpi2

((p−1)*m+m−1)*bpi2

(2*m)*bpi2

(1*m+m−1)*bpi2

(1*m+2)*bpi2

(1*m+1)*bpi2

(1*m)*bpi2

1*bpi2

2*bpi2

(m−1)*bpi2

Image 0

Image 1

...

Image i−1

Set 0

...

0



OpenCores SD/MMC Bootloader Specification 07-Aug-2007

3
Operation

The SD/MMC Bootloader has three operation states coupled to the interaction with the
memory card. After reset, the core is in initialization state and automatically configures the
SD or MM card. Next is the idle state where the core deactivates its outputs on the SPI in-
terface. Upon an external request, the core switches to the transfer state and requests data
from the memory card. The transfer state itself  has two modes for either configuring an
FPGA or simply passing through the card's data.

Initialization State

The flow diagram of the initialization state is shown in Figure 3.

www.opencores.org Rev 3.3 5 of 11

Figure 3: Initialization flow diagram

Power up

CMD0

GO_IDLE_STATE

CMD55

APP_CMD

ACMD41

SEND_OP_CMD

CMD1

SEND_OP_CMD

Card idle?

Card idle?

CMD16

SET_BLOCKLEN

Wait for start

Illegal CMD?

Illegal CMD?
Yes

No

No

Yes

No

Yes

No

Yes



OpenCores SD/MMC Bootloader Specification 07-Aug-2007

After reset, the core remains in the power up state spending a total of 144 clock cycles be-
fore the SPI interface is activated. This is more than twice the time the card needs to initial-
ize its internal states (specified to 64 clock cycles). The extra time is to eliminate uncertain-
ties both in power ramp up and card start up. If the application is time critical and there is
an external  power supply monitor it is safe to reduce the power up time to something
around 74 clocks. This modification has to be applied to the VHDL source code of the core.

The first command issued by the core is GO_IDLE_STATE (CMD0) with parallel assertion
of  CS. This resets the card and puts it in SPI mode. Them the core sends the command
APP_CMD (CMD55) to escape the next extended command. MultiMediaCards will  re-
spond to this with an illegal command error. The core detects this and uses CMD1 in the
further process. In both ways (CMD55 + ACMD41 and CMD1) the idle status of the card
is polled repeatedly. Once it left idle state, the core sets the desired block length with
SET_BLOCKLEN (CMD16). The block length is derived from the generic parameter
width_bit_cnt (refer to Table 4).

The core is now idle and SPI output signals are tri-stated. Output pin detached is '1'.

Transfer State

Whenever a start trigger is detected, the core turns to transfer state. The trigger consists of a
low-to-high transition of  the start input. To allow automatic operation, the core also
treats a constant high level at start as a trigger after reset. I.e. when the core reaches the
idle state for the first time, it continues immediately when start is high. For subsequent
loops through transfer and idle state start has to go low and high again.

When going from idle to transfer mode, the core samples the mode input which determines
whether the transfer should be done in configuration or data mode.

www.opencores.org Rev 3.3 6 of 11

Figure 4: Transfer flow diagram

CMD18

READ_MULTIPLE_BLOCKS

Wait for start

mode = 1?

Read block

???_done?

CMD12

STOP_TRANSMISSION

Activate config_n

cfg_init_n low?

Deactivate config_n

cfg_init_n high?

Yes

No

start

No

Yes

No

Yes

No

Yes



OpenCores SD/MMC Bootloader Specification 07-Aug-2007

Configuration and data mode are the same except that in configuration mode a configura-
tion cycle for the FPGA is generated. This cycle is similar for Altera and Xilinx devices
(also refer to Table 2):

1. Activation of config_n 
�

 configuration memory is cleared
2. Wait for low level on cfg_init_n 

�
 FPGA acknowledges assertion of config_n

3. Wait for high level on cfg_init_n 
�

 memory cleared, ready for configuration data

This sequence is skipped for data mode. The core continues with the data transfer itself in
both modes.

First step is to request a block of data by sending READ_MULTIPLE_BLOCKS command
(CMD18). The address of the first block depends on the selected set and the current value
of the image counter. Starting from 0, it counts the number of  images transferred and the
start address of an image is derived from the following formula

start _address � 2num_bits_per_image ��� cnt img � set � 2width_img_cnt �

As soon as the card has retrieved the specified block, the bit stream is presented at the
cfg_clk and cfg_dat outputs. Data at cfg_dat can be sampled with the rising edge
of cfg_clk. The card now sends one block after another without intervention of the core.
Configuration clock and data outputs are only operated when there is a valid  bit stream
from the card. I.e. during gaps between two blocks cfg_clk remains on high level. It
changes from high to low for the next valid bit on cfg_dat.

This sequence is terminated when both cfg_done and dat_done are activated. The
configuration clock is stopped immediately and the core sends STOP_TRANSMISSION
(CMD12) to the card. It may take some time before the core is finally in idle state again de-
pending on the block size and the time the done signals have been activated.

www.opencores.org Rev 3.3 7 of 11



OpenCores SD/MMC Bootloader Specification 07-Aug-2007

4
Integration

This chapter provides informations on the integration of  the SD/MMC Bootloader in an
FPGA system.

Configuration Timing

As written above, the configuration clock is stopped immediately when the core samples a
high level on both cfg_done and dat_done. The intention is to prevent any unwanted
data bits to be transferred to the FPGA. This scheme requires on the other hand that the
FPGA has terminated its configuration process at this time. For Spartan IIe devices (and
probably others) it is therefore necessary to program the DONE pin to the last cycle of the
startup sequence (one clock cycle earlier is probably also ok). With the default settings of
Xilinx WebPack the FPGA will not be able to finish its startup sequence because DONE is
asserted too early.

There is no experience so far with Altera devices.

Writing Data to the Card

Downloading the configuration data to the card is a straight forward process. The images
have to be written starting at dedicated locations. For the provided toplevel designs, these
locations are multiples of 256 K. I.e. 0, 0x40000, 0x80000 and so forth.

dd (part of the GNU coreutils) serves this purpose:

$ dd if=ram_loader.bin of=/dev/sdX bs=512
$ dd if=pongrom_6.bin of=/dev/sdX bs=512 seek=512
$ dd if=pacman.bin of=/dev/sdX bs=512 seek=1024

The name of the device node depends on how the card reader is attached to the kernel. For
Linux systems this is most often something like /dev/sdX with X ranging from a-z. Please
note that it is essential to use the device without any trailing numbers as these refer to parti-
tions and would lead to wrong offsets for data written to the card.

All this works perfectly for my Spartan IIe device as this FPGA expects the configuration
data as it is delivered from the card: Consecutive bytes each with its most significant bit
first. Altera devices like the FLEX family are different here. They expect the bytes with
least significant bit first. Therefore, the configuration data has to be swapped bitwise before
it is written to the card. Michael Libeskind kindly provided a program that accomplishes
this task. Find it in sw/misc/bit_reverse.c.

www.opencores.org Rev 3.3 8 of 11



OpenCores SD/MMC Bootloader Specification 07-Aug-2007

Schematic

A sample schematic for embedding SD/MMC Bootloader in an FPGA system is provided
in spi_boot_schematic.pdf. I use it to configure/boot the Xilinx Spartan IIe on BurchED's
B5-X300 board. SV2 fits the "SERIAL MODE" connector on this board but you will have
to add a separate wire from R6 to attach INIT. Please check the proper use of the pull-up
resistors for your specific board.

Only the configuration port has to be connected to the FPGA even in case the data mode is
not required and only one single configuration sequence should be applied. The core will
automatically start configuration as start and mode inputs are pulled high. When config-
uration has finished (FPGA sets cfg_done), the core will remain in the idle state because
there is no further low-to-high transition at start.

Interfacing

The config port is connected to the respective FPGA as described in Table 2. The port is in-
tended for configuration with slave serial mode where the config clock is supplied by the
SD/MMC Bootloader core.

The interface of the data port consists of the start and mode inputs that are used to trig-
ger the transfer and to select the mode. Subsequent retrieval of images requires a low-to-
high transition of  start. When start is brought to '1', mode has to be set to the re-
quired transfer mode. The core will when retrieve the image from the card and will apply
valid data at cfg_dat with the falling edge of  cfg_clk (in both configuration and data
mode). Termination of the data transfer is indicated by dat_done set to '1'1. The core will
then finish the access to the card and will  return to idle state where it waits for a new
start trigger. In idle state, the core tri-states all outputs of the SPI port and indicates this
by setting the output detached to '1'.

A design that requests one or more images can monitor detached to retrieve information
of the core's state. This output serves also as a handshake indicator for the start trigger.
The start input is sampled while detached is at '1'. When detached has switched
to '0', the FPGA design can safely pull start back to '0' to prepare the next transfer which
is typically initiated after asserting dat_done.

Generic Parameters

The spi_boot core can be tailored to the requirements of  the user by several  parameters.
This section discusses the toplevel generics listed in Table 4 in detail.

� width_bit_cnt_g
Defines the width of the bit counter. To handle the full SPI protocol, the minimum width
is 6 bits. This results in the smallest possible resource requirement for the counter while
imposing the largest decrease on read performance.
In order to share CPLD resources, the bit counter is also used to time the length of a read
block. The minimum of 6 selects a block length of 8 bytes. A counter width of 12 allows
to minimize the protocol overhead by increasing the block length to its maximum of 512
bytes in SPI mode.

1 Both dat_done and cfg_done have to be '1' to actually terminate the transfer.

www.opencores.org Rev 3.3 9 of 11



OpenCores SD/MMC Bootloader Specification 07-Aug-2007

� width_img_cnt_g
Defines the width of the image counter and thus the number of images. 0 selects one im-
age per set and results in lower resource usage when multi set operation is not required.

� num_bits_per_image_g
Defines the number of  bits to address one single image. 2num_bits_per_image_g is the size of
one image in bytes.

� sd_init_g
SD cards require CMD55/ACMD41 instead of CMD1 for initialization. Setting this pa-
rameter to one instructs the core to also probe with CMD55/ACMD41. When using only
MMC, sd_init_g can be set to 0 to decrease resource usage.

� mmc_compat_clk_div_g
Defines rollover value of  the MMC compatibility clock divider. Old MM  cards and
some SD cards require that the clock frequency during initialization phase is not higher
than 400 kHz. Select a value which satisfies

400 kHz �  f(clk_i) / (mmc_compat_clk_div_g *  2)
For cards that accept initialization with a faster clock frequency, this parameter can be
set to 0 to decrease resources usage.

� width_mmc_clk_div_g
Defines the width of the MMC compatability clock divider. Adjust to

2width_mmc_clk_div_g �  mmc_compat_clk_div_g.

Compatability

These cards have been tested with the SD/MMC Bootloader:
� Cannon 8 MB SD
� Hama 64 MB SD
� Panasonic 32 MB SD
� SanDisk 128 MB SD
� SanDisk 64 MB MMC
� SanDisk 64 MB SD

Some MMCs might fail  with this core as not all  cards support CMD18 (READ_MULTI-
PLE_BLOCK). Please consult the data sheet of your specific model. In case your MMC
does not implement CMD18 you might want to have a look at the FPGA MMC-Card Con-
fig project at http://www.opencores.org/projects.cgi/web/mmcfpgaconfig/overview/

www.opencores.org Rev 3.3 10 of 11



OpenCores SD/MMC Bootloader Specification 07-Aug-2007

5
IO Ports

The following Table 4 shows the primary IO ports of spi_boot.

Port Width Dir Description
clk_i 1 In Clock input
reset_i 1 In Reset input – active level selected via generic
set_sel_i p In Set selection input, depends on bpi and m

ref. memory organization
spi_clk_o 1 Out SPI clock output
spi_cs_n_o 1 Out SPI chip select – low active
spi_data_in_i 1 In SPI data from card
spi_data_out_o 1 Out SPI data to card
spi_en_outs_o 1 Out Tristate driver enable for SPI outputs
start_i 1 In Start trigger
mode_i 1 In Mode selection
config_n_o 1 Out Begin configuration
cfg_init_n_i 1 In Configuration init handshake – low active
cfg_done_i 1 In Configuration done
dat_done_i 1 In Data transfer done
datached_o 1 Out SPI port outputs tri-stated
cfg_clk_o 1 Out Configuration clock output
cfg_dat_o 1 Out Configuration data

Generic Value Description
width_bit_cnt 6 – 12 Width of bit counter
width_img_cnt 0 – 31 Width m of image counter, 2m = i images available
num_bits_per_i
mg

0 – 31 Number bpi of bits required to address one image

sd_init 0, 1 SD specific initialization command
1 : use ACMD41
0 : do not use ACMD41

mmc_compat_c
lk_div

0 – n Maximum count for MMC compatibility counter
0 : do not implement MMC compatibility counter

width_mmc_cl
k_div

0 – o Width of MMC compatibility counter

reset_level 0, 1 Active level of reset_i
Table 4: List of IO ports

www.opencores.org Rev 3.3 11 of 11


