OpenCores

WWW.opencores.org

\X

openMSP430

an MSP430 clone....

Author: Olivier GIRARD
olgirardl@gmail.com

Rev. 1.1
August 30, 2009

http://www.opencores.org/

@
\} OpenCores Aug 30, 2009

WWWw.opencores.org Rev 1.0 ii

http://www.opencores.org/

Revision History

Rev | Date Author | Description
1.0 August 4th, 2009 | GIRARD
1.1 | August 30th, 2009 | GIRARD

Contents

1. OVERVIEW....iitinninnninnnnenninsansssnssssssssesssssssssssssssssssssssssssssasssssssssssssssssasssssssssss 1
2. CORE.uueeneiecnnensnnennensnesssesssnssssesssnssssessssssssssssssssssssssssssassssssssssssassssasssssssassssassssssassssane 3
3. SERIAL DEBUG INTERFACEK........ccoininnrenruesensaensnnssenssessacsssssasssssssssssessassassssseses 15
4. SOFTWARE DEVELOPMENT TOOLS.......ccoceevierrurnsrncsaensnessseescsssneeessnseesssseces 27

5. FILE AND DIRECTORY DESCRIPTION.....cciiviiniiinrnseinsnnssecsssecsssnneesssssenscans 36

1.

Overview

Introduction

The openMSP430 is a synthesizable 16bit microcontroller core written in Verilog. It is
compatible with Texas Instruments' MSP430 microcontroller family and can execute the
code generated by an MSP430 toolchain in a cycle accurate way.

The core comes with some peripherals (GPIO, Timer A, generic templates) and a Serial
Debug Interface for in-system software development.

Download

Click here to download the complete tar archive of the project (OpenCores account
required).

Without account, you can also run the following SVN command from a console (or GUI):

svn export http://opencores.org/ocsvn/openmsp430/openmsp430/trunk/ openmsp430

Features & Limitations

Features

* Core:
 Full instruction set support.
* All addressing modes are supported.
* [RQ and NMI support.
* Power saving modes functionality is supported.
* Configurable ROM and RAM size.
» Serial Debug Interface (Nexus class 3).
* FPGA friendly (single clock domain, no clock gate).
* Small size (uses ~43% of a XC3S200 Xilinx Spartan-3).

1

http://www.syntevo.com/smartsvn/index.html
http://www.opencores.org/?do=projects&download=openmsp430

* Peripherals:
» Basic Clock Module.
* Watchdog.
* Timer A.
* GPIO (port 1 to 6).

Limitations

 Core:
» Instructions can't be executed from RAM.

* Peripherals:
* Basic clock module doesn't offer the full functionality of a real MSP430.

Links

Development has been performed using the following freely available (excellent) tools:

 Icarus Verilog : Verilog simulator.

 GTKWave Analyzer : Waveform viewer.

* MSPGCC : GCC toolchain for the Texas Instruments MSP430 MCU .
» ISE WebPACK : Xilinx's FPGA synthesis tool.

A few MSP430 links:

» Wikipedia: MSP430
o TI: MSP430x1xx Family User's Guide

Legal information

MSP430 is a trademark of Texas Instruments, Inc. This project is not affiliated in any
way with Texas Instruments. All other product names are trademarks or registered
trademarks of their respective owners.

http://www.ti.com/litv/pdf/slau049f
http://en.wikipedia.org/wiki/MSP430
http://www.xilinx.com/ise/logic_design_prod/webpack.htm
http://mspgcc.sourceforge.net/
http://gtkwave.sourceforge.net/
http://www.icarus.com/eda/verilog/

Core

Table of content

e 1. Introduction
* 2. Design
e 2.1 Core
e 2.1.1 Design structure
e 2.1.2 Limitations
» 2.1.3 Configuration
e 2.1.4 Pinout
e 2.1.5 Instruction Cycles and Lengths
* 2.1.6 Serial Debug Interface
» 2.2 Peripherals
» 2.2.1 Basic Clock Module
2.2.2 Watchdog Timer
* 2.2.3 Digital I/O
e 224 Timer A

1. Introduction

The openMSP430 is a 16-bit microcontroller core compatible with TI's MSP430 family
(note that the extended version of the architecture, the MSP430X, isn't supported by this
IP). It is based on a Von Neumann architecture, with a single address space for
instructions and data.

This design has been implemented to be FPGA friendly. Therefore, the core doesn't
contain any clock gate and has only a single clock domain. As a consequence, the clock
management block has a few limitations.

This IP doesn't contain the program and data memory blocks internally (these are
technology dependent hard macros which are connected to the IP during chip

3

integration). However the core is fully configurable in regard to the supported RAM and
ROM size.

In addition to the CPU core itself, several peripherals are also provided and can be easily
connected to the core during integration.

2. Design
2.1 Core

2.1.1 Design structure

The following diagram shows the openMSP430 design structure:

ROM interface

RAM interface

Peripheral bus

Peripherals

* Frontend: This module performs the instruction Fetch and Decode tasks. It also
contains the execution state machine.

* Execution unit: Containing the ALU and the register file, this module executes
the current decoded instruction according to the execution state.

* Serial Debug Interface: Contains all the required logic for a Nexus class 3
debugging unit (without trace). Communication with the host is done with a
standard 8N serial interface.

Memory backbone: This block performs a simple arbitration between the
frontend and execution-unit for ROM and RAM access.

Basic Clock Module: Generates the ACLK and SMCLK enable signals.

SFRs: The Special Function Registers block contains diverse configuration
registers (NMI, Watchdog, ...).

Watchdog: Although it is a peripheral, the watchdog is permanently included in
the core because of its tight links with the NMI interrupts and the PUC reset
generation.

2.1.2 Limitations

The known core limitations are the following:

Instructions can't be executed from RAM.

SCGO is not implemented (turns off DCO).

MCLK can't be divided and can only have DCO_ CLK as source (see Basic Clock
Module section).

2.1.3 Configuration

It is possible to configure the openMSP430 core through the “openMSP430 defines.v”
file located in the r#/ directory (see file and directory description).

Two parameters can be adjusted by the user in order to define the ROM and RAM sizes:

// ROM Size

// 9 -> 1kB
!/ 10 -> 2kB
// 11 -> 4kB
// 12 -> 8kB
// 13 -> 16kB

“define ROM_AWIDTH 10

// RAM Size

// 6 -> 128 B
// 7 -> 256 B
// 8 -> 512 B
// 9 -> 1 kB
// 10 -> 2 kB

“define RAM_AWIDTH 6

The following parameters define if the debug interface should be included or not and how
many hardware breakpoint units should be included:

// Include Debug interface
“define DBG_EN

// Debug interface selection

// “define DBG_UART -> Enable UART (8N1l) debug interface
// “define DBG_JTAG -> DON'T UNCOMMENT, NOT SUPPORTED YET
//

“define DBG_UART

// define DBG_JTAG

// Number of hardware breakpoints (each unit contains 2 hw address breakpoints)
// “define DBG_HWBRK_O@ -> Include hardware breakpoints unit 0

// “define DBG_HWBRK 1 -> Include hardware breakpoints unit 1

// “define DBG_HWBRK 2 -> Include hardware breakpoints unit 2

// “define DBG_HWBRK 3 -> Include hardware breakpoints unit 3

//

“define DBG_HWBRK_0

“define DBG_HWBRK_1

“define DBG_HWBRK_ 2

“define DBG_HWBRK 3

All remaining defines located in this file are system constants and should not be edited.

2.1.4 Pinout
The full pinout of the openMSP430 core is provided in the following table:

‘ Port Name H Direction H Width H Description

‘ Clocks

‘dco_clk H Input H 1 HFast oscillator (fast clock), CPU clock
‘lfxt_clk H Input H 1 HLOW frequency oscillator (typ. 32kHz)
‘mclk H Output H 1 HMain system clock

‘aclk_en H Output H 1 HACLK enable

‘smclk_en H Output H 1 HSMCLK enable

‘ Resets

‘puc H Output H 1 HMain system reset

‘reset_n H Input H 1 HReset Pin (low active)

‘ Interrupts

‘irq H Input H 14 HMaskable interrupts (one-hot signal)
‘nmi H Input H 1 ‘h\lon—maskable interrupt (asynchronous)
‘irq_acc H Output H 14 HInterrupt request accepted (one-hot signal)
‘ External Peripherals interface

‘per_addr ‘ ‘ Output ‘ ‘ 8 ‘ ‘Peripheral address

‘per_din ‘ ‘ Output ‘ ‘ 16 ‘ ‘Peripheral data input

‘per_dout H Input ‘ ‘ 16 ‘ ‘Peripheral data output

6

‘per_en H Output H 1 HPeripheral enable (high active)

|
‘per_wen H Output H 2 HPeripheral write enable (high active) ‘
‘ RAM interface ‘
‘ram_addr H Output H‘RAM_AWIDTHI‘ ‘RAM address ‘
‘ram_cen H Output H 1 HRAM chip enable (low active) ‘
‘ram_din H Output H 16 HRAM data input ‘
‘ram_dout H Input H 16 HRAM data output ‘
‘ram_wen H Output H 2 HRAM write enable (low active) ‘
‘ ROM interface ‘
‘rom_addr H Output H‘ROM_AWIDTHl‘ ‘ROM address ‘
‘rom_cen H Output H 1 HROM chip enable (low active) ‘
rom_din_dbg Output 16 ROM data input

--FOR SERIAL DEBUG INTERFACE--

‘rom_dout H Input H 16 HROM data output ‘
rom_wen_dbg | Output 2 ﬁlgngvvs%E&ing(gg(; %\iIVTe%RFACE--

‘ Serial Debug interface ‘
‘dbg_freeze H Output H 1 HFreeze peripherals ‘
‘dbg_uart_txd H Output H 1 HDebug interface: UART TXD ‘
‘dbg_uart_rxd H Input H 1 HDebug interface: UART RXD ‘

I This parameter is declared in the "openMSP430 defines.v" file and defines the
RAM/ROM size.

2.1.5 Instruction Cycles and Lengths

The number of CPU clock cycles required for an instruction depends on the instruction
format and the addressing modes used, not the instruction itself.

In the following tables, the number of cycles refers to the main clock (MCLK).
Differences with the original MSP430 are highlighted in green (the original value being
red).

* Interrupt and Reset Cycles

Action H No. of Cycles H Length of Instruction
‘Return from interrupt (RETI) H 5 H 1
‘Interrupt accepted H 6 H
‘WDT reset H 4 H
Reset (IRST/NMI) [4 [

* Format-II (Single Operand) Instruction Cycles and Lengths

No. of Cycles

Addressing Mode Length of Instruction
RRA, RRC, SWPB, SXT PUSH CALL
. Rn ! 3 3¢ !
@R 3 IEN N !
@Rn+ 3 4(5) 4(5) 1
| | EIONRTON
N N/A a5 2
. XRm) 4 s || s | 2
_ EDE 4 NN 2
_ &EDE 4 Ls | s | 2

* Format-III (Jump) Instruction Cycles and Lengths

All jump instructions require one code word, and take two CPU cycles to execute,
regardless of whether the jump is taken or not.

* Format-I (Double Operand) Instruction Cycles and Lengths

‘ Addressing Mode H

‘ Src

H Dst

H No. of Cycles

Length of Instruction

_ Rm

_PC

x(Rm) |

. EDE

 &EDE

@Rn

_ Rm

ORI NI NS N O,

_PC

)

~

—_ = NN DN =] =

@Rn+

#N

EDE

&EDE |
Rm
PC
x(Rm) |
EDE
&EDE |

&EDE

s~
(@)
W
-
W W W DN W W W N W W W NN W W W NN N NN~ =N

|
|
|
|
|
|
|
|
|
|
|
x(Rn) = x(Rm)
|
|
|
|
|
|
|
|
|
|
|
|

2.1.6 Serial Debug Interface
All the details about the Serial Debug Interface are located here.

9

2.2 Peripherals

In addition to the CPU core itself, several peripherals are also provided and can be easily
connected to the core during integration.

2.2.1 Basic Clock Module

In order to make an FPGA implementation as simple as possible (ideally, a non-designer
should be able to do it), clock gates are not used in the design and neither are clock
muxes.

With these constrains, the Basic Clock Module is implemented as following:

openMSP430

Basic Clock Module
DIVAX

0OSCOFF T T

Low Frequency

LFXT_CLK — Divider
clock source ' syne [, edge T;L) Divider il ACLK N
(F, =32.768-Hz) detection

A

L]

High Frequency DCO_CLK
clock source - -l MCLK
(=== CPU dlock)

i

N
1
Divider ~-
Y 1/2/4/8 b8 SMCLK_EN

Note: CPUOFF doesn't switch MCLK off and will instead bring the CPU state machines
in an IDLE state while MCLK will still be running.

In order to 'clock' a register with ACLK or SMCLK, the following structure needs to be

implemented:
w0
] Q

MC LK

1V

The following Verilog code would implement a counter clocked with SMCLK:
reg [7:0] test_cnt;

always @ (posedge mclk or posedge puc)
if (puc) test_cnt <= 8'h00;
else if (smclk_en) test_cnt <= test_cnt + 8'h01;

Register Description

* DCOCTL: Not implemented
 BCSCTLI:
* BCSCTLI1[7:6]: Unused
* BCSCTLI1[5:4]: DIVAx
* BCSCTL1[4:0]: Unused
* BCSCTL2:
* BCSCTL2[7:4]: Unused
 BCSCTL2[3] :SELS
* BCSCTL2[2:1]: DIVSx
* BCSCTL2[0] : Unused

2.2.2 Watchdog Timer

100% of the features advertised in the MSP430x1xx Family User's Guide (Chapter 10)
have been implemented.

2.2.3 Digital 1/O

100% of the features advertised in the MSP430x1xx Family User's Guide (Chapter 9)
have been implemented.

The following Verilog parameters will enable or disable the corresponding ports in order
to save area (i.e. FPGA utilization):

'bl; // Enable Port
'bl; // Enable Port
'bO; // Enable Port
'bO; // Enable Port
'b0; // Enable Port
'b0; // Enable Port

parameter P1_EN =
parameter P2_EN =
parameter P3_EN =
parameter P4 _EN =
parameter P5_EN =

O e S Y
o Ul A W N

parameter P6_EN =

11

They can be updated as following during the module instantiation (here port 1, 2 and 3
are enabled):

gpio #(.P1_EN(1),
.P2_EN(1),
.P3_EN(1),
.P4_EN(O),
.P5_EN(0),

.P6_EN(0)) gpio 0 (

The full pinout of the GPIO module is provided in the following table:

‘ Port Name HDirectionH Width H Description
‘ Clocks & Resets

‘mclk H Input H 1 HMain system clock

‘puc H Input H 1 HMain system reset

‘ Interrupts

‘irq_portl H Output H 1 HPort 1 interrupt
‘irq_portZ H Output H 1 HPort 2 interrupt

‘ External Peripherals interface
‘per_addr ‘ ‘ Input ‘ ‘ 8 ‘ ‘Peripheral address
‘per_din ‘ ‘ Input ‘ ‘ 16 ‘ ‘Peripheral data input
‘per_dout H Output H 16 HPeripheral data output
‘per_en H Input H 1 HPeripheral enable (high active)
‘p er wen ‘ ‘ Input ‘ ‘ 2

‘ Port 1

|
|
|
|
|
|
|
|
|
|
|
|
Peripheral write enable (high active)
|
|
|
|
|
|
|
|
|
|
|
|

‘pl_din H Input H 8 HPort 1 data input
‘pl_dout H Output H 8 HPort 1 data output
‘pl_dout_en H Output H 8 HPort 1 data output enable
‘pl_sel H Output H 8 HPort 1 function select

‘ Port 2

‘pZ_din H Input H 8 HPort 2 data input
‘pZ_dout H Output H 8 HPort 2 data output
‘pZ_dout_en H Output H 8 HPort 2 data output enable
‘pZ_sel H Output H 8 HPort 2 function select

‘ Port 3

‘p3_din H Input H 8 HPort 3 data input

12

‘p3_d0ut H Output H 8 HPort 3 data output ‘
‘p3_d0ut_en H Output H 8 HPort 3 data output enable ‘
‘p3_sel H Output H 8 HPort 3 function select ‘
‘ Port 4 ‘
‘p4_din H Input H 8 HPort 4 data input ‘
‘p4_d0ut H Output H 8 HPort 4 data output ‘
‘p4_d0ut_en H Output H 8 HPort 4 data output enable ‘
‘p4_sel H Output H 8 HPort 4 function select ‘
‘ Port 5 ‘
‘pS_din H Input H 8 HPort 5 data input ‘
‘pS_dout H Output H 8 HPort 5 data output ‘
‘pS_dout_en H Output H 8 HPort 5 data output enable ‘
‘pS_sel H Output H 8 HPort 5 function select ‘
‘ Port 6 ‘
‘p6_din H Input H 8 HPort 6 data input ‘
‘p6_d0ut H Output H 8 HPort 6 data output ‘
‘p6_d0ut_en H Output H 8 HPort 6 data output enable ‘
‘p6_sel H Output H 8 HPort 6 function select ‘
2.2.4 Timer A

100% of the features advertised in the MSP430x1xx Family User's Guide (Chapter 11)

have been implemented.

The full pinout of the Timer A module is provided in the following table:

‘ Port Name HDirectionH Width H Description
‘ Clocks, Resets & Debug
‘mclk H Input H 1 HMain system clock
‘aclk_en H Input H 1 HACLK enable (from CPU)
‘smclk_en H Input H 1 HSMCLK enable (from CPU)
‘inclk H Input H 1 HINCLK external timer clock (SLOW)
‘taclk H Input H 1 HTACLK external timer clock (SLOW)
‘puc H Input H 1 HMain system reset
1

‘dbg_freeze H Input H

HFreeze Timer A counter

13

Interrupts

‘irq_taO H Output H 1 HTimer A interrupt: TACCRO

irg tal | Output = 1 Timer A interrupt: TAIV, TACCR1, TACCR2
‘irq_taO_acc H Input H 1 Hlnterrupt request TACCRO accepted
‘ External Peripherals interface

‘per_addr ‘ ‘ Input ‘ ‘ 8 ‘ ‘Peripheral address

‘per_din ‘ ‘ Input ‘ ‘ 16 ‘ ‘Peripheral data input

‘per_dout H Output H 16 HPeripheral data output

‘per_en H Input H 1 HPeripheral enable (high active)
‘per_wen H Input H 2 HPeripheral write enable (high active)
‘ Capture/Compare Unit 0

‘ta_cciOa H Input H 1 HTimer A capture 0 input A

‘ta_cciOb H Input H 1 HTimer A capture 0 input B

‘ta_outO H Output H 1 HTimer A output 0

‘ta_outO_en H Output H 1 HTimer A output 0 enable

‘ Capture/Compare Unit 1

‘ta_ccila H Input H 1 HTimer A capture 1 input A

‘ta_ccilb H Input H 1 HTimer A capture 1 input B

‘ta_outl H Output H 1 HTimer A output 1

‘ta_outl_en H Output H 1 HTimer A output 1 enable

‘ Capture/Compare Unit 2

‘ta_cciZa H Input H 1 HTimer A capture 2 input A

‘ta_cciZb H Input H 1 HTimer A capture 2 input B

‘ta_out2 H Output H 1 HTimer A output 2

‘ta_out2_en H Output H 1 HTimer A output 2 enable

Note: for the same reason as with the Basic Clock Module, the two additional clock
inputs (TACLK and INCLK) are internally synchronized with the MCLK domain. As a
consequence, TACLK and INCLK should be at least 2 times slowlier than MCLK, and if
these clock are used toghether with the Timer A output unit, some jitter might be
observed on the generated output. If this jitter is critical for the application, ACLK and
INCLK should idealy be derivated from DCO_ CLK.

14

3.

Serial Debug Interface

Table of content

e 1. Introduction
* 2. Debug Unit
* 2.1 Register Mapping
e 2.2 CPU Control/Status Registers
« 22.1CPU_ID
« 2.2.2 CPU_CTL
 2.2.3 CPU_STAT
e 2.3 Memory Access Registers
e 23.1 MEM CTL
« 232 MEM ADDR
« 233 MEM DATA
e 234MEM_CNT
* 2.4 Hardware Breakpoint Unit Registers
 24.1 BRKx CTL
* 24.2 BRKx STAT
* 2.4.3 BRKx ADDRO
* 2.4.4BRKx ADDRI
* 3 Debug Communication Interface: UART
¢ 3.1 Serial communication protocol: 8N1
e 3.2 Synchronization frame
* 3.3 Read/Write access to the debug registers
* 3.3.1 Command Frame
* 3.3.2 Write access
* 3.3.3 Read access
* 3.4 Read/Write burst implementation for the CPU Memory access
* 3.4.1 Write Burst access
* 3.4.2 Read Burst access

15

1. Introduction

The original MSP430 from TI provides a serial debug interface to give a simple path to
software development. In that case, the communication with the host computer is
typically build on a JTAG or Spy-Bi-Wire serial protocol. However, the global debug
architecture from the MSP430 is unfortunately poorly documented on the web (and is
also probably tightly linked with the internal core architecture).

A custom module has therefore been implemented for the openMSP430. The
communication with the host is done with a simple RS232 cable (§N1 serial protocol)
and the debug unit provides all the required features for Nexus Class 3 debugging (beside
trace), namely:

* CPU control (run, stop, step, reset).

* Software & hardware breakpoint support.

* Memory read/write on-the-fly (no need to halt execution).

* CPU registers read/write on-the-fly (no need to halt execution).

2. Debug Unit
2.1 Register Mapping

The following table summarize the complete debug register set accessible through the
debug communication interface:

Register Name AddressH Bit Fleld |

asdmpiRuwes 1 6 s (a3 21 [0
| CPU_ID_LO || 0x00 | CPU_ID[7:0) | ROM_AWIDTH I RAM_AWIDTH ‘
| CPU_ID_HI || ox01 | cPU_IDE3) \
‘ CPU_CTL H 0x02 H Reserved H CPU_RST Hm BRK ENHFRZ BRK. ENHSW BRKEH ISTEP H RUN H HALT ‘
‘ CPU_STAT H 0x03 H Reserved Hstm,pND‘ HWBRK2_PND HHWBR];('JN""WB“];“LPNHSWBEUNHpucprDH Res. HHALTJ{UN‘
| MEM CTL | 0x04 | Reserved | w|[vewrec)| rowe || starr |
| MEM_ADDR || 0x05 | MEM_ADDR[15:0] \
| MEM_DATA || 0x06 | MEM_DATA[15:0] ‘
| MEM_CNT || 0x07 | MEM_CNT[15:0] \
‘ BRKO_CTL H 0x08 H Reserved HRANGE—MODH INST_EN HBREAK ENH ACCESS_MODE ‘
‘ BRKO_STAT H 0x09 H Reserved H RANGE_WR H RANGE_RD HADDRI WR‘ ‘ADDRI RD‘ ‘ADDRO W‘ ‘ADDROJ{D‘
'BRKO_ADDRO|| 0x0A || BRK_ADDRO[15:0] ‘
'BRKO_ADDRI/| 0x0B | BRK_ADDRI[15:0] \
‘ BRK1 CTL H 0x0C H Reserved HRANGEM)D INST EN | BREAK EN| ACCESS MODE ‘
‘ BRKI STAT ‘ 0x0D H Reserved H RANGE WR H RANGE_RD HADDRI WR‘ ‘ADDR] RD‘ ‘ADD‘“’ W‘ ‘ADDRO,RD‘
BRKI_ADDRO | 0x0E | BRK_ADDRO[15:] ‘
BRKI_ADDRI|| 0x0F | BRK_ADDRI[15:0] ‘
‘ BRK2_CTL H 0x10 H Reserved HRANGE;MODH INST_EN HBREAKJENH ACCESS_MODE ‘

16

‘ BRK2 STAT 0x11 H Reserved H RANGE_WR ‘ ‘ RANGE_RD HADDRLWR‘ ‘ADDRLRD‘ ‘ADDRO W‘ ‘ADDRO RD‘
\BRK2_ADDRO|| 0x12 | BRK_ADDRO[15:0] \
\BRK2_ADDRI|| 0x13 || BRK_ADDRI[15:0] ‘
‘ BRK3 CTL || o0x14 H Reserved HRANGE MOD' | |NST_EN | BREAK_EN|| ACCESS_MODE ‘
‘ BRK3 STAT ‘ 0x15 H Reserved H RANGE_WR ‘ ‘ RANGE_RD HADDRI WR‘ ‘ADDR] RD‘ ‘ADDRO W‘ ‘ADDRO RD‘
‘BRKSfADDRO‘ ‘ 0x16 ‘ ‘ BRK_ADDRO[15:0] ‘
BRK3_ADDRI|| 0x17 || BRK_ADDRI[15:0] ‘

2.2 CPU Control/Status Registers

2.2.1 CPU_ID

This 32 bit read-only register holds the ID of the implemented openMSP430 as well as
the RAM and ROM size information.

. Bit Field ‘ ‘
sl Led 151 D IO GG OGN 1
H CPU ID LO H 0x00 H CPU_ID[7:0] H ROM_AWIDTH H RAM_AWIDTH H
“ CPUID_HI | 0x01 | CPU_ID[23:7) H

*CPU_ID : Set by default to 0x4D5350 (ascii code for "MSP")

* ROM_AWIDTH : Program memory address width for the current implementation.
The ROM size is then equal to 2rom awri

* RAM_AWIDTH : Data memory address width for the current implementation. The
RAM size is then equal to 2ravawmrs

2.2.2 CPU_CTL

This 8 bit read-write register is used to control the CPU and to configure some basic
debug features. After a POR, this register is set to 0x00.

I Bit Field |

Register Name || Address
76 s 4 32 1 0
“ CPU _CTL H 0x02 H Res. H CPU_RST H RST BRK_EN H FRZ BRK_EN H SW_BRK_EN H ISTEP H RUNH HALT ”
* CPU_RST : Setting this bit to 1 will activate the PUC reset. Setting it back to

0 will release it.

*RST BRK EN : If set to 1, the CPU will automatically break after a PUC
occurrence.

* FRZ BRK EN : If set to 1, the timers and watchdog are frozen when the CPU is

17

halted.
*SW_BRK EN : Enables the software breakpoint detection.

e ISTEP! : Writing 1 to this bit will perform a single instruction step if the
CPU is halted.

« RUN! : Writing 1 to this bit will get the CPU out of halt state.

e HALT! : Writing 1 to this bit will put the CPU in halt state.

U-this field is write-only and always reads back 0.

2.2.3 CPU_STAT

This 8 bit read-write register gives the global status of the debug interface. After a POR,
this register is set to 0x00.

Revister Name Add I Bit Field |
egister Name ress|

7 s s 43210
“ CPU_STAT H 0x03 HHWBRKLPNDHHWBRK27PNDHHWBRKLPNDHHWBRKO)NDHSWBRKjNDHPUC)ND HALTﬁRUN‘

* HWBRK3 PND : This bit reflects if one of the Hardware Breakpoint Unit 3 status
bit is set (i.e. BRK3_ STAT#0).

* HWBRK2 PND : This bit reflects if one of the Hardware Breakpoint Unit 2 status
bit is set (i.e. BRK2 STAT#0).

* HWBRK1 PND : This bit reflects if one of the Hardware Breakpoint Unit 1 status
bit is set (i.e. BRK1 STAT#0).

* HWBRKO PND : This bit reflects if one of the Hardware Breakpoint Unit O status
bit is set (i.e. BRKO_STAT#0).

* SWBRK _PND : This bit is set to 1 when a software breakpoint occurred. It can be
cleared by writing 1 to it.

* PUC_PND : This bit is set to 1 when a PUC reset occurred. It can be cleared
by writing 1 to it.

* HALT RUN : This read-only bit gives the current status of the CPU:

0 - CPU is running.
1 - CPU is stopped.

18

2.3 Memory Access Registers

The following four registers enable single and burst read/write access to both CPU-
Registers and full memory address range.

In order to perform an access, the following sequences are typically done:

* single read access (MEM_CNT=0):
1. set MEM_ADDR with the memory address (or register number) to be read
2. set MEM_CTL (in particular RD/WR=0 and START=1)
3. read MEM_DATA
* single write access (MEM_CNT=0):
1. set MEM_ADDR with the memory address (or register number) to be
written
2. set MEM_DATA with the data to be written
3. set MEM_CTL (in particular RD/WR=1 and START=1)
* burst read/write access (MEM_CNT#0):
o burst access are optimized for the communication interface used (i.e. for
the UART). The burst sequence are therefore described in the corresponding section (3.4
Read/Write burst implementation for the CPU Memory access)

2.3.1 MEM_CTL

This 8 bit read-write register is used to control the Memory and CPU-Register read/write
access. After a POR, this register is set to 0x00.

Resister N nadress | Bit Field |
egister Name ress

elsials 2 1 0]
“ MEM_CTL H 0x04 H Reserved H B/W H MEM/REG H RD/WR H START ”

* B/'W : 0 - 16 bit access.
1- 8 bit access (not valid for CPU-Registers).
* MEM/REG : 0 - Memory access.
1 - CPU-Register access.
* RD/WR : 0 - Read access.
1 - Write access.
* START : 0- Do nothing

1 - Initiate memory transfer.

19

2.3.2 MEM_ADDR

This 16 bit read-write register specifies the Memory or CPU-Register address to be used
for the next read/write transfer. After a POR, this register is set to 0x0000.

Note: in case of burst (i.e. MEM_CNT#0), this register specifies the first address of the
burst transfer and will be incremented automatically as the burst goes (by 1 for 8-bit
access and by 2 for 16-bit access).

. Bit Field H
mewmMm“15M13ullm@n.@Engg.[j
‘ ‘ MEM_ADDR ‘ ‘ 0x05 ‘ ‘ MEM_ADDR[15:0] ‘

* MEM_ADDR : Memory or CPU-Register address to be used for the next
read/write transfer.

2.3.3 MEM_DATA

This 16 bit read-write register specifies (wr) or receive (rd) the Memory or CPU-Register
data for the the next transfer. After a POR, this register is set to 0x0000.

. I Bit Field |

peemtertme | A is a2 109807605 43 201 0

| MEMDATA | 0x06 | MEM_DATA[15:0] |

* MEM_DATA : if MEM_CTL.WR - data to be written during the next write
transfer.

if MEM_CTL.RD - updated with the data from the read transfer

2.3.4 MEM_CNT

This 16 bit read-write register controls the burst access to the Memory or CPU-Registers.
If set to 0, a single access will occur, otherwise, a burst will be performed. The burst
being optimized for the communication interface, more details are given there. After a
POR, this register is set to 0x0000.

. I Bit Field |
reesertame A sl i o el (7065403 2010
“ MEM_CNT | 0x07 | MEM_CNT[150] | ‘

* MEM_CNT : =0 - a single access will be performed with the next transfer.

#0 - specifies the burst size for the next transfer (i.e number of data
access). This field will be automatically decremented as the burst goes.

20

2.4 Hardware Breakpoint Unit Registers

Depending on the defines located in the "openMSP430 defines.v" file, up to four
hardware breakpoint units can be included in the design. These units can be individually
controlled with the following registers.

2.4.1 BRKx_CTL

This 8 bit read-write register controls the hardware breakpoint unit x. After a POR, this
register is set to 0x00.

Bit Field |

. |
pesterfame | M ales 4 s 2 1o
BRKx CTL %);01%,%);013’ Reserved RANGE_MODE INST EN BREAK_EN ACCESS_MODE

* RANGE_MODE : 0 - Address match on BRK_ADDRO or BRK_ADDRI (normal
mode)

1 - Address match on BRK_ ADDRO—BRK ADDRI range
(range mode)

* INST_EN : 0 - Checks are done on the execution unit (data flow).
1 - Checks are done on the frontend (instruction flow).

* BREAK EN : 0 - Watchpoint mode enable (don't stop on address match).
1 - Breakpoint mode enable (stop on address match).

* ACCESS_MODE : 00 - Disabled

01 - Detect read access.
10 - Detect write access.
11 - Detect read/write access

Note: '10' & '11' modes are not supported on the instruction flow

21

2.4.2 BRKx_STAT

This 8 bit read-write register gives the status of the hardware breakpoint unit x. Each
status bit can be cleared by writing 1 to it. After a POR, this register is set to 0x00.

| Bit Field |

Register Name | Address ‘E‘ 5 H A H 3 H 5 H | H 0 H
BRKx STAT 0x09, 0x0D, Reserved || RANGE_WR | RANGE_RD | ADDRI_WR | ADDRI_RD | ADDRO_WR || ADDRO_RD
- 0x11, 0x15

* RANGE_WR : This bit is set whenever the CPU performs a write access within the
BRKx ADDRO—BRKx ADDRI range (valid if RANGE MODE=1
and ACCESS_MODE[1]=1).

* RANGE_RD : This bit is set whenever the CPU performs a read access within the
BRKx_ ADDRO—BRKx_ ADDRI range (valid if RANGE MODE=1
and ACCESS_MODE[0]=1).

* ADDR1_WR : This bit is set whenever the CPU performs a write access at the
BRKx ADDRI1 address (valid if RANGE MODE=0 and
ACCESS_MODE[1]=1).

* ADDR1_RD : This bit is set whenever the CPU performs a read access at the
BRKx ADDR1 address (valid if RANGE MODE=0 and
ACCESS_MODEJ[0]=1).

* ADDRO_WR : This bit is set whenever the CPU performs a write access at the
BRKx ADDRO address (valid if RANGE MODE=0 and
ACCESS MODE[1]=1).

* ADDRO_RD : This bit is set whenever the CPU performs a read access at the
BRKx ADDRO address (valid if RANGE MODE=0 and
ACCESS _MODEJ[0]=1).

2.4.3 BRKx_ADDRO(

This 16 bit read-write register holds the value which is compared against the address
value currently present on the program or data address bus. After a POR, this register is
set to 0x0000.

. I Bit Field |
Register Name Address s a3 2 n 098706054321 0
BRKx_ADDRO O(;;)?S ?));?12 BRK_ADDRO[15:0]

* BRK _ADDRO : Value compared against the address value currently present on the
program or data address bus.

22

2.4.4 BRKx_ADDRI1

This 16 bit read-write register holds the value which is compared against the address
value currently present on the program or data address bus. After a POR, this register is
set to 0x0000.

, I Bit Field |
Register Rame | A s 32 11090807065/ 403 2 1 0
BRKx_ ADDRI1 007;01]:“;,’ %);(il;’ BRK_ADDRI[15:0]

* BRK_ADDRI1 : Value compared against the address value currently present on the
program or data address bus.

3. Debug Communication Interface:
UART

With its UART interface, the openMSP430 debug unit can communicate with the host
computer using a simple RS232 cable (connected to the dbg_uart txd and dbg_uart rxd
ports of the IP).

Using an standard USB to RS232 adaptor, the interface provides a reliable
communication link up to 1,5Mbps.

3.1 Serial communication protocol: SN1

There are plenty tutorials on Internet regarding RS232 based protocols. However, here is
quick recap about 8N1 (1 Start bit, 8 Data bits, No Parity, 1 Stop bit):
LSB MSB

1
0 |3tm|0|1|2|3|¢|5|5|?3t0|3

As you can see in the above diagram, data transmission starts with a Start bit, followed by
the data bits (LSB sent first and MSB sent last), and ends with a "Stop" bit.

23

http://www.google.com/search?q=usb+to+rs232+converter

3.2 Synchronization frame

After a POR, the Serial Debug Interface expects a synchronization frame from the host
computer in order to determine the communication speed (i.e. the baud rate).

The synchronization frame looks as following:

1 LSE M5B
0|Stan0123456|79mp
time
T - bps

As you can see, the host simply sends the 0x80 value. The openMSP430 will then
measure the time between the falling and rising edge, divide it by 8 and automatically
deduce the baud rate it should use to properly communicate with the host.

Important note: if you want to change the communication speed between two debugging
sessions, the openMSP430 needs to go over a POR cycle and a new synchronization
frame needs to be send.

3.3 Read/Write access to the debug registers

In order to perform a read / write access to a debug register, the host needs to send a
command frame to the openMSP430.

In case of write access, this command frame will be followed by 1 or 2 data frames and in
case of read access, the openMSP430 will send 1 or 2 data frames after receiving the
command.

3.3.1 Command Frame

The command frame looks as following:

Tle|&51413)2)|1]0

WR |BW Address
* WR : Perform a Write access when set. Read otherwise.
* B/'W : Perform a 8-bit data access when set (one data frame). 16-bit otherwise

(two data frame).

* Address : Debug register address.

24

3.3.2 Write access

A write access transaction looks like this:

* 8-bit:
Host TX: | 1 | 1 | Address ” Data |
Host RX:
* 16-bit
Host TX: | 1 | 0 | Address || Data[7:0] || Data[15:8]
Host RX:
3.3.3 Read access

A read access transaction looks like this:

* 8-bit:
Host TX: | 0 | 1 | Address |
Host RX: | Data |
* 16-bit
Host TX: | 0 | 0 | Address |
Host RX: | Data[7 0] | | Data[15:8] |

3.4 Read/Write burst implementation for the CPU
Memory access

In order to optimize the data burst transactions for the UART, read/write access are not
done by reading or writing the MEM_DATA register.

Instead, the data transfer starts immediately after the MEM CTL.START bit has been
set.

3.4.1 Write Burst access

A write burst transaction looks like this:

Command frame Data frame Burst Frames
Host TX: | 1 | 1 | Oxd (MEM_CTL) ” 0 |arw|“ﬁ§g'ﬂ| 1 | 1 ” Data nn
Host RX: e
—

®MEM_CNT x (2MEM_CTL BW)

25

3.4.2 Read Burst access

A read burst transaction looks like this:

Command frame

Data frame

Host TX: | 1 | 1 | 0x4 (MEM_CTL) ”

|B|’W|

fial-li}
Teg

o]+

Host RX:

26

BurstFrames

Data

j

.

—
* MEM_CNT x (2-MEM_CTL B/W)

4.

Software Development
Tools

Table of content

1. Introduction

* 2. openmsp430-loader
* 3. openmsp430-minidebug

* 4. openmsp430-gdbproxy
5. MSPGCC Toolchain

¢ 5.1 Some notes regarding msp430-edb
e 5.2 CPU selection for msp430-gcc

1. Introduction

Building on the serial debug interface capabilities provided by the openMSP430, three
small utility programs are provided:

* openmsp430-loader: a simple command line boot loader.

* openmsp430-minidebug: a minimalistic debugger with simple GUI.

* openmsp430-gdbproxy: GDB Proxy server to be used together with MSP430-
GDB and the Eclipse, DDD, or Insight graphical front-ends.

All these software development tools have been developed in TCL/TK and were
successfully tested on both Linux and Windows XP.

Note: in order to be able to directly execute the scripts, TCL/TK needs to be installed on
your system. Optionally for Windows users, the scripts have been turned into single-file
binary executable programs using freeWrap.

27

http://freewrap.sourceforge.net/
http://www.tcl.tk/software/tcltk/

2. openmsp430-loader

This simple program allows the user to load the openMSP430 program memory with an
executable file (ELF format) provided as argument.

It is typically used in conjunction with 'make' in order to automatically load the program
after the compile step (see 'Makefile' from software examples provided with the project's
FPGA implementation).

The program can be called with the following syntax:

openmsp430-loader.tcl [-device <communication device>] [-baudrate <communication speed>] <elf-file>
Examples: openmsp430-loader.tcl -device /dev/ttyUSBO -baudrate 9600 leds.elf
openmsp430-loader.tcl -device COM2: -baudrate 38400 ta_uart.elf

These screenshots show the script in action under Linux and Windows:

&) leds : bash — ® @ (i)
File Edit View Scrollback Bookmarks Settings Help

dev/ttyUSBO -baudrate 115200 leds.elf
Connecting with the openMSP4 e ! R 0 S) done
Connected: target device has 409

. done
. done

@ leds : bash

C:wopenmspdlB@stoolssbin>

C:sopenmspdlB@stoolssbin?

C:wopenmspd4dB@stoolsshin

C:sopenmspd4dB@stoolsshin?

C:wopenmsp43@stoolsshin

C-opennsp43B@-toolssbin

C:wopenmepd3B@itoolssbin>telehBS openmepd43f—loader.tcl —device COM4: -baudrate 115288 leds.elf
Connecting with the openMSP4328 (COM4:, 115288 hps>... done

Connected: target device has 4896B ROM and 1824B RAM

C-opennsp43B@-toolssbin

C:wopenmzpd3fstoolssbin>

C:wopenmepddBstoolssbinopenmepd3f-loader.exe —device COM4: —baudrate 115208 leds.elf
Connecting with the openMSP428 (COM4:, 115288 hps>... done

Connected: target device has 4896B ROM and 1824B RAM

Load ROM... done
Verify ROM... done

C:wopenmzpd3B@stoolssbin>
C:wopenmspdiB@stoolssbin>
C:wopenmspdlB@stoolssbin>
C:sopenmspdlB@stoolssbin?
C:Nopenmspd3Bstoolssbin

28

3. openmsp430-minidebug

This small program provides a minimalistic graphical interface enabling simple
interaction with the openMSP430:

K) openMSP430 mini debuger = ME® ®

Exit
Serial Port: | ~| Baudrate: =] Connected

ELF file: |ProjectsiverilogigpenMSP430ipgaldiligent_s3boardisoftware/leds/leds.elf | Browse
T

Load ELF File | D-:}:/
Cantrol CPU@RESET ‘ Run ; CPU Status: (ROM size: 4096 B; RAM size: 1024 B)

Address Data
r0 (pe): |OxfO4a 0x0200 0x0001
r1 (sp): |0x02fe 0x0202 0x00cf
12 (sr): |0x0008 0x0204 0x0000

N ey S € R
r5: [Dx0000 e VAL

_ 0x020a 0x0000
ré: |0x0000 0x020¢ 0x0000
17 |0x0000 Refresh Refresh ‘ 0x0208 0x0000
rB: |Ux0001 Registers Memory 00210 0x0000
rQ.. [ox0080 0x0212 0x0000
r10: [ox004d [ox0214 [ox0o00
r11: |ox0005 [ox0216 [oxoo00
r12: [ox0000 [ox0218 [ox0o00
r13: |ox6cof [ox021a [oxoo00
r14: [[ox021¢ [ox0o00
r5 [0x0007 [ox021e [ox0000

As you can see from the screenshot, it allows the following actions:

* (1) Load the program memory with an ELF file

(2) Reset the CPU

(3) Stop/Start the program execution

(4) Read/Write access of the CPU registers

(5) Read/Write access of the whole memory range (program, data, peripherals)

29

4. openmsp430-gdbproxy

The purpose of this program is to replace the 'msp430-gdbproxy' utility provided by the
mspgcc toolchain.

Typically, a GDB proxy creates a local port for gdb to connect to, and handles the
communication with the target hardware. In our case, it is basically a bridge between the
RSP communication protocol from GDB and the serial debug interface from the
openMSP430.

Schematically the communication flow looks as following:

Graphical Interface
(Eclipse, DDD, Insight)

A

v

GDB
(msp430-gdb)

TCP/IP port (RSP protocal)
v
GDB Proxy
(openmsp430-gdbproxy)

Serial port (R5232)
N

openMSP430

Like the original 'msp430-gdbproxy' program, 'openmsp430-gdbproxy' can be controlled
from the command line. However, it also provides a small graphical interface:

A) openMSP430 GDB Proxy = ®®E ®
Exit
Serial Port: | | Baudrate: |

Proxy Server Port: |

INFO: Sucessfully connected with the openMS5FP430 target. £
INFO: ROM Size - 4096 B
INFO: RAM Size - 1824 B
INFO: 1 Hardware Break/Watch-point unit(s) detected

Open socket on port 20080 ... done
INFO: Waiting on TCPF port 2000

/

Clearlog [~ Verbose

30

These two additional screenshots show the script in action together with the Eclipse and
DDD graphical frontends:

© Debug - coucoulsrclcoucou.c - Eclipse Platform ®
File Edit Refactor Navigate Search Project Run Window Help
2 |& [$-0-a- & e o o o [$Debug *
* b [>]u = : R i % ¥ =0 @-Variables % points &f Expressions ! Regi 22 =\ Modules % B Y =0
msp430 [Zylin Embedded debug (Native)] Name Value 3
~ & Embedded GDB (7/28/09 11:37 PM) (Suspended) ~ & Main
~ o Thread [0] (Suspended: Breakpoint hit.) bt (o] 0x0000f200
wirt 0x000002f8
s msp430-gdb (7/28/09 11:37 PM) wir2 12
e n —
W
[D]
[¢ coucou.c % - [8 hardware.h = 0/ & Outline [Disassembly =
0x0000f246 <main+l154>: inc O(r4) ;0x0000 (r4) =
WDTCTL = WDTPW | WDTTMSEL | WDTCNTCL;// | WDTISI | WDTISG ; ©x0000724a <main+l58>; inc 2(r4) 1 0x0002 (r4)
0x0000f24e <main+l62>: jmp $-86 ;abs OxT1f8
IE1 |= 0x01; P30UT = (1<<i) | (O0x80>>(0&7));
eint(); //enable interrupts »0x00007200 <main+84>: mov #I, ris ;r3 As==01
@x0000f202 <main+86>: mov @r4, 4(r4) ;0x0004(rd)
. .) 0x0000f206 <main+90>: mov ris, ri4
while (1) { // Main loop, never ends @x0000f208 <main+t92>: mov 4(r4), rl3 ;0x0004(r4)
for (i=0; 1<8; i++, ott) { 0x000@f20c <main+96>: tst ri3
P3OUT = (l<<i) | (©x80>>(0&7)): 9x000020e <pp-
delay (0x0003, 0xFFFf): 0x0000 216 < X © openMSP430 GDBProxy ——— PO ®
} 0x00001212 < gq
} 0x0000f214 < A
} 0x00001216 <1 gyt por S Em: S| G
4| e eanias o semira J ~] Baudrate] o B
‘ I gplsaiaia
= ProxyServerPort [T000 Running 5
E Console ® & Tasks| [l Problems @ Executables g
msp430 [Zylin Embedded debug (Native)] msp430-gdb (7/28/09 11:37 PM) [T SRy R i G0 e EED G
Erasing target program memory... Erased OK INFO: RAM Size - 1024 B =

Loading section .text, size 8x2aa lma ©x000 INFO: 1 Hardware Break/Natch-point unit(s) detected
load msp430/coucou. elf

Loading section .vectors, size ©x20 lma Oxffed®
Start address 0xf000, load size 714

Open socket on port 2008 ... done
INFO: Vaiting on TCP port 2008
Accept client: 127.0.6.1 (49951)

Transfer rate: 3 KB/sec, 357 bytes/write 7]
& Glear log I~ Verhose D'
e Er
#& (© DDD: IhomelpitchulProjectsiveriloglopenMSP430ifpgaldiligent_s3board/softwarelleds/main.c @ @
File Edit View Program Commands Status Source Data Help
= = = = Eaa = e =
0 main. <61 9 G @ o 2 o G ST e
Lookup Firtir: Break UStch print, Doy Piob snow Rofate. St Undien
Main function with some blinking leds C Al
*
int main{voidy { Run
i;
int o = 0; Interrupt
irg_counter = 0; 3
stizet - 0; Step | stepi |
Mext | Mexti
WDTCTL = WOTPW | WDTHOLD; /# Disable watchdog timer || e
Until | Finish
P10OUT = 0x00; /¢ Port data output
P20UT = 0x00; Cont | kil
P1DIR = /¢ Port direction register L ||Eem
P2DIR Unda | Fieclo
P3DIR =
Eclit | Make
P1IES /4 Port dinterrupt enable (O=dis 1=enabled)
P2IES
P1IE Jf Port dinterrupt Edge Select (O=pos 1=heg)
P2IE =
WDTCTL = WOTPW | WDTTMSEL | WOTCNTCL:// | WOTIS1 | WOTISO ; A © openMSP430 GDB Proxy ®e ©
IE1 |= 0013 Exit
Ieint(); Jfenable interrupts
while (1) /4 Wain Toop, never ends... Serial Port: | | Baudrate: K
for (i=0; i<@; i+, oHH) £
P3OUT = (1<ei) | (0xB0>>(0&7));
> 3 delay (0x0007, Oxffff); Proxy Server Port; Running
H
H INFO: Waiting on TCP port 2000)

Accept client: 127.0.8.1 (49951)

Accept client: 127.0.8.1 (45776)
Iog_openMSP| Iag_ezdau‘ Cannect_z000 Canne:t_2001| Erase Load| Fleset|

Connection closed: 127.0.8.1 (45776)

Breakpoint 1, main () at main.c:66

(qdb) next Accept client: 127.0.8.1 (45777)

(qdb) step

delay (c=F, d=£53535) at main.c:9 7

(adb) cont :
Breakpoint 1, main () at main.c:66 Clearlog [~ Verhose

(qdb) step

(gdbd }

x ol

31

Tip: There are several tutorials on Internet explaining how to configure Eclipse for the
MSP430. As an Eclipse newbie, I found the followings quite helpful:

» Use Eclipse and mspgcc - The easy way (English)
* MSP430 - Entwicklungumgebung (German)

5. MSPGCC Toolchain

5.1 Some notes regarding msp430-gdb

As of today (July 2009), the GDB port for the MSP430 has some problems (here).

The stepping over function is not available and the backtrace and finish commands don't
work properly.

There is fortunately a patch existing, and until it is included into GDB, I can only
recommend to recompile GDB with it (I didn't try it for Windows but it is quite straight
forward to do for Linux).

5.2 CPU selection for msp430-gcc

The following table aims to help selecting the proper -mmcu option for the msp430-gecc
call.

Note that only the ROM size should imperatively match the openMSP430 configuration.

| ROM Size: 1 kB |
msp430x110 1kB 128B
‘msp430x1101 1kB 128B
msp430x2001 1kB 128B
msp430x2002 1kB 128B
msp430x2003 1kB 128B
msp430x2101 1kB 128B
| ROM Size: 2 kB |
msp430x1111 2kB 128B
msp430x2011 2kB 128B
msp430x2012 2kB 128B

msp430x2013 2kB 128B
32

http://www.nabble.com/Useful-new-GDB-fixes-td19554922.html
http://www.nabble.com/Help-with-gdb-commands-td21942613.html
http://msp430.ms.funpic.de/doku.php?id=msp430:entwicklungumgebung
http://matthias-hartmann.blogspot.com/2009/02/use-eclipse-and-mspgcc-easy-way.html

msp430x2111 2kB 128B
msp430x2112 2kB 128B
msp430x311 2kB 128B
| ROM Size: 4 kB |
msp430x112 4kB 256B
msp430x1121 4kB 256B
msp430x1122 4kB 256B
msp430x122 4kB 256B
msp430x1222 4kB 256B
msp430x2122 4kB 256B
msp430x2121 4kB 256B
msp430x312 4kB 256B
| msp430x412 4kB 256B
| ROM Size: 8 kB |
 msp430x123 8kB 256B
 msp430x133 | 8kB 256B |
 msp430x313 | 8kB 256B |
 msp430x323 | 8kB 256B |
 msp430x413 8kB 256B
| msp430x423 8kB 256B
'msp430xE423 8kB 256 B
‘msp430xE4232 8kB 256 B
‘msp430xW423 8kB 256B |
msp430x1132 8kB 256B
msp430x1232 8kB 256B
msp430x1331 8kB 256B
msp430x2131 8kB 256B
msp430x2132 8kB 256B
msp430x2232 8kB 512B
msp430x2234 8kB 512B
| msp430x233 8kB 1024 B
msp430x2330 8 kB 1024 B
| ROM Size: 16 kB |

33

msp430x4250 16kB 256 B
‘msp430xG4250 16kB 256 B
- msp430x135 16kB 512B
msp430x1351 16kB 512B
- msp430x155 16kB 512B
msp430x2252 16kB 512B
msp430x2254 16kB 512B
- msp430x315 16kB 512B
- msp430x325 16kB 512B
- msp430x415 16kB 512B
msp430x425 16kB 512B
'msp430xE425 16kB 512B
‘msp430xW425 16kB 512B
‘msp430xE4252 16kB 512B
- msp430x435 16kB 512B
msp430x4351 16kB 512B
- msp430x235 16 kB 2048 B
' msp430x2350 16 kB 2048 B
| ROM Size: 32 kB |
msp430x4270 32kB 256 B
‘msp430xG4270 32kB 256 B |
 msp430x147 32kB 1024 B
msp430x1471 32kB 1024 B
 msp430x157 32kB 1024 B
 msp430x167 32kB 1024 B
msp430x2272 32kB 1024 B
msp430x2274 32kB 1024 B
- msp430x337 32kB 1024 B
- msp430x417 32kB 1024 B
| msp430x427 32kB 1024 B
'msp430xE427 32kB 1024 B
‘msp430xE4272 32kB 1024 B
‘msp430xW427 32kB 1024 B

34

msp430x437 32kB 1024 B
'msp430xG437 32kB 1024 B
msp430x4371 32kB 1024 B
| msp430x447 32kB 1024 B
' msp430x2370 |32kB 2048 B
| msp430x247 32kB 4096 B
msp430x2471 32kB 4096 B

35

S.

File and Directory
Description

Table of content

e 1. Introduction

e 2. Directory structure: openMSP430 core

* 3. Directory structure: FGPA projects

* 4. Directory structure: Software Development Tools

1. Introduction

To simplify the integration of this IP, the directory structure is based on the OpenCores
recommendations.

2. Directory structure: openMSP430 core

‘core HopenMSP43 0 Core top level directory ‘
‘bench HT op level testbench directory ‘
‘verilog H ‘
‘tb_openMSP430.V HT estbench top level module ‘

‘ram.v W@AM verilog model ‘

‘registers.v HConnections to Core internals for easy debugging ‘
‘dbg_uart_tasks.v HUART tasks for the serial debug interface ‘

36

http://www.opencores.org/downloads/opencores_coding_guidelines.pdf

msp_debug.v Testbench instruction dec"oder and ASCII chain
generator for easy debugging
‘doc ‘biverse documentation ‘
slau049f.pdf MSP430x1xx Family User's Guide
‘rtl ‘P?T L sources ‘
‘Verilog H ‘
openhipAs0 gt SIS0 o o e (ROM v
’ configuration)
‘0penMSP43O.V HopenMSP430 top level ‘
‘frontend.v Hlnstruction fetch and decode ‘
‘execution_unit.v HExecution unit ‘
‘alu.v ‘MLU ‘
‘register_ﬁle.v HRegister file ‘
‘mem_backbone.v HMemory backbone ‘
‘clock_module.v HBasic Clock Module ‘
‘Sfl‘.V HSpecial function registers ‘
‘watchdog.v HWatchdog Timer ‘
‘dbg.v HSerial Debug Interface main block ‘
‘dbg_hwbrk.v HSerial Debug Interface hardware breakpoint unit ‘
‘dbg_uart.v HSerial Debug Interface UART communication block‘
‘periph HPeripherals directory ‘
‘gpio.v W)igital 1/0 (Port 1 to 6) ‘
‘timerA.V ‘T imer A ‘
telnglpfite_p criph Verilog template for 16 bit peripherals
tegg?\}ate_p criph Verilog template for 8 bit peripherals
‘sim HT op level simulations directory ‘
‘rtl_sim ‘P&T L simulations ‘
‘bin W?T L simulation scripts ‘
‘msp430sim HMain simulation script ‘
‘astihex.sh HAssembly file compilation (Intel HEX ﬁle‘

37

‘ ‘ Lgeneration)

‘ihex2mem.tol HVerilog ROM memory file generation

‘rtlsim.sh HVerilog Icarus simulation script

‘template.def ‘MSM linker definition file template

‘run HFor running RTL simulations
‘run HRun single simulation of a given vector
‘run_all HRun regression of all vectors

run_disassembl
e

}Disassemble ROM content of the latest simulation

load waveform

sav SAV file for gtkWave
‘src ‘P?T L simulation vectors sources
‘submit.f HVerilog simulator command file

‘sing-op_*.s43 HSingle—operand assembler vector files

‘sing-op_*.v HSingle—operand verilog stimulus vector files

‘two—op_*.s43 HT wo-operand assembler vector files

‘two-op_*.v HT wo-operand verilog stimulus vector files

c-jump_ *.s43 Hlump assembler vector files

c-jump_ *.v Hlump verilog stimulus vector files

CPU operating modes assembler vector (files

op_modes.s43 (CPUOFF, OSCOFF, SCGI)

CPU operating modes verilog stimulus vector files

Op_modeS.V CpOFF, OSCOFF, SCG1)

clock module.s

13 Basic Clock Module assembler vector files

‘Clock_module.v‘ﬁasic Clock Module verilog stimulus vector files

‘dbg_*.s43 HSerial Debug Interface assembler vector files

‘dbg_*.v HSerial Debug Interface verilog stimulus vector files

‘gpio_*.s43 ‘bigital 1/O assembler vector files

‘gpio_*.v ‘bigital 1/O verilog stimulus vector files

te;ns 111321 te_periph }Peripheml templates assembler vector files

template _periph reripheml templates verilog stimulus vector files
*v

38

‘wdt_*.s43 HWatchdog timer assembler vector files ‘

‘wdt_*.v HWatchdog timer verilog stimulus vector files ‘

‘tA_*.s43 HT imer A assembler vector files ‘

‘tA_*.V HT imer A verilog stimulus vector files ‘
‘synthesis HT op level synthesis directory ‘
‘synopsys HSynopsys (Design Compiler) directory ‘
‘run_syn HRun synthesis ‘
‘synthesis.tcl HMain synthesis TCL script ‘
library.tcl ﬁoaczidml;'l;g;y, set operating conditions and wire
‘read.tcl W&ead RTL ‘
‘constraints.tcl HSet design constrains ‘
‘results W@esults directory ‘

3. Directory structure: FGPA projects

openMSP430 FPGA Projects top
level directory

FPGA Project based on the Diligent
partan-3 board

fpga

diligent_s3board

‘bench HT op level testbench directory

|
‘verilog H ‘
‘tb_openMSP430_fpga.V HFPGA testbench top level module ‘

Connections to Core internals for

registers.v

easy debugging
Testbench instruction decoder and
msp_debug.v ASCII chain generator for easy

debugging

glbl.v Xilinx "glblv" file |
‘doc ‘biverse documentation ‘
board user guide.pdf %;c;:tcgzil eFPGA Starter Kit Board
msp430f1121a.pdf ‘msp430f1121a Specification |
‘Xapp462.pdf HXilinx Digital Clock Managers‘

39

H(DCMS) user guide

‘rtl ‘P?T L sources
‘Verilog H
openMSP430 core configuration file
0penMSP430_defines.v (ROM and RAM size definition)
‘0penMSP430_fpga.V WTPGA top level file
driver 7segment.v IF)?gl-é))/l(chZz"ver Seven-Segment LED
‘io_mux.v HI/O mux for port function selection.
‘coregen ‘P(ilinx 's coregen directory ‘
L?IE_SXS 12 512 Byte RAM (upper byte)
i;a)n;_SxS 12 512 Byte RAM (lower byte)
ir‘(;m_8x2k_h 2 kByte ROM (upper byte)
ffin 8x2k 2 kByte ROM (lower byte)
‘sim HT op level simulations directory ‘
‘rtl_sim ‘P?T L simulations ‘
‘bin ‘P?T L simulation scripts ‘
‘msp430sim HMain simulation script ‘
::}llex2mem.t Verilog ROM memory file generation
‘rtlsim.sh HVerilog Icarus simulation script ‘
run ‘P’or running RTL simulations ‘
o un simulation of a given software
roject
run_disasse Disassemble ROM content of the
mble latest simulation
sre ‘P{T L simulation verilog stimulus ‘
‘submit.f HVerilog simulator command file ‘
%y Stimulus vector for the corresponding
' oftware project
software

oM

ﬁoftware C programs to be loaded in

40

leds kEDs blinking application (from the
CDK4MSP project)

‘makeﬁle H ‘
‘hardware.h ‘ ‘ ‘
‘main.c H ‘
Tseg.h [|
Tseg.c [|

ta uart Software UART with Timer A (from

B the CDK4MSP project)
‘synthesis HT op level synthesis directory
‘xilinx H

‘create_bitstream

‘openMSP430_fpga_top.ucf HUCF file

‘openMSP43 0 fpga top.v

|
|
HRun Xilinx ISE synthesis ‘

HRTL file list to be synthesized

load Tom Update bitstream's ROM with a given
- oftware ELF file

PGA memory description for

memory.bmm t;itstream 's ROM update
4. Directory structure: Software

Development Tools
tools openMSP430 Software Development
Tools top level directory
‘bin HContains the executable files

openmsp430-loader.tcl

Simple command line boot loader: TCL
Script

openmsp430-loader.exe

Simple command line boot loader:

Windows executable

openmsp430-minidebug.tcl

Minimalistic debugger with simple GUI:
TCL Script

openmsp430-minidebug.exe

Minimalistic debugger with simple GUI:
Windows executable

openmsp430-gdbproxy.tcl

HGDB Proxy server to be used together with

41

MSP430-GDB and the Eclipse, DDD, or
Insight graphical front-ends: TCL Script

openmsp430-gdbproxy.exe

GDB Proxy server to be used together with
MSP430-GDB and the Eclipse, DDD, or
Insight graphical front-ends: Windows
executable

lib

HCommon library

tel-lib

‘dbg_uart.tcl

|
HCommon TCL library ‘
|

WOW level UART communication functions

dbg_functions.tcl

Main utility functions for the openMSP430
serial debug interface

combobox.tcl

A combobox listbox widget written in pure
tcl (from Bryan Oakley)

openmsp430-gdbproxy

‘GDB Proxy server main project directory

openmsp430-gdbproxy.tcl

GDB Proxy server main TCL Script
(symbolic link with the script in the bin
directory)

server.tcl

TCP/IP Server utility functions.
Send/Receive RSP packets from GDB.

commands.tcl

LRSP command execution functions. ‘

Some documentation regarding GDB and

doc the RSP protocol.

ew_GDB _RSP.pd Document from Bill Gatliff: Embedding
f with GNU: the gdb Remote Serial Protocol
Howto- Document from Jeremy Bennett
GDB_Remote Ser (Embecosm): Howto: GDB Remote Serial

ial Protocol.pdf Protocol - Writing a RSP Server
The freeWrap program turns TCL/TK
freewrap642 scripts into single-file binary executable

programs for Windows.

freewrap.exe

freeWrap executable to run on TCL/TK
scripts (i.e. with GUI)

freewrapTCLSH.exe

freeWrap executable to run on pure TCL
scripts (i.e. command line)

telpip85s.dll

Ufree Wrap mandatory DLL ‘

generate exec.bat

Simple Batch file for auto generation of the
tools' windows executables

42

