
openMSP430
an MSP430 clone....

Author: Olivier GIRARD

olgirard@gmail.com

Rev. 1.1

August 30, 2009

http://www.opencores.org/

 OpenCores Aug 30, 2009

www.opencores.org Rev 1.0 ii

http://www.opencores.org/

Revision History

Rev
.

Date Author Description

1.0 August 4th, 2009 GIRARD First version.
1.1 August 30th, 2009 GIRARD Replaced “openMSP430.inc“ with

“openMSP430_defines.v“

Contents

1. OVERVIEW...1

2. CORE..3

3. SERIAL DEBUG INTERFACE...15

4. SOFTWARE DEVELOPMENT TOOLS...27

5. FILE AND DIRECTORY DESCRIPTION..36

1.
Overview

Introduction
The openMSP430 is a synthesizable 16bit microcontroller core written in Verilog. It is
compatible with Texas Instruments' MSP430 microcontroller family and can execute the
code generated by an MSP430 toolchain in a cycle accurate way.

The core comes with some peripherals (GPIO, Timer A, generic templates) and a Serial
Debug Interface for in-system software development.

Download
Click here to download the complete tar archive of the project (OpenCores account
required).

Without account, you can also run the following SVN command from a console (or GUI):

svn export http://opencores.org/ocsvn/openmsp430/openmsp430/trunk/ openmsp430

Features & Limitations
Features

• Core:
• Full instruction set support.
• All addressing modes are supported.
• IRQ and NMI support.
• Power saving modes functionality is supported.
• Configurable ROM and RAM size.
• Serial Debug Interface (Nexus class 3).
• FPGA friendly (single clock domain, no clock gate).
• Small size (uses ~43% of a XC3S200 Xilinx Spartan-3).

1

http://www.syntevo.com/smartsvn/index.html
http://www.opencores.org/?do=projects&download=openmsp430

• Peripherals:
• Basic Clock Module.
• Watchdog.
• Timer A.
• GPIO (port 1 to 6).

Limitations
• Core:

• Instructions can't be executed from RAM.

• Peripherals:
• Basic clock module doesn't offer the full functionality of a real MSP430.

Links
Development has been performed using the following freely available (excellent) tools:

• Icarus Verilog : Verilog simulator.
• GTKWave Analyzer : Waveform viewer.
• MSPGCC : GCC toolchain for the Texas Instruments MSP430 MCUs.
• ISE WebPACK : Xilinx's FPGA synthesis tool.

A few MSP430 links:

• Wikipedia: MSP430
• TI: MSP430x1xx Family User's Guide

Legal information
MSP430 is a trademark of Texas Instruments, Inc. This project is not affiliated in any
way with Texas Instruments. All other product names are trademarks or registered
trademarks of their respective owners.

2

http://www.ti.com/litv/pdf/slau049f
http://en.wikipedia.org/wiki/MSP430
http://www.xilinx.com/ise/logic_design_prod/webpack.htm
http://mspgcc.sourceforge.net/
http://gtkwave.sourceforge.net/
http://www.icarus.com/eda/verilog/

2.
Core

Table of content

• 1. Introduction
• 2. Design

• 2.1 Core
• 2.1.1 Design structure
• 2.1.2 Limitations
• 2.1.3 Configuration
• 2.1.4 Pinout
• 2.1.5 Instruction Cycles and Lengths
• 2.1.6 Serial Debug Interface

• 2.2 Peripherals
• 2.2.1 Basic Clock Module
• 2.2.2 Watchdog Timer
• 2.2.3 Digital I/O
• 2.2.4 Timer A

1. Introduction
The openMSP430 is a 16-bit microcontroller core compatible with TI's MSP430 family
(note that the extended version of the architecture, the MSP430X, isn't supported by this
IP). It is based on a Von Neumann architecture, with a single address space for
instructions and data.

This design has been implemented to be FPGA friendly. Therefore, the core doesn't
contain any clock gate and has only a single clock domain. As a consequence, the clock
management block has a few limitations.

This IP doesn't contain the program and data memory blocks internally (these are
technology dependent hard macros which are connected to the IP during chip

3

integration). However the core is fully configurable in regard to the supported RAM and
ROM size.

In addition to the CPU core itself, several peripherals are also provided and can be easily
connected to the core during integration.

2. Design
2.1 Core
2.1.1 Design structure

The following diagram shows the openMSP430 design structure:

• Frontend: This module performs the instruction Fetch and Decode tasks. It also
contains the execution state machine.

• Execution unit: Containing the ALU and the register file, this module executes
the current decoded instruction according to the execution state.

• Serial Debug Interface: Contains all the required logic for a Nexus class 3
debugging unit (without trace). Communication with the host is done with a
standard 8N1 serial interface.

4

• Memory backbone: This block performs a simple arbitration between the
frontend and execution-unit for ROM and RAM access.

• Basic Clock Module: Generates the ACLK and SMCLK enable signals.
• SFRs: The Special Function Registers block contains diverse configuration

registers (NMI, Watchdog, ...).
• Watchdog: Although it is a peripheral, the watchdog is permanently included in

the core because of its tight links with the NMI interrupts and the PUC reset
generation.

2.1.2 Limitations

The known core limitations are the following:

• Instructions can't be executed from RAM.
• SCG0 is not implemented (turns off DCO).
• MCLK can't be divided and can only have DCO_CLK as source (see Basic Clock

Module section).

2.1.3 Configuration

It is possible to configure the openMSP430 core through the “openMSP430_defines.v”
file located in the rtl directory (see file and directory description).

Two parameters can be adjusted by the user in order to define the ROM and RAM sizes:

// ROM Size
// 9 -> 1kB
// 10 -> 2kB
// 11 -> 4kB
// 12 -> 8kB
// 13 -> 16kB
`define ROM_AWIDTH 10

// RAM Size
// 6 -> 128 B
// 7 -> 256 B
// 8 -> 512 B
// 9 -> 1 kB
// 10 -> 2 kB
`define RAM_AWIDTH 6

The following parameters define if the debug interface should be included or not and how
many hardware breakpoint units should be included:

//--
// REMOTE DEBUGGING INTERFACE CONFIGURATION
//--

// Include Debug interface
`define DBG_EN

5

// Debug interface selection
// `define DBG_UART -> Enable UART (8N1) debug interface
// `define DBG_JTAG -> DON'T UNCOMMENT, NOT SUPPORTED YET
//
`define DBG_UART
//`define DBG_JTAG

// Number of hardware breakpoints (each unit contains 2 hw address breakpoints)
// `define DBG_HWBRK_0 -> Include hardware breakpoints unit 0
// `define DBG_HWBRK_1 -> Include hardware breakpoints unit 1
// `define DBG_HWBRK_2 -> Include hardware breakpoints unit 2
// `define DBG_HWBRK_3 -> Include hardware breakpoints unit 3
//
`define DBG_HWBRK_0
`define DBG_HWBRK_1
`define DBG_HWBRK_2
`define DBG_HWBRK_3

All remaining defines located in this file are system constants and should not be edited.

2.1.4 Pinout

The full pinout of the openMSP430 core is provided in the following table:

Port Name Direction Width Description

Clocks

dco_clk Input 1 Fast oscillator (fast clock), CPU clock

lfxt_clk Input 1 Low frequency oscillator (typ. 32kHz)

mclk Output 1 Main system clock

aclk_en Output 1 ACLK enable

smclk_en Output 1 SMCLK enable

Resets

puc Output 1 Main system reset

reset_n Input 1 Reset Pin (low active)

Interrupts

irq Input 14 Maskable interrupts (one-hot signal)

nmi Input 1 Non-maskable interrupt (asynchronous)

irq_acc Output 14 Interrupt request accepted (one-hot signal)

External Peripherals interface

per_addr Output 8 Peripheral address

per_din Output 16 Peripheral data input

per_dout Input 16 Peripheral data output

6

per_en Output 1 Peripheral enable (high active)

per_wen Output 2 Peripheral write enable (high active)

RAM interface

ram_addr Output `RAM_AWIDTH1 RAM address

ram_cen Output 1 RAM chip enable (low active)

ram_din Output 16 RAM data input

ram_dout Input 16 RAM data output

ram_wen Output 2 RAM write enable (low active)

ROM interface

rom_addr Output `ROM_AWIDTH1 ROM address

rom_cen Output 1 ROM chip enable (low active)

rom_din_dbg Output 16
ROM data input
--FOR SERIAL DEBUG INTERFACE--

rom_dout Input 16 ROM data output

rom_wen_dbg Output 2
ROM write enable (low active)
--FOR SERIAL DEBUG INTERFACE--

Serial Debug interface

dbg_freeze Output 1 Freeze peripherals

dbg_uart_txd Output 1 Debug interface: UART TXD

dbg_uart_rxd Input 1 Debug interface: UART RXD

1: This parameter is declared in the "openMSP430_defines.v" file and defines the
RAM/ROM size.

2.1.5 Instruction Cycles and Lengths

The number of CPU clock cycles required for an instruction depends on the instruction
format and the addressing modes used, not the instruction itself.

In the following tables, the number of cycles refers to the main clock (MCLK).
Differences with the original MSP430 are highlighted in green (the original value being
red).

7

• Interrupt and Reset Cycles

Action No. of Cycles Length of Instruction

Return from interrupt (RETI) 5 1

Interrupt accepted 6 -

WDT reset 4 -

Reset (!RST/NMI) 4 -

• Format-II (Single Operand) Instruction Cycles and Lengths

Addressing Mode
No. of Cycles

Length of Instruction
RRA, RRC, SWPB, SXT PUSH CALL

Rn 1 3 3 (4) 1

@Rn 3 4 4 1

@Rn+ 3 4 (5) 4 (5) 1

#N N/A 4 5 2

X(Rn) 4 5 5 2

EDE 4 5 5 2

&EDE 4 5 5 2

• Format-III (Jump) Instruction Cycles and Lengths

All jump instructions require one code word, and take two CPU cycles to execute,
regardless of whether the jump is taken or not.

• Format-I (Double Operand) Instruction Cycles and Lengths

Addressing Mode
No. of Cycles Length of Instruction

Src Dst

Rn

Rm 1 1

PC 2 1

x(Rm) 4 2

EDE 4 2

&EDE 4 2

@Rn Rm 2 1

PC 3 (2) 1

8

x(Rm) 5 2

EDE 5 2

&EDE 5 2

@Rn+

Rm 2 1

PC 3 1

x(Rm) 5 2

EDE 5 2

&EDE 5 2

#N

Rm 2 2

PC 3 2

x(Rm) 5 3

EDE 5 3

&EDE 5 3

x(Rn)

Rm 3 2

PC 3 (4) 2

x(Rm) 6 3

EDE 6 3

&EDE 6 3

EDE

Rm 3 2

PC 3 (4) 2

x(Rm) 6 3

EDE 6 3

&EDE 6 3

&EDE

Rm 3 2

PC 3 2

x(Rm) 6 3

EDE 6 3

&EDE 6 3

2.1.6 Serial Debug Interface

All the details about the Serial Debug Interface are located here.

9

2.2 Peripherals
In addition to the CPU core itself, several peripherals are also provided and can be easily
connected to the core during integration.

2.2.1 Basic Clock Module

In order to make an FPGA implementation as simple as possible (ideally, a non-designer
should be able to do it), clock gates are not used in the design and neither are clock
muxes.
With these constrains, the Basic Clock Module is implemented as following:

Note: CPUOFF doesn't switch MCLK off and will instead bring the CPU state machines
in an IDLE state while MCLK will still be running.

In order to 'clock' a register with ACLK or SMCLK, the following structure needs to be
implemented:

10

The following Verilog code would implement a counter clocked with SMCLK:

reg [7:0] test_cnt;

always @ (posedge mclk or posedge puc)
if (puc) test_cnt <= 8'h00;
else if (smclk_en) test_cnt <= test_cnt + 8'h01;

Register Description

• DCOCTL: Not implemented
• BCSCTL1:

• BCSCTL1[7:6]: Unused
• BCSCTL1[5:4]: DIVAx
• BCSCTL1[4:0]: Unused

• BCSCTL2:
• BCSCTL2[7:4]: Unused
• BCSCTL2[3] : SELS
• BCSCTL2[2:1]: DIVSx
• BCSCTL2[0] : Unused

2.2.2 Watchdog Timer

100% of the features advertised in the MSP430x1xx Family User's Guide (Chapter 10)
have been implemented.

2.2.3 Digital I/O

100% of the features advertised in the MSP430x1xx Family User's Guide (Chapter 9)
have been implemented.

The following Verilog parameters will enable or disable the corresponding ports in order
to save area (i.e. FPGA utilization):

parameter P1_EN = 1'b1; // Enable Port 1

parameter P2_EN = 1'b1; // Enable Port 2

parameter P3_EN = 1'b0; // Enable Port 3

parameter P4_EN = 1'b0; // Enable Port 4

parameter P5_EN = 1'b0; // Enable Port 5

parameter P6_EN = 1'b0; // Enable Port 6

11

They can be updated as following during the module instantiation (here port 1, 2 and 3
are enabled):

gpio #(.P1_EN(1),

.P2_EN(1),

.P3_EN(1),

.P4_EN(0),

.P5_EN(0),

.P6_EN(0)) gpio_0 (

The full pinout of the GPIO module is provided in the following table:

Port Name Direction Width Description

Clocks & Resets

mclk Input 1 Main system clock

puc Input 1 Main system reset

Interrupts

irq_port1 Output 1 Port 1 interrupt

irq_port2 Output 1 Port 2 interrupt

External Peripherals interface

per_addr Input 8 Peripheral address

per_din Input 16 Peripheral data input

per_dout Output 16 Peripheral data output

per_en Input 1 Peripheral enable (high active)

per_wen Input 2 Peripheral write enable (high active)

Port 1

p1_din Input 8 Port 1 data input

p1_dout Output 8 Port 1 data output

p1_dout_en Output 8 Port 1 data output enable

p1_sel Output 8 Port 1 function select

Port 2

p2_din Input 8 Port 2 data input

p2_dout Output 8 Port 2 data output

p2_dout_en Output 8 Port 2 data output enable

p2_sel Output 8 Port 2 function select

Port 3

p3_din Input 8 Port 3 data input

12

p3_dout Output 8 Port 3 data output

p3_dout_en Output 8 Port 3 data output enable

p3_sel Output 8 Port 3 function select

Port 4

p4_din Input 8 Port 4 data input

p4_dout Output 8 Port 4 data output

p4_dout_en Output 8 Port 4 data output enable

p4_sel Output 8 Port 4 function select

Port 5

p5_din Input 8 Port 5 data input

p5_dout Output 8 Port 5 data output

p5_dout_en Output 8 Port 5 data output enable

p5_sel Output 8 Port 5 function select

Port 6

p6_din Input 8 Port 6 data input

p6_dout Output 8 Port 6 data output

p6_dout_en Output 8 Port 6 data output enable

p6_sel Output 8 Port 6 function select

2.2.4 Timer A

100% of the features advertised in the MSP430x1xx Family User's Guide (Chapter 11)
have been implemented.

The full pinout of the Timer A module is provided in the following table:

Port Name Direction Width Description

Clocks, Resets & Debug

mclk Input 1 Main system clock

aclk_en Input 1 ACLK enable (from CPU)

smclk_en Input 1 SMCLK enable (from CPU)

inclk Input 1 INCLK external timer clock (SLOW)

taclk Input 1 TACLK external timer clock (SLOW)

puc Input 1 Main system reset

dbg_freeze Input 1 Freeze Timer A counter

13

Interrupts

irq_ta0 Output 1 Timer A interrupt: TACCR0

irq_ta1 Output 1 Timer A interrupt: TAIV, TACCR1, TACCR2

irq_ta0_acc Input 1 Interrupt request TACCR0 accepted

External Peripherals interface

per_addr Input 8 Peripheral address

per_din Input 16 Peripheral data input

per_dout Output 16 Peripheral data output

per_en Input 1 Peripheral enable (high active)

per_wen Input 2 Peripheral write enable (high active)

Capture/Compare Unit 0

ta_cci0a Input 1 Timer A capture 0 input A

ta_cci0b Input 1 Timer A capture 0 input B

ta_out0 Output 1 Timer A output 0

ta_out0_en Output 1 Timer A output 0 enable

Capture/Compare Unit 1

ta_cci1a Input 1 Timer A capture 1 input A

ta_cci1b Input 1 Timer A capture 1 input B

ta_out1 Output 1 Timer A output 1

ta_out1_en Output 1 Timer A output 1 enable

Capture/Compare Unit 2

ta_cci2a Input 1 Timer A capture 2 input A

ta_cci2b Input 1 Timer A capture 2 input B

ta_out2 Output 1 Timer A output 2

ta_out2_en Output 1 Timer A output 2 enable

Note: for the same reason as with the Basic Clock Module, the two additional clock
inputs (TACLK and INCLK) are internally synchronized with the MCLK domain. As a
consequence, TACLK and INCLK should be at least 2 times slowlier than MCLK, and if
these clock are used toghether with the Timer A output unit, some jitter might be
observed on the generated output. If this jitter is critical for the application, ACLK and
INCLK should idealy be derivated from DCO_CLK.

14

3.
Serial Debug Interface

Table of content

• 1. Introduction
• 2. Debug Unit

• 2.1 Register Mapping
• 2.2 CPU Control/Status Registers

• 2.2.1 CPU_ID
• 2.2.2 CPU_CTL
• 2.2.3 CPU_STAT

• 2.3 Memory Access Registers
• 2.3.1 MEM_CTL
• 2.3.2 MEM_ADDR
• 2.3.3 MEM_DATA
• 2.3.4 MEM_CNT

• 2.4 Hardware Breakpoint Unit Registers
• 2.4.1 BRKx_CTL
• 2.4.2 BRKx_STAT
• 2.4.3 BRKx_ADDR0
• 2.4.4 BRKx_ADDR1

• 3 Debug Communication Interface: UART
• 3.1 Serial communication protocol: 8N1
• 3.2 Synchronization frame
• 3.3 Read/Write access to the debug registers

• 3.3.1 Command Frame
• 3.3.2 Write access
• 3.3.3 Read access

• 3.4 Read/Write burst implementation for the CPU Memory access
• 3.4.1 Write Burst access
• 3.4.2 Read Burst access

15

1. Introduction
The original MSP430 from TI provides a serial debug interface to give a simple path to
software development. In that case, the communication with the host computer is
typically build on a JTAG or Spy-Bi-Wire serial protocol. However, the global debug
architecture from the MSP430 is unfortunately poorly documented on the web (and is
also probably tightly linked with the internal core architecture).

A custom module has therefore been implemented for the openMSP430. The
communication with the host is done with a simple RS232 cable (8N1 serial protocol)
and the debug unit provides all the required features for Nexus Class 3 debugging (beside
trace), namely:

• CPU control (run, stop, step, reset).
• Software & hardware breakpoint support.
• Memory read/write on-the-fly (no need to halt execution).
• CPU registers read/write on-the-fly (no need to halt execution).

2. Debug Unit
2.1 Register Mapping
The following table summarize the complete debug register set accessible through the
debug communication interface:

Register Name Address
Bit Field

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CPU_ID_LO 0x00 CPU_ID[7:0] ROM_AWIDTH RAM_AWIDTH

CPU_ID_HI 0x01 CPU_ID[23:8]

CPU_CTL 0x02 Reserved CPU_RST RST_BRK_EN FRZ_BRK_EN
SW_BRK_E

N
ISTEP RUN HALT

CPU_STAT 0x03 Reserved HWBRK3_PND HWBRK2_PND
HWBRK1_PN

D
HWBRK0_PN

D
SWBRK_PN

D
PUC_PND Res. HALT_RUN

MEM_CTL 0x04 Reserved B/W MEM/REG RD/WR START

MEM_ADDR 0x05 MEM_ADDR[15:0]

MEM_DATA 0x06 MEM_DATA[15:0]

MEM_CNT 0x07 MEM_CNT[15:0]

BRK0_CTL 0x08 Reserved
RANGE_MOD

E
INST_EN BREAK_EN ACCESS_MODE

BRK0_STAT 0x09 Reserved RANGE_WR RANGE_RD ADDR1_WR ADDR1_RD
ADDR0_W

R
ADDR0_RD

BRK0_ADDR0 0x0A BRK_ADDR0[15:0]

BRK0_ADDR1 0x0B BRK_ADDR1[15:0]

BRK1_CTL 0x0C Reserved
RANGE_MOD

E
INST_EN BREAK_EN ACCESS_MODE

BRK1_STAT 0x0D Reserved RANGE_WR RANGE_RD ADDR1_WR ADDR1_RD
ADDR0_W

R
ADDR0_RD

BRK1_ADDR0 0x0E BRK_ADDR0[15:0]

BRK1_ADDR1 0x0F BRK_ADDR1[15:0]

BRK2_CTL 0x10 Reserved
RANGE_MOD

E
INST_EN BREAK_EN ACCESS_MODE

16

BRK2_STAT 0x11 Reserved RANGE_WR RANGE_RD ADDR1_WR ADDR1_RD
ADDR0_W

R
ADDR0_RD

BRK2_ADDR0 0x12 BRK_ADDR0[15:0]

BRK2_ADDR1 0x13 BRK_ADDR1[15:0]

BRK3_CTL 0x14 Reserved
RANGE_MOD

E
INST_EN BREAK_EN ACCESS_MODE

BRK3_STAT 0x15 Reserved RANGE_WR RANGE_RD ADDR1_WR ADDR1_RD
ADDR0_W

R
ADDR0_RD

BRK3_ADDR0 0x16 BRK_ADDR0[15:0]

BRK3_ADDR1 0x17 BRK_ADDR1[15:0]

2.2 CPU Control/Status Registers
2.2.1 CPU_ID

This 32 bit read-only register holds the ID of the implemented openMSP430 as well as
the RAM and ROM size information.

Register Name Address
Bit Field

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CPU_ID_LO 0x00 CPU_ID[7:0] ROM_AWIDTH RAM_AWIDTH

CPU_ID_HI 0x01 CPU_ID[23:7]

• CPU_ID : Set by default to 0x4D5350 (ascii code for "MSP")

• ROM_AWIDTH : Program memory address width for the current implementation.
The ROM size is then equal to 2ROM_AWIDTH

• RAM_AWIDTH : Data memory address width for the current implementation. The
RAM size is then equal to 2RAM_AWIDTH

2.2.2 CPU_CTL

This 8 bit read-write register is used to control the CPU and to configure some basic
debug features. After a POR, this register is set to 0x00.

Register Name Address
Bit Field

7 6 5 4 3 2 1 0

CPU_CTL 0x02 Res. CPU_RST RST_BRK_EN FRZ_BRK_EN SW_BRK_EN ISTEP RUN HALT

• CPU_RST : Setting this bit to 1 will activate the PUC reset. Setting it back to
0 will release it.

• RST_BRK_EN : If set to 1, the CPU will automatically break after a PUC
occurrence.

• FRZ_BRK_EN : If set to 1, the timers and watchdog are frozen when the CPU is

17

halted.

• SW_BRK_EN : Enables the software breakpoint detection.

• ISTEP1 : Writing 1 to this bit will perform a single instruction step if the
CPU is halted.

• RUN1 : Writing 1 to this bit will get the CPU out of halt state.

• HALT1 : Writing 1 to this bit will put the CPU in halt state.

1:this field is write-only and always reads back 0.

2.2.3 CPU_STAT

This 8 bit read-write register gives the global status of the debug interface. After a POR,
this register is set to 0x00.

Register Name Address
Bit Field

7 6 5 4 3 2 1 0

CPU_STAT 0x03 HWBRK3_PND HWBRK2_PND HWBRK1_PND HWBRK0_PND SWBRK_PND PUC_PND Res. HALT_RUN

• HWBRK3_PND : This bit reflects if one of the Hardware Breakpoint Unit 3 status
bit is set (i.e. BRK3_STAT≠0).

• HWBRK2_PND : This bit reflects if one of the Hardware Breakpoint Unit 2 status
bit is set (i.e. BRK2_STAT≠0).

• HWBRK1_PND : This bit reflects if one of the Hardware Breakpoint Unit 1 status
bit is set (i.e. BRK1_STAT≠0).

• HWBRK0_PND : This bit reflects if one of the Hardware Breakpoint Unit 0 status
bit is set (i.e. BRK0_STAT≠0).

• SWBRK_PND : This bit is set to 1 when a software breakpoint occurred. It can be
cleared by writing 1 to it.

• PUC_PND : This bit is set to 1 when a PUC reset occurred. It can be cleared
by writing 1 to it.

• HALT_RUN : This read-only bit gives the current status of the CPU:

0 - CPU is running.
1 - CPU is stopped.

18

2.3 Memory Access Registers
The following four registers enable single and burst read/write access to both CPU-
Registers and full memory address range.

In order to perform an access, the following sequences are typically done:

• single read access (MEM_CNT=0):
1. set MEM_ADDR with the memory address (or register number) to be read
2. set MEM_CTL (in particular RD/WR=0 and START=1)
3. read MEM_DATA

• single write access (MEM_CNT=0):
1. set MEM_ADDR with the memory address (or register number) to be

written
2. set MEM_DATA with the data to be written
3. set MEM_CTL (in particular RD/WR=1 and START=1)

• burst read/write access (MEM_CNT≠0):
 ◦ burst access are optimized for the communication interface used (i.e. for

the UART). The burst sequence are therefore described in the corresponding section (3.4
Read/Write burst implementation for the CPU Memory access)

2.3.1 MEM_CTL

This 8 bit read-write register is used to control the Memory and CPU-Register read/write
access. After a POR, this register is set to 0x00.

Register Name Address
Bit Field

7 6 5 4 3 2 1 0

MEM_CTL 0x04 Reserved B/W MEM/REG RD/WR START

• B/W : 0 - 16 bit access.

1 - 8 bit access (not valid for CPU-Registers).

• MEM/REG : 0 - Memory access.

1 - CPU-Register access.

• RD/WR : 0 - Read access.

1 - Write access.

• START : 0- Do nothing

1 - Initiate memory transfer.

19

2.3.2 MEM_ADDR

This 16 bit read-write register specifies the Memory or CPU-Register address to be used
for the next read/write transfer. After a POR, this register is set to 0x0000.

Note: in case of burst (i.e. MEM_CNT≠0), this register specifies the first address of the
burst transfer and will be incremented automatically as the burst goes (by 1 for 8-bit
access and by 2 for 16-bit access).

Register Name Address
Bit Field

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MEM_ADDR 0x05 MEM_ADDR[15:0]

• MEM_ADDR : Memory or CPU-Register address to be used for the next
read/write transfer.

2.3.3 MEM_DATA

This 16 bit read-write register specifies (wr) or receive (rd) the Memory or CPU-Register
data for the the next transfer. After a POR, this register is set to 0x0000.

Register Name Address
Bit Field

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MEM_DATA 0x06 MEM_DATA[15:0]

• MEM_DATA : if MEM_CTL.WR - data to be written during the next write
transfer.

 if MEM_CTL.RD - updated with the data from the read transfer

2.3.4 MEM_CNT

This 16 bit read-write register controls the burst access to the Memory or CPU-Registers.
If set to 0, a single access will occur, otherwise, a burst will be performed. The burst
being optimized for the communication interface, more details are given there. After a
POR, this register is set to 0x0000.

Register Name Address
Bit Field

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MEM_CNT 0x07 MEM_CNT[15:0]

• MEM_CNT : =0 - a single access will be performed with the next transfer.

 ≠0 - specifies the burst size for the next transfer (i.e number of data
access). This field will be automatically decremented as the burst goes.

20

2.4 Hardware Breakpoint Unit Registers
Depending on the defines located in the "openMSP430_defines.v" file, up to four
hardware breakpoint units can be included in the design. These units can be individually
controlled with the following registers.

2.4.1 BRKx_CTL

This 8 bit read-write register controls the hardware breakpoint unit x. After a POR, this
register is set to 0x00.

Register Name Address
Bit Field

7 6 5 4 3 2 1 0

BRKx_CTL
0x08, 0x0C,
0x10, 0x14

Reserved RANGE_MODE INST_EN BREAK_EN ACCESS_MODE

• RANGE_MODE : 0 - Address match on BRK_ADDR0 or BRK_ADDR1 (normal
mode)

 1 - Address match on BRK_ADDR0→BRK_ADDR1 range
(range mode)

• INST_EN : 0 - Checks are done on the execution unit (data flow).

 1 - Checks are done on the frontend (instruction flow).

• BREAK_EN : 0 - Watchpoint mode enable (don't stop on address match).

 1 - Breakpoint mode enable (stop on address match).

• ACCESS_MODE : 00 - Disabled

 01 - Detect read access.

 10 - Detect write access.

 11 - Detect read/write access

Note: '10' & '11' modes are not supported on the instruction flow

21

2.4.2 BRKx_STAT

This 8 bit read-write register gives the status of the hardware breakpoint unit x. Each
status bit can be cleared by writing 1 to it. After a POR, this register is set to 0x00.

Register Name Address
Bit Field

7 6 5 4 3 2 1 0

BRKx_STAT
0x09, 0x0D,
0x11, 0x15

Reserved RANGE_WR RANGE_RD ADDR1_WR ADDR1_RD ADDR0_WR ADDR0_RD

• RANGE_WR : This bit is set whenever the CPU performs a write access within the
BRKx_ADDR0→BRKx_ADDR1 range (valid if RANGE_MODE=1
and ACCESS_MODE[1]=1).

• RANGE_RD : This bit is set whenever the CPU performs a read access within the
BRKx_ADDR0→BRKx_ADDR1 range (valid if RANGE_MODE=1
and ACCESS_MODE[0]=1).

• ADDR1_WR : This bit is set whenever the CPU performs a write access at the
BRKx_ADDR1 address (valid if RANGE_MODE=0 and
ACCESS_MODE[1]=1).

• ADDR1_RD : This bit is set whenever the CPU performs a read access at the
BRKx_ADDR1 address (valid if RANGE_MODE=0 and
ACCESS_MODE[0]=1).

• ADDR0_WR : This bit is set whenever the CPU performs a write access at the
BRKx_ADDR0 address (valid if RANGE_MODE=0 and
ACCESS_MODE[1]=1).

• ADDR0_RD : This bit is set whenever the CPU performs a read access at the
BRKx_ADDR0 address (valid if RANGE_MODE=0 and
ACCESS_MODE[0]=1).

2.4.3 BRKx_ADDR0

This 16 bit read-write register holds the value which is compared against the address
value currently present on the program or data address bus. After a POR, this register is
set to 0x0000.

Register Name Address
Bit Field

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

BRKx_ADDR0
0x0A, 0x0E,
0x12, 0x16

BRK_ADDR0[15:0]

• BRK_ADDR0 : Value compared against the address value currently present on the
program or data address bus.

22

2.4.4 BRKx_ADDR1

This 16 bit read-write register holds the value which is compared against the address
value currently present on the program or data address bus. After a POR, this register is
set to 0x0000.

Register Name Addresses
Bit Field

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

BRKx_ADDR1
0x0B, 0x0F,
0x13, 0x17

BRK_ADDR1[15:0]

• BRK_ADDR1 : Value compared against the address value currently present on the
program or data address bus.

3. Debug Communication Interface:
UART

With its UART interface, the openMSP430 debug unit can communicate with the host
computer using a simple RS232 cable (connected to the dbg_uart_txd and dbg_uart_rxd
ports of the IP).

Using an standard USB to RS232 adaptor, the interface provides a reliable
communication link up to 1,5Mbps.

3.1 Serial communication protocol: 8N1
There are plenty tutorials on Internet regarding RS232 based protocols. However, here is
quick recap about 8N1 (1 Start bit, 8 Data bits, No Parity, 1 Stop bit):

As you can see in the above diagram, data transmission starts with a Start bit, followed by
the data bits (LSB sent first and MSB sent last), and ends with a "Stop" bit.

23

http://www.google.com/search?q=usb+to+rs232+converter

3.2 Synchronization frame
After a POR, the Serial Debug Interface expects a synchronization frame from the host
computer in order to determine the communication speed (i.e. the baud rate).

The synchronization frame looks as following:

As you can see, the host simply sends the 0x80 value. The openMSP430 will then
measure the time between the falling and rising edge, divide it by 8 and automatically
deduce the baud rate it should use to properly communicate with the host.

Important note: if you want to change the communication speed between two debugging
sessions, the openMSP430 needs to go over a POR cycle and a new synchronization
frame needs to be send.

3.3 Read/Write access to the debug registers
In order to perform a read / write access to a debug register, the host needs to send a
command frame to the openMSP430.

In case of write access, this command frame will be followed by 1 or 2 data frames and in
case of read access, the openMSP430 will send 1 or 2 data frames after receiving the
command.

3.3.1 Command Frame

The command frame looks as following:

• WR : Perform a Write access when set. Read otherwise.

• B/W : Perform a 8-bit data access when set (one data frame). 16-bit otherwise
(two data frame).

• Address : Debug register address.

24

3.3.2 Write access

A write access transaction looks like this:

3.3.3 Read access

A read access transaction looks like this:

3.4 Read/Write burst implementation for the CPU
Memory access
In order to optimize the data burst transactions for the UART, read/write access are not
done by reading or writing the MEM_DATA register.

Instead, the data transfer starts immediately after the MEM_CTL.START bit has been
set.

3.4.1 Write Burst access

A write burst transaction looks like this:

25

3.4.2 Read Burst access

A read burst transaction looks like this:

26

4.
Software Development

Tools

Table of content

• 1. Introduction
• 2. openmsp430-loader
• 3. openmsp430-minidebug
• 4. openmsp430-gdbproxy
• 5. MSPGCC Toolchain

• 5.1 Some notes regarding msp430-gdb
• 5.2 CPU selection for msp430-gcc

1. Introduction

Building on the serial debug interface capabilities provided by the openMSP430, three
small utility programs are provided:

• openmsp430-loader: a simple command line boot loader.
• openmsp430-minidebug: a minimalistic debugger with simple GUI.
• openmsp430-gdbproxy: GDB Proxy server to be used together with MSP430-

GDB and the Eclipse, DDD, or Insight graphical front-ends.

All these software development tools have been developed in TCL/TK and were
successfully tested on both Linux and Windows XP.

Note: in order to be able to directly execute the scripts, TCL/TK needs to be installed on
your system. Optionally for Windows users, the scripts have been turned into single-file
binary executable programs using freeWrap.

27

http://freewrap.sourceforge.net/
http://www.tcl.tk/software/tcltk/

2. openmsp430-loader

This simple program allows the user to load the openMSP430 program memory with an
executable file (ELF format) provided as argument.

It is typically used in conjunction with 'make' in order to automatically load the program
after the compile step (see 'Makefile' from software examples provided with the project's
FPGA implementation).

The program can be called with the following syntax:
openmsp430-loader.tcl [-device <communication device>] [-baudrate <communication speed>] <elf-file>

Examples: openmsp430-loader.tcl -device /dev/ttyUSB0 -baudrate 9600 leds.elf
openmsp430-loader.tcl -device COM2: -baudrate 38400 ta_uart.elf

These screenshots show the script in action under Linux and Windows:

28

3. openmsp430-minidebug

This small program provides a minimalistic graphical interface enabling simple
interaction with the openMSP430:

As you can see from the screenshot, it allows the following actions:

• (1) Load the program memory with an ELF file
• (2) Reset the CPU
• (3) Stop/Start the program execution
• (4) Read/Write access of the CPU registers
• (5) Read/Write access of the whole memory range (program, data, peripherals)

29

4. openmsp430-gdbproxy

The purpose of this program is to replace the 'msp430-gdbproxy' utility provided by the
mspgcc toolchain.

Typically, a GDB proxy creates a local port for gdb to connect to, and handles the
communication with the target hardware. In our case, it is basically a bridge between the
RSP communication protocol from GDB and the serial debug interface from the
openMSP430.

Schematically the communication flow looks as following:

Like the original 'msp430-gdbproxy' program, 'openmsp430-gdbproxy' can be controlled
from the command line. However, it also provides a small graphical interface:

30

These two additional screenshots show the script in action together with the Eclipse and
DDD graphical frontends:

31

Tip: There are several tutorials on Internet explaining how to configure Eclipse for the
MSP430. As an Eclipse newbie, I found the followings quite helpful:

• Use Eclipse and mspgcc - The easy way (English)
• MSP430 - Entwicklungumgebung (German)

5. MSPGCC Toolchain

5.1 Some notes regarding msp430-gdb

As of today (July 2009), the GDB port for the MSP430 has some problems (here).

The stepping over function is not available and the backtrace and finish commands don't
work properly.

There is fortunately a patch existing, and until it is included into GDB, I can only
recommend to recompile GDB with it (I didn't try it for Windows but it is quite straight
forward to do for Linux).

5.2 CPU selection for msp430-gcc

The following table aims to help selecting the proper -mmcu option for the msp430-gcc
call.

Note that only the ROM size should imperatively match the openMSP430 configuration.

ROM Size: 1 kB

msp430x110 1 kB 128 B

msp430x1101 1 kB 128 B

msp430x2001 1 kB 128 B

msp430x2002 1 kB 128 B

msp430x2003 1 kB 128 B

msp430x2101 1 kB 128 B

ROM Size: 2 kB

msp430x1111 2 kB 128 B

msp430x2011 2 kB 128 B

msp430x2012 2 kB 128 B

msp430x2013 2 kB 128 B

32

http://www.nabble.com/Useful-new-GDB-fixes-td19554922.html
http://www.nabble.com/Help-with-gdb-commands-td21942613.html
http://msp430.ms.funpic.de/doku.php?id=msp430:entwicklungumgebung
http://matthias-hartmann.blogspot.com/2009/02/use-eclipse-and-mspgcc-easy-way.html

msp430x2111 2 kB 128 B

msp430x2112 2 kB 128 B

msp430x311 2 kB 128 B

ROM Size: 4 kB

msp430x112 4 kB 256 B

msp430x1121 4 kB 256 B

msp430x1122 4 kB 256 B

msp430x122 4 kB 256 B

msp430x1222 4 kB 256 B

msp430x2122 4 kB 256 B

msp430x2121 4 kB 256 B

msp430x312 4 kB 256 B

msp430x412 4 kB 256 B

ROM Size: 8 kB

msp430x123 8 kB 256 B

msp430x133 8 kB 256 B

msp430x313 8 kB 256 B

msp430x323 8 kB 256 B

msp430x413 8 kB 256 B

msp430x423 8 kB 256 B

msp430xE423 8 kB 256 B

msp430xE4232 8 kB 256 B

msp430xW423 8 kB 256 B

msp430x1132 8 kB 256 B

msp430x1232 8 kB 256 B

msp430x1331 8 kB 256 B

msp430x2131 8 kB 256 B

msp430x2132 8 kB 256 B

msp430x2232 8 kB 512 B

msp430x2234 8 kB 512 B

msp430x233 8 kB 1024 B

msp430x2330 8 kB 1024 B

ROM Size: 16 kB
33

msp430x4250 16 kB 256 B

msp430xG4250 16 kB 256 B

msp430x135 16 kB 512 B

msp430x1351 16 kB 512 B

msp430x155 16 kB 512 B

msp430x2252 16 kB 512 B

msp430x2254 16 kB 512 B

msp430x315 16 kB 512 B

msp430x325 16 kB 512 B

msp430x415 16 kB 512 B

msp430x425 16 kB 512 B

msp430xE425 16 kB 512 B

msp430xW425 16 kB 512 B

msp430xE4252 16 kB 512 B

msp430x435 16 kB 512 B

msp430x4351 16 kB 512 B

msp430x235 16 kB 2048 B

msp430x2350 16 kB 2048 B

ROM Size: 32 kB

msp430x4270 32 kB 256 B

msp430xG4270 32 kB 256 B

msp430x147 32 kB 1024 B

msp430x1471 32 kB 1024 B

msp430x157 32 kB 1024 B

msp430x167 32 kB 1024 B

msp430x2272 32 kB 1024 B

msp430x2274 32 kB 1024 B

msp430x337 32 kB 1024 B

msp430x417 32 kB 1024 B

msp430x427 32 kB 1024 B

msp430xE427 32 kB 1024 B

msp430xE4272 32 kB 1024 B

msp430xW427 32 kB 1024 B
34

msp430x437 32 kB 1024 B

msp430xG437 32 kB 1024 B

msp430x4371 32 kB 1024 B

msp430x447 32 kB 1024 B

msp430x2370 32 kB 2048 B

msp430x247 32 kB 4096 B

msp430x2471 32 kB 4096 B

35

5.
File and Directory

Description

Table of content

• 1. Introduction
• 2. Directory structure: openMSP430 core
• 3. Directory structure: FGPA projects
• 4. Directory structure: Software Development Tools

1. Introduction

To simplify the integration of this IP, the directory structure is based on the OpenCores
recommendations.

2. Directory structure: openMSP430 core
core openMSP430 Core top level directory

abc
d

bench Top level testbench directory

abc
d

verilog

abc
d

tb_openMSP430.v Testbench top level module

ram.v RAM verilog model

registers.v Connections to Core internals for easy debugging

dbg_uart_tasks.v UART tasks for the serial debug interface

36

http://www.opencores.org/downloads/opencores_coding_guidelines.pdf

msp_debug.v
Testbench instruction decoder and ASCII chain
generator for easy debugging

doc Diverse documentation

abc
d

slau049f.pdf MSP430x1xx Family User's Guide

rtl RTL sources

abc
d

verilog

abc
d

openMSP430_define
s.v

openMSP430 core configuration file (ROM and
RAM size definition, Debug Interface
configuration)

openMSP430.v openMSP430 top level

frontend.v Instruction fetch and decode

execution_unit.v Execution unit

alu.v ALU

register_file.v Register file

mem_backbone.v Memory backbone

clock_module.v Basic Clock Module

sfr.v Special function registers

watchdog.v Watchdog Timer

dbg.v Serial Debug Interface main block

dbg_hwbrk.v Serial Debug Interface hardware breakpoint unit

dbg_uart.v Serial Debug Interface UART communication block

periph Peripherals directory

abc
d

gpio.v Digital I/O (Port 1 to 6)

timerA.v Timer A

template_periph
_16b.v

Verilog template for 16 bit peripherals

template_periph
_8b.v

Verilog template for 8 bit peripherals

sim Top level simulations directory

abc
d

rtl_sim RTL simulations

abc
d

bin RTL simulation scripts

abc
d

msp430sim Main simulation script

asm2ihex.sh Assembly file compilation (Intel HEX file

37

generation)

ihex2mem.tcl Verilog ROM memory file generation

rtlsim.sh Verilog Icarus simulation script

template.def ASM linker definition file template

run For running RTL simulations

abc
d

run Run single simulation of a given vector

run_all Run regression of all vectors

run_disassembl
e

Disassemble ROM content of the latest simulation

load_waveform
.sav

SAV file for gtkWave

src RTL simulation vectors sources

abc
d

submit.f Verilog simulator command file

sing-op_*.s43 Single-operand assembler vector files

sing-op_*.v Single-operand verilog stimulus vector files

two-op_*.s43 Two-operand assembler vector files

two-op_*.v Two-operand verilog stimulus vector files

c-jump_*.s43 Jump assembler vector files

c-jump_*.v Jump verilog stimulus vector files

op_modes.s43
CPU operating modes assembler vector files
(CPUOFF, OSCOFF, SCG1)

op_modes.v
CPU operating modes verilog stimulus vector files
(CPUOFF, OSCOFF, SCG1)

clock_module.s
43

Basic Clock Module assembler vector files

clock_module.v Basic Clock Module verilog stimulus vector files

dbg_*.s43 Serial Debug Interface assembler vector files

dbg_*.v Serial Debug Interface verilog stimulus vector files

gpio_*.s43 Digital I/O assembler vector files

gpio_*.v Digital I/O verilog stimulus vector files

template_periph
_*.s43

Peripheral templates assembler vector files

template_periph
_*.v

Peripheral templates verilog stimulus vector files

38

wdt_*.s43 Watchdog timer assembler vector files

wdt_*.v Watchdog timer verilog stimulus vector files

tA_*.s43 Timer A assembler vector files

tA_*.v Timer A verilog stimulus vector files

synthesis Top level synthesis directory

abc
d

synopsys Synopsys (Design Compiler) directory

abc
d

run_syn Run synthesis

synthesis.tcl Main synthesis TCL script

library.tcl
Load library, set operating conditions and wire
load models

read.tcl Read RTL

constraints.tcl Set design constrains

results Results directory

3. Directory structure: FGPA projects

fpga
openMSP430 FPGA Projects top
level directory

abc
d

diligent_s3board
FPGA Project based on the Diligent
Spartan-3 board

abc
d

bench Top level testbench directory

abc
d

verilog

abc
d

tb_openMSP430_fpga.v FPGA testbench top level module

registers.v
Connections to Core internals for
easy debugging

msp_debug.v
Testbench instruction decoder and
ASCII chain generator for easy
debugging

glbl.v Xilinx "glbl.v" file

doc Diverse documentation

abc
d

board_user_guide.pdf
Spartan-3 FPGA Starter Kit Board
User Guide

msp430f1121a.pdf msp430f1121a Specification

xapp462.pdf Xilinx Digital Clock Managers

39

(DCMs) user guide

rtl RTL sources

abc
d

verilog

abc
d

openMSP430_defines.v
openMSP430 core configuration file
(ROM and RAM size definition)

openMSP430_fpga.v FPGA top level file

driver_7segment.v
Four-Digit, Seven-Segment LED
Display driver

io_mux.v I/O mux for port function selection.

coregen Xilinx's coregen directory

abcd

ram_8x512_
hi.*

512 Byte RAM (upper byte)

ram_8x512_
lo.*

512 Byte RAM (lower byte)

rom_8x2k_h
i.*

2 kByte ROM (upper byte)

rom_8x2k_l
o.*

2 kByte ROM (lower byte)

sim Top level simulations directory

abc
d

rtl_sim RTL simulations

abc
d

bin RTL simulation scripts

abcd

msp430sim Main simulation script

ihex2mem.t
cl

Verilog ROM memory file generation

rtlsim.sh Verilog Icarus simulation script

run For running RTL simulations

abcd

run
Run simulation of a given software
project

run_disasse
mble

Disassemble ROM content of the
latest simulation

src RTL simulation verilog stimulus

abcd

submit.f Verilog simulator command file

*.v
Stimulus vector for the corresponding
software project

software Software C programs to be loaded in
ROM

40

abc
d

leds
LEDs blinking application (from the
CDK4MSP project)

abc
d

makefile

hardware.h

main.c

7seg.h

7seg.c

ta_uart
Software UART with Timer_A (from
the CDK4MSP project)

synthesis Top level synthesis directory

abc
d

xilinx

abc
d

create_bitstream Run Xilinx ISE synthesis

openMSP430_fpga_top.ucf UCF file

openMSP430_fpga_top.v RTL file list to be synthesized

load_rom
Update bitstream's ROM with a given
software ELF file

memory.bmm
FPGA memory description for
bitstream's ROM update

4. Directory structure: Software
Development Tools

tools
openMSP430 Software Development
Tools top level directory

abc
d

bin Contains the executable files

abc
d

openmsp430-loader.tcl
Simple command line boot loader: TCL
Script

openmsp430-loader.exe
Simple command line boot loader:
Windows executable

openmsp430-minidebug.tcl
Minimalistic debugger with simple GUI:
TCL Script

openmsp430-minidebug.exe
Minimalistic debugger with simple GUI:
Windows executable

openmsp430-gdbproxy.tcl GDB Proxy server to be used together with

41

MSP430-GDB and the Eclipse, DDD, or
Insight graphical front-ends: TCL Script

openmsp430-gdbproxy.exe

GDB Proxy server to be used together with
MSP430-GDB and the Eclipse, DDD, or
Insight graphical front-ends: Windows
executable

lib Common library

abc
d

tcl-lib Common TCL library

abcd

dbg_uart.tcl Low level UART communication functions

dbg_functions.tcl
Main utility functions for the openMSP430
serial debug interface

combobox.tcl
A combobox listbox widget written in pure
tcl (from Bryan Oakley)

openmsp430-gdbproxy GDB Proxy server main project directory

abc
d

openmsp430-gdbproxy.tcl
GDB Proxy server main TCL Script
(symbolic link with the script in the bin
directory)

server.tcl
TCP/IP Server utility functions.
Send/Receive RSP packets from GDB.

commands.tcl RSP command execution functions.

doc
Some documentation regarding GDB and
the RSP protocol.

abcd

ew_GDB_RSP.pd
f

Document from Bill Gatliff: Embedding
with GNU: the gdb Remote Serial Protocol

Howto-
GDB_Remote_Ser
ial_Protocol.pdf

Document from Jeremy Bennett
(Embecosm): Howto: GDB Remote Serial
Protocol - Writing a RSP Server

freewrap642
The freeWrap program turns TCL/TK
scripts into single-file binary executable
programs for Windows.

abc
d

freewrap.exe
freeWrap executable to run on TCL/TK
scripts (i.e. with GUI)

freewrapTCLSH.exe
freeWrap executable to run on pure TCL
scripts (i.e. command line)

tclpip85s.dll freeWrap mandatory DLL

generate_exec.bat
Simple Batch file for auto generation of the
tools' windows executables

42

